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AlphaFold2 reveals commonalities and novelties in
protein structure space for 21 model organisms
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Martin Steinegger 4,5, Burkhard Rost3,7,8 & Christine Orengo 1✉

Deep-learning (DL) methods like DeepMind’s AlphaFold2 (AF2) have led to substantial

improvements in protein structure prediction. We analyse confident AF2 models from 21

model organisms using a new classification protocol (CATH-Assign) which exploits novel DL

methods for structural comparison and classification. Of ~370,000 confident models, 92%

can be assigned to 3253 superfamilies in our CATH domain superfamily classification. The

remaining cluster into 2367 putative novel superfamilies. Detailed manual analysis on 618 of

these, having at least one human relative, reveal extremely remote homologies and further

unusual features. Only 25 novel superfamilies could be confirmed. Although most models

map to existing superfamilies, AF2 domains expand CATH by 67% and increases the number

of unique ‘global’ folds by 36% and will provide valuable insights on structure function

relationships. CATH-Assign will harness the huge expansion in structural data provided by

DeepMind to rationalise evolutionary changes driving functional divergence.
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For over 30 years, the pace of sequencing proteins has out-
stripped that of structure determination and at the start of
2022, the non-redundant protein sequence data in

UniRef901 was 1000-fold greater than the associated 3D data.
Methods of protein structure prediction have progressed in the
same time-frame. Especially for sequences having a close homo-
logue (>40% sequence identity) of known 3D structure, homology
modelling can provide an accurate structure for many biological
analyses2–4. However, there still remains a significant deficit,
including for human proteins linked to disease5. Even for many of
the well-studied prokaryotic model organisms (e.g., Escherichia
coli, Bacillus subtilis), the proportion of the proteome (protein
coding part of genome) for which high-resolution protein 3D
structures have been experimentally determined or can be reliably
predicted remains below 55%. The structural coverage is lower for
eukaryotic model organisms, e.g., only 36% of human and 30% of
baker’s yeast proteins are, at least, partially covered by structures6.

Over the last ten years, a number of developments in template-
free ab-initio structure prediction (e.g., co-variation7, deep
learning from vast sequence data8–11) have led to promising
improvements, and recently the AlphaFold2 (AF2) method
developed by DeepMind has reached an impressive level of per-
formance as evidenced by independent assessment12,13.

In August 2021, in collaboration with PDBe at EMBL-EBI,
DeepMind provided via AlphaFold DB v1 AF2 3D-models for
21 selected model organisms (including human, mouse, Ara-
bidopsis thaliana, rice, yeast and E. coli), comprising 365,184
model structures altogether14. Information on global and per
residue model accuracy is provided for each model. The scale
and accuracy of this modelling initiative is likely to be a
gamechanger for biological and medical research as protein
structure data is key to understanding the molecular mechan-
isms of proteins and the impact of genetic variations on their
molecular function and, therefore the biological processes they
participate in.

To exploit these data, it would be valuable to assign the
modelled domains to their evolutionary families to better
understand how genetic variations modify structure and ulti-
mately function. Proteins comprise combinations of domains,
and millions of combinations of domains exist across
genomes15,16. Since the protein domain is thought to be an
important module contributing specific functional features, a
tractable approach for handling the vast number of proteins in
nature is to organise by domain family. Currently, most experi-
mentally characterised domain structures have been assigned to
fewer than 6000 evolutionary families17,18.

Over the last 25 years, several domain-based protein structure
classifications have emerged (SCOP19, CATH18, SCOPe20,
SCOP221, ECOD17) which assign experimental structures of
proteins from the Protein Data Bank (PDB) to evolutionary
superfamilies. ECOD, SCOPe, and CATH are the most compre-
hensive, classifying 90% or more of PDB. Since the advent of
large-scale genome sequencing, the CATH classification has also
identified homologous domain sequences for CATH super-
families in UniProt22 and complete genomes from Ensembl23.
This expands the sequence population of CATH superfamilies by
nearly 300-fold and brings in more functional annotations for the
proteins24.

The provision of high quality AF2 structural models from
DeepMind for 21 organisms gives an opportunity to significantly
expand the structural data in CATH superfamilies. This would
allow us to provide multiple structural alignments and identify
structurally conserved features correlating with functional motifs.
It would also allow us to assess how representative existing
structural superfamilies are of domains in nature and to reveal
novel folding architectures and motifs not in the PDB.

Here we present a new classification protocol CATH-Assign,
which incorporates novel and rapid deep learning strategies for
detecting sequence and structure similarities between domains to
rapidly classify structures. We applied the protocol to analyse
protein structures of 21 model organisms predicted by AF2. We
removed models deemed to be low quality by the AF2 developers
and any that had long stretches of residues or a large proportion
of residues with no secondary structure assignment. We also
removed models in which the overall contact density of residues
was unusual compared to distributions seen in the PDB. Of the
nearly 700,000 domains provided by AF2, only 52% of models
met these criteria (369,512 domains) but 92% of them could be
assigned to 3253 existing CATH superfamilies. The remaining
domains could be clustered into 2367 putative new superfamilies.
Manual curation of very remote homologues is extremely time-
consuming but for a subset of these novel superfamilies, com-
prising human models, we manually identified 25 likely new
superfamilies. By bringing the AF2 models into CATH we expand
the number of ‘global fold’ groups (in which structural relatives in
superfamilies superimpose well) by 36%. Furthermore, we
increase the number of functional families, CATH-FunFams (in
which relatives are predicted to have high structural and func-
tional similarity and for which we have at least one relative with
experimental characterisation reported in the Gene Ontology)
from 8 to 30%. This suggests that the release of a further 214
million models by DeepMind will bring significant insights
on how structures (and, therefore their functions) diverge
during evolution. The data is available grouped by CATH
Superfamily and by organism through the 3D-Beacons network25,
Zenodo (https://doi.org/10.5281/zenodo.7404988, https://zenodo.
org/record/7404988), and the CATH FTP (ftp://orengoftp.
biochem.ucl.ac.uk/alphafold/cath-v4.3.0-model-organisms).

Results
Proportion of AlphaFold2 models that can be brought into
CATH
Identification of domains in AF2 protein models. We applied an
in-house Hidden-Markov Model-based protocol CATH-Resolve-
Hits (CRH)26 to assign domain regions in all sequences from the
21 model organisms modelled by AlphaFold2 (AF2) (see
“Methods” for description and Fig. 1). CRH identifies domains
that can be putatively assigned to either CATH superfamilies,
structurally uncharacterised Pfam families or novel superfamilies
(NewFams). We include structurally uncharacterised Pfam
families to improve domain boundary resolution as Pfam families
are manually curated and of high quality.

Using CRH and CATH (version 4.3), we assigned each region
in the UniProt sequences of all AF2 models to four possible
categories: (1) CATH-experimental (CATH-PDB) if there is a
structure for this domain in the PDB and predicted domains
comprising (2) CATH-HMM, (3) Pfam or (4) NewFam assign-
ments, for which there is no relative in CATH or Pfam. We
subsequently chopped these structural regions from the corre-
sponding AF2 protein 3D-model (See Fig. 1 for the workflow and
Supplementary Fig. 1 for the numbers of domains in each
category).

AF2 CATH-HMM models tend to be higher quality than
structurally uncharacterised Pfam or NewFam domains (see Fig. 2
and Supplementary Fig. 2 for more details). This is likely because
AF2 provides better quality models if the structure or close
homologue is present in the PDB27. CATH-PDB and CATH-
HMM AF2 models also have higher percentages of ordered
residues (i.e., with secondary structure assignment (see Fig. 2 and
Supplementary Fig. 2 for more details)) than the other domain
types. Since AF2 model quality relies on query alignment depth,
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the low quality for NewFam domains could suggest large levels of
disorder or very shallow alignments for these families, with few
sequences or species in them5.

Removing models with poor quality or problematic features.
Only confident domain models (as described below) were con-
sidered for assignment to CATH superfamilies. Models that con-
tain problematic features are likely to make it difficult to recognise a
structural relationship. We used a number of criteria, including the

threshold given by AF2 developers for confident model quality (i.e.,
predicted local distance difference (pLDDT) ≥ 70)12. We also
removed models that had long regions of residues (>30% of the
domain) with no secondary structure assignment or where a large
proportion of the domain (>65%) comprised residues with no
secondary structure assignment (see “Methods”). We also imposed
the criteria used for the classification of domains into CATH, that
domains have ≥40 residues and ≥3 secondary structure elements.
Finally, we removed models in which the average contact density of
the residues was very unusual compared to the values found for

Fig. 1 Overview of the CATH-Assign protocol used to process the predicted AF2 domains. CATH-HMM (labelled as CATH) are structurally compared
against the Superfamily non-redundant representative that they match. Pfam and NewFam domains are classified into CATH Superfamilies using the
CATHe predictor where possible. A cascade method is used to validate, starting with structure scans against non-redundant domains in the CATHe
predicted Superfamily, then the predicted Topology, Architecture, and finally domains from all superfamilies if necessary.

CATH-HMM Pfam NewFams

70 70 70

do
m
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ns

pLDDT

Fig. 2 Average model quality. The plots show the distribution of average pLDDT scores for domains divided by source. The pLDDT threshold for confident
model quality is highlighted (≥70).
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experimentally characterised protein domains in the PDB (see
Supplementary Tables 1 and 2, Supplementary Fig. 3 and “Meth-
ods” for more details on methods used to filter the AF2 domain
models and for the numbers of models removed and remaining for
each type). Using these criteria, we removed 339,428 domains from
further analyses.

Proportion of domains that can be assigned to CATH
superfamilies
Analysis of CATH-HMM predicted domains. For 273,346 domains
with clear homologues in CATH (i.e., domains matching HMMs
built on CATH structural representatives), we compared the
domain to the structural representative used to seed the HMM.
We used our slow but sensitive SSAP method to do this (see
Supplementary for more details). On average, the SSAP score for
the CATH-HMM domains aligned over the non-redundant (S95)
representative was 84.8, with an average overlap over the S95
representative of 81.5%. A total of 246,143 CATH-HMM
domains could be classified into CATH superfamilies.

Analysis of Pfam and NewFam predicted domains. To deter-
mine whether these domains were distant homologues of CATH
superfamilies, we used a recently established protein Language
Model (pLM), Prot-T528, to generate protein sequence embed-
dings of the domains. We then used CATHe29, an established
artificial neural network (ANN) predictor trained on known
CATH superfamily domain embeddings (see Methods), to predict
CATH superfamilies for these uncharacterised domains. In pre-
vious studies, CATHe showed 86% accuracy on all CATH
superfamilies and 98% for prediction of the 50 most highly
populated superfamilies that currently account for 40% of CATH
domains29. 43.4% of Pfam domains and 23.8% of NewFam
domains could be assigned to CATH superfamilies with high
confidence by CATHe. We then validated the predicted domains
by performing structure comparison against all non-redundant
(S95) relatives in the predicted CATH superfamily.

Some superfamilies are very large (sizes of the matched
superfamilies ranged from 1 to 4546 non-redundant relatives).
We therefore applied a new structure comparison method,
Foldseek, which is several orders of magnitude faster than the

well-established TM-align method while matching its
sensitivity30,31. We benchmarked this method using manually
curated CATH domain assignments to determine an acceptable
threshold for superfamily assignment (see Supplementary Materi-
als, section Foldseek benchmark, Supplementary Figs. 13 and 14).

A cascading approach was used, i.e., if no match was obtained
using Foldseek, our in-house SSAP method32 was used, which is
very much slower but slightly more sensitive than Foldseek (See
Supplementary Fig. 4). Suitable SSAP thresholds were also
benchmarked (see Supplementary Materials, section SSAP
Benchmark, Supplementary Figs. 11 and 12). Using these
approaches a total of 37,603 Pfam and NewFam domains could
be classified into CATH superfamilies.

All domains unmatched to CATH superfamilies by CATH-
HMM, CATHe, Foldseek, SSAP. Finally, all unmatched domains
were scanned with Foldseek and SSAP against AF2 domains
assigned to CATH superfamilies by the steps above. This brought
a further 43,646 domains into CATH superfamilies.

In summary, of the 369,512 domains passing our selection
criteria and analysed using our sequence- (CATH-HMM,
CATHe) and structure-based (Foldseek, SSAP) protocols,
341,213 (92.3%) could be assigned to CATH superfamilies,
representing a 67% expansion in CATH domains (341,213/
500,238= 0.67). A majority of these domains (79.3%) were
relatively close homologues that could be detected by HMM
based strategies (Fig. 3). Table 1 shows the numbers of domains
assigned to CATH superfamilies and the resulting percentage
expansion in CATH.

These validated structures represent an average increase in
structural coverage by CATH domains of 742-fold over the 21
model organisms (see Fig. 4). The expanded coverage is
particularly evident in the case of Glycine max and Oryza sativa,
with a 5100-fold and 2400-fold increase in structural coverage of
domains belonging to these organisms.

Considering the class of the domains, 29.8% map to mainly-
alpha superfamilies, 23.4% to mainly-beta and 46.7% to alpha-
beta, and these proportions are quite similar to those observed for
experimental domain structures in CATH, albeit with a slightly
lower percentage of alpha superfamilies in CATH experimental

Fig. 3 CATH coverage of the AlphaFold2 dataset. a Overview of domain quality and ontology for the total AlphaFold2 dataset and b subdivided by each
proteome.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04488-9

4 COMMUNICATIONS BIOLOGY |           (2023) 6:160 | https://doi.org/10.1038/s42003-023-04488-9 | www.nature.com/commsbio

www.nature.com/commsbio


(alpha: 21.2%, beta: 25.3%, alpha/beta: 53.5%). This overabun-
dance of mainly-alpha superfamilies has been noticed also in
other AF2 domain classification efforts based on SCOPe20.
Supplementary Fig. 5 shows the average expansion of each CATH
architecture. The top 200 most highly populated superfamilies in
CATH (sometimes referred to as MegaFamilies) comprise nearly
70% of the experimental structures in CATH. A large portion of
AF2 domains (62%) map to these superfamilies.

Expansion of functional families by AlphaFold2 structural
data. Each CATH superfamily has been classified into func-
tional families (FunFams), in which relatives are predicted to
have similar structures and functions24,33,34. Since this sub-
classification is computationally expensive34, FunFams have
only been generated for families in which at least one relative
has an experimental characterisation in the Gene Ontology.
Version 4.3 of CATH contains 212,872 FunFams comprised of
322,202 domains (i.e., 64% of all CATH domains)35. Only
17,208 FunFams (8%) have at least one domain which has been
structurally characterised. Assignment of AF2 3D-models into
CATH superfamilies by the protocol described above (Fig. 1)
brought 104,306 more structural relatives into the FunFams.
This increased the proportion of FunFams that have at least one
relative with an experimental or AF2 structure by 3.7-fold
overall (from 8 to 30%) and by up to 6.6-fold, depending on
the organism (see Fig. 5). Supplementary Fig. 6 shows that
FunFams with higher numbers of relatives and species within
them were more likely to have AF2 models predicted with
confidence.

The increase in structural characterisation of FunFams by
AlphaFold2 models will provide valuable insights into how
sequence and structural modifications drive functional changes
across superfamilies, by facilitating the identification of putative
functional sites and surfaces. For example, in the structurally and
functionally diverse HUP superfamily (3.40.50.620) we used the
structural representatives provided by AF2 to examine changes in
highly conserved residues located in the active site pocket
between two FunFams (Phosphoadenosine phosphosulfate
reductase-like protein family (PPR) and Sulphate adenylyltrans-
ferase family SAT)), one of which has experimental structural
characterisation of the binding pocket (Fig. 6). The AF2 3D-
model allows us to compare the location of highly and
differentially conserved residues between the two FunFams in
the binding pocket, which contributes to understanding the
mechanisms that drive changes in function between these two
groups of relatives (Fig. 6).

Identification of new superfamilies and new folds. To assess
whether the remaining 27,112 unclassified AF2 domains belonged
to novel superfamilies, we compared the domains against each
other first using Foldseek and then SSAP, and structurally similar
domains were clustered together (see Methods for more details),
giving 4235 structural clusters. Of these, 1154 clusters had
representatives that matched structures in the PDB not yet clas-
sified in CATH. A further 714 were clearly multidomain as we
found using Foldseek that part of the region structurally matched
a domain in CATH-expanded. For the remaining 2367 detailed
manual analysis is required to check for very remote homology to
the closest matched CATH superfamily relatives36. This is time
consuming as it requires extensive visual inspection and checking
information in the literature. Furthermore, since we had observed
that bringing AF2 domain models into CATH improved the
detection of remote homologues by providing greater coverage of
the family (see section “Proportion of domains that can be
assigned to CATH superfamilies”), we reasoned that detection ofT
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very remote homologues would be better enabled once further
AF2 domain models from the AlphaFold UniProt release of 214
million proteins had been processed and brought into CATH.

We, therefore, opted to manually examine the 618 putative new
families/folds containing at least one relative from Homo sapiens,
to assess the nature of new families and folds and assess whether
there were any interesting and unusual structural features or
perhaps previously missed problematic features that could explain
why they had not been matched to existing CATH superfamilies/
folds. We examined a representative from each of the
618 structural clusters.

For 89% of the clusters, we found possible explanations for the
lack of structural matches with domains in CATH superfamilies.
Some of these cases (42%) appear to be regions comprising more

than one domain (see Fig. 7c). This was most frequent for domains
assigned to structurally uncharacterised Pfam families, for which
the lack of structure can make it difficult to determine domain
boundaries. A further 23% appeared to contain problematic regions
e.g., large unstructured regions at either termini or poorly packed
secondary structures (see Fig. 7a, b and d) not picked up by the
thresholds on our filtering programmes, but which would make it
hard to recognise structural similarities with relatives in CATH.
Some of these features may reflect inaccurate models caused by the
small family sizes available to AF2 to model the structures. To
confirm the novelty of these putative novel folds, we performed a
final check by scanning the remaining 26 cluster representatives
using TM-align against all CATH S95 representatives, after
benchmarking it on our benchmark dataset (see Supplementary

Fig. 4 Structural coverage expansion. a Expansion in structural coverage by total number of structural domains and b fold-wise by validated CATH-HMM,
Pfam and NewFams domains models for the 21 organisms in the AlphaFold2 dataset.

Fig. 5 Structural coverage expansion of CATH FunFams by AlphaFold domains. Initial coverage by CATH/PDB (blue), additional coverage by AlphaFold2
models (orange) and unannotated (green).
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section TM-align Benchmark, Supplementary Figs. 15 and 16).
Using TM-align we were able to assign a further cluster (Q9P6K6/
1-137) to a CATH superfamily, thus reducing the number of
putative new folds to 25.

There were 25 putative clusters remaining that could not be
assigned to a CATH superfamily and did not have any problematic
features as discussed above. These represent putative new super-
families (see Supplementary Figs. 7 and 8 for all the novel structural
superfamilies. A selection of 3 are shown in Fig. 8 below). Some
looked similar to known families in CATH (Fig. 8a, b) and it is
likely that with further processing of the AFDB release of UniProt
and subsequent expansion in the coverage of CATH with these
models, these putative novel domains will match a CATH AF2
relative. Some have unusual structural architectures. For example,
there is a heart shaped arrangement (Fig. 8c) that may comprise
three small repeat domains (small alpha beta 2-layer domains)
linked by longer helices although it is hard to see how individual
domains could easily be carved out of this. This protein, whose
existence was confirmed also by RosettaFold37, is a mitochondrial
T-cell activation inhibitor involved in T-cell activation and memory
formation and we found other related AF2 domain structures in
14 species. We were also able to build a dimer with AlphaFold
Multimer38 and in complex with two interactors (CLIC3,
MAN1A1) predicted by STRING39. Recent cryo-EM structures
deposited in PDB indicates that this protein forms an open
conformation when in complex (as shown in T.brucei as part of the

mitochrondrial assembleosome40,41), with residues in region
450–500 unfolding in a ‘open-heart’ conformation.

We will revisit these putative novel human superfamilies and
those from the other model organisms once we have processed
further domains from the latest release of AlphaFold Database,
containing over 214 million predicted structures covering the
entirety of UniProt.

Although ~92% of the confident AF2 models can be assigned
to existing structural superfamilies in CATH, they bring
considerable structural novelty. CATH superfamilies are sub-
clustered into groups of relatives (structurally similar groups
(SSGs)) that can be superposed well. These can be considered as
‘global fold’ groups as there are distinct changes outside the
common structural ‘core fold’ (see Fig. 9). Currently there are
~28,000 such global fold groups in CATH. Adding AF2 structures
increases this number by ~36% to 38,000.

Discussion
For the last 50 years, the number of structures known experi-
mentally has been a small proportion of the numbers of protein
sequences determined. Just prior to the release of DeepMind’s
AlphaFold2 data, this discrepancy was more than 1000-fold if
metagenomic sequences are also considered. The validation of
AF2 by CASP1442 has given confidence in the quality of the
AF2 structural models, and the release of 214 million AF2 models

Fig. 6 Functional diversity between protein families revealed using Alphafold2: The HUP superfamily as an example. Members of HUP superfamily
(CATH ID:3.40.50.620) possess a common structural core comprising a Rossmann αβα-sandwich fold. Several functional families within the HUP
superfamily lacking a representative PDB structure now possess a representative domain from Alphafold2 enabling characterisation of putative functional
sites in their associated functional families. For example, the Phosphoadenosine phosphosulfate reductase-like protein family (PPR) (CATH FunFam ID:
FunFam-348; EC: 1.8.4.8) has a high-quality AF2 domain available for the poorly studied PPR protein from Leishmania infantum (af_A4I3B1_2_215; pLDDT:
94.87). This protein has no close homologue in the PDB (>30% sequence identity). We compared the AF2 model with the representative PDB structure
(1zunA) from its closest Functional Family in CATH i.e., Sulphate adenylyltransferase family (SAT) [FunFam-02, representative PDB:1zunA; EC:2.7.7.4].
a Superposition of structure representatives from FunFam-348-PPR and FunFam-02-SAT. Residues conserved in both families are coloured green, FunFam-
specific residues, blue (af_A4I3B1_2_215, for FunFam-348-PPR) and red (1zunA, for FunFam-02-SAT). b FunFam-2-SAT is involved in ATP hydrolysis, an
essential process for its function. Analysis of conserved residues using Scorecons indicated that most active site residues (shown in red) are conserved
differently between the two functional families. Moreover, there is a change in catalytic residue site (indicated as blue *) in PPR i.e., F(/L)209Y. The height
of each residue indicates its degree of conservation. c Close-up view of differentially conserved positions between the families in the active site FunFam-
02-SAT (red) and FunFam-348-PPR (blue). The substrate molecule (AGS) in FunFam-02-SAT (1zunA) is shown in magenta. Chemically different residues
highlighted in the substrate-binding site (H61V) and catalytic site (F174Y) of FunFam-348. d Catalytic mechanisms for the two Enzyme families.
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for UniProt represents a landmark in the study of protein
structure and protein evolution.

One of the biggest immediate challenges is to handle the scale
of the data since AlphaFold DB released a further 214 million
model structures. This expansion in the data represents a 400-fold
increase in the number of protein structures. Traditionally,
structure comparison algorithms have been much slower than
sequence comparison methods. However, the launch of AF2
occurred almost in parallel with the development and release of
an extremely fast new comparison method, Foldseek30. Foldseek
has comparable accuracy to the TM-align method31, traditionally
used to assess structural similarity by many biologists and also
employed by the CASP evaluation committee, but is 20,000 times
faster. In addition, related machine learning tools to those
employed by AF2, such as our CATHe predictor, that exploit
language models to capture information about the structural
contexts of residues, have become widespread and are being
applied in the field of protein family classification as they are
more powerful and faster than HMM based approaches28,29,43–45.
These new technologies will harness the information from AF2 to
enhance our understanding of fold space and the structural
mechanisms by which structural changes impact on the functions
of proteins.

In this work, we have built on classification workflows devel-
oped over the last 25 years for classifying protein domains in the
CATH database23. These include strategies for identifying
domain regions in protein sequences (CATH-HMM, CATH-
Resolve-Hits26) and strategies for detecting very remote homo-
logies by sensitive structure comparison methods (SSAP32). To
handle the scale of the AF2 models, we built the CATH-Assign
protocol, which used these approaches together with an extremely
fast structure comparison method (Foldseek30) and also a novel

protein language model (ProtT528 developed by the Rost group)
in a classifier (CATHe29) for detection of extremely remote
homologues (<20% sequence identity) (see Fig. 1).

We have concentrated on identifying AlphaFold domains having
characteristics similar to those of well packed globular domains in
the Protein Data Bank. These domains could be classified in CATH
because they could be matched to existing CATH domains by
homology (CATH-HMM) or CATHe and validated by structure
comparison. For the remaining putative domains we manually
analysed a subset of human-containing families, in order to curate
the domain boundaries and determine whether these were extre-
mely remote homologues or were novel families.

We were able to process 369,512 confident AF2 models in less
than six months. Since CATH-Assign is now established, new
releases of AF2 models will be processed much faster. The near 70%
expansion in structural data in CATH is impressive for such a short
time scale. Prior to AF2, CATH contained nearly half a million
experimental structures, in 5660 superfamilies. Classification of
these superfamilies was performed over 25 years and benefited
from substantial manual curation. Since coverage of CATH
superfamilies by experimental structures is extremely sparse (on
average <5%) structural validation can be difficult for very remote
homologues. However, the release and classification of 214 million
AF2 models for UniProt, will help curation of remote homologues
as structural coverage of superfamilies will significantly increase.
Furthermore, most of the AF2 domains brought in from the model
organisms were very easy to process automatically as they had high
structural similarity (SSAP score >85 out of 100) to structures
already classified in CATH. The expanding structural coverage of
superfamilies will also lead to an improvement in domain
boundary detection for new AF2 models as they will be more likely
to have close homologues in CATH superfamilies.

Fig. 7 Issues encountered when processing domains not assigned to CATH. Each structure figure was generated using UCSF Chimera36, with identifiers
in the format UniProt_ID/start-stop. Examples of poor models a High proportion of unordered residues. b Presence of long unordered regions. c Residue
packing problems. d Less than three secondary structures and packing problems.
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We remove nearly 50% of predicted domain models from our
analyses, depending on the organism (see Supplementary Fig. 9).
This is in agreement with early studies that calculated the per-
centage of disordered and low-quality regions in AF2 models in
Homo sapiens46. The percentage of discarded domains is higher
for Eukaryotes, with the exception of yeasts (baker’s and fission)
(Supplementary Fig. 10). A large proportion (52%) of these have
poor model quality (pLDDT < 70) and residues not predicted as
ordered (i.e., not in secondary structures according to DSSP47)
(3%). We also removed domains containing long continuous
regions with no secondary structure, LURs, (>= 30% of the
residues in the protein), as it would be difficult to match these
domains to the more ordered protein domains in CATH (only
2.7% of CATH domains have LURs). It is not clear whether these
regions are disordered or regions where AF2 struggles to model
the conformation of the residues. They may also represent regions
that undergo conformational change on binding to other proteins
and, therefore capable of adopting multiple confirmations. We
found quite a large number (79,825, 23%) of predicted domains
with less than three secondary structures. From manual inspec-
tion, many comprise well-predicted alpha helices, which were
often not packed against each other or domains in the proteins
(see Fig. 7d for an example). It would be interesting to seek

sequence relatives across diverse species for evidence of conserved
residues suggesting functional roles.

Our results give an interesting perspective on the structural
models in the 21 model organisms. CATH-Assign brought 92.3%
of AF2 confident models (having no problematic features) into
CATH superfamilies. Our study manually evaluated putative new
superfamilies in human and identified 25 novel superfamilies.
Although our results suggest another 2,367 new superfamilies in
the other 20 organisms, as discussed many may match AF2
models pulled into CATH in the future. It is also likely that AF2
relatives pulled into CATH will include ‘bridging’ relatives that
allow us to merge CATH superfamilies.

Taking into account the proportion of removed problematic
models, CATH could expand by 150-fold or more once the new
UniProt models are brought in over the next year. Development
of CATH-Assign and the establishment of stringent and well
benchmarked thresholds for HMM, CATHe, Foldseek, and SSAP
matches puts CATH in a good position to process this data in a
timely way. The expansion in structural coverage in CATH
provided by curated sets of AlphaFold domains will be very
helpful for functional and evolutionary studies, as well as protein
domain boundary assignments48, and multi-domain structure
modelling among other possible applications49. Work is ongoing

Fig. 8 New Structural Superfamilies. Each structure figure was generated using UCSF Chimera36, with identifiers in the format UniProt_ID/start-stop.
a Meiotic recombination protein REC102. b Transmembrane protein 82. c T-cell activation inhibitor, mitochondrial.
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to optimise our protocol to favour more prominently faster
methods such Foldseek and TM-align and gradually bring in the
entire release of UniProt, using a progressive approach that
processes a batch at a time in the order of AF2 domains most
similar to the domain structures classified in CATH.

We will continue to refine our characterisation of the novel
superfamilies and exploit the expanded structural coverage of
CATH superfamilies to further probe the relationships between
structure and function. CATH-Assign will be applied to further
releases of AF2 models. In addition, we are currently developing a
deep-learning based approach for domain boundary assignment
that combines homology data with deep-learning based features
to improve boundary resolution for novel domain families.

The data is available grouped by CATH Superfamily and by
organism through the 3D-Beacons network25, Zenodo (https://doi.
org/10.5281/zenodo.7404988, https://zenodo.org/record/7404988),
and the CATH FTP (ftp://orengoftp.biochem.ucl.ac.uk/alphafold/
cath-v4.3.0-model-organisms).

In summary, recent developments in deep learning methods
applied to the analysis of protein structures (i.e., Foldseek) and
protein sequence (i.e., pLMs exploited for classification - CATHe)
have enabled the rapid processing of 708,941 predicted domain
models generated by AF2. Although nearly 48% of domains from
the model organisms were removed (because they were poorly
modelled or had features that made them problematic for
structure comparisons to globular domains in CATH), of the
remaining domains 92% could be assigned to one of 3253 CATH
superfamilies. We identified 3081 putative novel superfamilies.
We manually examined a subset of 618 of these found in human
and identified 25 which currently appear to be novel. The small
number of new superfamilies identified to date is perhaps not
surprising. In contrast, the expansion in structural diversity in
CATH superfamilies (i.e., 36% increase in global fold groups)
brought by AF2 relatives is exciting, as it could help rationalise
functional divergence in these superfamilies.

Methods
3D Models retrieval and processing. A total of 365,184 3D-models for 21 model
organisms modelled with AlphaFold2 (AF2) were retrieved from the AlphaFold
Protein Structure Database (v1) FTP (https://www.alphafold.ebi.ac.uk/)12,14. Due

to a tool crashing on non-ATOM records, all models were stripped of all non-
ATOM records. The sequences of the AF2 models are based on reference pro-
teomes from UniProt, therefore MD5 hashes for each protein sequence in the
reference proteomes were generated to facilitate tracking of pre-existing annota-
tions, mapping of unique domain sequences and to avoid differences in naming
across CATH, UniProt reference proteomes and AlphaFold DB structures.

MD5 hashes and domains previously assigned by CATH-HMM and Pfam. For
each unique MD5s in the dataset we assigned predicted protein domain bound-
aries. Gene3D assigns CATH domain annotations to UniProt entries by scanning
their sequences against a library of 62,915 Hidden Markov Models (HMMs) seeded
by a structural representative from each cluster of CATH relatives (at 95%
sequence identity)50. Sequences are also scanned against a library of HMMs from
structurally uncharacterised Pfam famililes.

Existing CATH and Pfam annotations and their boundaries were retrieved from
Gene3D and used as input for CATH-Resolve-Hits (CRH)26. CATH-Resolve-Hits
assigns the best possible combination of domains for a protein sequence to obtain
the optimal coverage. A region in each protein could be therefore assigned to a
CATH domain, a Pfam domain or to a domain-sized region unassigned to either of
those (dubbed ‘NewFams’) (Fig. 1). In our protocol we used a 40-residues criterion
to recognise domain sized regions as this threshold has been used to
populate CATH.

CATH superfamily predictions for Pfam and NewFams domains. We assigned a
tentative, to-be-validated, superfamily CATH code for each domain sequence
(Pfam and NewFams) using CATHe, a deep-learning based method for detecting
remote homologues for CATH superfamilies. The first step in the CATHe pipeline
was to convert the sequence domains already assigned to CATH superfamilies via
matches to CATH-HMMs into a numerical representation (sequence embedding)
using the ProtT5 protein Language Model (pLM). The pLM provides residue level
embeddings which are then mean-pooled to obtain the embedding for the entire
protein sequence. An Artificial Neural Network model was employed to learn from
these sequence embeddings and to predict the superfamily annotations for new
sequence domains. CATHe was trained on 1773 CATH superfamilies and attained
a prediction accuracy of 85.6% (95% confidence interval) on them. The most highly
populated CATH superfamilies are associated with a CATHe prediction accuracy
of 98.2% (29). In order to use this model to make new predictions, we conducted a
threshold analysis from which we concluded that a 40% prediction probability
(correlating to an error rate of 5%) was optimal for our use case. Domain
assignments below the 5% error rate threshold were marked as unassigned.

Domain chopping from AlphaFold2 models. Predicted domains were chopped
from the AF2 models using a built-for-purpose Python pipeline based on the pdb-
selres module from pdb-tools51. The algorithm uses CATH-Resolve-Hits (CRH)
output files or CATHe predictions and performs some initial checks, such as a
lookup of the MD5 for the corresponding proteome and assigning the MD5 to a
UniProt entry.

Fig. 9 Expansion in structural diversity in CATH by predicted AlphaFold structural models. a Distribution of structural cluster sizes coloured by CATH
class in CATH v4.3 and b expanded by AlphaFold structural models.
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AF2 uses multiple models for large proteins over 2700 residues, providing 1400
amino acids long, overlapping fragments that are shifted by 200 residues. Based on
the predicted domain boundaries, the algorithm detects which fragment contains
the full domain, chops and creates a new PDB file with additional headers with
metadata such as the domain MD5, the file from which it was chopped, and if
available, the assigned Pfam family or predicted CATH superfamily.

Chopped domain quality assessment. The quality of the domain was calculated
as the average pLDDT12 of the constituent residues of the domain.

Long Unordered Regions. Using pLDDT-per-residue scores, we identified Long
Unordered Regions (LUR) as regions at least five residues long with a pLDDT < 70.
Domains with more than 30% of residues in a single LUR were discarded.

Secondary structure elements and order predictions. The secondary structure of
each domain was assessed using DSSP47, with the resulting files optimised on secondary
structure element lengths by secmake (https://github.com/UCLOrengoGroup/secmake).
The DSSP predictions were used for secondary structure elements assignments and fil-
tering. The overall unordered prediction was calculated as the percentage of residues not
part of secondary structure elements over the total number residues. Domains with more
than 65% of residues unordered were removed from our classification analysis.

Packing density and globularity predictions. We used two metrics to predict
the globularity of the domains obtained from the AF2 structures. The first one
predicts the packing density by calculating the average number of neighbour
residues each hydrophobic residue in the protein has within 5 Å. This was done
using the python Bio.PDB package52. While this first metric considers the
chemical aspect of the residue, the second metric predicts globularity on a
mechanical level, by calculating the surface and volume of the domain. Using the
programme MSMS included in PyMOL53, we obtained both the solvent excluded
surface (SES) area as well as the volume resulting from it. For the metric, we
then calculate the quotient of SES area/Volume. The more globular a protein is,
the smaller this value should be.

To obtain thresholds for both metrics we ran them on the set of domain
structures within CATH, which have been hand-curated over the years. There are a
total of 61,238 domains in this dataset, which we constrained to only alpha, beta
and mixed alpha-beta proteins. In order to account for errors in the dataset, we
took as a globularity threshold the top 95% of hits in the dataset. This results in a
packing density of 9.75, and a SES area/Volume value of 0.494 (Supplementary
Fig. 3). Any domain with scores below these thresholds were discarded.

Superfamily assignment validation protocol. We created a library comprising
non-redundant representatives (at 95% sequence identity - S95s) for all 6331 super-
families in CATH v4.3. We performed an initial scan of all query domains against the
library of S95 representatives for the predicted superfamily using Foldseek, developed
by the Steinegger Group (https://github.com/steineggerlab/foldseek), with a minimum
overlap set at 0.4, coverage mode based on query and sensitivity set at 9. After
extensive benchmarking (see Supplementary section Foldseek Benchmark, Supple-
mentary Figs. 13 and 14), we set an overlap threshold of 60% and bitscore thresholds of
106 (for classes 1 and 3) and 165 (for class 2) for superfamily recognition. All queries
with hits above the threshold were set aside, while the remainder were run against the
same library using the in-house SSAP using established thresholds for homology
(Supplementary section SSAP Benchmark, Supplementary Figs. 11 and 12)32.

Clustering of unassigned domains into tentative new Superfamilies. All
domains for which no superfamily could be assigned were scanned in an all-vs-all
fashion using Foldseek with an overlap set at 60%, bitscore of 165 (the strictest for
any given CATH class, see Supplementary section Foldseek Benchmarking) and
sensitivity set at 9. The resulting output file was then fed into TCluster54,55 ran with
single linkage clustering using the bitscores as weights for clusters cut-off.

Diversity of positions. The Diversity of Positions (DOPS) score was calculated
using the scorecons programme provided by the cathpy Python package56. The DOPS
score, ranging from 0 (low diversity) to 100 (high diversity) considers the different
conservation and frequency of residues across a multiple sequence alignment.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CATH-AlphaFold2 domains modelled and assigned with confidence are available
grouped by CATH Superfamily and by organism on Zenodo (https://doi.org/10.5281/
zenodo.7404988, https://zenodo.org/record/7404988), and the CATH FTP server (ftp://
orengoftp.biochem.ucl.ac.uk/alphafold/cath-v4.3.0-model-organisms). A table
accompanying the results on Zenodo contains information for each confident CATH

assignment on model quality, metrics, CATH SuperFamily assignment and its source.
Individual models are available through the 3D-Beacons network25.

Code availability
All tools and software used in these analyses and visualisations are peer-reviewed and
freely available at the links provided in their article references, GitHub or PyPI. Foldseek
is available via the Foldseek webserver (https://search.foldseek.com/) and GitHub
(https://github.com/steineggerlab/foldseek). SSAP is available at https://cath-tools.
readthedocs.io/en/latest/tools/cath-ssap/. pdb-tools is available through PyPI with
instructions at https://www.bonvinlab.org/pdb-tools/. TM-align is available on the Zhang
Group webserver at https://zhanggroup.org/TM-align/. DSSP is available at https://swift.
cmbi.umcn.nl/gv/dssp/. Data was analysed using Python parsers and command-line
scripts and visualised using the Seaborn Python package (https://seaborn.pydata.org/),
Apple Keynote and Apple Numbers.
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