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Abstract
This paper contributes to the existing literature on the explanation of housing prices. 
First, our proposed methodology accounts for cross-sectional dependence, both 
locally and globally, using individual data of more than 200,000 transactions in the 
three most northern provinces of the Netherlands over the period 1993–2014. Sec-
ond, the selection of houses within each focal house’s sub-market is not only based 
on distance and time, but also on their degree of similarity. Third, global cross-sec-
tional dependence is not modeled by time-fixed effects, as in previous studies, but 
by cross-sectional price averages. Fourth, we accumulate the strength and frequency 
with which earthquakes affect each focal house before it was sold into one single 
measure using a seismological model and then subdivide it into different bins to 
account for nonlinear effects and to determine a threshold below which earthquakes 
have no effect. This way we are able to investigate the propagation of the detrimental 
impact of earthquakes on housing prices over space and time without the need to 
select a reference area in advance, which potentially might also have been affected 
by earthquakes.
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1 Introduction

The north of the Netherlands hosts Europe’s largest natural gas field, which has pro-
vided energy to most Dutch households since the 1960s. However, extracting gas 
from it induces mild earthquakes (Kamp 2013, p.443) that negatively impact house 
prices in the region. Although this impact has been clearly documented in the lit-
erature (Francke and Lee 2013, 2014; Koster and van Ommeren 2015; Bosker et al. 
2016; Marlet et  al. 2017), there is still uncertainty about the spatial and temporal 
extensions of the problem. Their determination is as policy relevant as it is difficult 
to achieve for at least two reasons. First, simultaneously measuring the magnitude 
of the impact, determining the extent of the area, and the length of the period in 
which the earthquakes affected house prices is challenging. Second, a fundamental, 
yet overlooked aspect in estimating the impact from externalities on house prices is 
that housing market transactions data typically present weak cross-sectional depend-
ence (Chudik et al. 2011), i.e., house prices affect each other locally.1

Real estate agents in the Netherlands apply the sales comparison approach (SCA) 
to advice their clients on a suitable list price when they try to sell their properties 
(Op’t Veld et al. 2008). To calculate it, they use transaction prices of recently sold, 
nearby dwellings with similar hedonic characteristics. List and transaction prices of 
the same house are usually highly correlated since both are increasing functions of 
the seller’s reservation price, implying that price data from house transactions are 
not independent from other similar, proximate, and previously settled house prices. 
Consequently, if the price of a specific house is affected by earthquakes, all prices 
for which this house has served as a reference will be indirectly impacted.

Much of the literature measuring housing market effects  from earthquakes in 
the Netherlands have turned to the comparison between house prices in so-called 
affected and those in neighboring areas, assumed to be unaffected. In addition, many 
studies take the event of the strongest earthquake, the so-called Huizinge earth-
quake of August 2012, as the moment that earthquakes began to affect house prices 
in the region. However, the phenomenon of weak cross-sectional dependence may 
have led to an insufficiently accurate determination of the area and period in which 
earthquakes have affected house prices. The underlying spatiotemporal relationship 
between similar dwellings needs to be modeled to adequately measure the magni-
tude of the impact of earthquakes on house prices and determine the extent of the 
area and period over which earthquakes affected the housing market. Jansen et al. 
(2016) evaluate 13 models and methods that have been proposed to study the impact 
of earthquakes on housing prices in the north of the Netherlands. However, none of 
them has used spatial econometric methods, leading the authors of this report to rec-
ommend further exploring this method (p.96). This study fills this gap.

In addition to previous housing market studies using spatial econometric models, 
the spatiotemporal relationships are not only based on distance and time, but also on 
the pairwise degree of similarity between dwellings computed as an index described 
in Op’t Veld et al. (2008), extensively used by Dutch real estate agents associated to 

1 See also the theme issue of the Journal of Geographical Systems on spatial real estate hedonic analysis 
(Páez 2009).
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the NVM.2 Moreover, we account for strong cross-sectional dependence. This con-
cerns international perturbations and shocks, such as recessions, banking and cur-
rency crises, technological breakthroughs, changes in the supply of oil that affect 
confidence in the economy, as well as national policy changes in the tax, social 
security and pension systems, such as an increase of the retirement age, the interest 
deduction scheme in tax legislation, and the transfer tax on house transactions. Most 
studies control for cyclical patterns by adding time-period fixed effects to their price 
equations. However, several studies show that a fixed effects strategy is a special 
case of a much wider class of models that control for strong cross-sectional depend-
ence (Pesaran 2006; Bailey et al. 2016a; Halleck Vega and Elhorst 2016; Shi and Lee 
2017). Following Pesaran (2006), we include period-specific cross-sectional aver-
ages of the dependent variable and allow its coefficient to vary across space. Bailey 
et  al. (2016a) are one of the first studies combining both weak (local) and strong 
(global) cross-sectional dependence in one framework. In contrast to this study, we 
use individual rather than aggregated data and a simultaneous rather than a two-
stage approach, with the difference that the response to the cross-sectional average 
only differs between municipalities and not between individual observations.

We calculate each earthquakes’ peak ground velocity (PGV) at each house’s geo-
graphical coordinates using a seismological model presented in Dost et al. (2004). 
PGV gives the speed with which the ground moved at a given location because of 
the tremor of an earthquake, providing a proxy for the seismic intensity that a tremor 
exerted on a specific house. Although this measure has been used in the literature 
before, it has only been employed to identify the number of earthquakes that could 
be felt, i.e., PGV> 0.5 cm/s (Koster and van Ommeren 2015). Alternatively, we con-
struct a variable that accumulates the PGV of each earthquake that took place before 
each house was sold and subsequently break it into different bins to allow for poten-
tial nonlinear effects. We also compare the results with those that are obtained when 
using one overall PGV measure or when measuring PGV over the last year only.

We use detailed data on housing transactions taking place between 1993 and 
2014 in the three most northern provinces of the Netherlands: Groningen, Drenthe, 
and Friesland. This research area is wider and this period is longer compared to that 
in Koster and van Ommeren (2015), which is the closest study to this one, since 
these authors used data on transactions restricted to the period 1996 to 2013 and 
to the province of Groningen. These extensions are important in determining the 
extent of the impact without any prior and arbitrarily set area of study. Similarly, a 
more extensive period will allow for a better identification of the effects stemming 
from earthquakes before the Huizinge earthquake in 2012. In the concluding sec-
tion, we discuss additional problems that need to be accounted for when using data 
after 2014.

The paper proceeds as follows. Section  2 provides a brief literature overview 
on hedonic models for house prices and on spatiotemporal modeling of real estate 
markets. Section 3 describes the data employed and the applied empirical strategy. 

2 NVM stands for Nederlandse Vereniging van Makelaars and is the association of Dutch real estate 
agents.
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Section  4 reports and discusses the main empirical findings. Finally, Section  5 
concludes.

2  Literature review

Hedonic models using house prices identify the marginal willingness to pay 
(MWTP) for improving the quality of each of the house’s characteristics and its non-
marketed neighborhood amenities, indirectly retrieving households’ preferences for 
the provision of public goods.3 They have been widely employed in the literature 
to retrieve preferences on e.g. crime (Bishop and Murphy 2011), racial segregation 
after a terrorist attack (Gautier et al. 2009), noise exposure (Andersson et al. 2010), 
new low-income housing projects (Funderburg and MacDonald 2010), quality of 
schools (Bayer et  al. 2016), housing renovations (Billings 2015), environmental 
quality (Hanna 2007), and proximity to industrial sites (De Vor and de Groot 2011). 
These estimates have been instrumental in informing a wide range of public policy 
interventions.

The literature on the effect of hazardous events on housing prices is also exten-
sive. Muehlenbachs et al. (2015) estimate the impact of underground water contami-
nation by shale gas developments on houses sold in the US state of Pennsylvania. 
Similarly, Gawande and Jenkins-Smith (2001) estimate the effects of perceived risks 
on residential property values in locations near a road transited by nuclear waste 
transporters in South Carolina. A couple of Dutch studies address the impact on 
housing prices, insurance premiums, and capital accumulation of being located in 
areas prone to be flooded since a large part of the Netherlands is located below sea 
level (Ermolieva et  al. 2017; Bosker et  al. 2019). Regarding the specific case of 
earthquakes, in addition to those on the impact of induced earthquakes, there are 
many studies on the impact of natural earthquakes, among which Brookshire et al. 
(1997), Beron et al. (1997), Nakagawa et al. (2007), and Naoi et al. (2009).

The spatial econometrics literature has consistently found empirical evidence in 
favor of local cross-sectional dependence in hedonic house price models. This puts 
at risk the findings of the hedonic literature, since failing to account for this depend-
ence can bias their MWTP estimations (Kim et al. 2003; Brasington and Hite 2005; 
Anselin and Lozano-Gracia 2008; Cohen and Coughlin 2008; Leonard and Murdoch 
2009; Mínguez et al. 2013; Baltagi and Li 2014; Baltagi et al. 2015). In addition, 
house prices might co-move due to external factors, known as global cross-sectional 
dependence that also needs to be accounted for to obtain accurate estimates. Bailey 
et al. (2016b) developed the exponent � , a statistic used to measure the degree of 
cross-sectional dependence or the degree of distance decay over space. We present 
similar test results applied to our data set in Sect. 4 and use the outcomes to con-
struct the connectivity matrix between houses.

The source of the local cross-sectional dependence observed in so many studies 
has recently been underpinned by an economic-theoretical model of Szumilo (2021). 

3 See Rosen (1974) for the original theory behind hedonics and Quigley (1982) for their relevance to 
study house prices.
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The spatial lag of the dependent variable measuring house prices captures the extent 
to which the price of a house is affected by the price of houses surrounding it. This 
lag is motivated by the fact that the asking price is often set with the knowledge of 
the transaction prices of similar houses in the neighborhood. Op’t Veld et al. (2008) 
document this behavior for NVM real estate agents in the Netherlands. They assist 
their clients by forecasting the price of every single house using a hedonic price 
regression that is estimated using data from a selection of similar nearby and previ-
ously sold houses. Spatial lags of the explanatory variables, the structural housing 
characteristics and local (dis-)amenities of houses surrounding the focal house, may 
also influence its price. If a house is surrounded by similar houses that are located 
closer to better schools and parks, or closer to busy roads and polluting industries, 
this might positively or negatively affect the price of the focal house, respectively.

A relevant strand of the literature for this paper are studies using spatiotemporal 
models looking at house prices. These studies combine the microapproach used by 
real estate agents to assist their clients with the macro approach used in so many 
non-spatial studies to study the effect of housing characteristics and neighborhood 
(dis-)amenities. This literature has persistently shown that spatiotemporal models 
significantly improve the predictive power of hedonic price equations. One of the 
first papers in this field is Pace et  al. (1998). They compute a mix of spatial and 
temporal weight matrices to determine the effect from predated and nearby price 
transactions onto the focal house. These matrices are lower triangular and therefore 
the models are recursive, allowing them to use OLS in the estimation. The latter 
point has recently been made again by Bhattacharjee et al. (2016). In a similar type 
of study, Pace et al. (2000) find that a model with spatial, temporal, as well as both 
spatial–temporal and temporal–spatial interactions in the error terms outperforms a 
traditional hedonic model with 122 housing characteristics and including space and 
time indicator variables.

Similarly to these two studies, Smith and Wu (2009) allow for both spatiotem-
poral lag effects by assuming that there is some threshold time interval and some 
threshold distance beyond which other housing sales have no direct influence on the 
price of the focal house. In addition, they assume that the error terms follow a first-
order autoregressive process with unequally spaced serially lagged terms depending 
on the time that previous sales occurred. Similarly, Füss and Koller (2016) develop a 
spatiotemporal approach to forecast housing prices using a classification and regres-
sion tree method to define which houses belong to the focal house’s sub-market. 
In addition, they partition the research area in several discrete sub-markets and the 
sample period in several discrete time intervals, so as to be able to control for sub-
market and time-period fixed effects. Spatial fixed effects may control for local-spe-
cific time-invariant (dis-)amenities that affect the dependent variable, but that are 
unobserved. In this paper we will also use local fixed effects to account for discrete 
sub-market heterogeneity. As indicated in the introduction, although time-period 
effects may control for spatial-invariant variables, to control for these we incorporate 
time-specific cross-sectional averages of the dependent variable to the model, and 
allow this coefficient to vary across space.

In sum, there are two types of studies using spatiotemporal model approaches. 
One type focuses on analyzing the effect of one or a set of its attributes as 
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accurately as possible and another type on predicting house prices as accurately 
as possible. Given the aim of this paper, this paper belongs to the first type.

3  Data and empirical setup

3.1  Data employed

We employ data on 216,126 housing transactions over the period 1993–2014 for 
the three most northern provinces of the Netherlands (Groningen, Friesland, and 
Drenthe). The houses are sorted in the sample by the day of sale, starting with 
January 1, 1993. The data set was provided by the Dutch Association of Realtors 
(NVM), the largest association of real estate agents in the Netherlands, and con-
tains data on 69 housing characteristics, among which the home address. Given 
this address, we geo-referenced each house to its longitude and latitude coordi-
nates and subsequently used this information to gather neighborhood character-
istics from the Central Bureau of Statistics (CBS) in the Netherlands. Data on 
earthquakes are publicly available at the Dutch meteorology institute (KNMI). 
They detail each earthquake taking place in the Netherlands since 1985. Between 
1985 and 2014, the region was hit by 663 earthquakes with a magnitude greater 
than 1 on the Richter scale. Figure 1 gives an overview. In sect. 3.2 we explain 
the implementation of this information into our model setup.

Fig. 1  Relatively strong earthquakes induced by gas extraction between 1986 and 2014. Notes: The 
height of the bars indicate the number of earthquakes related to gas extraction activities with epicenters 
in the north region of the Netherlands and occurring each year between 1986 and 2014. The colors dis-
criminate them according to their local magnitudes abbreviated by the term M_L
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3.2  Measuring the effect of earthquakes

An earthquake’s PGV at any given location is a function of its magnitude, depth, and 
distance between the location and the earthquake’s epicenter, plus a random error 
term (Dost et al. 2004). Koster and van Ommeren (2015) employ the PGV variable 
to count the number of earthquakes that could be felt at a house location, i.e., when 
the ground moves at speeds greater than half a centimeter per second (PGV>0.5 
cm/s). However, this count variable makes no distinction between the magnitudes of 
the earthquakes and consequently may fail to identify the cumulative dimension of 
their effects. Earthquakes are recurrent and have gotten more frequent and stronger 
with time. Furthermore, sustained shakes on a house from felt or non-felt earth-
quakes may inflict physical damages, ultimately impacting its price. Koster and van 
Ommeren (2015) argue that since there are compensations in place to pay for these 
physical damages and any damage from past earthquakes are sunk costs that rational 
sellers would be better off repairing before putting their houses for sale, damages are 
not relevant in the study of this effect. However, there are expectation issues over 
the compensating scheme and future damages that make them a mechanism worthy 
of consideration. The recurrence of earthquakes and their increasing frequency and 
strength may have fostered expectations about future damages being more severe, 
reducing incentives for homeowners to maintain their dwellings. Moreover, there 
was widespread uncertainty about whether or not home owners would really receive 
a compensation to repair the damages during the period of this study and, if so, 
whether it would be sufficient. Hence, a proxy for the accumulated seismic activity 
sustained by a house provides a better and more comprehensive assessment iden-
tification of the effect’s magnitude. We also come back to this in the concluding 
section.

To compute the PGV variable, consider a house i sold at day t, and an earthquake 
j occurring at day 𝜏 < t , with magnitude Mj , at sj kilometers of depth from the sur-
face and at a distance of dij kilometers from the house. Then following Dost et al. 
(2004):

where vij is the PGV in cm/s of earthquake j on house i, and rij =
√

s2
j
+ d2

ij
 is the 

hypo-central distance (km) between the epicenter and the house. After computing 
the PGV of every earthquake onto each house, a matrix of order 216, 126 × 663 is 
obtained with typical element

The natural log of every row sum of this matrix is used to represent the total PGV 
(denoted by ei ) received by a particular house i from every earthquake prior to its 
transaction date. Since this measure increases slowly over time and also takes posi-
tive values outside the area formally labeled as being subject to earthquakes by 
the national government, we are able to simulate the propagation of the impact of 

(1)log10 vij = −1.53 + 0.74Mj − 1.33 log10 rij − 0.00139rij

(2)vji =

{
10−1.53+0.74Mj−1.33 log10 rij−0.00139rij if 𝜏 < t

0 otherwise.



 N. Durán, J. P. Elhorst 

1 3

earthquakes on housing prices over time and across space without the limitations 
that setting a-priory the affected area imposes. To flexibly estimate the effect, we 
not only measure the impact of ei , but we also split ei into 0.1 log-points width bins 
( ebi ) and determine the impact of each segment relative to houses at the lowest bin. 
A similar kind of approach is used by Cheung et al. (2018) based on the number of 
earthquakes in different categories of magnitude and by Marlet et al. (2017) based 
on the percentage of damages in different sub-areas recognized by the gas-extracting 
company NAM.

3.3  Spatiotemporal‑similarity W matrices

Real estate agents who are member of the NVM determine asking prices by fitting 
a house-specific hedonic model using data on past transactions. Each transaction 
is weighted by its degree of similarity with the house about to be put up for sale; 
nearer and more similar houses are given larger weights than distant and less similar 
ones. Similarity between houses is assessed by computing an index that quantifies 
the “distance” for a set of characteristics. A detailed description of this methodology 
is given in Op’t Veld et al. (2008). Based on this study we have developed a compa-
rable similarity index.

Let NF denote the number of houses in the full (F) sample, and S a symmet-
ric NF by NF matrix whose elements sij measure the degree of similarity between 
each pair of houses i and j. Following Op’t Veld et al. (2008), three groups of hous-
ing characteristics are ranked according to their relevance in the determination of a 
house’s market value: (i) structural characteristics that cannot be changed, among 
which location, type of house, and lot size, (ii) secondary characteristics that can 
be changed, among which bathing facilities and state of maintenance, and (iii) sub-
jective characteristics like the kitchen layout (open, living-kitchen integrated space, 
etc.). Let kxig denote the standardized score of characteristic xig of house i within 
the group of characteristics g. The overall sub-score of house i within group g is 
obtained by summing its standardized score over all the characteristics in that group, 
getting scig =

∑
x kxig , and normalizing it to range within the interval [0, 1], yielding

We average these three sub-scores by their relevance, and compute each sij element 
in matrix S , representing the similarity between houses i and j as follows:

(3)scig =

∑
x kxig − scmin

g

scmax
g

.

(4)sij = exp

{
−

||||||

3∑
g=1

rgscig −

3∑
g=1

rgscjg

||||||

}
,
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where rg are weights given to each group, such that 
∑g=3

g=1
rg = 1.4 If a pair of houses 

is identical then exp(0) = 1 and as the degree of similarity diminishes this value 
decreases exponentially to zero.

Let W∗ denote an NF by NF spatial weight matrix whose elements w∗
ij
 equal one if 

another house j has been sold in the neighborhood of house i before its asking price has 
been set, and zero otherwise. Then a spatiotemporal-similarity matrix is obtained by 
computing the Hadamard product of the two matrices W∗ and S , yielding

The first NF − N rows of this matrix contain zeros only since the houses sold in 
1993 do not have any similar houses sold previously, where N denotes the number 
of houses that remains when these houses would be removed. Since we need data of 
previously sold houses to be able to construct spatiotemporal-similarity matrices, 
the price of these houses will not be explained but still utilized to explain houses 
sold later, as a result of which the sample size and the number of rows of W∗ ⊙ S 
decreases to N. Due to removing the rows with zeros only, the resulting N × NF 
matrix can also be normalized such that the elements in each row sum up to one, to 
get W . As thresholds we use a distance of 10 kilometers from the focal house and 
a time period of six months prior to the date at which it was put for sale or when 
it was sold. This period of six months is in line with a recent study of Dubé et al. 
(2018). In addition, we also investigate the sensitivity of the results when consider-
ing other threshold values (see Section 4).

3.4  Econometric specification

The hedonic equation adopted in this paper to determine the impact of earthquakes 
on housing prices reads as:

(5)W
∗ ⊙ S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 0

w
∗
2,1
s2,1 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

w
∗
N−1,1

s
N−1,1 w

∗
N−1,2

s
N−1,2 … 0 0

w
∗
N,1

s
N,1 w

∗
N,2

s
N,2 … w

∗
N,N−1

s
N,N−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

pi = 𝛿

i−1∑
j=N−NF

wijpj +

B∑
b=1

𝜆bebi + Xi𝛽

+

(
i−1∑

j=N−NF

wijXj

)
𝜃 + 𝛾0mi

+ 𝛾1mi
p̄ti + 𝜖i

4 We used r1 = 0.5 , r2 = 0.3 , and r3 = 0.2 , as suggested by Op’t Veld et al. (2008).
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where pi denotes the log transaction price of house i per square meter of living 
space.5 The spatiotemporal lag 

∑i−1

j=N−NF
wijpj with coefficient � captures the extent to 

which the price of a house is affected by its comparison set. The index j runs to i − 1 
since only previously sold houses can affect the price of house i, while the index 
starts with negative numbers due to N − NF . These negative numbers represent 
houses in the first part of the sample whose prices are not explained but used to 
explain the price of houses sold later. wij are elements of the spatiotemporal-similar-
ity matrix W . The variable ebi with coefficient �b represents one of the B bins denoted 
by b in which total PGV is split up; it takes a value of one if total PGV for house i 
before it is sold reaches a value within that bin, and zero otherwise. The row-vector 
Xi with coefficients � covers the characteristics of the house and of the neighbor-
hood. The set of variables wijXj captures the extent to which the price of a house is 
affected by the explanatory variables of houses in its comparison set, i.e., their hous-
ing and neighborhood characteristics. Their impacts are measured by the coefficients 
contained in the vector � . Due to the inclusion of spatiotemporal lags in both the 
dependent and the explanatory variables, the model may be labeled a spatiotemporal 
Durbin model, after the spatial Durbin model in the spatial econometric literature 
(LeSage and Pace 2009). Nevertheless, there are two differences between these two 
models that are specific to the data set we are analyzing. W is lower triangular and 
we have a small set of initial observations whose prices are not explained but only 
used to explain later sales.

The variables described so far cover potential local spatial (cross-sectional) 
dependence among the observations. Cross-sectional averages of the dependent var-
iable for each year are incorporated to control for global cross-sectional dependence 
and denoted by p̄ti , where the index ti indicates that the transaction of house i took 
place in year t. This variable enters the equation with unit-specific coefficients for 
each municipality �1mi

 , where the index mi indicates that house i is located in munic-
ipality m ( m = 1,… ,M).

The original idea to control for global factors in a non-spatial model goes back 
to Pesaran (2006), while Bailey et  al. (2016a) extend this idea to a spatial model 
by addressing strong and weak cross-sectional dependence in two separate stages. 
Halleck Vega and Elhorst (2016) and Shi and Lee (2017) demonstrate that both 
types of cross-sectional dependence can also be accounted for simultaneously: the 
former when using cross-sectional averages and the latter when using principal 
components to approach common factors. Both studies also demonstrate that time-
period fixed effects are a special case of global factors, as it requires the restriction 
�11 = … = �1M = �1 , i.e., the global factor with municipality-specific coefficients is 
replaced by a time dummy with a common coefficient �1 for all municipalities. In 
contrast to these cited studies, this paper is among the first to apply this approach to 
individual rather than macro or aggregated data.

The development of p̄ over time closely follows the business cycle. The munici-
pality-specific slope coefficients �1mi

 allow the impact of this variable to vary across 
space, as some municipalities might have been hit harder by or recovered faster 

5 This variable is also used in Koster and van Ommeren (2015), Bosker et al. (2016), and Marlet et al. 
(2017).
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from business cycle effects than others. In addition, they may capture the impact of 
population growth or decline in that the slopes for mainly rural municipalities are 
expected to be lower than those for mainly urban municipalities. Furthermore, they 
may control for other demographic variables at the neighborhood level, such as the 
number of addresses per square km, distance to the nearest restaurant, supermarket, 
and train station, the percentage of people aged between 15 and 24, 25 and 65, as 
well as over 65, for as far they have not been taken up in the model already. The set 
of parameters �0mi

 represent municipality fixed effects which control for unit-specific 
variables that are constant over time, while �i denotes a disturbance term with zero 
mean and finite variance �2.

The parameters of Equ. (6) can be estimated by ordinary least squares (OLS).6 
Importantly, the right-hand side variable 

∑i−1

j=N−NF
wijpj may be treated as exogenous 

due to the lower triangular structure of the spatial weight matrices W.7 This struc-
ture assures that the transaction price of houses that were sold before the focal house 
may affect its transaction price, but not vice versa. Note that also according to the 
sales comparison approach, W should be lower triangular since a later sale cannot 
affect an earlier sale (Anselin and Lozano-Gracia 2009). Similarly, p̄ti may be treated 
as exogenous based on the assumption that the contribution of each single house to 
this cross-sectional average at a particular point in time goes to zero as the number 
of houses sold within each year tends to infinity (Pesaran 2006, assumption 5 and 
remark 3). Since the minimum number of houses that has been sold in a particular 
year amounts to 4228, this assumption is satisfied. Finally, since this number is rela-
tive small relative to the total number of observations (4228 with regard to 216,126 
observations in total or one year of observations relative to 25 years), any Nickell 
type of bias due to also including municipality dummies will be negligible (Baltagi, 
2008, Ch.8).

3.5  From short‑term direct to long‑term total effects

Direct interpretation of Equ. (6), after it has been estimated, is difficult because its 
coefficients do not represent marginal effects of the explanatory variables. The latter 
can be obtained by taking partial derivatives of the reduced form of the model in 
vector notation. Decomposing the observations that are both explained and used to 
explain later sales, and the observations that are only used to explain later sales, 
yields 

∑i−1

j=N−NF
wijpj =

∑i−1

j=1
wijpj +

∑0

j=N−NF
wijpj . The model when switching to 

vector notation can then be written as:

(7)PN = �WNPN + �W0P0 + E� + X� +WNX� + �0 + �1P̄ + 𝝐,

6 Alternatively, they can be estimated by the least squares dummy variables (LSDV) estimator set out in 
Baltagi (2008). This estimator first eliminates the municipality dummies from the equation by demeaning 
the dependent variable and the explanatory variables and then estimates the equation using the demeaned 
variables by OLS.
7 If the model would be estimated by maximum likelihood, the Jacobian term in the log-likelihood char-
acteristic for spatial econometric models will drop out since ln|I − �W| = ln(1) = 0 , given that W is 
lower triangular.
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where all small letters in Equ. (6) are changed into bold capitals and/or their index i 
have been removed to denote their vector or matrix counterparts. PN is an N × 1 vec-
tor containing the prices we explain in our model and WN an N × N matrix with spa-
tiotemporal-similarity weighing elements for each house’s comparison set. P0 is an 
(NF − N) × 1 vector of prices of houses sold in 1993 which are not explained but used 
to explain house prices sold afterward and W0 is the accompanying N × (NF − N) 
matrix. Moving the right-hand side variable WNPN to the left, and multiplying both 
sides of Equ. (7) by the spatiotemporal multiplier matrix 

(
IN − �WN

)−1 , yields the 
reduced form of the model. The partial derivatives of the expectation of the depend-
ent variable, E

[
PN

]
,8 with respect to each PGV bin, given by the vector columns Eb 

( b = 1,… ,B) , which represents the impact of earthquakes, take the form

The diagonal elements of this N by N matrix of marginal effects represent direct 
effects of PGV bin b and its off-diagonal elements the indirect or spillover effects. 
Generally, these two types of effects are summarized by one summary indicator for 
the direct effect and one indicator for the spillover effect over all units in the sample; 
the average diagonal element, and the average row sum of the off-diagonal elements 
of the N by N matrix of marginal effects, respectively (LeSage and Pace 2009). 
However, the purpose of this study is to determine the impact of earthquakes for 
each individual house.

The total effect for each house can be subdivided into different components. First, 
the term IN�b represents the short-term direct effect of earthquakes on the log of 
house prices per square meter. For each individual house this reads as �b . To obtain 
the impact on the house price itself rather than its log, this parameter further needs 
to be transformed by exp(�b) − 1 . The same exponential transformation applies to 
the effects below. Second, the spillover effect �WN�b measures the extent to which 
the price of each focal house is dependent on the price of its comparison set. It con-
cerns houses surrounding the focal house which have similar characteristics and 
have been sold within a distance of 10 kilometers in the preceding six months. The 
sum of the short-term direct and the first-order spillover effects reflects the inter-
mediate effect of earthquakes. Third, second and higher-order terms, starting with 
�2W2

N
�b , need to be considered to obtain long-term direct and spillover effects. 

According to Bhattacharjee et  al. (2016), these terms can be ignored when WN is 
triangular: 

(
IN − �WN

)−1
≈ IN + �WN , which would imply that it is sufficient to 

limit the analysis to intermediate effects. However, on simulating these second and 
higher-order terms, which is computationally demanding due to the size of the WN 
(211,898 by 211,898), it appeared that this property is not true, as is also shown by 
Martellosio (2012).9 We do know, however, that the sum of all direct and spillover 

(8)

(
�E

[
PN

]
�Eb

)
=
(
IN − �WN

)−1
�b =

(
IN + �WN + �2W2

N
+…

)
�b.

8 Note that the error term drops out due to taking the expectation of the dependent variable.
9 This issue has also been pointed out by the referees of this paper.
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effects amounts to �b∕(1 − �) , provided that WN is row normalized. This sum reflects 
the long-term total effect of earthquakes on house prices.

4  Results

Table 1 reports the results of eleven initial models in which total PGV is taken up as 
one single measure to further explain the decision to adopt the econometric model 
set out in Equ. (6) from an empirical viewpoint. The first row reports the coeffi-
cient and its t statistic of the PGV measure in a standard hedonic regression model 
with time-fixed effects but without spatiotemporal lags. Contrary to expectations, 
the PGV measure turns out to have a positive rather than a negative effect when 
adopting this model specification. This positive effect remains when extending the 
model with spatiotemporal lags in the dependent and in the explanatory variables 
in the second row of Table 1. The explanation for this is that total PGV appears to 
be trend-stationary, as is already illustrated in Fig. 1. A regression explaining total 
PGV on a set of year dummies (21 in total) returns an R-squared of 0.327. This 
implies that if house prices are modeled as depending on both total PGV and a set 
of year dummies, the year dummies absorb part of the impact from earthquakes 

Table 1  Estimation results of several models explaining log price per square meter

 This table reports coefficient estimates and their corresponding t statistics for the impact on house prices 
of the accumulated peak ground velocity (PGV) from all earthquakes occurring before the house sale, 
and from the spatiotemporal lags of prices of houses sold before and nearby as estimated from alter-
native model specifications described in the first column. ∗The proposed model contains the cross-sec-
tional average (CSA) price rather than time-fixed effects (TFE), spatiotemporal lags and a spatiotemporal 
weight matrix based on 10 km and six months. ∗∗The coefficient of the second regime during the period 
that the house is for sale is 0.001 (t value 0.03)

PGV Spatiotemporal 
lag of price

 Model Coeff. t stat Coeff. t stat R
2

(1) TFE, no spatiotemporal lags 0.030 4.43 0.830
(2) TFE + spatiotemporal lags 0.015 2.86 0.352 7.74 0.836
(3) CSA price, no spatiotemporal lags −0.106 −6.46 0.803
(4) CSA price + spatiotemporal lags∗ −0.033 −4.46 0.577 15.06 0.828
(5) CSA price + spatiotemporal lags, 3 months −0.029 −4.28 0.550 13.31 0.787
(6) CSA price + spatiotemporal lags, 9 months −0.036 −4.19 0.523 11.61 0.710
(7) CSA price + spatiotemporal lags, 2.5 km −0.035 −2.98 0.583 9.06 0.596
(8) CSA price + spatiotemporal lags, 5 km −0.041 −3.67 0.561 11.21 0.650
(9) CSA price + spatiotemporal lags, 20 km −0.036 −5.23 0.498 14.94 0.804
(10) CSA price + spatiotemporal lags, PGV 1 year −0.009 −2.84 0.604 16.01 0.752
(11) CSA price + spatiotemporal lags, two regimes∗∗ −0.032 −4.48 0.574 15.66 0.828
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which might lead to biased estimates.10 To prevent this we control for business 
cycle effects through the cross-sectional average house price observed in each year. 
Regressing total PGV on this variable yields a negligible R-squared of 0.005. The 
third and fourth rows of Table 1 show that total PGV takes the expected negative 
sign when using yearly cross-sectional averages of the dependent variable. To com-
pare the effect of PGV between these two models, the PGV coefficient of −0.033 
should be divided by 1 − 0.577 (see previous section), to get −0.078 . The coeffi-
cient of −0.033 reflects the short-term direct effect of earthquakes and the coefficient 
−0.078 its long-term total effect. Generally, it is assumed that the impact of a vari-
able in a model that contains no dynamic effects in space and time also reflects long-
term effects. This implies that the coefficient of −0.106 of total PGV in the third 
row of Table 1 is overestimated when the spatiotemporal lag in the price variable is 
ignored. It also ignores that it takes time before this long-term effect occurs.

The need to control for both the cross-sectional average house price observed in 
each year and spatiotemporal lags in the price variable and the explanatory variables 
can also be illustrated by the exponent � developed by Bailey et al. (2016b) based on 
the delineation of the research area into 66 municipalities and the research period 
into 21 years. This statistic measures the degree of cross-sectional dependence, the 
complement of the distance decay effect. The exponent � can take values on the 
interval (0,1]: � ≤ 0.5 points to weak cross-sectional dependence; � = 1 points to 
the strongest form of cross-sectional dependence, while values in between indicate 
moderate 0.5 < 𝛼 ≤ 0.75 to strong 0.75 < 𝛼 < 1 cross-sectional dependence. Elhorst 
et  al. (2021) explain in more detail the relationship between this statistic and the 
specification of the connectivity matrix. If 𝛼 < 0.5 , the cross-sectional connectiv-
ity is one between local, mutually dominant units represented by a sparse matrix 
W with at most a fixed or a rapidly declining number of neighbors. In case this 
happens, practitioners should proceed by directly modeling the data with a spatial 
model structure. For outcomes pointing to moderate dependence ( 1∕2 ≤ 𝛼 < 3∕4) , 
the cross-unit connectivity becomes denser but correlations still decay sufficiently 
fast such that after a certain distance the impact of neighboring units becomes neg-
ligible. When 𝛼 > 3∕4 , the average correlation between the units of observations 
tends to go to zero slowly, such that each unit affects all other units even if they are 
very far apart. Should � not be significantly different from 1, then the data should 
first be modeled via a standard common factor model and then the residuals of this 
model should be tested again for any remaining cross-sectional dependence. It is 
this situation that occurs when computing the exponent � for the house price vari-
able in our study; � = 0.961 and not significantly different from 1, pointing to the 
strongest form of cross-sectional dependence, i.e., no distance decay effect, and the 
existence of a common factor. To filter out this common factor, Bailey et al. (2016b) 
propose to regress the house price variable on both a constant and the cross-sec-
tional average of the house price in each year, whose coefficients are different from 
one unit to another, in this data set from one municipality to another. When running 

10 When municipality dummies are also included, the R-squared even increases to 0.941. The risk that 
they also absorb the impact of earthquakes is smaller, since we will see below that they did not have any 
effect during the period 1993-2007, which covers more than 70% of the total observation period.
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this regression and computing the exponent � on its residuals the outcome is 0.665. 
This points to the existence of moderate remaining cross-sectional dependence that 
should be modeled by a denser than normal connectivity matrix and with correla-
tions that still decay sufficiently fast, such that after a certain distance the impact 
of neighboring units becomes negligible. The results reported in the fourth row of 
Table 1 build on a spatial–temporal-similarity weight matrix based on this observa-
tion, i.e., consisting of similar houses compared to the focal house up to a distance 
of 10 km and sold in the preceding six months period. The R-squared of this equa-
tion amounts to 0.828 and the exponent � of the residuals of this model to 0.569. 
The latter value shows that the degree of cross-sectional dependence has been mod-
eled adequately, since � can only be consistently estimated if it is greater than 1/2 
(Bailey et al. 2016b); if 𝛼 < 1∕2 , its estimate will hover around the lower bound of 
1/2 in empirical applications. Rows 6 to 9 in Table 1 report the R-squared and the 
coefficients estimates of total PGV and the spatiotemporal lag in the price variable 
when considering a different threshold for time and distance (three and nine months, 
2.5, 5, and 20 km). The results of these robustness checks have in common that the 
R-squared falls, which indicates that the spatial–temporal-similarity weight matrix 
based on 10 km and six months is the most likely candidate within the considered 
choice set.

Row 10 of Table  1 reports the estimation results when total PGV is measured 
only over the last year prior to the transaction date, since it might be that buyers 
and sellers only remember the earthquakes that occurred in the recent past. Again 
the R-squared decreases. Furthermore, the coefficient of PGV falls to −0.009, which 
initially seems to be smaller. However, since the PGV coefficient calculated over the 
past year represents an elasticity due to the chosen log–log specification, an addi-
tional earthquake causes a larger change in this PGV measure when expressed in 
percentages, making the difference from previous results smaller than this coeffi-
cient suggests.11

The final model in the last row of Table 1 contains two spatial regimes in the spa-
tially lagged dependent variable. These regimes capture the extent to which the price 
of a house is affected by the price of houses surrounding it, first before it was put 
for sale and then before it was sold but only during the time it was on the market.12 
However, the coefficient of this second regime appeared to be insignificant and so 
small that it can be ignored.

Table 2 reports the counterpart of the model in the fourth row of Table 1 when the 
PGV measure is split up into different bins. In addition to this, we computed t values 
of the coefficient estimates using regular standard errors and when clustering the 
observations per municipality (in Table 1 we only reported clustered t values), based 
on a methodology developed by Cameron et  al. (2011). The results show that the 

11 We also investigated whether there are interaction effects between total PGV and the age and the level 
of maintenance of houses. We did find evidence that recently constructed and better maintained houses 
are less affected. However, this possible refinement of the results does not have impact on the period and 
the territory that are affected by earthquakes discussed below.
12 If the period it was on the market was shorter than six months, this period has been adjusted accord-
ingly.
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coefficients of the PGV bins show an upward trend. The price of houses that have 
been hit by more or stronger earthquakes experience a larger price fall. The thresh-
old above which houses experience a significant price fall starts with the 1.4–1.5 bin 
when using regular t values or standard errors and with the 1.6–1.7 bin when using 
clustered t values or standard errors. This difference is important since the share of 
houses in these two bins of 1.4 to 1.5 and 1.5 to 1.6 amounts to 30% of all houses 
affected by earthquakes and for almost 5% of all houses in the sample. The short-
term direct effect of the 1.4–1.5 bin amounts to 100 ∗ (exp(−0.0071) − 1) = −0.7% , 
the intermediate effect (the sum of the direct and first-order spillover effects) to 
100 ∗ (exp(−0.0071 ∗ (1 + 0.5543)) − 1) = −1.1% , and the long-term total effect 
to 100 ∗ (exp(−0.0071∕(1 − 0.5543)) − 1) = −1.6% . Generally, the long-term total 
effect is a factor 1.4 times greater than the intermediate effect, which in turn is a fac-
tor 1.5 times greater than the short-term direct effect for the different bins.

In addition to the housing and neighborhood attributes, the hedonic price model 
also contains their spatiotemporal lags (except for the three variables measuring 
the percentage of people in different age categories at the neighborhood level and 
the dummy whether its population has declined, see the continuation of Table 2 in 
Appendix). Many studies ignore these so-called spatial Durbin terms. However, no 
less than 41 out of 77 of these terms are statistically significant at the 5% level. They 
account for the microapproach used by real estate agents to assist their clients in 
setting asking prices. Since asking and transaction prices are highly correlated, this 
practice generates local cross-sectional dependence between house prices.

Table 2  Estimation results 
(mean, coefficient, and clustered 
t value) of model in Equ. (6)

Variable Mean Coefficient t value Clustered t value

ST lag of price 11.8746 0.5543 95.25 15.58
PGV 1.4–1.5 0.0244 −0.0071 −2.61 −0.71
PGV 1.5–1.6 0.0219 −0.0163 −5.63 −1.69
PGV 1.6–1.7 0.0187 −0.0307 −9.72 −3.19
PGV 1.7–1.8 0.0164 −0.0336 −9.88 −3.45
PGV 1.8–1.9 0.0141 −0.0366 −9.97 −3.60
PGV 1.9–2.0 0.0112 −0.0541 −13.06 −4.17
PGV 2.0–2.1 0.0099 −0.0710 −16.03 −4.91
PGV 2.1–2.2 0.0083 −0.0827 −17.22 −2.70
PGV 2.2–2.3 0.0072 −0.0645 −12.44 −3.07
PGV 2.3–2.4 0.0053 −0.0761 −12.83 −5.06
PGV 2.4–2.5 0.0043 −0.1012 −15.56 −6.94
PGV 2.5–2.6 0.0035 −0.1266 −17.56 −8.94
PGV 2.6–2.7 0.0024 −0.1116 −13.10 −6.10
PGV 2.7–2.8 0.0016 −0.1105 −10.67 −6.86
PGV 2.8–2.9 0.0012 −0.1175 −9.91 −6.01
PGV 2.9–3.0 0.0010 −0.1430 −10.76 −6.18
PGV 3.0–3.1 0.0006 −0.1463 −8.66 −5.18
PGV 3.1–3.2 0.0004 −0.1596 −7.72 −3.24
PGV > 3.2 0.0004 −0.1993 −10.15 −4.27
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To further illustrate the importance of the spatial Durbin terms, we decompose 
the R-squared value using the Shapley-based method set out in Israeli (2007) for five 
sets of variables: the housing and neighborhood characteristics of the house itself, 
their spatial Durbin counterparts, the municipality dummies, the cross-sectional 
averages of housing prices with municipality-specific parameters, and the PGV 
dummy variables. The absolute contribution CA

S
 of each set S is calculated as

where F represents the full model, F − S the full model excluding the set S, S the 
model with both the set S and the intercept, and 0 the model only including the 
intercept. We compute the relative contribution of each set of variables to the full 
R-squared value. The results suggest that housing and neighborhood characteris-
tics of the house contribute the most to the explained variation in housing prices 
(69.39%) followed by the global factor controlling for the business cycle (13.20%) 

(9)CA
S
= 0.5 ∗ (R2

F
− R2

F−S
) + 0.5 ∗ (R2

S
− R2

0
),

Fig. 2  Extension, size, and period of the induced earthquakes impact on the housing market. Notes: 
These series of maps show the impact of earthquakes in the north of the Netherlands measured at the 
postal code level and for those postal codes with observations in the sample used for the estimation
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and spatial Durbin terms (11.63%). Further behind are municipality dummies 
(5.55%), and lastly the PGV variables (0.23%). The relatively low contribution of the 
PGV variables indicates that the number of houses that is affected by earthquakes is 
small relative to the total number of observations in the sample. Nevertheless, this 
set appears to have a major impact on house prices as is shown in what follows.

Fig. 2 shows the intermediate (direct plus first-order spillover) effects of earth-
quakes in 2008, 2010, 2012 and 2014. In 2008 there were already houses signifi-
cantly affected by earthquakes, but the price fall of around 4.65% was still limited. 
The black points represent houses that according to the clustered t values were not 
significantly affected. In the years that followed, both the area of houses that were 
severely affected expanded and the price fall increased. In 2012, some houses in the 
hardest hit areas reached price falls up to 14.6% and in 2014 up to 26.6%.

These price reductions are greater than those found in previous studies. There are 
several reasons for why this is the case. Over the period 2012Q3-2016Q4, CBS (2015) 
finds a nonsignificant price differential of 1.9% between houses in the highest risk seg-
ments and those in their reference area. Similarly, Francke and Lee (2014) find that 
house prices in their reference area increased less than in their defined risk area over 
the period 1993Q1-2013Q1, decreased more over the period 2009Q1-2013Q1, as 
well as decreased more over the period 2012Q4-2013Q1, the period after the strong-
est earthquake of 3.6 at the location of Huizinge on August 16, 2012. However, both 
studies’ reference areas contain many municipalities within the province of Gronin-
gen, which according to the results of this study were also affected by earthquakes, 
limiting their identification strategy. The problem of using a predefined risk area, i.e., 
houses that have been sold in the eight municipalities belonging to the area formally 
declared earthquakes prone, also applies to Bosker et al. (2016), even though their ref-
erence area also consist of houses located in the neighboring provinces of Friesland 
and Drenthe, in other provinces along the east border of the country, the provinces of 
Zeeland and Limburg in the south of the Netherlands, and the upper part of North-
Holland. These authors find no price differential over the period January  1st 2011 to 
August  15th, 2012, and a 2.2% decrease after it (until 2015Q3). The point is that the 
determination of the risk area should be part of the analysis and not predetermined as 
not only its real extension was unclear, but also how the effect has evolved over time, 
i.e., also the moment at which earthquakes started to have effect on housing prices 
should be determined. Most policy studies mainly focus on price effects after the 
Huizinge earthquake of August 16, 2012, or the period shortly before, while we find 
that the first effects occurred around 2008. Another issue is that they did not account 
for any price-spillover effects.

5  Conclusion and discussion

In this paper, we developed a hedonic model for house prices accounting for spati-
otemporal effects that stems from real estate agents assisting their clients to set ask-
ing prices. Using this model on more than 220,000 housing transactions over the 
period 1994–2014 in the three northern provinces of the Netherlands, we determine 
the impact of many small gas extraction induced earthquakes on house prices. We 
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identify the cumulative effects of these increasingly frequent and stronger earth-
quakes using a seismological model specifically developed to measure the seismic 
activity in the region. This model gives the so-called peak ground velocity (PGV), an 
estimate of the velocity at which the ground moved underneath each house because of 
the earthquakes’ tremors. Unlike previous research that identified this effect looking 
only at earthquakes that could be felt (PGV > 0.5 cm/s), we compute a variable that 
accumulates the PGV from all earthquakes taking place before the house was sold, 
such that it indicates the total seismic activity reached at the house’s location. Other 
studies on this issue have also looked at these effects by means of comparing between 
the evolution of house prices within an affected and a reference area. However, their 
definition of an affected area, as well as the choice of the reference area, is problem-
atic. This paper sheds light on the reasons why and shows that especially the extent of 
the area considered as affected in previous research has been underestimated.

Three discussion points are worth mentioning. First, the formulas that give the 
PGV estimation used in this paper and which are based on Dost et al. (2004) have 
recently been updated by Bommer et al. (2017). The former were estimated using 
data on earthquakes originated after extraction from mainly the smaller fields in 
the Groningen gas reservoir. The latter, in turn, were estimated using earthquakes 
that originated from the main Groningen field, which have affected the region the 
most. Second, Kruiver et al. (2017) have computed a variable that characterizes how 
the composition of the soil’s underground mediates the severity of ground motions 
caused by earthquakes. Future research could investigate how robust our findings are 
to using these newly developed PGV measures and to including this soil variable in 
the model described in this paper. Third, data observed after 2014 may be used to 
investigate further the evolution of house prices in the region. However, this is not 
straightforward due to some events that took place during the years after. In 2014, 
a court ruled that the NAM should compensate for the loss in value of their proper-
ties to an association of property owners. In 2015 the decision was upheld meaning 
that the NAM will have to compensate every claimant for value loss, not just dam-
ages. To account for this, data on the financial compensation that each individual 
house owner has received from the NAM for physical damages are also required. 
In addition, these data can be used to better investigate whether there is any relation 
between the market value depreciation of houses and physical damages. Extending 
the data set to houses sold after 2014, incorporating compensations data, provid-
ing answers to whether damages were an important mechanism for the decline in 
house prices, and whether compensations have restored house prices in the region 
are important though also challenging topics for further research.

Appendix

A Additional hedonic regression results

See Tables 3 and 4.
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Table 3  Continuation of Table 2 with the estimation results of the remaining variables (clustered t val-
ues)

Variable Price per square meter (logs)

Mean � t stat � t stat

Number of floors 2.5543 0.0213 3.59 −0.0001 −0.15
Living space (ln, m2) 4.7805 0.4933 19.80 −0.0376 −1.82
Lot size (ln, m2) 5.7301 0.1290 9.45 −0.0001 −3.53
Number of addresses per square km 6.2809 0.0382 5.62 −0.0001 −5.47
Distance to nearest restaurant 1.1186 −0.0124 −5.35 0.0200 1.75
Distance to nearest supermarket 1.1396 0.0020 0.55 −0.0078 −0.76
Distance to nearest train station 6.8008 −0.0082 −3.65 0.0052 1.75
Number of rooms 4.6665 0.0154 9.85 −0.1065 −10.64
Number of balconies 0.0773 0.0507 6.63 0.0209 0.53
Surface area garden (m2) 93.7357 0.0000 0.74 0.0001 0.74
Built 1500-1905 0.0497 0.0654 2.78 −0.0271 −0.25
Built 1906-1930 0.1214 0.0310 1.51 −0.0154 −0.14
Built 1931-1944 0.0815 0.0446 2.31 0.0036 0.03
Built 1945-1959 0.0605 0.0370 2.31 −0.1589 −1.47
Built 1960-1970 0.1478 0.0141 0.93 −0.1281 −1.11
Built 1971-1980 0.2298 0.0396 2.83 −0.0318 −0.31
Built 1981-1990 0.1386 0.0680 4.33 −0.0010 −0.01
Built 1991-2000 0.1349 0.1377 7.94 0.0270 0.27
Built after 2000 0.0334 0.1571 7.32 −0.2650 −2.17
Garage attached stone 0.2509 0.0823 13.47 −0.1056 −3.92
Garage detached stone 0.1261 0.0736 11.16 −0.1287 −4.03
Garage attached wood 0.0093 0.0500 8.32 0.0559 0.87
Garage standing timber 0.0627 0.0550 10.07 −0.1842 −6.41
Garage inside the house 0.0425 0.0971 13.19 −0.1961 −4.67
Ground leased 0.0082 −0.0893 −2.30 0.2049 1.80
Furnished 0.0066 −0.2697 −3.46 −0.0493 −0.47
Type:
Row house 0.2483 −0.1938 −2.94 −4.5547 −7.89
Terraced house 0.0269 −0.1065 −1.69 −4.6064 −7.70
Corner house 0.1417 −0.1743 −2.74 −4.6351 −8.10
Semi-detached 0.2528 −0.1024 −1.66 −4.6663 −8.05
Detached 0.3177 0.0366 0.57 −4.7261 −8.08
Apartment (before 1945) 0.0053 −0.2109 −4.09 −4.9690 −8.65
Apartment (1945–1970) 0.0036 −0.3368 −5.65 −4.3283 −7.64
Apartment (after 1970) 0.0035 −0.2344 −3.75 −4.4091 −7.54
Lift 0.0022 0.1084 3.58 0.0160 0.07
Standard vs. located
on quiet road 0.5353 −0.0043 −1.65 −0.0675 −3.50
Located on busy road 0.0330 −0.0324 −4.55 0.1965 4.21
Standard vs. located
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Table 3  (continued)

Variable Price per square meter (logs)

Mean � t stat � t stat

outside built-up area 0.3893 −0.0701 −4.71 −0.0954 −1.59
Located in residential area 0.5106 −0.0824 −5.04 0.0311 0.60
Located in center 0.0739 −0.0594 −3.36 −0.0223 −0.42
Outside maintenance:
Moderate to poor 0.0008 −0.0054 −0.24 −0.6107 −1.56
Moderate 0.0122 0.0915 6.13 −0.6458 −3.66
Moderate to reasonable 0.0033 0.1097 5.39 −1.0463 −4.11
Pretty 0.0738 0.2026 13.08 −0.6364 −3.46
Fair to good 0.0349 0.2325 11.16 −0.6947 −3.58
Good 0.7666 0.3204 17.00 −0.6236 −3.30
Good to excellent 0.0108 0.3782 20.17 −0.8515 −3.94
Outstanding 0.0947 0.3787 17.87 −0.6059 −3.37
1 type of insulation 0.3563 0.0064 1.03 0.0184 0.70
2 types of insulation 0.1477 0.0318 4.99 −0.0891 −1.90
3 types of insulation 0.1633 0.0426 6.68 −0.0459 −2.01
4 types of insulation 0.0879 0.0550 7.67 −0.0808 −1.81
Fully insulated 0.1206 0.0734 8.28 −0.1369 −5.15
Attic 0.3178 −0.0107 −2.81 −0.0227 −1.05
Basement 0.1401 0.0098 3.06 0.0238 1.29
Heating: Gas or coal stove 0.0970 −0.0853 −3.73 −0.0104 −0.15
Heating: Boiler,
district heating, fireplace or hot air 0.8852 0.0166 0.80 −0.1447 −2.40
Heating: Air conditioning
or solar panels 0.0002 −0.0333 −0.95 −0.8280 −2.01
Living: L-room 0.2423 0.0253 11.02 0.1783 9.02
Living: T-Room 0.0054 0.0348 4.72 0.0743 1.35
Living: Z-room or U-room 0.0622 0.0062 1.44 0.1782 4.79
Living: Through (sun) lounge 0.1534 0.0034 1.29 0.2486 10.25
Living: Room and suite 0.0277 0.0542 8.70 0.0927 2.37
Garden: North 0.0919 −0.0362 −4.72 −0.0108 −0.32
Garden: Northeast 0.0443 −0.0304 −4.27 −0.1113 −2.81
Garden: East 0.1022 −0.0348 −4.79 −0.0020 −0.05
Garden: Southeast 0.0763 −0.0271 −4.01 −0.1261 −4.58
Garden: South 0.1795 −0.0197 −2.79 −0.0898 −2.84
Garden: Southwest 0.1126 −0.0142 −2.13 −0.1398 −4.32
Garden: West 0.1140 −0.0310 −4.64 −0.0441 −1.37
Garden: Northwest 0.0577 −0.0300 −5.03 −0.1235 −3.17
Monument 0.0042 0.1332 9.24 −0.3544 −2.86
Fireplace possible 0.0081 0.0462 5.98 −0.0018 −0.02
Fireplace 0.0704 0.0733 11.79 −0.1721 −5.31
Unemployment benefits
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Table 3  (continued)

Variable Price per square meter (logs)

Mean � t stat � t stat

per 1000 inhabitants in neighborhood 36.9603 −0.0014 −8.60 0.0015 3.91
Disability benefits
per 1000 inhabitants in neighborhood 87.8439 −0.0005 −2.75 0.0000 0.13
Percentage of inactive
inhabitants in the neighborhood 15.1488 −0.0002 −0.81 0.0010 1.03
Percentage of people aged
between 15 and 24 in neighborhood 0.1147 0.2274 1.05
Percentage of people aged
between 25 and 65 in neighborhood 0.5215 0.0416 0.94
Percentage of people aged
65 and over in neighborhood 0.1440 0.1491 3.46
Population declined 0.5931 −0.0153 −4.84
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Table 4  Municipality-specific coefficients (clustered t values)

 Municipality Price per square meter (logs)

Mean �
m

0
t stat �

m
1

t stat

Appingedam 0.0077 4.6997 5.74 0.2614 3.75
Bedum 0.0045 7.5954 8.53 0.0196 0.26
Bellingwelde 0.0032 9.1747 13.74 −0.1181 −2.05
Ten Boer 0.0053 5.7151 6.24 0.1777 2.28
Delfzijl 0.0163 6.9575 8.60 0.0666 0.98
Groningen 0.0917 4.6507 6.51 0.2779 4.52
Grootegast 0.0060 8.0949 13.59 −0.0271 −0.51
Haren 0.0170 8.4318 11.94 −0.0348 −0.58
Hoogezand-Sappemeer 0.0225 7.7631 10.55 −0.0033 −0.05
Leek 0.0112 8.9486 14.36 −0.0916 −1.67
Loppersum 0.0057 3.1202 3.45 0.3947 5.10
Marum 0.0037 8.4477 12.39 −0.0524 −0.88
Stadskanaal 0.0112 9.4868 15.70 −0.1392 −2.63
Scheemda 0.0065 7.4386 11.75 0.0244 0.45
Slochteren 0.0091 7.6255 9.23 0.0188 0.27
Veendam 0.0198 7.7152 12.65 0.0046 0.09
Vlagtwedde 0.0062 8.6772 11.46 −0.0729 −1.11
Skarsterlan 0.0158 8.0599 11.72 −0.0115 −0.19
Winschoten 0.0126 7.0528 11.75 0.0588 1.12
Winsum 0.0090 6.3668 7.97 0.1220 1.77
Boarnsterhim 0.0107 8.4002 12.89 −0.0464 −0.82
Zuidhorn 0.0132 8.4107 13.81 −0.0537 −0.99
Dongeradeel 0.0078 7.2548 10.63 0.0502 0.83
Achtkarspelen 0.0110 6.6791 10.82 0.0932 1.68
Ameland 0.0013 7.3816 6.19 0.0631 0.63
het Bildt 0.0017 7.2134 10.34 0.0457 0.76
Bolsward 0.0030 8.3687 13.60 −0.0393 −0.72
Franekeradeel 0.0069 7.5948 11.44 0.0187 0.32
Harlingen 0.0064 8.9741 13.16 −0.0898 −1.48
Heerenveen 0.0266 9.5668 13.88 −0.1408 −2.33
Kollumerland en Nieuwkruisland 0.0047 7.6034 11.45 0.0149 0.25
Leeuwarden 0.0704 7.6423 12.14 0.0162 0.30
Leeuwarderadiel 0.0039 9.1639 13.65 −0.1121 −1.98
Lemsterland 0.0076 9.6898 11.45 −0.1445 −2.00
Menaldumadiel 0.0047 9.7503 15.13 −0.1648 −3.00
Ooststellingwerf 0.0139 10.1343 15.02 −0.1906 −3.21
Opsterland 0.0178 7.9162 11.84 −0.0031 −0.05
Schiermonnikoog 0.0006 23.2015 6.74 −1.2380 −4.21
Smallingerland 0.0453 8.0237 12.43 −0.0172 −0.31
Sneek 0.0258 7.0205 10.98 0.0715 1.28
Weststellingwerf 0.0086 10.0415 15.38 −0.1840 −3.20
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