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ABSTRACT
Most psychiatric disorders do not occur in isolation, and most psychiatric symptom dimensions are not uniquely
expressed within a single diagnostic category. Current treatments fail to work for around 25% to 40% of individuals,
perhaps due at least in part to an overreliance on diagnostic categories in treatment development and allocation. In this
review, we describe ongoing efforts in the field to surmount these challenges and precisely characterize psychiatric
symptom dimensions using large-scale studies of unselected samples via remote, online, and “citizen science” efforts
that take a dimensional, mechanistic approach. We discuss the importance that efforts to identify meaningful psychiatric
dimensions be coupled with careful computational modeling to formally specify, test, and potentially falsify candidate
mechanisms that underlie transdiagnostic symptom dimensions. We refer to this approach, i.e., where symptom di-
mensions are identified and validated against computationally well-defined neurocognitive processes, as computational
factor modeling. We describe in detail some recent applications of this method to understand transdiagnostic cognitive
processes that include model-based planning, metacognition, appetitive processing, and uncertainty estimation. In this
context, we highlight how computational factor modeling has been used to identify specific associations between
cognition and symptom dimensions and reveal previously obscured relationships, how findings generalize to smaller in-
person clinical and nonclinical samples, and how the method is being adapted and optimized beyond its original
instantiation. Crucially, we discuss next steps for this area of research, highlighting the value of more direct investigations
of treatment response that bridge the gap between basic research and the clinic.

https://doi.org/10.1016/j.biopsych.2022.09.034
A shift away from a categorical view on mental health is well
underway across psychiatry research (1–3). This is in response
to well-documented issues with diagnostic frameworks in
terms of comorbidity (4), reliability (5), heterogeneity (6), and
binarization of a continuous mental health space (7,8).
Numerous promising alternatives to the existing diagnostic
rubric are in development, such as Research Domain Criteria
and Hierarchical Taxonomy of Psychopathology (9,10).
Although advances have been made within these frameworks,
they continue to depend on traditional research formulas in
psychiatry; that is, they focus on small, diagnosed patient
samples or the interrogation of cognitive mechanisms after
symptom-level phenomena have been defined, rather than
defining them both in concert. Here we introduce a novel
combination of interdisciplinary methods called computational
factor modeling (CFM) (Figure 1 and Box 1) which we believe
can accelerate transdiagnostic research in psychiatry. In CFM,
candidate transdiagnostic symptom dimensions are identified
not in patients, but rather in unselected online samples of in-
dividuals who experience a range of psychopathology and can
be gathered at the scale required to support robust exploration
and replication approaches. Transdiagnostic symptom di-
mensions in CFM are defined using a combination of a data-
driven dimensionality reduction of self-report questionnaire
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responses and theory-driven computational modeling of
behavior that allows us to precisely characterize the cognitive
processes that characterize a given dimension (11). In this
paper, we discuss the genesis of CFM and describe a range of
recent applications. We highlight the importance of computa-
tional modeling as a central part of this endeavor, moving from
descriptive summaries of behavior with multiple potential
mechanistic accounts toward detailed, falsifiable, and precise
theories. We show how CFM, although still in the early stages,
has already augmented our understanding of mental illness,
yielding putative mechanisms underlying several trans-
diagnostic symptom dimensions. Finally, we discuss how CFM
can support new frameworks like Research Domain Criteria
and Hierarchical Taxonomy of Psychopathology and may drive
innovations in treatment development and allocation (12,13).

MODEL-BASED PLANNING

A number of case-control studies have observed altered goal-
directed (model-based) (Box 1) behavior in obsessive-
compulsive disorder (OCD), which leaves patients vulnerable to
rigid habitual behaviors (Figure 1A, B) (16–18). These findings
were subsequently extended to addiction and binge-eating
disorder (19–22), leading researchers to posit that impaired
goal-directed control over habits was a neurocomputational
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Computational factor modeling (CFM).
CFM aims to identify transdiagnostic symptom di-
mensions that are associated with precise neuro-
computational mechanisms. The method looks
under the hood of cognitive processes using
computational modeling and links their component
parts to the symptoms that individuals experience
transdiagnostically. Unsupervised dimensionality
reduction like exploratory factor analysis or principal
component analysis (14,15) are used to identify
crosscutting, data-driven latent symptom di-
mensions (e.g., compulsivity and intrusive thought)
in large unselected samples, typically using data
gathered online. Computational models are then fit
to participants’ behavior to identify theory-driven
latent behavioral dimensions (e.g., learning rate).
The relationship between these 2 sets of latent fac-
tors is then examined and can be iteratively and
bidirectionally refined.
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feature of compulsivity more generally. But a problem for this
theory soon followed; other conditions with less characteristic
compulsive features—social anxiety (23,24), autism (24,25),
schizophrenia (26,27), and Tourette syndrome (28)—also
showed deficits relative to controls. This suggested 2 possibil-
ities: either alterations in goal-directed control are a general
feature of psychopathology, or nonspecific links between model-
based planning and clinical phenotypes arise from problems with
the validity/dissociability of diagnoses. One of the challenges in
resolving this debate is that in order to test whether specific
transdiagnostic mechanisms exist, we need to measure multiple
aspects of psychopathology in the same individuals at-scale.

To resolve this, Gillan et al. (29) eschewed the traditional
case-control framework and recruited members of the public.
Over 1400 individuals completed an online assessment that
included self-report clinical assessments and a behavioral task
that allowed researchers to use computational modeling to
parse model-based planning from more reflexive learning
styles (model-free learning). They found that the clinical cor-
relates of model-based planning were indeed broader than the
symptoms of a single disorder (associated with eating disor-
der, impulsivity, OCD, and addiction symptoms) but also
showed some specificity (e.g., with schizotypy, depression,
2 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
apathy, and trait and social anxiety) (Figure 2C). A factor an-
alytic approach was used to identify a transdiagnostic symp-
tom dimension that could explain this pattern. This identified
one dimension, compulsivity and intrusive thought (CIT), that
cut through existing diagnostic rules and explained the blurring
of model-based deficits across diagnoses. This association
was specific; the dimensions of anxious-depression (AD) and
social withdrawal (SW) were unrelated to these deficits
(Figure 2D). This finding was replicated online (30), in-person
(31), and, critically, in patients with diagnoses (32), wherein it
was found that model-based planning deficits do not distin-
guish between diagnostic labels very well; rather, they track
individual differences in compulsivity irrespective of diagnosis
(Figure 2E). This finding underscores the value of CFM. Diag-
nostic groups are heterogeneous and overlapping, and without
large samples, we cannot unpack the clinical complexity and
robustly identify the specific symptom dimensions that are
driving effects that otherwise appear common across psychi-
atry. We posit that in this respect, CFM is an important new
complement to patient studies, allowing us to identify specific
and precise underlying mechanisms of transdiagnostic symp-
toms that play a role in multiple disorders but are experienced
to different degrees by individuals.
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Box 1. Glossary of Computational Mechanisms Commonly Identified From Cognitive Task Behavior

� Model-Based Planning. Model-based planning and goal-directed learning are often used synonymously. They refer to the use of cognitive maps
or models of the world to guide behavior in a prospective fashion (133–135) (Figure 2). Rather than relying on direct experience of reward, our
model-based faculties allow us to simulate future states (136,137), integrate information from various sources (e.g. experience, observation,
interoception), and rapidly update our action plans without requiring direct experience of the outcome of a new action. Failures in model-based
decision-making lead people to rely on more automatic behaviors called habits (138) that appear rigid and outside intentional control. The first
empirical studies testing these ideas trained patients with obsessive-compulsive disorder to perform responses to stimuli to gain rewards and then
subsequently reduced the value of those rewards (an outcome devaluation procedure) and tested whether behavior ceased. In a range of
experimental preparations, patients with obsessive-compulsive disorder were found to persist in responding, indicating reduced goal-directed
control over behavior (16–18). Later, a more sophisticated two-step task used reinforcement learning to characterize the computational mechanism
of these goal-directed lapses, coining the term model-based planning. Model-based planning in this task refers to the extent to which individuals
use a high-level understanding of task structure (models) to learn not just from experience, but to update the value of actions not taken and
prevent incorrect assignment of value to actions taken. Model-based planning is linked to the ventromedial prefrontal cortex activity (133) and
requires the hippocampus (139), highlighting these as potential targets for investigation with regard to compulsivity.

� Metacognition. Recent years have seen a proliferation of novel tasks and analysis approaches (140), enabling more precise estimates of meta-
cognition that go beyond self-report and control tightly for potential confounds (Figure 3). Tasks that measure metacognition typically have participants
complete a perceptual decision-making task, such as estimating which side of a screen has more dots displayed. Staircase procedures are employed
so that task difficulty adapts to each person, and they can be held at consistent levels of performance (e.g. 70% correct), thereby removing type 1
performance confounds (real differences in accuracy). These kinds of tests allow researchers to derive 2 components using signal detection theory
models, metacognitive bias (i.e. over- or underconfidence in your own performance), and metacognitive sensitivity (i.e., how well confidence dis-
criminates correct vs. incorrect responses) (140). Metacognition involves the lateral prefrontal cortex and dorsal anterior cingulate cortex (141,142),
suggesting that these areas may be relevant for anxious-depression and compulsivity (36).

� Reward Processing. Reward processing is often studied in the context of reinforcement learning tasks, where computational models provide a
framework for understanding how people update their expectations about future events based on new evidence. A core concept in reinforcement
learning models is prediction error (143), which is defined as the difference between what we expect to happen and what actually happens.
Animals use prediction errors to update new expectations via a learning rate, which is a parameter that governs how much we update our existing
expectations based on new information (Figure 4). A related concept is reward sensitivity, which is defined as the consummatory pleasure one
obtains from a reward. Recent work suggests that a more sensitive (or potentially distinct) measure of this can be gleaned from studying how
values that we learn to associate with cues spread or “generalize” to other similar cues (50,144) and change the way that evidence is accumulated
[as modeled by drift diffusion modeling of reaction times (145)]. The affective bias task commonly used to study affective bias and drift rate in
depression (53) was adapted from a task used in rodents, providing additional potential for neurobiological investigations; specifically, adminis-
tration of a GABAA inverse agonist induces a negative bias and lower drift rate (50), suggesting that GABA may play a role in this symptom
dimension.

� Uncertainty. Gambling tasks are commonly used to assess decision making under uncertainty, where subjects must choose between certain (e.g., 50
points guaranteed) and risky options (e.g., 50/50 chance of winning nothing or 100 points) or ambiguous options where information is obscured
(unknown probability of winning 0 or 100 points). Performance on these tasks can be modeled using Prospect Theory models (146) to isolate behavioral
tendencies including risk aversion (avoiding uncertain outcomes), ambiguity aversion (avoiding unknown outcome probabilities or magnitudes), reward
maximization (choosing higher expected values), and loss aversion (overweighting potential losses relative to gains). Other kinds of tasks have been
used to look at how people learn under conditions of uncertainty. Browning et al. (65) examined this using a task in which participants learn to choose
between 2 options with different probabilities and magnitudes of punishment (Figure 5). These decisions take place in two states, one in which the
correct choice is stable and another in which it is volatile and the correct choice switches frequently. To avoid punishment in this task, learning rates
should increase in volatile states so that recent outcomes are prioritized over old outcomes. Individuals high in trait anxiety failed to update their learning
rate accordingly, suggesting an impairment in uncertainty processing. Adaptation of learning in response to volatility is linked to noradrenaline (147),
suggesting that this neuromodulator could play a role in internalizing symptoms.
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METACOGNITION

Another area where the CFM approach has had an impact is the
study of metacognition, the ability to accurately reflect on one’s
own thoughts, feelings, and behaviors. Metacognition plays a vital
role in adaptive decision making and can be modeled using signal
detection theory (Box 1; Figure 3A) (33). Alterations in metacog-
nition have been observed in depression, with patients tending to
think they perform worse than other people despite comparable
performance (34). Case-control studies suggest that this effect is
nonspecific and have found it in anxiety, OCD, and schizophrenia
as well (35) (Figure 3B). Given the high rates of comorbidity across
these conditions, it is possible, though, that a symptom common
to all these conditions is responsible. To test this, Rouault et al.
B

(36) used CFM in 2 large, online, unselected samples (Figure 3C)
to examine the same transdiagnostic factors from the first CFM
study (29) alongside a perceptual decision-making task. The latent
clinical dimensions of CIT and AD were highly consistent across
the studies, with correlation of loadings of r = 0.87 to 0.97.
Strikingly, CIT was linked to positive metacognitive bias (i.e.,
overconfidence), while AD was associated with negative meta-
cognitive bias (i.e., underconfidence).

These bidirectional associations were replicated and
extended in another study in an online, unselected sample
using a reinforcement learning task (37) (Figure 3D), which
allowed a deeper analysis of how evidence informs confi-
dence assessments. They found that confidence in
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 3
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Figure 2. Model-based planning. (A) Computational factor modeling (CFM) has been used to identify a transdiagnostic psychiatric dimension related to
deficits in model-based planning (see Box 1 for a detailed definition). Individual items (circles) from a range of questionnaires relating to traditional diagnoses
(DX, colors) were subjected to factor analysis. Three dimensions resulted: anxious-depression, compulsivity and intrusive thought, and social withdrawal.
Behavioral data on a 2-step decision-making task were fit using a computational model that extracted individual estimates of model-based planning that the
model can separate from a range of alternatives such as choice perseveration, randomness, or model-free learning. The authors tested for associations
between computational parameters and transdiagnostic dimensions (controlling for age, gender, and IQ). (B) Prior work suggested that the balance between
goal-directed behavior and habit is linked to obsessive-compulsive disorder (OCD), but it was unclear what specific aspect of psychopathology drove this
effect and what precise mechanism explained this imbalance (16). (C) Mirroring smaller patient studies, in a large unselected sample of N = 1413, the
symptoms of many conditions correlated with model-based planning deficits (29). (D) CFM revealed that this apparent blurring of model-based planning
deficits across questionnaires was explained by the compulsivity and intrusive thought dimension. (E) These results were replicated in diagnosed patients and,
moreover, effects were stronger when measuring individual differences in compulsivity compared to diagnostic status (OCD or no OCD) (32). *p , .05; **p ,

.01; ***p , .001. GAD, generalized anxiety disorder.
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individuals high in CIT is high overall, but less informed by
evidence from the external world (e.g., hits and misses in the
task). In contrast, as levels of AD increased in the sample,
there was no decrease in the use of evidence to inform
confidence judgments (37). Seow et al. (38) suggested that
this is evidence of dissociable mechanisms underlying the
confidence biases in compulsivity and AD; reduced confi-
dence in depression may stem from a lower setpoint of
confidence relating to global self-beliefs [e.g., low self-
esteem (39)], while overconfidence in CIT may be caused
by more specific learning difficulties, for example, problems
in building an accurate mental model of one’s performance
based on experience (37). Hoven et al. (40) recently tested
this directly using CFM by studying the association between
AD and CIT and various levels of confidence along a hier-
archy in 489 individuals from the general population. They
found that the association between local confidence and AD
was explained by reduced confidence in their general abili-
ties (i.e., self-beliefs). Importantly, this was not the case for
4 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
CIT; in fact, there was a marked decoupling of local and
global confidence as CIT severity increased. This suggests
that the bidirectional associations with metacognition in AD
and CIT may have their origin at different levels of the self-
confidence hierarchy. More broadly, it underscores the
advantage of the transdiagnostic factor approach in disen-
tangling specific disease mechanisms that may be impos-
sible to study using case-control frameworks.
REWARD PROCESSING

Altered processing of reward is conceptualized as the clinical
symptom of anhedonia and features prominently in depres-
sion, but also in schizophrenia and other disorders. One of the
earliest papers linking anhedonia to components of reward
processing (41) demonstrated reduced reward learning rates
(Box 1; Figure 4A) with increasing anhedonia across healthy
and depressed individuals (irrespective of diagnosis). Using
functional magnetic resonance imaging, reduced neural
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Figure 3. Metacognition. (A) Computational factor modeling (CFM) applied to the study of metacognition (see Box 1 for detailed definition). The same set of
questionnaires used in (29) were subjected to a factor analysis that yielded the same structure and highly correlated loadings as the original paper (all rs .

0.87). This time, transdiagnostic factors were related to metacognitive bias, a person’s tendency to over- or underestimate their own performance on a
perceptual decision-making task (where objective performance differences are tightly controlled). (B) A great deal of prior work has been carried out in this area
in both clinical and nonclinical samples. As for model-based planning, patterns of association blur across diagnostic lines, showing fairly consistent reductions
in metacognitive bias (that is, confidence) (35). (C) Using CFM, Rouault et al. (36) showed that in fact a bidirectional association exists wherein anxious-
depression is linked to decreased confidence in performance, while compulsivity and intrusive thought is characterized by increased confidence. This illus-
trates how traditional methods using heterogeneous disorder categories may average out specific and transdiagnostic processes. ***p , .001. ANX, anxiety;
MDD, major depressive disorder; NS, nonsignificant; OCD, obsessive-compulsive disorder.
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signatures of reward prediction errors were also seen in both
depression (42,43) and schizophrenia (42). Another paper with
careful computational modeling of behavioral data in 69 pa-
tients with major depressive disorder (MDD) showed that
anhedonia was linked to both learning rate and outcome
sensitivity biases (44). However, a functional magnetic reso-
nance imaging study of 148 patients with MDD and 31 controls
(45) found no case-control differences in reward prediction
errors, and other recent, larger-scale work has also yielded
mixed results. A mega-analysis of a single task (46) suggested
that anhedonia was associated with reduced reward sensitivity
in clinical samples (i.e., consummatory pleasure) but not with
reward learning per se (47). More dramatically, a study with
both functional magnetic resonance imaging from a small
case-control sample and behavioral data from a general pop-
ulation sample of more than 1800 users of a smartphone app
found no neural or behavioral deficits in reward processing in
the case-control sample but did find a relationship with
depression symptoms in the unselected sample that was the
B

opposite of what was expected (i.e., increased consummatory
reward response) (48) (Figure 4B). This inconsistency across
studies may be due to the very high comorbidity between MDD
and anxiety disorders in case-control studies. Indeed, a recent
CFM study showed no association between reward learning
deficits and a single AD factor in a healthy sample (49), but,
perhaps critically, did not isolate depression from anxiety. In a
different type of task translated from animal work, where bia-
ses in reward learning are examined by testing whether learned
reward values generalize to ambiguous cues (50), individuals
with mood and anxiety disorders were more likely to pessi-
mistically assume that neutral cues would lead to low (rather
than high) rewards, driven potentially by lower evidence
accumulation for high rewards (Box 1) (51,52). Critically, CFM
in 990 participants from the general population showed that
performance correlated with depression but not anxiety (psy-
chosis or compulsivity) (53), suggesting a need to tease apart
depression and anxiety symptomatology in reward-processing
studies (Figure 4C, D).
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 5
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Figure 4. Reward processing. (A) Newer computational factor modeling (CFM) studies have used different sets of questionnaire items to derive new
transdiagnostic factors. One study (52) took this approach recently to study reward processing biases in the commonly co-occurring clinical symptoms of
depression and anxiety. Factor analyses of a set of 4 questionnaires recapitulated a similar structure to that of the original questionnaires, demonstrating that
anxiety and depression do not always occur together. (B) Reward processing has been studied in great detail in psychiatry using small-scale case-control
designs focusing on depression, but the results have been mixed, with prominent failures to replicate in large samples (48). This may be due to comorbidities
between depression and anxiety making it challenging to isolate the specific symptoms that are linked to reward biases. (C) A recent CFM study (53) used a
large unselected sample to show how negative reward-related affective biases and drift rate (the rate at which evidence is accumulated to make a decision) are
linked specifically to a factor representing depressive symptoms but not anxiety symptoms. BDI, Beck Depression Inventory; CR, certain rewards; EV, ex-
pected value; OCD, obsessive-compulsive disorder; RPE, reward prediction error.
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UNCERTAINTY

Changes in uncertainty processing are thought to play a major
role in anxiety disorders (54), in which individuals report feeling
more uncertain (55), report uncertainty as more aversive (54), and
show elevated psychophysiological (e.g., startle) and neural re-
sponses during uncertain threats (56,57). A growing literature
suggests that this intolerance of uncertainty (58) may represent a
transdiagnostic construct. However, much of the early research
relied on self-report assessments and used tasks that had diffi-
culty isolating the components of uncertainty. In recent years,
computational approaches have been adopted that can distin-
guish risk, loss, and ambiguity sensitivity (59) (Box 1). Using these
methods, studies have shown that risk aversion is elevated in
anxiety disorders (60) and that individual differences in trait
anxiety correlate with ambiguity aversion (61). A key question that
CFM has helped resolve is whether uncertainty-related pro-
cessing is linked specifically to anxiety or to a more general
negative affect dimension. One study investigated ambiguity
aversion using CFM in an unselected sample and revealed that a
transdiagnostic anxiety factor was specifically associated with
enhanced generalization of aversive value, a mechanism through
which ambiguity is reduced (62). However, another study in a
large, online, unselected sample found no link between trait
anxiety or depression and risk or ambiguity aversion (63). One
possibility is that increases in risk and ambiguity aversion may be
6 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
a state rather than a trait marker of anxiety that emerges in in-
dividuals exhibiting acute symptoms. In line with this account, 1
study in a large, unselected sample found that heightened am-
biguity aversion was linked to COVID-19-induced anxiety (64).

Another significant research area concerns uncertainty
induced by environmental volatility (Figure 5A). This was inves-
tigated by Browning et al. (65), who found that healthy individuals
who were high in trait anxiety failed to update their learning rate
in response to changes in environmental volatility, suggesting an
impairment in uncertainty processing (Figure 5B). In a larger
follow-up study consisting of clinically diagnosed patients with
MDD and generalized anxiety disorder and another unselected
sample recruited from a crowdsourcing platform (66), the authors
used a bifactor model approach to CFM to determine that the
failure to adjust learning rates was best captured by a general
factor representing combined anxiety and depressive features
rather than anxiety or depression specifically (Figures 5C–E).
These tasks assess how people respond to objective uncer-
tainty, but recent work has shown that computational modeling
can also be used to infer and quantify individual-level subjective
uncertainty (67). Wise and Dolan (68) demonstrated that a factor
including cognitive anxiety, depression, and intolerance of un-
certainty was linked to heightened subjective uncertainty during
a highly gamified aversive learning task in an unselected sample.
This paper incorporated a combination of behavioral and self-
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Figure 5. Uncertainty. (A) Computational factor modeling (CFM) studies have recently begun to adopt other approaches to dimensionality reduction. Gagne
et al. (66) reduced a range of questionnaires into a general internalizing factor as well as 2 specific factors relating to depression and anxiety. They tested for
associations with parameters from a computational model estimating how people adapt their learning rates (i.e., how quickly they learn from new evidence) in
response to changes in environmental volatility. (B) Prior research found that individuals high in trait anxiety fail to adapt their learning rate (65). (C) Bifactor
modeling using the CFM approach revealed that this failure to adapt learning rate was linked to the general internalizing factor rather than being specific to
what distinguishes depression and anxiety from each another (66). DX, diagnosis.
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report data as part of the identification of transdiagnostic factors,
representing an intriguing progression of the CFM approach that
may assist in the more data-driven identification of dimensions
of psychopathology in the future.
IMPLICATIONS FOR TREATMENT

The framework we have outlined, focusing on transdiagnostic
symptom dimensions with associated neurocomputational
mechanisms, has significant potential for improving outcomes.
This may occur through several pathways, which we describe
in detail in the next section with reference to recent examples
that have begun to realize this promise. In brief, we propose
that mechanistic insights from CFM can help us understand
whether and how existing treatments work, for example by
changing key neurocomputational processes such as model-
based planning or metacognition. This might inform the
development of new treatments that target these processes
more effectively or selectively. Additionally, CFM might be the
key ingredient to help us deliver treatments more precisely,
based on an individual’s specific transdiagnostic and mecha-
nistically defined profile rather than their diagnosis. This work
is still in its infancy, and an important task for research in the
coming years will be to focus on these real-world applications.
In the following sections, we review the progress that has
B

already been made in this area and outline suggestions for
future work (Figure 6).

Model-Based Planning

Key questions that emerge from the link between model-based
planning and compulsivity are whether model-based planning
can be changed using available or novel therapeutics and
whether they could signal which treatment will work best for
whom. The answer to the former question appears to be no;
model-based planning does not improve following targeted
training on tasks of this kind (69), nor does it improve following
cognitive behavioral therapy (CBT) for OCD, even in individuals
who respond extremely well to treatment (70). If model-based
abilities cannot be easily changed, are there alternative ways
that this mechanistic understanding of compulsivity might
improve treatment? One study tested this by engaging model-
based systems using a habit-override task during the admin-
istration of continuous theta burst stimulation (71). The focus of
this stimulation was to reduce left orbitofrontal cortex activa-
tion, building on prior knowledge of the role that the orbito-
frontal cortex plays in both habit and compulsive behaviors
(72,73). This treatment acutely decreased compulsive behavior
in individuals with compulsive disorders, with these beneficial
effects persisting for 1 week (Figure 6A). As with CBT, how-
ever, the treatment had little effect on model-based planning
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 7
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Figure 6. A focus on treatment. An important next step for computational factor modeling (CFM) research is to integrate it more directly with treatment.
There are a number of promising examples, including using CFM-defined mechanisms to (A) optimize existing interventions, (B) develop entirely novel in-
terventions that target specific computational processes, and (C) understand how existing treatments work. However, to date, there has been limited direct
application of the full CFM approach (i.e., including both latent symptom dimensions and computational models of behavior) within treatment studies. There
are at least 2 ways that this could be of value. First, (D) by directly testing the impact of treatment on previously identified transdiagnostic dimensions or
second, (E) by using a data-driven approach on repeated measures data to identify latent dimensions that specifically predict treatment response. MB, model-
based; MF, model-free.
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itself (74). Further work is needed to determine whether acti-
vation of habit circuits is necessary for patients to achieve this
benefit from continuous theta burst stimulation. If it does, this
may provide a further basis for exploring innovative psycho-
logical therapies, as well as stimulation techniques, that can
increase model-based planning (75).
Metacognition

Recent work suggests that metacognition, unlike model-based
planning, may be a trainable cognitive capacity and/or a target
for treatment (Figure 6B). In clinical settings, metacognitive
therapy has been used to treat depression and includes
components such as attention training and detached
8 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
mindfulness as ways to alter how people respond to negative
thoughts (76). Recently, researchers have attempted to study
analogues of these treatments in lab settings using tightly
controlled tasks, bridging real-world interventions to the way
metacognition is defined in the field of computational psychiatry.
One such study randomized healthy individuals to receive
training on their metacognitive assessments (77) and found
that metacognitive performance improved and generalized to
new tasks. A second study also demonstrated improvements
following metacognitive training in healthy individuals but found
that this did not have more general impacts on real-world be-
haviors like cognitive offloading (78). This translation to real world
function outside the confines of contrived laboratory settings is
crucial and a challenge that many cognitive training interventions

http://www.sobp.org/journal
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face. An important next question for this area is whether meta-
cognitive training can be delivered in a more personalized
manner based on what CFM has taught us about the dissociable
correlates of metacognition, AD, and compulsivity.

Reward

Attenuated reward processing is thought to be partly
responsible for a host of cognitive phenomena observed in
depression, for example, reduced emotional recognition of
happy faces (79), attentional biases toward negative infor-
mation (80–82), and biases for negative memories (83). These
biases have high face validity for the negative schemata that
are central to cognitive models of depression and are key
targets for CBT (84). Both therapy (85) and selective serotonin
reuptake inhibitors (SSRIs) (86) have been shown to increase
striatal response to reward, and increased computationally
modeled pretreatment reward responses are associated with
a greater symptom improvement (87). Several recent
computational modeling studies in clinical samples have
made notable strides in this area. One study showed that the
reduced reward learning rates associated with anhedonia
normalize following CBT in MDD (44) (Figure 6C). Another
study found that relapse following discontinuation of SSRIs
was predicted by reduced baseline effort expenditure to gain
rewards (88). A third study trained an algorithm to predict
treatment response based on a combination of symptom and
negative bias changes 1 week after starting antidepressants
(89). Although this algorithm performed above chance in the
discovery study, it failed to improve pre-registered outcomes
in a subsequent clinical trial (90). Although the lack of
generalization is discouraging, this methodology is exemplary
in many ways and has great potential if employed with
appropriately powered samples.

Uncertainty Processing

The apparent state-dependence of uncertainty-guided deci-
sion-making strategies in anxiety (64) raises the possibility that
these may represent causal or maintaining factors that could
be targeted through intervention. Indeed, asking healthy sub-
jects to adopt different cognitive strategies to regulate
emotional responses has been shown to influence risk aver-
sion (91). A placebo-controlled study of the antihypertensive
drug losartan (92) found no evidence that it improved learning
rate adaptation to uncertainty in healthy individuals (instead
finding that it reduced punishment learning). This suggests that
adaptation may be relatively difficult to change, but this awaits
confirmation using a more conventional anxiolytic intervention.
In contrast, recent work has shown that elevated startle re-
sponses to unpredictable threats (another behavioral assay of
uncertainty processing) decrease after CBT but not SSRI
treatment (93). This dissociation is important because it may
suggest differential mechanisms of action of these treatments,
which could aid in precision allocation. However, another
study demonstrated that SSRIs did reduce startle responses to
unpredictable shock, this time in healthy volunteers (94). This
indicates that the ways in which people respond to uncertainty
are malleable, but more work is needed to test how and for
whom. This is an important target for future work using CFM in
large samples that can be used to reliably estimate whether
B

uncertainty processing can be addressed clinically and
whether there is scope for stratification based on individual
differences.

DISCUSSION

Bringing It Back to Neuroscience

Online methods have been crucial for CFM studies to achieve
large samples, but it is not envisioned that research should
remain exclusively in the online space. Brain imaging, physi-
ology, pharmacology, and animal studies are necessary to
elaborate on underlying mechanisms. There are numerous
examples of overlapping neurobiological changes across
psychiatric conditions, for example reduced medial prefrontal
cortex volume (95) or altered default mode network function
(96). One possibility is that these reflect neurobiological sub-
strates of a transdiagnostic mechanism that CFM can help
illuminate. One study has already taken the approach of
elaborating mechanistically on insights from CFM in a smaller
in-person sample. Seow et al. (31) examined the electrophys-
iological correlates of model-based planning in approximately
200 students who varied in their levels of CIT. The authors
bridged directly from earlier work by applying the exact factor
weights derived from an unselected online sample to the in-
person student sample. They found that deficits in model-
based planning linked to this symptom dimension were
associated with diminished neural representations of task
structure. This converges with recent findings from general
population samples suggesting that failures in goal-directed
control in compulsivity are driven by problems with building
and maintaining accurate and high-level maps of the world
(97,98). As more studies adopt CFM methods in large online
samples, this back-translation will be crucial to test many of
the causal predictions made by the models.

A Focus on Treatment, From the Start

Research aiming to correlate symptoms with neurocomputa-
tional mechanisms can only take us so far. Treatment-oriented
work is an essential next step, and we argue that it should be
included earlier in the discovery process and integrated with
CFM approaches. Two potential extensions that ask slightly
different questions are 1) identifying factors using CFM as
reviewed earlier and then assessing whether they are impacted
by treatment (Figure 6D) or 2) using the CFM approach on the
treatment-related change in performance to identify trans-
diagnostic predictors of treatment response (Figure 6E). One of
the key challenges with this work is achieving the sample sizes
that are necessary to develop and validate neurocomputational
markers of treatment response. Similar issues have been faced
by chronically underpowered machine learning research in the
area of treatment response (99). Online methods can help here,
too. Lee et al. (100) partnered with a digital CBT provider to
recruit, assess (using CFM), and follow hundreds of patients
through treatment in a short space of time. This illustrates how
collaboration between the digital health industry and academia
could radically transform research in this area. Another inter-
esting approach (similar to Figure 6D) is to develop tightly
constrained lab models (analogues) of psychological therapy
and study them in large, unselected samples to understand
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 9
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how they affect CFM dimensions. Dercon et al. (101) took this
approach in a large online sample of healthy individuals and
found that a cognitive distancing intervention increased par-
ticipants’ learning from negative events and integration of
previous choice values. These 2 examples illustrate how CFM
approaches can be integrated more directly into the study of
how treatments work on well-defined computational pro-
cesses and how internet-based methods allow researchers to
do this at scale. We must acknowledge, however, that clinical
impact is still speculative; the field is new, and the utility of
CFM in informing treatment has yet to be evaluated.

Challenges

Online research can be messy, crowdsourcing platforms are
changing all the time, and concerns about data quality are
mounting. For example, inattentive responding to question-
naire items and behavioral tasks can induce spurious corre-
lations between variables (102), while the presence of bots on
certain services can threaten validity (103). Proposals to rem-
edy this include a renewed focus on aligning incentives in
online studies (i.e., considering what motivates people to
participate and redesigning tasks to reflect that) (68), involving
participants in design (104), and implementing more checks
and balances (105). In tandem, there has been renewed focus
on the reliability of the tasks we employ (106–109) and efforts
to harmonize tasks across labs and species (110–112). Model-
based planning, although far from a perfect assay, serves as
an example of how advances in model-fitting have improved
reliability (106,107) and how task design can be optimized to
best capture individual differences (113). To date, there has
been an overemphasis on snap-shot cross-sectional designs
throughout computational psychiatry. While bridging more
directly to treatment is the most important next step, we
suggest that there are intermediate approaches that can
already help the field move from correlation to causation. The
next phase of research in this area should adopt richer,
repeated within-subject designs that can establish temporal
precedence of cognitive change and symptom change, thus
helping to understand causality (114,115). Finally, an
assumption of CFM is that the constructs under investigation
are dimensional, following a linear progression from subclinical
to clinical. While existing evidence suggests that this is a
reasonable assumption in many cases, this may not hold for all
aspects of psychiatry (8).

Outlook

CFM approaches have gained popularity in a variety of
areas, and we have focused on those evaluated most
thoroughly. CFM has also been used to study information
seeking (116), deliberation (117), value-free random explo-
ration (118), credit assignment (119), language use (120),
foraging (121), mental effort avoidance (30,122), choice
stochasticity (123), error-related negativity (124), and the
interrelation of symptom dimensions (125). The approach
has been extended to other areas of psychology also
including the study of chronic pain (126), social interactions,
learning and evaluations (127–129), and political leanings
(130). A key challenge associated with the proliferation of
studies is how to integrate knowledge across them. One
10 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
approach is to develop new questionnaires based on the
CIT, AD, and SW output of CFM studies. Wise et al. (68)
used machine learning to identify a battery of questions
capable of capturing CIT, AD, and SW using just 20 items
each. While we think this is an important end point for well-
developed transdiagnostic dimensions, we also urge some
caution. Factor analysis seeks to explain the data it is pro-
vided, which means that the choice of questionnaires
included in each analysis can dramatically influence the
factors that emerge. For example, studies with more specific
and abundant anxiety-relevant items are less likely to merge
anxiety and depression in a single factor (53). Moreover, the
emergent factors are only as meaningful/relevant as the data
fed into them and can be influenced by symptom-irrelevant
features such as how questions are framed and how re-
sponses are recorded (131). Factor structures may also differ
depending on characteristics of the sample being studied,
an issue that is especially pertinent when considering clinical
syndromes. Therefore, it is imperative to confirm the
robustness and reliability of these structures. It is for this
reason that some studies repeatedly interrogate the same
factor structure across studies [e.g., AD, CIT, and SW:
(30,36,46,68,101,116,120,124)], establishing that the associ-
ation between dimensions and cognitive measures is repli-
cable [e.g., (30,40)] and that results extend to diagnosed
patients (32). While this is vital work, there are risks too in
focusing narrowly on a single dimensional structure; specific
factors, like disorders, may get reified as novel question-
naires and become difficult to change. If this occurs, we
may miss the opportunity for incremental gain and refine-
ment of measures or fail to see hidden hierarchical struc-
tures (or confounds) that influence our interpretations. To
avoid this, we propose that researchers make modifications
that can be systematically compared to ensure that we take
steps forward with each new study, in much the same way
that the field of psychometrics carefully balances evaluation
of existing measures with iteratively refining the measure-
ment of psychological constructs (132).

Most of the work we covered uses exploratory factor analysis,
but there is no reason that CFM should be confined to this
approach. Recent work with bifactor modeling (66) illustrated
how this hierarchical approach may provide the best solution for
certain mechanisms of psychopathology. We have focused on
dimensionality reduction within self-report data, but there is no
reason this approach could not also be used to reveal latent
dimensions within behavior, too. For example, partial least
squares regression has shown promise for more fully integrating
the selection of factors with their underlying mechanisms (68).
Future work should continue to expand the repertoire of CFM,
for example by considering canonical correlation analyses and
crossvalidation to identify novel and robust dimensions.
CONCLUSIONS

CFM is a new method that can help advance transdiagnostic,
mechanistic research in psychiatry using large and unselected
samples. The approach has identified new psychiatric di-
mensions with specific neurocomputational correlates, resolving
seemingly nonspecific findings seen across disorders and
revealing bidirectional effects that are hidden within a diagnosis.
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CFM complements traditional in-lab methods and diagnosis-led
research; it speeds up and scales up research, and we hope that
it can inform the development of interventions that are precisely
targeted at a neurocomputational level.
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