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Abstract—In this paper, we investigate the uplink secure
communication by combining intelligent reflecting surface (IRS)
and energy-harvesting (EH) jammer. Specifically, we propose an
IRS-aided secure scheme for the uplink transmission via an EH
jammer, to fight against the malicious eavesdropper. An energy
transfer (ET) phase and an information transmission (IT) phase
are proposed in this scheme. In the ET phase, we optimize the
phase-shift matrix of IRS to maximize the harvested energy
of jammer. In the IT phase, the phase-shift matrix of IRS
and time switching factor are jointly optimized to maximize
the secrecy rate. To tackle the non-convex problem, we first
decompose it into two subproblems to solve by capitalizing on
semi-definite relaxation (SDR) and Lagrange duality. Then, the
solutions to the original problem can be obtained by alternately
optimizing the two subproblems. Simulation results show that
the proposed Jammer-IRS assisted secure transmission scheme
can significantly enhance the uplink security.

Index Terms—Energy harvesting, intelligent reflecting sur-
face, jamming, physical layer security, time switching.

I. INTRODUCTION

Physical layer security (PLS), as a promising technique to
improve the security of wireless communications, has been
widely studied recently in many directions, e.g., beamforming
design, artificial jamming (AJ), cooperative relaying, etc. The
principle of PLS is to take the advantage of wireless channels,
such as fading, noise and interference, to fight against the
malicious eavesdropping and achieve security enhancement
[1]. In particular, AJ is often used in the downlink to ensure
the secure transmission. However, in the uplink, due to the
physical structure and power constraint of devices, there
is not enough spatial freedom or power to transmit AJ,
which motives the emerging of cooperative jamming [2].
Cooperative jamming can be achieved by deploying a friendly
jammer to confuse the eavesdropper. In practical networks,
devices are usually energy-limited or selfish. To tackle this
challenge, energy harvesting (EH) is adopted to scavenge
energy from the environment for continuous energy supply
[3].

Recently, intelligent reflecting surface (IRS) has been pro-
posed to create a smart and reconfigurable wireless envi-
ronment [4]. IRS, a plane consisting of a number of low-
cost passive reflecting elements, can be used to enhance or
attenuate the channels by individually altering the amplitude
and phase of the incident signals [5]. Compared to tradi-
tional related approaches like conventional reflecting surface,

amplify-and-forward relaying and backscattering, IRS has
the advantages of reconfigurable reflecting coefficients, low
energy consumption, low cost and easy deployment [6]. Due
to these merits, IRS has been utilized in various scenarios
to improve the capacity, energy efficiency, PLS, etc. In
particular, IRS has provided appealing solutions to improving
PLS by enhancing the strength of legitimate links while
attenuating the eavesdropping via passive beamforming [4].

Based on the aforementioned background, both IRS and
EH jammer can contribute to PLS. However, little attention
has been focused on secrecy rate maximization aided by
both the IRS and the friendly EH jammer for the uplink in
existing works. As a result, we propose an uplink Jammer-
IRS scheme, in which the transmission process can be divided
into an energy transfer (ET) phase and an information trans-
mission (IT) phase. In the ET phase, the jammer harvests
energy from the BS. The harvested energy of jammer is
maximized by deriving the optimal phase-shift matrix of
IRS in closed form. In the IT phase, aided by IRS, the
user transmits confidential information to the BS in the
presence of eavesdropper, and the jammer uses the energy
harvested in the previous phase to confuse the eavesdropper
without affecting the legitimate transmission. The secrecy rate
is finally maximized by jointly optimizing the phase-shift
matrix of IRS and the time switching factor.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an uplink wireless com-
munication system consisting of one BS, one legitimate user
and one malicious eavesdropper (Eve). To effectively fight
against the Eve, a friendly EH jammer (Jam) and an IRS with
N reflecting elements are introduced. Assume that the BS, the
user and the Eve are all equipped with a single antenna, while
the number of antennas at the Jam is M. Since the Jam har-
vests energy before transmitting AJ, the whole transmission
process can be divided into an ET phase with αT and an IT
phase with (1− α)T . 0 < α < 1 denotes the time switching
factor between ET and IT while T represents the duration of a
frame. The quasi-static flat-fading is assumed for all channels.
hbj ∈ CM×1, hje ∈ C1×M and huf (f ∈ {b, e}) denote
the channel coefficients of direct links for BS → Jammer,
Jammer → Eve, User → BS and User → Eve, respectively,
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Fig. 1. Uplink system model with the help of IRS and jammer.

while the channel coefficient vectors of IRS-assisted links for
BS → IRS, User → IRS, IRS → Eve and IRS → Jammer are
denoted as hg(g ∈ {br, ur, re}) ∈ CN×1 and Hrj ∈ CN×M ,
respectively. In this work, we assume that IRS is a square
array with a number of

√
N elements in both the horizontal

and vertical directions. Let θθθ = [θ1, . . . , θn, . . . , θN ]T and
vn = βne

jθn , where θn ∈ [0, 2π) and βn ∈ [0, 1] denotes
the phase shift and amplitude reflection coefficient of the
IRS’s n-th element. Φ = diag(v1, · · · , vn, · · · , vN ) denotes
the phase-shift matrix of IRS. βn = 1 is set to maximize
the signal reflection in the following analysis. In addition, we
denote the complex additive white Gaussian noise (AWGN) at
the Jam, the BS and the Eve as nl ∼ CN (0, σ2), l ∈ {j, b, e},
respectively.

B. First Phase: Energy Transfer

During the first phase, the BS transmits with the fixed
power Pb. We denote the transmitted signal as xb with
E[|xb|2] = 1. uJ is the combining vector with the dimension
of M × 1. To maximize the harvested energy at the Jam, uJ

is derived as uJ =
H†

rjΦ1hbr+hbj

∥H†
rjΦ1hbr+hbj∥ using the maximal ratio

combining (MRC). The signal received at the Jam can be
expressed as

yj = u†
J(H

†
rjΦ1hbr + hbj)

√
Pbxb + nj , (1)

where Φ1=diag(v1,1, · · · , v1,n, · · · , v1,N ) denotes the phase-
shift matrix of IRS with |v1,n| = 1, n = 1, . . . , N . The energy
harvested by the Jam can be expressed as

EJ = αTηPb

∣∣∣u†
J (H

†
rjΦ1hbr + hbj)

∣∣∣2 , (2)

where 0 < η < 1 denotes the EH efficiency. Within the
remaining (1 − α)T , the Jam will use the harvested energy
to transmit the jamming signal. Therefore, the transmit power

of Jam can be expressed as

PJ =
EJ

(1− α)T
=
αηPb

∥∥∥H†
rjΦ1hbr + hbj

∥∥∥2
1− α

. (3)

To make jammer work better in the IT phase, we opti-
mize the phase-shift matrix of IRS to maximize the har-
vested energy at the Jam. To achieve this goal, let v1 =

[v1,1, . . . , v1,n, . . . , v1,N ], and we have
∥∥∥H†

rjΦ1hbr + hbj

∥∥∥ =∥∥∥H†
rjdiag (hbr)v

T
1+hbj

∥∥∥. During this phase, IRS is deployed
to maximize the harvested power at the Jam, according to

(P1) : max
v1

∥∥∥H†
rjdiag (hbr)v

T
1 + hbj

∥∥∥2 (4a)

s.t. |v1,n| = 1, n = 1, . . . , N. (4b)

With the optimal solution to (P1), the transmit power PJ can
be maximized to degrade the eavesdropping channel in the
IT phase as much as possible.

C. Second Phase: Information Transmission

In the second phase, the transmit power of user is Pu.
We denote the transmitted signal as xr, r ∈ {u, j} with
E[|xr|2] = 1. The signal received at the BS and Eve can
be expressed as

yb=
(
h†
brΦ2hur+hub

)√
Puxu+

(
h†
brΦ2Hrj+h

†
bj

)
wJ
√
PJxj+nb, (5)

ye=
(
h†
reΦ2hur+hue

)√
Puxu+

(
h†
reΦ2Hrj+hje

)
wJ
√
PJxj+ne, (6)

where Φ2=diag(v2,1,· · ·, v2,n,· · ·, v2,N) with |v2,n|=1, n=
1,· · ·, N . To prevent the impact of jamming on the BS, we
should perform zero-forcing, and the precoding vector wJ

should satisfy
(
h†
brΦ2Hrj+h

†
bj

)
wJ=0. As a result, wJ can be

derived as wJ=
(
IM−

(̄
h†
jb

(̄
hjbh̄

†
jb

)
−1h̄jb

))
w0, where IM

is the M dimensional identity matrix, h̄jb=h†
brΦ2Hrj+h†

bj

and w0 is the arbitrary vector with the dimension of M . Let
v2=[v2,1,. . ., v1,n,. . . ,v2,N ], the corresponding received signal-
to-interference-plus-noise ratio (SINR) can be denoted as

γB = ρu

∣∣∣ṽ†
2aB

∣∣∣2 , (7)

γE =
ρu

∣∣∣ṽ†
2aE

∣∣∣2
1 + ρj

∣∣∣ṽ†
2AJEwJ

∣∣∣2 , (8)

where ρu=Pu

σ2 , ρj=PJ

σ2 , and ṽ2=

[
v†
2

1

]
. aB=

[
diag(h†

br)hur

hub

]
,

aE=

[
diag(h†

re)hur

hue

]
and AJE=

[
diag(h†

re)Hrj

hje

]
. In addition,

h̄jb=ṽ
†
2ABJ can be obtained with ABJ =

[
diag(h†

br)Hrj

h†
bj

]
to update wJ .

With the help of the jammer and IRS, we aim at maxi-
mizing the uplink secrecy rate through optimizing the phase-



φ(Ṽ, te)=ln
(
1+ρutr

(
ṼψψψB

))
+ln
(
1+ρjtr

(
ṼAJEwJw

†
JA

†
JE

))
−te
(
1+ρutr

(
ṼψψψE

)
+ρjtr

(
ṼAJEwJw

†
JA

†
JE

))
+ln te+1. (18)

shift matrix of IRS and the time switching factor. Hence, the
optimization problem can be modeled as

(P2) : max
Φ2,α

Cs (9a)

s.t. |v2,n| = 1, n = 1, · · · , N, (9b)
0 ≤ α ≤ 1. (9c)

Cs is the achievable secrecy rate, which can be expressed as

Cs = (1− α)[log2(1 + γB)− log2(1 + γE)]
+, (10)

where [x]+ = max(x, 0). (9b) represents the unit modulus
constraints of the phase of IRS in the IT phase, and (9c) is
the constraint of the time switching factor. (P2) is non-convex
due to multi-variable coupling and unit modulus constraints.

III. OPTIMIZATION FOR BEAMFORMING AND TIME
ALLOCATION

To obtain the effective solutions to the proposed scheme,
we first derive the closed-form solution to the problem (P1).
Then, the problem (P2) is divided into two subproblems and
solved with the alternating algorithm.

A. Optimizing Phase-Shift Matrix in the First Phase

Since the Euclidean norm is satisfied with the triangle
inequality, (4a) should satisfy∥∥∥H†

rjdiag(hbr)v
T
1+hbj

∥∥∥≤∥∥∥H†
rjdiag (hbr)v

T
1

∥∥∥+ ∥hbj∥

=

∣∣∣∣∣
M∑

m=1

[
H†

rjdiag (hbr)
]
m︸ ︷︷ ︸

d

vT
1

∣∣∣∣∣+
∣∣∣∣∣

M∑
m=1

[hbj ]m︸ ︷︷ ︸
d0

∣∣∣∣∣. (11)

For (11), the equality holds if and only if ∠(dvT
1 ) = ∠(d0),

where ∠(x) denotes the phase of x [7]. Thus, the problem
(P1) can be converted as

(P3) : max
v1

∣∣dvT
1

∣∣2 (12)

s.t. |v1,n| = 1, n = 1, . . . , N, (13)

∠(dvT
1 ) = ∠(d0). (14)

We can verify that the optimal solution to the problem (P3)
can be obtained by v⋆

1 = ej(∠(d0)−∠(d)). Then, Φ⋆
1 =

diag(v⋆
1) can be obtained accordingly.

B. Optimizing Phase-Shift Matrix and Time Switching Factor
in the Second Phase

For the second phase, the problem (P2) is non-convex
because of the coupling of Φ2 and α. Therefore, the problem
is divided into two sub-problems to be optimized alternately
as follows.

1) Optimizing Φ2 for Given α:
For a fixed time switching factor α, let Ṽ = ṽ2ṽ

†
2 and

ψψψq = aqa
†
q (q ∈ {B,E}), and we have |ṽ†

2aq|2 = tr
(
Ṽψψψq

)
.

Meanwhile, Ṽ ≽ 0 and rank(Ṽ)=1 should also hold. By
using SDR to relax the rank-1 constraint, the problem (P2)
can be transformed as

(P4) : max
ṽ2

(1− α)
[
log2

(
1 + ρutr

(
ṼψψψB

))
−

log2

1+ ρutr
(̃
VψψψE

)
1+ρjtr

(
ṼAJEwJw

†
JA

†
JE

)
 (15)

s.t. Ṽ ≽ 0, Ṽn,n = 1, n = 1, . . . , N. (16)

Since the problem (P4) is still non-convex, the non-convex
terms of (15) can be transformed according to the following
lemma [8].

Lemma 1: For the function φ(t) = −tx+ lnt+1, ∀x > 0,
− lnx = max

t>0
φ(t) is satisfied when t = 1

x .

By applying Lemma 1 and setting x = 1 + ρutr
(
ṼψψψE

)
+

ρjtr
(
ṼAJEwJw

†
JA

†
JE

)
, t = te, Cs can be changed into

Cs ln 2

1− α
= max

te>0
φ(Ṽ, te), (17)

where φ(Ṽ, te) is shown in (18).
We can omit “ln 2” and “1 − α” since they are constant.

Therefore, the optimization problem (P4) for a given α can
be rewritten as

(P5) : max
Ṽ,te

φ(Ṽ, te) (19)

s.t. Ṽ ≽ 0, (20)

Ṽn,n = 1, n = 1, . . . , N + 1, (21)
te > 0. (22)

It is obvious that (P5) is convex with respect to either Ṽ or
te. Hence, it can be solved through alternately optimizing Ṽ
and te. According to Lemma 1, the optimal solution to te in
each iteration can be derived as

t∗e =
(
1+ρutr

(
ṼψψψE

)
+ρjtr

(
ṼAJEwJw

†
JA

†
JE

))−1

. (23)

While for the fixed t∗e , the optimal Ṽ can be obtained by
using convex optimization solvers, e.g., CVX, which can be
expressed as

Ṽ∗ = arg max
Ṽn,n=1

φ(Ṽ, t∗e). (24)

Since the rank-1 constraint in the problem (P4) is relaxed
by applying SDR, ṽ∗

2 can be obtained from Ṽ = ṽ2ṽ
†
2



Algorithm 1 Proposed algorithm to solve the problem (P4).
Input: α, ρu, ρj , ψψψB , ψψψE , AJE and ABJ .
Output: v⋆

2 .
1: Initialize v2 and ṽ2 in the constraint (16).
2: Set s = 1 as the index of iteration, and Ṽ(0) = ṽ2ṽ

†
2.

3: repeat
4: Obtain the optimal t(s)e by (23) for the given Ṽ(s−1).
5: Obtain the optimal Ṽ(s) by (24) for the given t(s)e .
6: Update s = s+ 1.
7: until The objective value of the problem (P5) converges.
8: Recover ṽ2 from Ṽ and obtain v2 from (25).

through using the eigenvalue decomposition if Ṽ is a rank-1
matrix, otherwise ṽ∗

2 can be obtained roughly by the Gaussian
randomization. After extracting ṽ∗

2 from Ṽ∗, the reflection
coefficients can be obtained as

v∗2,n = e
j∠ ṽn

ṽN+1 , n = 1. . . . , N. (25)

By alternately updating Ṽ and te, the objective function
of the problem (P5) tends to converge. Thus, the optimal
solution Φ⋆

2 can be derived by v⋆2,n accordingly. The details
are summarized as Algorithm 1.

2) Optimizing α for Given Φ2:
For a given Φ2, we first set C,D and E as

C =
ηPb

∥∥∥H†
rjΦ1hbr + hbj

∥∥∥2tr(ṼAJEwJw
†
JA

†
JE

)
σ2

, (26)

D=1+ρutr
(
ṼψψψE

)
, E=log2

(
1 + ρutr

(
ṼψψψB

))
. (27)

After introducing t1 = α and t2 = 1−α, Cs can be rewritten
as a function of t = [t1, t2] as

Cs= t2E + t2 log2

(
1+

t1
t2
C

)
− t2 log2

(
D+

t1
t2
C

)
. (28)

Accordingly, the problem (P2) can be transformed as

(P6) : max
t1,t2

Cs (29)

s.t. t1 + t2 ≤ 1, (30)
0 ≤ t1, t2 ≤ 1. (31)

We can observe that the objective function of the problem
(P6) is non-convex. We should first convert the non-convex
item of the problem (P6) to make it solvable. Define a
function f(x1, x2) with variables x1 ≥ 0 and x2 ≥ 0 as

f (x1, x2) =

{
x1 log

(
1 + x2

x1
µ
)
, x1 > 0,

0, x1 = 0.
(32)

According to [9], it is known that f(x1, x2) is a jointly
concave function with respect to x1 and x2. Therefore, define
the non-convex item in the problem (P6) as f(t1, t2) =

−t2 log2
(
D + t1

t2
C
)

. It needs to be converted to convex
using its linear approximation form, i.e., the first-order Taylor

series expansion at the fixed point (t̄1, t̄2) as

f(t1, t2|t̄1, t̄2)=−

[
log2

(̄
t1C

t̄2
+D

)
+

1

ln 2

(
D

t̄1C
t̄2

+D
−1

)]
t2

−

[
1

ln 2

(
C

t̄1C
t̄2

+D

)]
t1

=− Ft2 −Gt1.

(33)

Since f(t1, t2) ≥ f(t1, t2|t̄1, t̄2), the equality holds when
t1 = t̄1 and t2 = t̄2. Thus, Cs can be changed as

Cs = t2 log2

(
1 +

t1
t2
C

)
+ (E − F )t2 −Gt1. (34)

It can be observed that (34) is a concave function of t
and the constraint in (30) is affine. Thus, the optimization
problem (P6) is convex and satisfies the Slater’s condition
[10], and thus the Lagrange duality method can be used to
solve it. Based on (29)-(31), the Lagrangian function of the
problem (P6) can be expressed as

L(t1,t2,λ)=Cs − λ (t1 + t2 − 1)

=t2log2

(
1+
t1
t2
C

)
+(E−F−λ)t2−(G+λ)t1+λ,

(35)

where λ denotes the Lagrange multiplier related to the
constraint in (30). Therefore, we can denote the dual problem
of (P6) as min

λ>0
max

t1≥0,t2≥0
L (t1, t2, λ). The optimal solution t∗

can be easily found by solving the dual problem.
Proposition 1: The optimal solution to t∗ = [t∗1, t

∗
2] can

be calculated as

t∗1 =

(
t∗2

(G+ λ∗) ln 2
− t∗2
C

)+

, (36)

t∗2 =
t∗1C

z∗
, (37)

where λ∗ > 0 denotes the optimal dual solution and z∗

denotes the solution to the following equation.

f(z) = ln(1 + z)− z

1 + z
= (F − E + λ) ln 2. (38)

Proof: To solve the optimization problem (P6), the
Karush-Kuhn-Tucker (KKT) conditions need to be satisfied
as follows.
∂L
∂t∗1

=
C(

1 +
t∗1
t∗2
C
)
ln 2

− (G+ λ∗) = 0, (39)

∂L
∂t∗2

= ln

(
1+

t∗1
t∗2
C

)
−

t∗1
t∗2
C(

1+
t∗1
t∗2
C
)+(E−F−λ∗)ln 2=0, (40)

λ∗ (t∗1 + t∗2 − 1) = 0. (41)

Since t∗1+t
∗
2 = 1 should hold for the problem (P6), λ∗ > 0

is assumed without loss of generality. From (39), we have t∗1
in (36) with the given t∗2 and λ∗. Let z∗ =

t∗1C
t∗2

, and thus (40)
can be transformed as f(z)=(F−E+λ∗)ln 2, where f(z) is
given in (38). It should be noticed that f(z) is monotonically



Algorithm 2 Proposed algorithm to solve the problem (P6).
Input: C, D and E.
Output: α⋆.
1: Initialize t(0)1 , t(0)2 , t̄(0)1 , t̄(0)2 , F(0) and G(0).
2: Set k=0 as the index of iteration.
3: repeat
4: Update k = k + 1.
5: Obtain the optimal λ(k) by solving the problem (P7)

for given t(k−1)
1 and t(k−1)

2 .
6: Obtain the optimal t(k)1 by (36) for given t̄

(k−1)
2 and

λ(k).
7: Obtain the optimal t(k)2 by (37) for given t(k)1 and λ(k).
8: Update t̄(k)1 = t

(k)
1 , t̄(k)2 = t

(k)
2 , F (k) and G(k).

9: until The objective value of the problem (P6) converges.
10: The optimal solution α⋆ = t1.

increasing of z ≥ 0 with f(0)=0. In order to obtain a unique
solution z∗ to (38), λ∗ ≥ E − F has to be satisfied. After
solving the equation (38), t∗2 can be obtained as per (37).

From Proposition 1, we can obtain the optimal solutions t∗1
and t∗2 by fixing one of them to optimize another in turn with
a given λ. With t∗ obtained for each given λ, the optimal λ∗

can be found within the range as

(P7) : find λ∗ (42)

s.t. λ ≤ C

ln 2
−G, (43)

λ ≥ (E − F )+, (44)
t∗1(λ) + t∗2(λ) = 1. (45)

For the non-negative t1 and t2, (43) and (44) can be devel-
oped. t∗1 and t∗2 are the functions of λ and thus (45) can
be obtained. It can be seen that g(λ) = t∗1(λ) + t∗2(λ) − 1
increases as λ decreases until g(λ∗) = 0, where λ∗ can be
obtained by the bisection method. In addition, t∗1 = 0 and
t∗2 = 1 are set when λ is not within the feasible range.
Finally, the optimal λ⋆ and t⋆ can be obtained by an iterative
algorithm showed in Algorithm 2. Then, the optimal time
switching factor α⋆ can be determined by α⋆ = t⋆1.

C. Overall Algorithm

The overall algorithm to solve the proposed scheme can
be concluded as follows. The optimal closed-form solution to
IRS’s phase-shift matrix in ET phase can be given first. Then,
to tackle the non-convex problem (P2), we divide it into two
subproblems by fixing one variable and solving the other one.
The optimal solutions Φ⋆

2 and α⋆ are obtained by alternately
running Algorithm 1 and Algorithm 2 until convergence. As
a result, the phase-shifting matrix and the time allocation
factor can be optimally achieved to significantly improve the
secrecy performance for the proposed secure scheme.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we demonstrate the performance of the
proposed Jammer-IRS scheme through simulations. Set the
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Fig. 2. Secrecy rate comparison between the proposed scheme and
benchmarks with different N .

situation due < dub and due > dub as Case 1 and Case 2,
respectively. The locations of Case 1 are set as BS (5,0,0),
IRS (4,0,5), User (15,10,0), Eve (5,15,0) and Jam (5,5,0) in
meters, unless otherwise specified. User (0,10,0) and Eve
(15,5,0) in Case 2 are different from Case 1. Let M = 2,
η=0.5, Pb = 40 dBm, Pu = 20 dBm and σ2 =−110 dB.
Rayleigh fading and Rician fading are assumed for direct
links and reflecting links respectively, while BS-Jammer is
regarded as a LoS link. Their corresponding channel coeffi-
cients can be generated as

huf =
√
L0d

−ad

uf gNLoS
uf , f ∈ {b, e} , (46)

hbj =
√
L0d

−abj

bj gLoS
bj , (47)

hg=

√
L0d

−ar
g

(√
K

K+1
gLoS
g +

√
1

K+1
gNLoS
g

)
, g∈{br,ur,re}, (48)

where K = 3 dB is the Rician factor, gLoS
bj and gLoS

g denote
the deterministic LoS components, while gNLoS

uf and gNLoS
g

denote the Rayleigh fading components. L0 = −30 dB
denotes the path loss at 1 m. Set the exponents of direct and
reflecting path loss as ad = 3.6 and ar = 2.2, respectively.
abj = 2 is assumed for the direct link of BS-Jammer. dAB

denote the distance from A to B where A and B are the
specific nodes of the system. hje and Hrj adopt the channels
as shown in (46) and (48), respectively.

The secrecy rate of the proposed Jammer-IRS scheme in
Case 1 and Case 2 is compared in Fig. 2 with the benchmarks
including IRS only in Case 1 and 2, and Jammer only in
Case 1 and 2, with different N . Notice that the secrecy rate
of both the schemes “Jammer-IRS” and “IRS only” increases
with N , while the “Jammer only” scheme remains constant.
It is also shown that the proposed scheme outperforms the
benchmarks. Specifically, in Case 2, with a small N , both
the proposed scheme and the “Jammer only” benchmark
perform better than “IRS only” when the Jam contributes
more to the improvement of secrecy performance. With the
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Fig. 3. Performance comparison of secrecy rate and time switching factor
α with different user transmit power. N = 16, 25 and 36.

increase of N , the performance of “Jammer-IRS” is gradually
close to that of “IRS only”, indicating that the IRS plays a
greater role in the security enhancement. However, even in
Case 1 where the eavesdropper is a threat, the “Jammer-IRS”
always outperforms the “IRS only”, which shows that the
combination of jammer and IRS can significantly enhance
the security.

Both the secrecy rate and the time switching factor are
compared in Fig. 3 under different user transmit power,
with N = 16, 25 and 36. As Pu increases, what can be
clearly seen in this figure is the growth of both the secrecy
rate and time switching factor α. An explanation for this
is that the risk of confidential information leakage increases
influenced by the increasing transmit power of user, and thus
more time is allocated to the ET phase for EH to enhance
the security of information transmission. The secrecy rate
also increases thanks to the well-protected transmission of
confidential information. With different N = 16, 25 and 36,
it can be seen that IRS with a higher number of elements
N has stronger reflecting ability, which can help jammer
to harvest energy faster in the ET phase, and then enhance
legal information transmission and weaken eavesdropping
information simultaneously in the IT phase. Therefore, α is
smaller while the secrecy rate is higher with a larger N .

With different Pb and N , the secrecy rate between the
proposed scheme and the random IRS benchmark is com-
pared in Fig. 4. The secrecy rate increases with Pb in both
optimal IRS scheme and random IRS benchmark. This is
because the increase of Pb can lead to α decrease, and thus
more time will be allocated for the IT phase to improve
the secrecy rate. Affected by increasing number of IRS
elements, the secrecy performance of the proposed scheme
can be enhanced whereas the secrecy rate of the random
IRS benchmark remains almost unchanged. Furthermore, it is
obvious that the proposed scheme can significantly improve
the secrecy rate compared to the benchmark of random IRS,
which verifies the effectiveness of the proposed scheme in
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Fig. 4. Secrecy performance comparison between the optimal IRS scheme
and the random IRS benchmark with different Pb and N .

security enhancement.

V. CONCLUSIONS

In this paper, we have proposed a secure uplink transmis-
sion scheme assisted by both the IRS and EH jammer. In
the first phase, the harvested energy at the Jam is maximized
by designing the phase-shift matrix of IRS. In the second
phase, the secrecy rate is maximized by jointly optimizing
the phase-shift matrix of IRS and the time switching factor.
Compared with the benchmarks via simulations, it is shown
that the proposed scheme can effectively improve the security
performance of the uplink wireless communications.
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