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ABSTRACT 

 Climate Change heavily impacts global cities, the downsides of which can be minimized 

by adopting renewables like wind energy. Despite its advantages, the nonlinear nature of wind 

renders the forecasting approaches to design and control wind farms ineffective. To expand the 

research horizon, the current study a) analyses and performs decomposition of real-world time-

series wind data, b) identifies the modelling issues associated with state-of-the-art methods 

such as Nonlinear Auto-Regressive (NAR) models, Wavelet Neural Networks (WNN), and 

Long Short-term Memory (LSTM) networks, and c) presents a comprehensive comparison 

between them for accurate wind forecasting. The present work also focuses on another 

important aspect related to the design of the aforementioned networks. This work proposes an 

evolutionary strategy for Neural Architecture Search (NAS) with the objective to minimize the 

computational cost associated with training and inferring the networks which form the central 

theme of Green Deep Learning. Balancing the trade-off between parsimony and prediction 

accuracy, the proposed NAS strategy could optimally design NAR, WNN, and LSTM models 

with a mean test accuracy of 99%. The robust methodologies discussed in this work not only 

accurately model the wind behaviour but also provide a green generic approach for designing 

deep neural networks. 

Keywords: Renewable Energy; Wind Characteristics forecasting; Neural Architecture Search; 

Green Deep Learning; Effective Wind Farm Design. 
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Abbreviations  

ADAM   Adaptive Momentum 

ADF   Augmented-Dickey-Fuller 

AEP   Annual Energy Production 

AIC    Akaike Information Criterion 

autoML   automated Machine Learning 

BDS   Brock-Dechert-Scheinkman 

INLP   Integer Nonlinear Programming 

LSTM   Long Short Term Memory Networks 

NAR   Nonlinear Autoregressive Models 

NAS   Neural Architecture Strategy 

NSGA-II  Non-dominated Sorting Genetic Algorithm II 

NWP   Numerical Weather Prediction 

PMF   Probability Mass Function 

RMSE   Root Mean Square Error 

RNN   Recurrent Neural Networks 

STL    Seasonal and Trend decomposition using Loess 

t-BPTT   truncated-Backpropagation Through Time 

WFM   Wind Frequency Map 

WNN   Wavelet Neural Networks 

Nomenclature: 

C̃i
m,p

   Intermittent Cell value of ith node in mth hidden layer at time step p 

X̂t    Estimated data at time step t 

bi
m    bias of ith node in mth  layer 

BLB
T , BUB

T   Lower and upper bounds on BT 
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BT    Length of Unrolled Network 

Ci
m,p

   Cell state in ith node in mth hidden layer at time step p 

Fi
m,p

   Forget gate of ith node in mth hidden layer at time step p 

Ii
m,p

    Input gate of ith node in mth hidden layer at time step p 

MLB, MUB  Lower and upper bound on M 

NLB, NUB  Lower and upper bounds on Nm 

Nm    number of nodes in mth layer 

NP    Number of parameters in the model 

Oi
m,p

   Output gate of ith node in mth hidden layer at time step p 

Pcurve    power curve 

T̅    Number of Test data points 

TF    Forward propagation length in t-BPTT 

Tij     number of points in ith direction sector and jth speed bin 

ueffective   effective velocity at a given turbine obtained after application of wake  

ur    values of speed in rth interval 

wij
m    weight on connection from jth node in (m − 1)th layer to ith node in mth  

    layer 

xi
m    activated output of ith node in mth hidden layer 

Xt    data at time step t 

zij
m    Translated and dilated variable in mth hidden layer from jth node to ith  

    node in a WNN 

𝑦i
m    weighted sum of inputs 

A    Activation function in LSTMs 

D    Number of Direction sectors 
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H    Hurst exponent 

K    dimension of data 

L    Loss function 

M    Number of layers in the network (Hidden layers + output layer) 

R2     Correlation coefficient 

T    Length of data 

U    Number of Speed bins 

Greek Symbol: 

f    functional map 

θ    Parameters of Neural network 

ℱij    frequency in ith direction sector and jth speed bin 

ϕq    values of direction in qth interval 

ℕ    Number of Turbines 

𝜑    activation function in NAR and Wavelets 

Ψ    output after application of a wavelet transform on z 

Symbol: 

GW    Gigawatt 

MW   Megawatt 

CO2    Carbon dioxide 

sq. Km   Square kilometre 
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1. Introduction 

 The rapid growth of human civilization has led to a 67% surge in energy demand across 

the world in the past three decades(World Energy Consumption Statistics | Enerdata, 2021). 

According to the Global Energy Yearbook 2021, fossils fuels account for ~81% of the total 

energy consumption resulting in a 24% increase in CO2 emissions(World Energy Consumption 

Statistics | Enerdata, 2021). Numerous conferences on climate change starting from the Earth 

Summit in 1992 (Grubb et al., 2019) to the 26th United Nations Climate change conference of 

the Parties (COP26) in Glasgow (Vogler, 2021) brought the world leaders together to address 

the issue of global warming and climate change by mitigation of greenhouse-gas-emissions. 

As a result of these efforts, the utilization of renewable energy sources has steadily increased 

 
Figure 1. Trends in utilization of renewable sources (1990-2020) (Enerdata, 2021) 
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in the last three decades as shown in Figure 1 (Renewables in Electricity Production | Statistics 

Map by Region | Enerdata, 2021).  

Among various alternative sources of renewable energy generation wind has attracted 

significant attention from researchers, practitioners, investors, and policymakers due to the 

aspects of easy availability, cleaner production, and scope for large-scale generation. As per 

the Global Wind Report 2021, the total cumulative installations of wind energy have reached 

743 GW helping to avoid over 1.1 billion tonnes of CO2 globally(Global Wind Report 2021 - 

Global Wind Energy Council, 2021). With 95 GW installations in 2020 alone (~53% year-on-

year increase), wind farms have emerged as the clean energy technology with the most 

decarbonization potential per MW. However, the report suggests that this rate needs to be 

tripled in the coming decade to stay on the path towards net carbon neutrality by 2050, calling 

for urgent action from policymakers to scale up the wind power production at the necessary 

pace (Global Wind Report 2021 - Global Wind Energy Council, 2021).  

 Despite so much focus on wind energy, one of the biggest challenges it faces is its 

uncertain nature, which results in tremendous variability in energy production. Therefore, 

accurate prediction of its variability can be of great help to the wind-farm owners and the 

industries in planning and execution of better energy conversion and management systems. 

Conventionally, the wind is modeled by constructing a Probability Mass Function (PMF) using 

time-series data of wind speed and direction. This PMF is then used in applications such as 

wind-farm layout optimization (or micro-siting) and control (Ciri et al., 2019; Miao et al., 

2018). Though this method in practice is the best possible practical way to handle the variability 

in wind, since the PMF is built on a limited amount of time-series data, the ability to capture 

long-range variability in wind is sacrificed, making the results unrealistic. This necessitates the 

requirement of novel methods capable of forecasting accurately by considering the long-term 

variability in the data. The importance of forecasting in the wind energy domain is presented 
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in many recent articles (Allen et al., 2017; Chen et al., 2022; L. L. Li et al., 2021; X. Liu et al., 

2021; Z. Liu et al., 2021; Song et al., 2011; Jianzhou Wang et al., 2021; K. Wang et al., 2018; 

Xue et al., 2020). 

 When it comes to modeling nonlinear trends in wind characteristics, traditionally, physics-

based methods (e.g. Numerical Weather Prediction (NWP)) have been employed. The 

complexity in modeling weather conditions using first principles, lack of professional staff for 

collection and maintenance of crucial data to validate these models, and high computational 

costs make these physics-based models difficult to handle. These difficulties of physics-based 

models turned researchers towards data-driven techniques. Under this category, researchers are 

found to be inclined towards the utilization of system identification tools such as linear and 

Nonlinear Auto-Regressive (NAR) models, Fuzzy inference systems, and Wavelet Neural 

Networks (WNNs) for modeling and forecasting wind characteristics (Abhinav et al., 2017; An 

et al., 2011; Brahimi, 2019; Daniel et al., 2020; Jahangir et al., 2020; Prasetyowati et al., 2017; 

Salcedo-Sanz et al., 2011; Zhang et al., 2022). Apart from conventional system identification 

techniques, the applicability of deep learning (such as Long Short Term Memory Networks 

(LSTMs), and Gated Recurrent Units) has been increasing in recent times due to its ability to 

handle extreme transience and nonlinearities in data such as that in the wind time series (Ding 

et al., 2019; Kumar Dubey et al., 2021; H. Li et al., 2022; Ningsih et al., 2019; Olaofe, 2014; 

Trebing & Mehrkanoon, 2020; Jujie Wang et al., 2022; Y. X. Wu et al., 2019).  

 The ease in availability of open-source software for system identification and machine 

learning techniques helped in the tremendous rise of their applicability. However, in open 

source software, the difficulty arises with the selection of hyperparameters, e.g. topology of 

the network, choice of activation functions, etc., which govern the predictability of these 

models. To overcome the difficulty in heuristics associated with machine learning models, 

many recent works reported reinforcement learning, Bayesian optimization, and single-
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objective optimization-based frameworks (Cho et al., 2020; Dong et al., 2021; Han et al., 2020; 

Tso et al., 2020; J. Wu et al., 2020, 2019). To the best of our knowledge, no work has been 

reported, that discusses the optimal design of state-of-the-art nonlinear system identification 

tools as well as deep learning methods, using a single, holistic, multi-objective evolutionary 

optimization-based framework balancing the aspects of over-fitting and accuracy and 

comparing them in terms of modeling long-term variability in wind data and predictability.  

1.1 Contributions 

The aim of the current study is, therefore, to develop optimal methodologies for modeling 

the real, nonlinear, transient wind characteristics data. To achieve this (see Figure 2), first the  

nature of data (nonlinearity, stationarity, and long-term dependency), is examined to justify the 

application of appropriate time-series modeling techniques. The hidden patterns and the effect  

of periodicities are then studied using STL decomposition. It is then proposed to use state-of-

the-art modeling techniques from nonlinear system identification (NAR and WNNs) and deep 

learning (LSTMs). In all these techniques, the model hyperparameters (e.g. number of hidden 

layers, number of nodes in each hidden layer, choice of activation function, and number of 

unrolled time steps or the order of the model), which are conventionally fixed using heuristics 

thereby providing scope for inefficiencies, are estimated intelligently using optimal 

evolutionary search. The two conflicting attributes of data-based modeling: maximization of 

model accuracy and minimization of model complexity drive the evolutionary neural 

architecture search strategy proposed in this work.  Minimization of the model complexity 

reduces the computations required by the optimally designed models thereby significantly 

decreasing the associated carbon footprint (Xu et al., 2021). The smaller optimally designed 

models have a high rate of deployment in real-world applications. The proposed methodology 

thus contributes to Green Deep Learning (Xu et al., 2021).After successfully training, the 

credibility of the forecasts from optimally designed models is validated by comparing with 
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realistic wind characteristic data collected over 4 years from a wind farm in France. 

Additionally, a comparative study is performed among the optimal NAR, optimal WNNs, and 

optimal LSTMs by demonstrating the applicability of forecasts over a long range of time in the 

optimal design of a wind energy conversion system.  

 In the rest of the paper, Section 2 presents time-series decomposition and analysis 

techniques in brief, followed by a detailed description of the proposed novel algorithm for the 

optimal design of automated machine learning models (including NAR, WNNs, and LSTMs). 

 
Figure 2. Overall framework of wind characteristics forecasting and its application 

proposed in this manuscript.  
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Section 3 describes the results of the proposed work followed by Section 4, which summarizes 

the conclusions of this work and presents the future scope.  

2. Formulation  

2.1 Data description and analysis 

 Wind characteristics data were collected from a French electricity utility company called 

ENGIE (La Haute Borne Data| ENGIE, 2020) over four years with a 6-hour resolution. This 

data was measured from four wind turbines placed in the corners of a rectangular wind farm of 

9 sq. Km area in La Haute Borne, France. Due to the placement of turbines only in the corners, 

resulting in a large inter-turbine distance, it is assumed that the measured data is not affected 

by wake effects. Figure 3 gives a pictorial representation of collected wind time-series data on 

a limited timeframe.  

2.1.1. Time-series analysis 

 
Figure 3. Pictorial representation of 1-year wind characteristics data. 

 
 



13 
 

 Let the data at each time step t be denoted by Xt = [X1
t   X2

t … XK
t ] ∀ t = 1: T, where K is 

the dimensions and T is the length of the data. In this work, the available data is modeled as 

two univariate time series, corresponding to wind speed and direction, respectively. Thus, in 

the current work, K = 1. A nonlinear relationship between input and output variables along 

with the irregular temporal behavior makes the nature of time-series data nonlinear, which can 

be detected using a hypothesis test, called the Brock-Dechert-Scheinkman (BDS) test 

(Akintunde et al., 2015). If the statistical properties such as mean and variance of the time 

series do not depend on time, then the time series is said to be stationary. A hypothesis test, 

called Augmented-Dickey-Fuller (ADF) test, is used to determine stationarity in the data 

(Dickey & Fuller, 1979). The long-term dependency test determines the extent of dependency 

of data at time instance t on the previous values. The presence of long-term dependency can be 

determined using the Hurst exponent analysis (Kalo et al., 2019).  The results of time series 

analysis on considered wind data are presented in Section 3. 

2.1.2. Time-series Decomposition 

 The time-series data consists of hidden patterns that have a sequential influence on the 

data points. A common way of determination proposed by several authors in literature is to 

decompose the time-series data into the trend, cycle, and seasonal patterns (Guignard et al., 

2019). There are several ways to decompose time-series, such as classical-additive, 

multiplicative, X11, and STL (Hyndman & Athanasopoulos, 2018). Recent literature survey 

revealed that among others, STL decomposition is most efficient and robust (Hyndman & 

Athanasopoulos, 2018). Therefore, we consider the STL method for decomposing wind time-

series data. The decomposition in the STL method is done through two loops (Cleveland et al., 

1990). The outer loop assigns the robustness weights to each data point for Loess smoothing, 

while the inner loop performs the decomposition. The results are presented in Section 3.  

2.2 Methods for modeling nonlinear time-series data.  
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 In univariate time-series modeling, an estimate of data at time step t, X̂t, is calculated as a 

function of BT previous data points: Xp|p = t−BT to t−1 and a set of tunable parameters θ, which 

are optimized to minimize the error/loss (L) between the original variable, Xt and estimate, X̂t, 

measured ∀ t up to the sequence length T. This exercise is called training the time-series model 

and it is illustrated in Eq. (1) to Eq. (3). 

X̂t = f(Xp|p = t−BT to t−1 and θ)  (1) 

L =
1

T−BT
∑ (Xp − X̂p)

2T
p=t   (2) 

θ∗ = argmin(L)  (3) 

 In Eq. (1), f is a functional map. In this manuscript, three nonlinear functional maps are 

utilized for modeling the wind time-series data. In the first case, f is represented by a neural 

network regressing on previous data points, thus called a nonlinear autoregressive(NAR) model 

(Boussaada et al., 2018; Diaconescu, 2008). The θ is the set of weights and biases in the neural 

network. The description about NAR model is described briefly in Appendix A. In the second 

case, f is a wavelet neural network(WNN) and θ is the set of translational and dilational 

parameters (Alexandridis & Zapranis, 2013). The description about WNN model is described 

briefly in Appendix B. In the third case, f is a deep recurrent neural network called LSTM 

network and θ is the set of weights and biases in the LSTM network. The description about 

LSTM is described briefly in Appendix C. In this work, we compare and contrast each of these 

methods for their abilities and disabilities to model nonlinear time-series data such as wind 

speed and direction. We also discuss the problems associated with each of these models and 

present a novel algorithm to alleviate them optimally. The idea behind the proposed algorithm 

is described below.    

2.2.1. Hyper-parameters and idea behind the novel algorithm 

 In this study, multi-layered (stacked) networks are used in the case of NAR, WNN, and 

LSTM models for modeling the wind characteristics data. Therefore, before these models are 
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trained, certain hyper-parameters which govern these models need to be fixed. These hyper-

parameters include the number of hidden layers in the network, the number of nodes in each 

hidden layer, activation function, BT, and learning rate. Conventionally, these hyper-

parameters are fixed heuristically allowing severe inaccuracies and limiting the potential of 

these models. while modeling the NAR, WNN, and LSTM networks. In this work, while the 

ADAM algorithm (Kingma & Ba, 2014) ensures proper tuning of the learning rate, all other 

hyper-parameters are estimated optimally using a novel evolutionary multi-objective 

algorithm. The proposed algorithm is based on bias versus variance trade-off in machine 

learning:– a simpler model with less number of parameters will have more bias for usage due 

to its simplicity and high variance in error due to its incapability.  

2.3 Algorithm for the optimal design of networks 

Utilizing the trade-off between the complexity of the model (in terms of the number of 

parameters and order of the model BT) and prediction accuracy (in terms of R2 on the test set), 

we present a multi-objective optimization formulation with the objectives of minimizing the 

complexity of the network and maximizing the accuracy of the model simultaneously. All the 

hyper-parameters: number of hidden layers, nodes, activation choice and BT, serve as decision 

variables. Since the objectives are nonlinear and decision variables are integral, the proposed 

framework becomes a multi-objective Integer Nonlinear Programming (INLP) problem, which 

we solved using binary-coded Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb, 

2001). The INLP formulation is presented in Eq. (4) and the algorithm is presented in Table 1. 

minimize
{Nm: m=1:MUB},   BT and A

−R2, NP and BT   (4) 

where,  

R2 =  (
covariance(original and predicted data)

√var(original data) var(predicted data)
)

2

  

     covariance =  T̅ ∑ (XtX̂t)T̅
t=1 −  ∑ (Xt)T̅

t=1 ∑ (X̂t)T̅
t=1   
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     variance = T̅ ∑ (Xt)2T̅
t=1 −  (∑ (Xt)T̅

t=1 )
2
  

NP is the number of parameters in the network 

such that, 

BLB
T ≤ BT ≤  BUB

T  and NLB ≤ Nm ≤ NUB where NLB =  {
1, if m = 1
0, if m > 1

  

A ∈ {1,2} | if A =  {
1, tansigmoid for NAR and LSTMs or Mexican Hat for WNNs

2, logsigmoid for NAR and LSTMs or Morlet for WNNs 
}   

{BLB
T , BUB

T , NUB, MUB} ∈  ℤ+ and  

M: Number of hidden layers (determined in the proposed algorithm) 

MLB, MUB: Lower and upper bound on M (values to be defined a priori – see Table 2)   

Table 1. Algorithm for optimal design of NAR, WNN and LSTM models 

Step 1 Initialize the number of binary variables as 𝐌𝐔𝐁+2 and real variables as 0. 

Step 2 Set the parameters of NSGA-II and start the algorithm. 

Step 3 For a given population, initialize M = 0 and use the first MUB variables to build 

the architecture and the last 2 decision variables to determine A and BT: 

 for m → 1 to MUB 

  if (decision variable m is not 0) then 

   set Nm = decision variable m  

   M = M + 1. 

  else 

   exit the loop 

  end if 

 end for loop.  

Step 4 Assign architecture as [1, {Nm: m = 1 to M}, 1] and obtain BT and A from 

remaining two decision variables. 

Step 5 Train and validate the model using backpropagation or t-BPTT and ADAM. 

Step 6 Test the model using a test size of T̅ and evaluate R2. 

Step 7 Evaluate the total parameters NP in the given network. 

Step 8 Increment the population counter, go to step 2 and repeat till a generation is 

evaluated. 

Step 9 Perform the operations of NSGA-II: Crossover, Mutation, Selection and 

sorting and create the new generation. 

Step 10 Repeat Step 3 to 9 till convergence of NSGA-II. 
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Nm: Number of nodes in hidden layer m (determined in the proposed algorithm) 

NLB, NUB: Lower and upper bounds on Nm (values to be defined a priori – see Table 2) 

BT: Length of the unrolled network in case of LSTMs (see Supplymentary file) or the 

      order of NAR and WNN models. (determined in the proposed algorithm and objective) 

BLB
T , BUB

T : Lower and upper bounds on BT (values to be defined a priori – see Table 2) 

A: Choice of the activation function (determined in the proposed algorithm) 

T̅: Number of test data points (values to be defined a priori – see Table 2) 

 All the models and the optimizer NSGA-II have been coded in Fortran 90 language without 

the use of any open-source libraries. The simulations are run on Intel® Xeon CPU E5-26900 

@ 2.90GHz dual processor 128 GB RAM workstation. 

3. Results and Discussions 

 As the wind time-series data was collected from anemometers, it was first processed using 

a 5-point moving average approach to remove the measurement noise present in the data. The 

autocorrelation plot of the residual is shown in Figure 4. The presence of data only between 

the 95% confidence lines indicates that the residual is white noise (Hyndman & 

 
Figure 4. Subfigures (a) and (b) represent the Autocorrelation plots and Subfigures (c) 

and (d) represent the histograms for residuals in wind speed and direction, respectively.  
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Athanasopoulos, 2018). To confirm that the data used for plotting the subfigures 4a and 4b is 

white noise, we also plotted the histograms for them as shown in subfigures 4c and 4d. These 

Gaussian histograms confirm that the data is indeed white noise. We now present the results of 

time-series analysis followed by the decomposition of wind data and optimal design of NAR, 

WNN, and LSTM models. 

3.1 Hypothesis tests for Time-series analysis 

  The nature of time-series data expressed as nonlinearity, stationarity, and long-term 

dependencies, was examined to determine the appropriate technique for modeling the data. The 

characteristic of nonlinearity in the data was examined by the BDS test. The null hypothesis is 

H0: The time-series data is linear, while the alternate hypothesis is H1: The time-series data is 

nonlinear. The level of significance was taken as 5%. The p-values for the wind speed and 

direction data using the BDS test were observed as 0.001 and 0.003, respectively, which were  

less than the level of significance. Therefore, the null hypothesis was rejected in both cases and 

the considered wind time-series data is statistically inferred to be nonlinear. 

 Similarly, the characteristic of stationarity was examined using the ADF test, where the 

null hypothesis is H0: The wind time-series data has Unit root, while the alternate hypothesis 

is H1: The time-series data is stationary. The p-values for wind speed and wind direction were 

reported as 0.008 and 0.01 respectively. Hence, the null hypothesis is rejected and the 

considered data is inferred statistically to be stationary. 

 The long-term dependencies in the data were examined using the Hurst Exponent analysis. 

The Hurst exponent H was determined using the rescale range analysis on periods of observed 

data. The H values for wind speed and wind direction were observed as 0.83 and 0.79 

respectively. As the H values are in the range of 0.5 and 1, the considered data of wind speed 

and direction is inferred to contain long-term dependencies. 
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3.2 Time-series decomposition using STL method 

 The time-series data has hidden patterns, which influence the sequence in the data. 

Therefore, it was decomposed into three components: trend, seasonal, and remainder/residual, 

to determine different behavioral patterns using STL decomposition. The results of STL 

decomposition for wind speed and direction are shown in Figure 5 and Figure 6, respectively.  

After decomposition, trend and remainder components are modeled together using NAR, 

WNN, and LSTM networks. Later, seasonality is combined with the forecasts as per STL  

decomposition for further analysis.  

3.3 Optimal design of NAR, WNN, and LSTM models 

 Once the time-series data of four years is decomposed to extract the seasonality, it is 

divided into 3-years and 1-year data. The modeling (training and validation) is performed with 

3-years data. The trained models are then used to forecast data for the next 1-year, which is 

compared with the left-out original 1–year data to prove the credibility of forecasts. From the 

3-years data, 70% is used for training the models and the remaining 30% is used for validating 

the trained models. For each of the three models (NAR, WNN, and LSTMs), two parallel 

simulations of the proposed evolutionary NAS algorithm are run for modeling wind 

characteristics; one for speed and the other for direction. All the values of bounds on the 

decision variables (see Eq. (4)) and settings of NSGA-II are listed in Table 2.  

 Three dimensional Pareto Fronts as solutions were obtained within the first 6-8 generations 

of the NSGA-II. To confirm the convergence, NSGA-II was also run with different 

initializations and far more generations than that listed in Table 2. The obtained solutions are 

presented in Figures 7 and 8 for wind speed and direction, respectively. It can be seen that there 

lies a trade-off between model accuracy and overfitting as moving from one point to the other 

in the Pareto front improves one objective at the cost of the other. Decision variables 

corresponding to these points are called Pareto solutions.  

ch12m
Highlight
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Figure 5. STL Decomposition for Wind Speed 

 
Figure 6. STL Decomposition for Wind Direction 

Table 2. List of parameters used in proposed algorithm for evolutionary NAS 

S. No Parameter Value 

1 Number of binary and real variables in NSGA-II 5 and 0 

2 Number of population and generations in NSGA-II 200 and 100 

3 Mutation and Crossover Probability in NSGA-II 0.01 and 0.9 

4 MLB, MUB: Lower and upper bound on number of hidden layers 1 and 3 

5 NLB, NUB: Lower and upper bounds on nodes in each hidden 

layer  

{1,0,0} and  

{16, 15, 15} 

6 BLB
T , BUB

T : Lower and upper bounds on BT 2 and 65 

7 T̅: Number of test data points 1200 
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Figure 7. Converged Pareto fronts for (a) NAR, (b) WNN and (c) LSTM for Wind Speed. 

Row 1 shows the 3D Pareto front while Rows 2 to 4 show the 2D projections. 

 

 
Figure 8. Converged Pareto fronts for (a) NAR, (b) WNN and (c) LSTM for Wind 

Direction. Row 1 shows the 3D Pareto front while Rows 2 to 4 show the 2D projections. 
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Each of these solutions is an embodiment of a distinct architecture of NAR, WNN, and 

LSTMs. The Pareto solutions are shown in Tables D.1 to D.6 in the Appendix D.  A single 

solution from the Pareto list is selected using the Akaike Information Criterion (Akaike, 1987), 

a robust model selection method, as shown in Eq. (5), which penalizes the models for an 

increase in the number of parameters thus filtering the overfitted models. Among all models, 

the one with the least AIC value is selected (Akaike, 1987). The utilization of AIC that ensures 

the selection of models with less complexity for deciding the final candidate from the list of 

Pareto solutions once again reinforces the applicability of Green Deep Learning (Xu et al., 

2021) in the proposed algorithm. The optimal NAR, WNN, and LSTM models obtained for 

emulating wind speed and direction, are shown in Table 3. Figures 9 and 10 present the 

performance of these models for emulating wind speed and direction, respectively.   

AIC = Sample size for training ∗ log(RMSE2) + 2 ∗ Number of parameters  (5) 

3.4 Comparisons and Discussions 

 As can be seen in Table 3, two and three hidden layered architectures have emerged as the 

best solutions. Finding them through heuristics would have been extremely time-

consuming and laborious. For instance, the proposed algorithm was able to determine the 

Table 3: Optimal NAR, WNN and LSTM models obtained from the list of Pareto 

solutions by implementing the AIC criteria (See Tables D.1 to D.6 in Appendix D for AIC 

values of each solution)  

Speed 

Model Architecture Activation 

Function 

Unrolling 

Length 

RMSE on 

Validation set 

R2 on 

Validation set 

NAR [1-2-3-4-1] 2 8 0.0102 0.9946 

WNN [1-2-3-4-1] 1 8 0.0105 0.9943 

LSTM [1-5-2-1] 1 34 0.0677 0.9956 

Direction 

Model Architecture Activation 

Function 

Unrolling 

Length 

RMSE on 

Validation set 

R2 on 

Validation set 

NAR [1-2-3-4-1] 2 8 0.0118 0.9951 

WNN [1-2-3-4-1] 1 8 0.0119 0.9950 

LSTM [1-1-6-1] 1 34 0.0623 0.9963 

 
 
 

 

 
 



23 
 

 

 
Figure 9. Parity plots of wind direction (a) training data and b) validation data for NAR 

(column 1), WNN (column 2) and LSTMs (column 3). 

  

 

Figure 10. Parity plots of wind direction (a) training data and b) validation data for NAR 

(column 1), WNN (column 2) and LSTMs (column 3).  
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best solution from a total of 524288 alternatives (163x64x2) by only evaluating a maximum 

of 521 architectures(maximum obtained in case of LSTM among all three varieties for wind 

speed. Emulating this with heuristics would have been an impossible task.  

 It can be inferred from results in Table 3 that LSTMs have more parameters than NAR and 

WNN models, however, the accuracy in predicting the training and validation data remains 

similar. Further, the number of previous time steps required for modeling wind 

characteristics data is also higher for LSTMs when compared with the other two models. 

This speaks about the superiority of NAR and WNN models while emulating the training 

and validation data (see Figures 9 and 10). 

 LSTM networks are known for capturing long-term dependencies in the data. And for this 

functionality, a single LSTM block hosts 4 nodes, each of which is similar to 1 RNN node 

 
Figure 11. Forecasting of Wind Speed using (a) NAR, (b) WNN and (c) LSTMs 
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(see Appendix C). This essentially leads to an increase in parameters of the LSTMs as seen 

in results. At the same time, through Hurst exponent analysis, it was established that the 

data contains long-term dependencies. Thus, even though, NAR and WNN prove to be 

simpler and accurate, the capability of LSTMs cannot be undermined. This fact is proven 

when the three models are compared in terms of forecasts (see Figures 11 and 12). 

 The failure of NAR and WNN models to forecast accurately for long-range indicates their 

inability to capture all dynamic features of the time-series data. On the other hand, accurate 

forecasts of LSTM justify the necessity of the large number of parameters in them and 

higher values of BT. These inferences are also justified from the parity plots in Figure 13.   

In all three models, BT is optimally determined and fixed as constant while training. 

However, only in LSTMs, the extent of dependency on previous data varies to 

accommodate the dynamics in the data. This is made possible by the forget and input gates 

which regulate the extent of dependency. Unlike the LSTMs, NAR and WNN models 

consider the dataset as samples and do not share the parameter information across the 

timestamps. Hence, these models fail to learn the long-term dynamical behavior in the time-

series data. These reasons might have led to the failure of NAR and WNN for forecasting 

the time-series data over a longer range compared to LSTMs. 

 However, when it comes to forecasts over the short range, NAR, WNN, and LSTM models 

perform similarly. Thus, for applications that demand limited forecasts, optimal NAR and 

WNN models should be considered rather than LSTM models. This is due to the 

computational load associated with LSTMs when compared with NAR and WNN models. 

The importance of short-range forecasts is well established in the domain of wind energy 

conversion systems (Boussaada et al., 2018). Therefore, we now present a unique 

application in the design of wind farms, which necessitates long-range forecasts and 

justifies the applicability of optimal LSTMs.  
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Figure 12. Forecasting of Wind Direction using (a) NAR, (b) WNN and (c) LSTMs. 

 

 
Figure 13. Parity plots of test/forecast data (a) wind speed and (b) wind direction for NAR 

(column 1), WNN (column 2) and LSTMs (column 3). 
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3.5 Significance of LSTM forecasts and analysis 

 Conventionally, energy is extracted from wind using the establishment of a wind farm. An 

optimal wind farm is where the turbines are arranged in a systematic manner such that the 

capital expenditure of establishment is minimized and energy obtained from the farm is 

maximized while considering the wake effects. In this process, called micro-siting, to estimate 

the energy from a plausible layout,  

a) first, a long-range wind time-series data is collected and utilized to construct a 

Probability Mass Function (PMF) called Wind Frequency Map (WFM),  

b) then a suitable method for modeling the wake arising due to the arrangement of turbines 

is considered to obtain effective velocities at each turbine,  

c) the power from each turbine is then evaluated as a function of the effective velocities 

using a relationship provided by the turbine manufacturer, called the Power curve, and  

d) finally, the annual energy from the layout is obtained as a function of the expected value 

of power from the layout evaluated over the considered WFM as shown in Eq. (6).  

       Energy =  8760 ∑ ∑ ∑ [Pcurve (ueffective(ϕq, ur, p)) x WFM(ϕq, ur)]U
r=1

D
q=1

ℕ
p=1   (6) 

 In Eq. 6, ℕ is the total number of turbines, D is the number of direction sectors, U is the 

number of speed bins, ϕq and ur are the values of direction and speed in qthand rth intervals, 

respectively, ueffective is the effective velocity at a given turbine obtained after application of 

wake model, Pcurve is the power curve, the relationship provided by the turbine manufacturer 

to determine the rated power, and 8760 is the total number of hours in a year. Therefore, it is 

crucial to construct the WFM accurately (using the frequentist’s approach) from the wind time-

series data. However, owing to various factors such as unavailability of past wind data due to 

lack of measurement devices and its archival, unavailability of future wind data due to lack of 

efficient forecasting techniques, wind farm micro-siting is generally performed based on 

WFMs constructed using wind characteristics data of shorter duration. Such data depicts 
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minimal or fixed wind characteristics making the wind farm design prone to generate 

unrealistic estimates of the power. Through this analysis, an effort is made to show the benefit 

of using accurate and more volume of wind data, while determining the energy production from 

the wind farms. In what follows next, we first present the procedure for construction of WFM 

from time-series data, then consider an optimal layout of a wind-farm obtained using micro-

siting study (Mittal & Mitra, 2018) and evaluate the annual energy produced from this layout 

using different WFMs obtained by varying the length of time-series used to build them, for 

comparison.  The wind speed and direction are divided into disjoint intervals (direction sectors 

and speed bins) which are considered as random variables. The PMF on these random variables 

is then constructed by the process of counting or the frequentist’s approach as shown in Eq. 

(7).  

WFM is a set of discrete probabilities ℱij =
Tij

T
⁄   (7) 

where T is the total number of points in the wind time-series data and  

                        Tij is number of points in ith direction sector and jth speed bin 

 In this work, we consider four different WFMs obtained in the following manner by 

assuming that, we currently have access to the first three-year wind time-series data:  

a) WFMaggressive – the map was constructed by using the most recent year’s data.  

b) WFMconsevative – the map was constructed by using all three previous years’ data. 

c) WFMrealistic – the map was constructed by using all three previous years’ data and 1-

year data forecasted using optimal LSTM obtained in this work and,  

d) WFMbenchmark – the map was constructed by using all four years’ original data. Since 

we have assumed that we have access to only three years’ data, this map is an ideal case 

and is created only to show the validity of results obtained in this study. This map serves 

as the benchmark for comparing the other three WFMs.   
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The frequency maps obtained as described above are shown in Figure 14. To avoid any 

bias towards the considered WFMs, we use an optimal layout consisting of 33 turbines spread 

over an area of 3000 sq. Km (see Figure 15), obtained using a micro-siting simulation as 

described above(Mittal & Mitra, 2018). We then evaluate the expected power from the layout 

 
Figure 14. Wind frequency distribution and corresponding heat maps. (a) represents 

WFMaggressive. (b) represents WFMconsevative. (c) represents WFMrealistic. (d) represents 

WFMbenchmark 
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as shown in Eq. (6). The values of annual energy obtained for the four different WFMs 

mentioned previously are listed in Table 4. 

 The analysis has revealed several interesting insights. Firstly, the energy values for the 

same layout are widely different with different WFMs. Therefore, if the entire micro-siting 

study is performed using these layouts, it would reveal entirely different optimal layouts. This  

would lead to the question of which of them is the correct estimate of the original power. Again 

the analysis conducted here provides the solution. It shows that the WFM constructed using 

the combination of original and forecasted data of 4 years has resulted in energy, which is in 

close approximation to the energy resulted from the benchmark WFM constructed using 

original data. This justifies the necessity of accurate long-range forecasts of wind 

characteristics for efficient modeling and simulation of wind energy conversion systems. 

4. CONCLUSION 

 In this work, we compared three state-of-the-art models from the domains of nonlinear 

system identification and deep learning in terms of their abilities to model and forecast the 

wind characteristics time-series data. In this process, first the wind characteristics time-series 

 
Figure 15. Optimal Wind-farm layout used in this work for analysis using forecasts over 

long-range of time. The shaded circles indicate turbine locations.  

 

Table 4. Values of Power calculated using the frequency maps obtained from given data 

and forecasted data. 

S. No Frequency AEP (kW) 

1 WFMaggressive 14739.92 

2 WFMconsevative 12273.48 

3 WFMbenchmark 11548.02 

4 WFMrealistic 11398.84 
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data is analyzed for nonlinearities, non-stationarity, and long-term dependencies and then 

decomposed to remove the seasonal component from the data. Then, the justification for 

selecting the NAR, WNN, and LSTM models is presented and the problems associated with 

their heuristic-based design are articulated. To resolve these issues, a novel evolutionary neural 

architecture search strategy in the lines of automated machine learning is proposed in this study 

to optimally design NAR, WNN, and LSTM models. The proposed algorithm not only 

estimates the hyper-parameters of the models but also ensures the optimal design is driven by 

the objective to minimize the carbon footprint involved in training and inferring large and deep 

neural networks. Finally, the significance of accurate forecasts over a long range of time is 

presented using a study of annual energy production from an optimally designed wind farm. 

The work is summarized as follows:  

 The proposed algorithm provides the best architectures in terms of Pareto solutions 

which give information about the hyper-parameters of the model. The number of Pareto 

points from the proposed algorithm was reported as 38, 22, and 45 for NAR, WNN, and 

LSTM, respectively, for speed. Similarly, the Pareto points for wind direction were 

reported as 36, 33, and 48 for NAR, WNN, and LSTM, respectively. From the obtained 

solutions, one Pareto point is selected using the AIC criterion, where the point with 

minimum AIC is selected for further analysis to prevent overfitted models. 

 The training accuracy for modeling wind speed is reported by calculating a statistical 

metric R2. The R2 values for NAR, WNN, and LSTM were reported as 0.9946, 0.9943, 

0.9956 respectively, for wind speed. The R2 values for NAR, WNN, and LSTM were 

reported as 0.9951, 0.9950, 0.9963 respectively, for wind direction. The results have 

shown that all three models have performed well while training them. 
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 However, when compared on the test data over a long range, NAR and WNN models 

have failed with high RMSE values and very low R2 values. But LSTM did well on test 

data for both wind speed and direction with ~99% accuracy. 

 Compared to the deep learning models, the system identification techniques do not 

share the parameters across the timestamps leading to their failure in learning the long-

term dependencies in the data. However, for applications requiring predictions for 

short-range, system identification techniques are more suitable due to their less 

complexity in terms of model parameters.  

 While exploring different designs of the aforementioned models, the proposed 

algorithm creates a balance between overfitting and parsimony. Though it is shown in 

this work that the proposed algorithm is capable of designing optimal feedforward and 

recurrent networks, the idea can also be used to design optimal convolutional networks 

to model image-based datasets. Thus, the idea is generic and contributes to the novel 

paradigm of research in machine learning called autoML, aimed at developing 

automated models without the intervention/implementation of heuristics. 

 The significance of accurate forecasting is analysed for improving the annual energy 

production from an optimally designed wind farm, leading to sustainable clean energy 

production and a world with near zero carbon foot prints. 
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APPENDIX 

Appendix A: Nonlinear Autoregressive Models (NAR): 

 In case of NAR model, the sequential data is rearranged into input-output data pairs based 

on the value of BT. Figure A.1 presents a typical example of this rearrangement with BT = 3 

and corresponding NAR model with neural network as the nonlinear map f. The inputs are 

processed across the network to generate the estimate of the target (see Eq. (A.1) to Eq. (A.3)),  

which results in generation of a loss function that can be used to optimize the weights and 

biases in the network (see Eq. (2) and (3) in the manuscript). To model nonlinearity in the data, 

the network hosts a set of nonlinear transformation functions called activation functions. Log-

sigmoid and Tan-sigmoid functions shown in Eq. (A.4) are two commonly used activation 

functions in ANNs. 

 Evaluation of activated output of ith node in first hidden layer (𝑥i
1):  

𝑦i
1 = ∑ (wij

1 Xp)t−1
p=t−BT + bi

1, where, j = p − t + BT + 1 and 𝑥i
1 = 𝜑(𝑦i

1)  (A.1) 

Here, y is the weighted sum of inputs Xp|p = t−BT to t−1, w and b are weights and biases, 

respectively, and 𝜑 is the activation function. The superscript (on y, 𝑥, w and b) indicates the 

layer number, the first subscript indicates the current node in the given layer and second 

 
 Figure A.1. Pictorial representation of NAR model. 
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subscript indicates the node in previous layer which is connected to the current node. For 

example, wij
m indicates the weight on connection from jth node in (m − 1)th layer to ith node 

in mth layer.   

 Evaluation of activated output of ith node in mth hidden layer (𝑥𝑖
𝑚): 

𝑦i
m = ∑ (wij

m 𝑥j
m−1)Nm−1

j=1 + bi
m and 𝑥i

m = 𝜑(𝑦i
m) ∀ m = 2 to M − 1  (A.2) 

 Here, Nm−1 is number of nodes in (m-1)th layer and M is total number of layers (hidden 

layers + output layer) in the network 

 Evaluation of network output (X̂t): 

X̂t = ∑ (w1j
M 𝑥j

M−1)NM−1

j=1 + b1
M  (A.3) 

 Commonly used activation functions (𝜑): 

Log-sigmoid: 𝜑(𝑦) =
1

1+exp (−𝑦)
 and Tan-sigmoid: 𝜑(𝑦) =

2

1+exp (−2𝑦)
− 1  (A.4)   

Appendix B: Wavelet Neural Networks: 

 Wavelet neural networks are similar to feedforward neural networks where the sigmoid 

activation functions are replaced with wavelet functions. In contrast to sigmoid neural 

networks, the wavelet networks, often considered as generalization of Radial Basis Function 

(RBF) networks, are efficient in initializing the parameters such that they converge to the global 

minimum of the error function (Alexandridis & Zapranis, 2013). The given time-series data is 

rearranged in a similar way as it is done in case of NAR models. In the input layer of wavelet 

network, the explanatory variables (Xp|p = t−BT to t−1) are introduced. Nodes in the hidden 

 
Figure B.1. Pictorial representation of WNN model. 
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layers, called wavelons, transform the input variables to translated and dilated versions of 

mother wavelet. The translation controls the position of the mother wavelet and dilation 

controls the scaling parameter. The output layer approximates the estimated target value. The 

structure of simple wavelet network with two hidden layers is shown in Figure B.1, and the 

equations for evaluation of network output are shown in Eq. (B.1) to Eq. (B.5).  

 Evaluation of activated output of ith node in first hidden layer (𝑥i
1): 

zij
1 =  (Xp − w1ij

1 ) (w2ij
1 )⁄  and Ψij

1 = 𝜑(zij
1)  

                       ∀ p = t − BT to t − 1 & j = p − t + BT + 1  (B.1) 

𝑥i
1 = ∏ (Ψij

1)t−1
j=t−BT    (B.2) 

 Here, z is the input variable translated and dilated using the weights w1 and w2, 

respectively, Ψ is the output after application of a wavelet transform on z and 𝜑 is the wavelet 

function (see Eq. (B.6)). The superscript (on z, 𝑥, w1, w2 and Ψ) indicates the layer number, 

the first subscript indicates the current node in the given layer and second subscript indicates 

the node in previous layer which is connected to the current node. 

 Evaluation of activated output of ith node in mth hidden layer (𝑥i
m): 

zij
m =  (𝑥j

m−1 − w1ij
m) (w2ij

m)⁄  and Ψij
m = 𝜑(zij

m)  

            ∀ j = 1 to Nm−1 & m = 2 to M − 1  (B.3) 

𝑥i
m = ∏ (Ψij

m)Nm−1

j=1  ∀ m = 2 to M − 1  (B.4) 

Here, Nm−1 is number of nodes in (m-1)th layer and M is total number of layers (hidden layers 

+ output layer) in the network 

 Evaluation of network output (X̂t): 

X̂t = ∑ (w1j
M 𝑥j

M−1)NM−1

j=1 + b1
M  (B.5) 

 Commonly used wavelet functions (𝜑): 

Mexican hat: φ(y) =
2

√3
π

−1

4 (1 − y2)exp (
−y2

2
) and  
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Morlet: φ(y) = cos (1.75y)exp (
−y2

2
)  (B.6)                                         

Appendix C: Long Short-term Memory Networks 

 A primary difference between the auto-regressive models, such as NAR and WNNs, and 

the RNNs is that, while the former regress on previous data points, the recurrent networks 

regress on previous hidden states as shown in Eq. (C.1) to (C.3). This is made possible using a 

feedback loop on every node in the hidden layers (see Figure C.1). Several such hidden layers 

connected in a sequence between input and output layers together constitute the recurrent 

network. As opposed to a feed forward network, the recurrent network has two dimensions – 

one goes forward in layers (input to output layer) and the other goes forward in time as shown 

in Figure C.1. This additional dimension in time is such that the same network is simulated 

repeatedly with feedback from previous time point and information at current time point. 

Therefore, to differentiate the network variables from one time-step to another, an additional 

superscript is added which indicates time (the other superscript indicates layers). However, 

since the network remains same across all time instances, the parameters, i.e., the weights and 

biases do not change with time steps. This kind of architecture maintains the sequence in the 

data while training the model, unlike NAR and WNN models (Alexandridis & Zapranis, 2013). 

Eq. (C.1) and (C.2) are valid ∀ p =  t − BT to t − 1, but Eq. (C.3), which is used to generate 

the network output is applicable only when p = t – 1.   

 Evaluation of activated output of ith node in first hidden layer at time step p (𝑥𝑖
1,p

):  

𝑦i
1,p

= wi1
1  Xp + ∑ (w̅ik

1  𝑥k
1,p−1

)Nm

k=1 + bi
1 and 𝑥i

1,p
= 𝜑(𝑦i

1,p
)  (C.1) 

Here, 𝑦i
1,p

 is the weighted sum of inputs at time step p, 𝑥i
1,p−1

 is the activated output of ith 

node in first hidden layer at time step p-1 (𝑥 is also known as the hidden state), w, w̅ and b are 

feedforward weight, feedback weight and bias, respectively, 𝜑 is the activation function and 

Nm is the number of nodes in first hidden layer.  
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 Evaluation of activated output of ith node in mth hidden layer at time step p (𝑥i
m,p

): 

𝑦i
m,p

= ∑ (wij
m𝑥j

m−1,p
)Nm−1

j=1 + ∑ (w̅ik
m 𝑥k

m,p−1
)Nm

k=1 + bi
m and  

𝑥i
m,p

= 𝜑(𝑦i
m,p

) ∀ m = 2 to M − 1  (C.2) 

 Evaluation of network output (X̂t) only when p = t-1: 

X̂t = ∑ (w1j
M 𝑥j

M−1,p
)NM−1

j=1 + b1
M  (C.3) 

 Conventionally, in recurrent networks, output layer does not have a feedback loop. Also, 

similar to feedforward networks, the activation function in output layer is linear. Thus, the Eq. 

(C.3) is neither having any feedback connections nor it is having any activation function similar 

to Eq. (B.5) for WNNs and Eq. (A.3) for NAR models. Further, as opposed to one-to-one style 

of RNN architecture, where output is evaluated at every time step, the kind of architecture style 

used in this manuscript (see Figure C.1a) is called many-to-one, where output is evaluated once 

for every BT inputs (see Figure C.1b). Since, in this work, the RNNs are compared with WNN 

and NAR models which consume BT inputs to generate one output (see Figure A.1 and B.1), 

 

Figure C.1. Pictorial representation of (a) RNN model and (b) unrolled network.  
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many-to-one style of RNN which also requires BT inputs to generate one output is 

implemented.    

 In this manuscript, we use LSTM networks, which belong to the category of deep recurrent 

neural networks, to model the wind time-series data. This is because, when compared with 

simple RNNs, the LSTM networks are known to work better when long-term dependencies 

exist in the dataset. The fact that long-term dependencies are known to be present in a natural 

time-series data, such as wind speed and direction, is iterated repeatedly in literature and also 

checked in the current work. For this reason, LSTMs are implemented in the current work 

instead of simple RNNs.  

 A node in LSTM network is compared with a node in simple recurrent network in Figure 

C.2. A primary difference is the additional output from the LSTM node, called the cell state 

(C), which prevents the problem of vanishing gradients. Based on the context, the LSTM 

 

Figure C.2. Comparison between an (a) RNN node and (b) LSTM node. 
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network is trained to regulate the amount of previous information needed to predict the current 

output. To facilitate this, LSTM node has four fundamental units described below. 

1. Forget gate of ith node in mth hidden layer at time step p (Fi
m,p

), 

Fi
m,p

= logsig [∑ (wFij
m𝑥j

m−1,p
)Nm−1

j=1  +  ∑ (wF̅̅ ̅̅
ik
m 𝑥k

m,p−1
)Nm

k=1 + bFi
m]  (C.4) 

2. Input gate of ith node in mth hidden layer at time step p (Ii
m,p

), 

Ii
m,p

= logsig [∑ (wIij
m𝑥j

m−1,p
)Nm−1

j=1  +  ∑ (wI̅̅̅̅
ik
m 𝑥k

m,p−1
)Nm

k=1 + bIi
m]  (C.5) 

3. Cell of ith node in mth hidden layer at time step p (C̃i
m,p

), 

C̃i
m,p

= φ [∑ (wCij
m𝑥j

m−1,p
)Nm−1

j=1  +  ∑ (wC̅̅ ̅̅
ik
m 𝑥k

m,p−1
)Nm

k=1 + bCi
m]  (C.6) 

4. Output gate of ith node in mth hidden layer at time step p (Oi
m,p

), 

Oi
m,p

= logsig [∑ (wOij
m𝑥j

m−1,p
)Nm−1

j=1  +  ∑ (wO̅̅ ̅̅
ik
m 𝑥k

m,p−1
)Nm

k=1 + bOi
m]  (C.7)  

 In these equations, logsig indicates the log-sigmoid function (see Eq. (A.4)), which outputs 

a real value between 0 and 1; thus the entities in Eq. (C.4), (C.5) and (C.7) are called gates with 

reference to the logical gates in computer science theory. In contrast with simple RNN node, 

as mentioned previously, every LSTM node has two outputs – the cell state and the hidden 

state (which is equivalent to the output of RNN node in Eq. (C.2)). Both these outputs are 

evaluated using the aforementioned four fundamental units of LSTM node as shown in Eq. 

(C.8) and (C.9). 

 Evaluation of Cell state in ith node in mth hidden layer at time step p (Ci
m,p

)  

Ci
m,p

= Fi
m,p

Ci
m,p−1

+ Ii
m,p

C̃i
m,p−1

  (C.8) 

 Evaluation of activated output of ith node in mth hidden layer at time step p (𝑥i
m,p

): 

𝑥i
m,p

= Oi
m,p

φ(Ci
m,p

)  (C.9) 

 The auto-regression equation, which has been fundamental to model the time-series is 

implemented on the cell state in case of LSTMs (see Eq. (C.8)), hidden state in case of RNNs 
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(see Eq. (C.2)), and previous data points in case of WNNs and NAR models (see Eq. (B.3), 

(B.4) and (A.2)). Following are few important points which are of relevance when LSTMs are 

considered. 

1. As opposed to fixed weights in auto-regression equations in RNNs, WNNS and NAR 

models, the weights in auto-regression equation in LSTM are the forget and input gates. 

Since the values of these gates vary with every data point, they regulate the previous 

and current information needed to evaluate the output of LSTM node at every time 

point. This allows the LSTM node to have long and short-term memories based on the 

context in the data. 

2. Since the LSTM node provides an auto-regressive output in terms of cell state, which 

is devoid of any nonlinear activation function (see Eq. (C.8)), it allows the evaluation 

of gradients (necessary for training) across large length of time-series without 

vanishing. This allows the LSTM networks to prevent the problem of vanishing 

gradients.  

3. As represented in Figure C.2, except for the difference between the node, rest of the 

network remains same in case of both simple RNNs and LSTMs. In terms of equations, 

it means that instead of evaluating the output of node using Eq. (C.2) in RNNs, the same 

output is evaluated using Eq. (C.4) to Eq. (C.9) in case of LSTMs. Further, if F = 0 in 

Eq. (C.4), I = 1 in Eq. (C.5) and O = 0 in Eq. (C.7), cell state will be same as the hidden 

state in simple RNN. Thus, LSTMs enable all the functionalities of simple RNNs. The 

additional capabilities of LSTM networks, however, come at the cost of additional 

parameters (about 4 times that of RNN) in them.    
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Appendix D: List of Pareto solutions obtained for Wind Speed and Wind Direction  

  

Table D.1: List of Pareto solutions for wind speed with NAR model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 1 1 0.949 4 -17013 

2 1 0 0 1 1 0.949 4 -17013 

3 1 0 0 1 1 0.949 4 -17013 

4 1 0 0 1 2 0.989 5 -21622 

5 1 0 0 1 2 0.989 5 -21622 

6 1 0 0 1 2 0.989 5 -21622 

7 1 1 0 1 3 0.991 8 -22227 

8 1 1 0 2 3 0.991 8 -26476 

9 1 1 2 1 3 0.990 13 -22227 

10 1 1 4 2 4 0.991 20 -26558 

11 1 1 5 1 4 0.991 23 -22305 

12 1 2 0 1 5 0.991 13 -22336 

13 1 2 1 2 5 0.991 15 -26572 

14 1 2 2 1 5 0.991 19 -22326 

15 1 2 4 1 6 0.991 28 -22321 

16 1 3 0 1 7 0.993 18 -23433 

17 1 3 1 2 7 0.994 20 -27669 

18 1 3 4 1 8 0.994 36 -23553 

19 1 4 0 1 1 0.949 15 -16993 

20 1 4 4 2 2 0.989 36 -25813 

21 1 4 5 1 2 0.989 42 -21549 

22 1 5 0 1 3 0.990 20 -22213 

23 2 0 0 1 1 0.949 7 -17008 

24 2 3 0 1 7 0.994 29 -23501 

25 2 3 1 1 7 0.994 31 -23499 

26 2 3 4 2 8 0.994 48 -27979 

27 2 3 7 2 8 0.994 63 -27949 

28 3 0 0 1 1 0.949 10 -17002 

29 3 0 0 1 1 0.949 10 -17002 

30 3 3 2 1 7 0.994 47 -23471 

31 3 3 5 2 8 0.994 65 -27952 

32 3 3 6 1 8 0.994 70 -23702 

33 3 7 1 1 7 0.994 62 -23441 

34 3 7 2 1 7 0.994 71 -23429 

35 4 0 0 1 1 0.949 13 -16996 

36 5 1 0 1 3 0.990 28 -22205 

37 5 1 1 1 3 0.990 30 -22203 

38 5 1 2 2 3 0.991 33 -26447 
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Table D.2: List of Pareto solutions for wind speed with WNN model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 2 1 0.949 4 -21263 

2 1 0 0 2 1 0.949 4 -21263 

3 1 0 0 1 2 0.989 6 -25868 

4 1 0 0 1 2 0.989 6 -25868 

5 1 1 0 1 3 0.990 10 -26466 

6 1 2 0 1 5 0.991 17 -26567 

7 1 2 1 1 5 0.991 20 -26565 

8 1 7 0 1 7 0.993 36 -27419 

9 1 7 1 1 7 0.993 44 -27604 

10 2 0 0 1 1 0.949 7 -21259 

11 2 0 0 1 1 0.949 7 -21259 

12 2 0 0 1 1 0.949 7 -21259 

13 2 1 4 1 4 0.991 33 -26476 

14 2 2 0 1 5 0.991 31 -26555 

15 2 3 1 1 7 0.993 48 -27603 

16 2 3 2 1 7 0.994 55 -27705 

17 2 3 4 1 8 0.994 73 -27765 

18 2 5 4 1 4 0.991 81 -26383 

19 3 0 0 1 1 0.949 10 -21253 

20 3 0 0 2 1 0.949 10 -21253 

21 4 0 0 2 1 0.949 13 -21247 

22 4 0 0 2 1 0.949 13 -21247 
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Table D.3: List of Pareto solutions for wind speed with LSTM model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 1 2 0.988 14 -12788 

2 1 0 0 2 3 0.989 14 -13537 

3 1 0 0 1 10 0.989 14 -13379 

4 1 0 0 1 14 0.989 14 -13558 

5 1 2 2 1 38 0.993 87 -14112 

6 2 0 0 2 3 0.990 35 -13804 

7 2 0 0 1 6 0.990 35 -13969 

8 2 0 0 1 12 0.991 35 -14142 

9 2 0 0 1 16 0.991 35 -14134 

10 3 0 0 1 2 0.988 64 -13234 

11 3 0 0 2 3 0.990 64 -13658 

12 3 0 0 1 4 0.990 64 -13891 

13 3 0 0 1 6 0.991 64 -14086 

14 3 0 0 1 8 0.992 64 -14594 

15 3 0 0 1 12 0.993 64 -15097 

16 3 1 0 1 18 0.993 82 -13824 

17 3 4 0 2 3 0.990 193 -13368 

18 4 0 0 2 3 0.990 101 -13566 

19 4 0 0 1 6 0.991 101 -14102 

20 4 0 0 2 7 0.992 101 -13382 

21 4 0 0 1 8 0.993 101 -14515 

22 4 0 0 1 12 0.994 101 -15309 

23 4 0 0 1 14 0.995 101 -15557 

24 4 1 1 1 20 0.995 134 -14233 

25 5 0 0 1 2 0.988 146 -13170 

26 5 0 0 2 3 0.990 146 -13575 

27 5 0 0 2 7 0.992 146 -14016 

28 5 1 2 1 22 0.995 203 -14873 

29 5 2 0 1 34 0.995 207 -16103 

30 5 5 0 1 18 0.995 366 -14976 

31 6 0 0 2 3 0.990 199 -13325 

32 6 0 0 2 7 0.993 199 -14104 

33 6 0 0 1 8 0.993 199 -14636 

34 7 0 0 1 2 0.988 260 -12941 

35 7 0 0 2 7 0.993 260 -14075 

36 7 0 0 1 10 0.994 260 -14501 

37 7 0 0 1 12 0.994 260 -14792 

38 7 0 0 2 13 0.994 260 -13994 

39 7 0 0 2 17 0.994 260 -15349 

40 7 3 0 1 50 0.995 388 -15703 

41 7 4 0 2 3 0.990 449 -12786 

42 8 0 0 1 2 0.988 329 -12808 

43 8 0 0 2 5 0.991 329 -13461 

44 8 0 0 2 7 0.993 329 -14162 

45 8 0 0 2 13 0.994 329 -14361 
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Table D.4: List of Pareto solutions for wind Direction with NAR model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 2 1 0.955 4 -20452 

2 1 0 0 1 1 0.955 4 -16201 

3 1 0 0 1 1 0.955 4 -16201 

4 1 0 0 2 1 0.955 4 -20452 

5 1 0 0 1 2 0.989 5 -20603 

6 1 0 0 1 2 0.989 5 -20603 

7 1 0 0 2 2 0.989 5 -24854 

8 1 1 0 1 3 0.991 8 -21277 

9 1 1 0 2 3 0.991 8 -25526 

10 1 1 4 1 4 0.991 20 -21311 

11 1 1 4 2 4 0.991 20 -25559 

12 1 1 5 1 4 0.991 23 -21305 

13 1 2 0 2 5 0.992 13 -25685 

14 1 3 0 2 7 0.994 18 -26688 

15 1 3 4 2 8 0.995 36 -27062 

16 1 4 0 1 1 0.955 15 -16181 

17 1 4 2 1 1 0.955 23 -16165 

18 1 4 4 1 2 0.989 36 -20546 

19 1 4 5 1 2 0.989 42 -20535 

20 1 4 6 1 2 0.989 48 -20523 

21 1 4 7 1 2 0.989 54 -20511 

22 2 1 0 1 3 0.991 13 -21319 

23 2 1 0 2 3 0.991 13 -25568 

24 2 1 2 2 3 0.991 18 -25560 

25 2 1 4 2 4 0.991 26 -25581 

26 2 1 5 2 4 0.991 29 -25575 

27 2 2 0 1 5 0.992 21 -21443 

28 2 2 3 2 5 0.992 31 -25669 

29 2 3 0 2 7 0.994 29 -26677 

30 2 3 1 2 7 0.994 31 -26684 

31 2 3 3 2 7 0.994 41 -26665 

32 2 3 4 2 8 0.995 48 -27078 

33 2 4 0 2 1 0.955 21 -20419 

34 2 6 0 1 5 0.992 37 -21413 

35 3 3 7 2 8 0.995 75 -27037 

36 4 3 4 2 8 0.995 72 -27041 
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Table D.5: List of Pareto solutions for wind Direction with WNN model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 1 1 0.955 4 -20452 

2 1 0 0 1 1 0.955 4 -20452 

3 1 0 0 1 1 0.955 4 -20452 

4 1 0 0 1 2 0.989 6 -24831 

5 1 0 0 1 2 0.989 6 -24831 

6 1 0 0 1 2 0.989 6 -24831 

7 1 1 0 1 3 0.991 10 -25523 

8 1 1 1 1 3 0.991 12 -25520 

9 1 2 0 1 5 0.991 17 -25641 

10 1 3 0 1 7 0.994 24 -26641 

11 1 3 4 1 8 0.994 51 -26920 

12 2 0 0 2 1 0.955 7 -20447 

13 2 0 0 2 1 0.955 7 -20447 

14 2 0 0 2 2 0.989 11 -24838 

15 2 0 0 2 2 0.989 11 -24838 

16 2 1 1 1 3 0.991 20 -25511 

17 2 1 4 1 4 0.991 33 -25533 

18 2 2 0 2 5 0.992 31 -25650 

19 2 3 0 1 7 0.994 44 -26656 

20 2 3 2 1 7 0.994 55 -26624 

21 2 3 4 1 8 0.995 73 -26970 

22 2 3 6 1 8 0.995 87 -26957 

23 2 5 0 1 3 0.991 38 -25502 

24 3 0 0 2 2 0.989 16 -24846 

25 4 0 0 2 2 0.989 21 -24834 

26 4 0 0 2 2 0.989 21 -24834 

27 4 4 2 1 1 0.955 59 -20344 

28 5 0 0 2 1 0.955 16 -20429 

29 5 4 0 1 1 0.955 55 -20351 

30 7 0 0 1 1 0.955 22 -20417 

31 7 0 0 1 1 0.955 22 -20417 

32 7 0 0 1 2 0.989 36 -24806 

33 7 0 0 1 2 0.989 36 -24806 
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Table D.6: List of Pareto solutions for wind Direction with LSTM model. 

S. 

No. 

Number of nodes Activation 

Function 

Choice 

Unrolling 

Length 

R2 Number of 

parameters 

AIC 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

1 1 0 0 1 2 0.988 14 -13350 

2 1 0 0 2 3 0.990 14 -14013 

3 1 0 0 1 6 0.990 14 -13954 

4 1 0 0 1 12 0.990 14 -13953 

5 1 1 0 1 18 0.990 26 -13947 

6 1 6 0 1 34 0.996 211 -16606 

7 2 0 0 1 2 0.988 35 -13532 

8 2 0 0 2 3 0.991 35 -14156 

9 2 0 0 2 5 0.991 35 -14215 

10 2 0 0 2 9 0.992 35 -14502 

11 3 0 0 1 2 0.989 64 -13575 

12 3 0 0 1 4 0.991 64 -14328 

13 3 0 0 2 7 0.992 64 -14248 

14 3 0 0 2 9 0.993 64 -14859 

15 3 0 0 1 12 0.993 64 -14943 

16 3 0 0 1 14 0.994 64 -14910 

17 3 2 0 1 34 0.995 111 -14897 

18 3 6 0 1 34 0.996 307 -16524 

19 4 0 0 2 3 0.991 101 -14066 

20 4 0 0 1 4 0.991 101 -14289 

21 4 0 0 2 5 0.991 101 -14294 

22 4 0 0 2 7 0.993 101 -14662 

23 4 0 0 1 8 0.994 101 -15429 

24 4 0 0 1 10 0.994 101 -15334 

25 4 0 0 1 12 0.995 101 -15888 

26 4 0 0 1 14 0.995 101 -16035 

27 4 0 0 1 16 0.995 101 -16251 

28 5 0 0 1 2 0.989 146 -13300 

29 5 0 0 1 6 0.991 146 -14230 

30 5 0 0 2 7 0.993 146 -14138 

31 5 0 0 1 8 0.994 146 -15434 

32 5 0 0 2 15 0.995 146 -15028 

33 5 1 0 1 18 0.995 170 -15887 

34 5 2 0 1 34 0.995 207 -16365 

35 6 0 0 2 5 0.991 199 -14108 

36 6 0 0 1 10 0.994 199 -15442 

37 6 0 0 2 15 0.995 199 -15524 

38 6 1 0 1 18 0.995 226 -16081 

39 7 0 0 2 3 0.991 260 -13829 

40 7 0 0 1 4 0.991 260 -14015 

41 7 0 0 2 7 0.993 260 -14360 

42 7 0 0 1 10 0.994 260 -15338 

43 7 0 0 1 14 0.995 260 -15885 

44 7 1 1 1 20 0.995 302 -15428 

45 8 0 0 2 5 0.991 329 -13821 

46 8 0 0 2 7 0.993 329 -14426 

47 8 0 0 2 9 0.994 329 -14782 

48 8 1 0 1 18 0.995 362 -15779 

 

 

 

 



Highlights: 

 Time series Analysis and Decomposition of wind time series data. 

 Usage of real wind characteristics data to validate the proposed algorithm. 

 Significance of long-term variability for accurate forecasting of Wind is studied. 

 Evolutionary Neural Architecture Search inspired by Green Deep Learning. 

 Comprehensive Comparison of optimal LSTMs, optimal NAR and optimal WNNs. 
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