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ABSTRACT 37 

Greenspace may benefit sleep by enhancing physical activity, reducing stress or air pollution 38 

exposure. Studies on greenspace and children’s sleep are limited, and most use satellite-derived 39 

measures that do not capture ground-level exposures that may be important for sleep. We 40 

examined associations of street view imagery (SVI)-based greenspace with sleep in Project Viva, 41 

a Massachusetts pre-birth cohort.  42 

We used deep learning algorithms to derive novel metrics of greenspace (e.g., %trees, %grass) 43 

from SVI within 250m of participant residential addresses during 2007-2010 (mid-childhood, 44 

mean age 7.9 years) and 2012-2016 (early adolescence, 13.2y) (N=533). In early adolescence, 45 

participants completed >5 days of wrist actigraphy. Sleep duration, efficiency, and time awake 46 

after sleep onset (WASO) were derived from actigraph data. We used linear regression to 47 

examine cross-sectional and prospective associations of mid-childhood and early adolescence 48 

greenspace exposure with early adolescence sleep, adjusting for confounders. We compared 49 

associations with satellite-based greenspace (Normalized Difference Vegetation Index, NDVI). 50 

In unadjusted models, mid-childhood SVI-based total greenspace and %trees (per interquartile 51 

range) were associated with longer sleep duration at early adolescence (9.4 min/day; 52 

95%CI:3.2,15.7; 8.1; 95%CI:1.7,14.6 respectively). However, in fully adjusted models, only the 53 

association between %grass at mid-childhood and WASO was observed (4.1; 95%CI:0.2,7.9). 54 

No associations were observed between greenspace and sleep efficiency, nor in cross-sectional 55 

early adolescence models. The association between greenspace and sleep differed by racial and 56 

socioeconomic subgroups. For example, among Black participants, higher NDVI was associated 57 

with better sleep, in neighborhoods with low socio-economic status (SES), higher %grass was 58 
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associated with worse sleep, and in neighborhoods with high SES, higher total greenspace and 59 

%grass were associated with better sleep time. 60 

SVI metrics may have the potential to identify specific features of greenspace that affect sleep.  61 

 62 

Abstract word count: 282/300 63 
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INTRODUCTION 70 

Healthy sleep is vital for optimal health in children and adolescents, and it entails 71 

adequate duration, good quality, regularity, and the absence of sleep disorders.1 Greater sleep 72 

quality and quantity have been found to be positively associated with cognition,2 academic 73 

performance,3 and mental health and behavioral outcomes in children and youth.4 Nevertheless, 74 

insufficient sleep is prevalent among children. A recent study showed that only 5% of United 75 

States (U.S.) high school students (3% of girls; 7% of boys) spend the optimal time sleeping.5 76 

Greenspace may positively influence sleep through improved health behaviors, such as 77 

physical activity and social engagement,6–8 or through mental health benefits, such as stress 78 

reduction, possibly via attention restoration.6,9 Greenspace can also benefit sleep through 79 

reducing exposure to air pollution, noise, and extreme temperatures.6 The literature is fairly 80 

consistent about the beneficial contribution of greenspace to sleep quality and quantity among 81 

adults.10 However, the association of greenspace and sleep in children and adolescents is less 82 

clear. The few studies that have assessed greenspace and sleep in children were cross-sectional, 83 

used subjective metrics of access to greenspace,11 and were inconclusive.12  84 

Most studies examining the association between greenspace and health have quantified 85 

exposure to greenspace using a satellite-based measure, i.e., the normalized difference vegetation 86 

index (NDVI), in the area around a residential address.13 NDVI ranges from −1 to 1, with more 87 

positive values representing higher quantities of vegetation. While NDVI is well-established and 88 

standardized across studies, it cannot distinguish between trees, grass, crops, or other types of 89 

vegetation. The latter is fundamental for causal inference and policy relevance. In addition, the 90 

most direct connection between individuals and their environment is best represented by ground-91 

based measures that capture what a person can actually view from the ground, but few studies 92 
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have been able to incorporate exposure information from this perspective. This is especially 93 

important for sleep-related pathways, which may be related to visual greenspace. Novel methods, 94 

such as deep learning algorithms combined with street view imagery (SVI), may provide rapid 95 

advances in exposure assessment and new insights into the health impacts of greenspace on 96 

sleep.14 97 

To overcome limitations of greenspace exposure assessment, we used deep learning 98 

algorithms applied to SVI to classify detailed types of vegetation from a ground-based view as 99 

participants experience them, in association with objective actigraphy-estimated sleep 100 

characteristics in adolescents. The aim of this study was to analyze cross-sectional and 101 

prospective associations between SVI greenspace exposure and sleep among children and 102 

adolescents, and to evaluate whether differently operationalized greenspace metrics (i.e., street 103 

view vs. satellite-based) led to diverging results. 104 

 105 

METHODS 106 

Data  107 

We used data from Project Viva, a pre-birth cohort based in Eastern Massachusetts 108 

participating in the Environmental influences on Child Health Outcomes consortium. Project 109 

Viva recruited pregnant women from Atrius Harvard Medical Associates between 1999–2002 110 

and has been following mother-child pairs since pregnancy. Of 2,128 children, 1,038 participated 111 

in the adolescent in-person visit (mean [SD] age was 13.2 [0.9] years; range: 11.9–16.6 years) 112 

and were eligible for the sleep examination. Of these participants, 829 provided valid actigraphy 113 

measurements and 533 had complete data on SVI-based metrics. All mothers provided written 114 
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informed consent at each visit, and children began providing verbal consent at mid-childhood. 115 

The Institutional Review Board of Harvard Pilgrim Health Care approved this study. 116 

 117 

Exposure 118 

Georeferenced SVI captured from 2007-2018 by Google were used to develop novel 119 

measures of the natural environment representing an on-the-ground perspective. We created a 120 

250 m grid for the entire Commonwealth of Massachusetts. For each grid point in each year, we 121 

used the Google application programming interface (API) to obtain the location of the nearest 122 

images. For each location nearest a grid point, we then used four images representing North, 123 

South, East, and West orientations within view. We then applied the pyramid scene parsing 124 

network (PSPNet)15 deep learning model, pre-trained on the ADE20K dataset16,17, to derive 125 

computer vision-based measures of greenspace from SVI. The ADE20K dataset has densely 126 

annotated images covering a diverse set of scenes, object, and object part categories.17 Driven by 127 

powerful deep neural networks,18–20 PSPNet incorporates local and global contextual cues 128 

together to derive pixel-level segmentation of each image with an overall accuracy higher than 129 

93% on pixel-level prediction tasks.21 Each pixel within each image (640 x 640 resolution) was 130 

classified into one of 150 pre-defined classes from ADE20K,22 including natural features, such 131 

as trees, shrubs, grass, plants, and flowers. For each image, the algorithm estimates the 132 

percentages of each output class (e.g., 50% trees in an image). We then averaged across the four 133 

orientations to estimate the percentages of each class within a 360° view for a given location. 134 

Using the percentages at each location, we created a raster file for each SVI year with a 250 m 135 

spatial resolution, which was linked to geocoded participant addresses (latitude and longitude 136 

were assigned) for the corresponding year. For example, mid-childhood visits took place from 137 
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2007-2010; therefore, we linked SVI-based exposure from 2007-2010. If no SVI data were 138 

available for a particular year, we carried forward SVI data from the year prior and up to 2 years 139 

before if needed. The key exposure metrics that we examined included: % total greenspace (% 140 

trees, % grass, % flowers, and % plants combined), % trees, and % grass; all exposure metrics 141 

were treated as continuous variables. We used interquartile ranges (IQR) for the main analyses.   142 

We also estimated satellite NDVI for study participants to compare the results with our 143 

new SVI measures. NDVI is a satellite-derived indicator of the quantity of vegetation on the 144 

ground that has been used as a marker for exposure to greenspace in numerous previous 145 

epidemiological studies13,23,24 and in this cohort.25  Briefly, we used Landsat satellite data at 30 m 146 

resolution for each participant’s geocoded address. We used the estimate for July of the specific 147 

year of follow-up (mid-childhood and early adolescence) averaged across a 90 m buffer around 148 

each address to evaluate the immediate area around residences. 149 

 150 

Outcome 151 

Nighttime sleep at early adolescence was assessed from actigraphy data analyzed using 152 

ActiLife-6 software (ActiGraph, Inc, Pensacola, FL). Participants were asked to wear an 153 

actigraph, which collected activity data in 60-second epochs, on their nondominant wrist for 7-10 154 

consecutive days and nights and complete daily sleep logs. The primary sleep period was based 155 

on logs and observation of a sharp decrease in activity with a subsequent increase.26 Data from 156 

participants with ≥5 days of recordings with ≥10 hours of wear-time were included. More details 157 

in the algorithm on the classification of sleep and wake periods has been published elsewhere.27 158 

The following sleep metrics were averaged over all nights of valid recording: (1) duration (sleep 159 

time in minutes), (2) maintenance efficiency (percentage of time between sleep onset and final 160 
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awakening spent asleep), and (3) wake after sleep onset (WASO) (time awake after sleep onset 161 

in minutes). All sleep metrics were treated as continuous variables.  162 

 163 

Covariates 164 

At baseline, mothers reported their education level  (% ≥ college graduate), spouse’s 165 

education level  (% ≥ college graduate), and household income (% > $70,000/year). Information 166 

on child’s sex (female or male) was obtained from the delivery interview, and mothers reported 167 

their child’s race/ethnicity (White, African American, Asian American, Hispanic, or Other) at the 168 

early childhood (3-year) visit. Child’s age was based on the early adolescent visit (continuous 169 

age in years). Neighborhood socioeconomic status (NSES) was assessed by census tract median 170 

annual household income at the mid-childhood visit based on 2000 U.S. Census data [census 171 

tract median household income at enrollment (continuous)] and urbanicity [based on population 172 

density at the census tract level].  173 

 174 

Statistical Analyses 175 

We used linear regression to quantify the association between greenspace metrics and 176 

sleep among adolescents in Project Viva. To evaluate whether differently operationalized 177 

greenspace metrics (i.e., street view vs. satellite-based) led to diverging results, we estimated 178 

models separately for SVI metrics and NDVI. As previously noted, actigraphy-based sleep 179 

metrics were assessed only at early adolescence, and green space exposure was measured at mid-180 

childhood and early adolescence. We examined prospective associations of greenspace at mid-181 

childhood with sleep at early adolescence and cross-sectional associations of greenspace at early 182 

adolescence with sleep at early adolescence (Figure S1). To assess the shape of exposure-183 
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outcome associations, we fit generalized additive models for continuous exposures. Penalized 184 

splines did not suggest deviations from linearity (p value > 0.1) for associations with all sleep 185 

metrics; therefore, we present the results from linear models. Additionally, we performed a 186 

sensitivity analysis using a log transformation to account for non-normality of the distribution of 187 

the sleep metrics. Results using log-transformed sleep metrics yielded similar results, thus we 188 

kept the un-modified metrics to facilitate interpretation. We present unadjusted models and 189 

models adjusted for potential confounders based on prior evidence28 and directed acyclic 190 

graphs.29 Model 0 is unadjusted; Model 1 is adjusted for child’s age, sex, and race/ethnicity; and 191 

Model 2 is further adjusted for maternal and paternal education, marital status, household 192 

income, census tract level household income, and urbanicity. In addition, we assessed the effect 193 

measure modification of associations of greenspace with sleep by child’s sex, race/ethnicity 194 

(White/Black/Other), NSES (tertiles), and neighborhood population density (tertiles) using 195 

stratified analyses. Race/ethnicity was included in the models to capture the effects of perceived 196 

race, along with other aspects, such as quality of schools, which are correlated with parental skin 197 

color, cultural context, and racism.30 We used likelihood ratio tests to evaluate statistically 198 

significant effect modification. Lastly, we used multiple imputation to impute missing covariate 199 

values. We used SAS 9.4 with 50 imputations and 2,128 participants. Following guidelines,31 the 200 

imputation model included all model variables, plus main predictors of missingness (parity, 201 

maternal pre-pregnancy BMI, maternal age at enrollment, birthweight [z-value], gestational age, 202 

parental smoking, pregnancy smoking status, child’s asthma, cognitive function, executive 203 

function and behavior,  BMI, among others). Regression analyses were run across 50 imputed 204 

datasets, and the pooled estimates were reported. Imputed results were broadly similar to those 205 
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obtained using observed values; the former are presented. Statistical analyses were performed in 206 

R version 3.4.0 (R Core Team, Vienna, Austria)32.  207 

 208 

RESULTS 209 

From the 829 participants with valid actigraphy measurements, 533 participants had 210 

complete data on SVI-based metrics of greenspace at early adolescence and 328 had complete 211 

data for SVI-based metrics of greenspace at both the early adolescence and mid-childhood in-212 

person visits. On average, participants’ age at the early adolescence visit was 12.9 (0.7) years, 213 

and 59% of the sample were White; this percentage increased among the higher quartiles of 214 

greenspace (Table 1). About half of mothers and fathers in the lowest quartile of greenspace 215 

reported having a college education (54.9% and 52.1% respectively) compared with 87.7% and 216 

70.0% in the highest quartile of greenspace, respectively. Household income also varied across 217 

greenspace quartiles from 57.9% reporting a household income larger than $70,000 in the lowest 218 

quartile to 88.3% in the highest quartile. We observed similar gradients by greenspace for census 219 

tract median household income (Table 1). All sleep metrics were slightly better in the top 220 

quartile of greenspace compared with the lowest quartile, e.g., sleep duration was 452 (39) 221 

minutes in the top quartile compared with 434 (41) minutes in the lowest quartile.  222 

The median percentage of total greenspace within view based on SVI metrics was 28% 223 

(IQR 25%) for mid-childhood and 34% (24%) for early adolescence. The median percentage of 224 

trees within view was 22% (23%) for mid-childhood and 25% (19%) for early adolescence while 225 

the median percentage of grass was 1% (5%) and 4% (7%), respectively. The median NDVI was 226 

0.5 (0.2) for mid-childhood and 0.6 (0.2) for early adolescence. The correlation between SVI-227 

based metrics of greenspace and NDVI varied by type of vegetation. For example, the correlation 228 
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between NDVI and the percentage of total greenspace was 0.6, whereas it was 0.53 for the 229 

percentage of trees and only 0.01 for the percentage of plants (Figure S2). The correlations 230 

between the percentage of total greenspace and sleep were similar to the correlations between 231 

NDVI and sleep (e.g., 0.15 vs 0.13 for average sleep time).  232 

Table 2 shows the estimates for SVI-based exposure measured at mid-childhood in 233 

association with sleep duration (sleep time in minutes), efficiency (percentage), and time awake 234 

after sleep onset (WASO; in minutes) measured prospectively in early adolescence. Unadjusted 235 

analyses showed a consistent, but small, positive relationship between SVI-based and satellite-236 

based greenspace and average daily sleep duration. For example, in unadjusted models, we saw 237 

that a one IQR increase in SVI-based greenspace was associated with 9.4 (95% CI: 3.2, 15.6) 238 

more minutes of sleep per night. This association seemed to be driven by the percentage of trees 239 

(8.1; 95% CI: 1.7,14.6). We also observed a positive, albeit slightly smaller, unadjusted 240 

association between NDVI and sleep duration (5.1; 95% CI: -0.4,10.6). However, these 241 

associations were attenuated and no longer statistically significant after adjusting for age, sex, 242 

and race/ethnicity, with the latter having a bigger impact on the estimate for greenspace. In the 243 

fully adjusted model for daily sleep duration, all the CIs included the null (e.g., % total 244 

greenspace 3.5, 95% CI: -3.8, 10.7; NDVI -0.1, 95% CI: -6.5, 6.5; Table 2). We observed a 245 

positive association between the percentage of grass and WASO, where one IQR increase in 246 

SVI-based grass was associated with 4.1 (95% CI: 0.3, 7.9) more minutes of WASO in fully 247 

adjusted models. High levels of WASO indicate sleep fragmentation and may result in non-248 

restorative sleep.33 This association was observed only after adjusting for confounders. We did 249 

not observe evidence of associations between SVI-based or satellite-based greenspace metrics 250 
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and sleep efficiency (Table 2). In sensitivity analyses we further adjusted for clustering by 251 

Census tract and our results remained consistent.  252 

Table 3 shows the estimates for the cross-sectional association between SVI-based 253 

exposure and sleep metrics in early adolescence. In unadjusted models, analyses showed a 254 

consistent beneficial relationship between SVI-based and satellite-based greenspace and all sleep 255 

metrics. We also saw evidence that the positive associations were driven by the presence of trees. 256 

However, in adjusted models, associations were generally attenuated and all CIs included the 257 

null. 258 

 259 

Stratified Analyses  260 

We observed no differences in the association between greenspace and sleep metrics in 261 

Project Viva when we stratified the analyses by child’s sex and urbanicity level, as CIs included 262 

the null for all strata (Figures S3-S4). In models stratified by NSES, we observed that in 263 

neighborhoods with a high SES, one IQR increase in total percentage of greenspace (17.8, 95% 264 

CI: 5.0, 30.7) and percentage of grass (8.3, 95% CI: 1.4, 15.3) were associated with more 265 

minutes of sleep per night (Figure 1). We also observed that in neighborhoods with a low SES, 266 

one IQR increase in the percentage of grass was associated with less sleep efficiency (-1.6, 95% 267 

CI: -3.0, -0.2) and more sleep fragmentation, as measured by WASO (10.5, 95% CI: 2.0, 19.0) 268 

(Figure 1). All other findings were null. In models stratified by race/ethnicity, we observed that 269 

among Black participants, one IQR increase in NDVI was associated with more sleep efficiency 270 

(2.6, 95% CI: 0.6, 4.6) and less sleep fragmentation (fewer minutes of WASO; -14.8, 95% CI: -271 

25.9, -3.6) (Figure 2). Estimates for other race/ethnicity categories were null across greenspace 272 

metrics (Figure 2).  273 



 14 

 274 

DISCUSSION 275 

In a prospective cohort in Massachusetts, novel metrics of greenspace exposure based on 276 

SVI at mid-childhood were not associated with objectively measured sleep duration or efficiency 277 

in early adolescence, but we did observe an association between percentage of grass at mid-278 

childhood and more sleep fragmentation in early adolescence, as measured by WASO. We also 279 

examined cross-sectional associations of greenspace at early adolescence with sleep at early 280 

adolescence, and all CIs consistently crossed the null. The association between greenspace and 281 

sleep did not differ by sex or urbanicity level, but we did observe differences by race/ethnicity 282 

and NSES. Specifically, we observed that among Black participants, higher NDVI was 283 

associated with better sleep, and in neighborhoods with a high SES, a higher total percentage of 284 

greenspace and grass were associated with better sleep time. In contrast, in neighborhoods with a 285 

low SES, a higher percentage of grass was associated with worse sleep. 286 

SVI combined with deep learning provided a unique approach to estimate specific natural 287 

features from a ground-level perspective. Our results on sleep duration and efficiency were 288 

consistent with nationally representative studies of Australian (N=2,814) and German (N=4,172) 289 

adolescents, which found no significant associations between residential greenspace and 290 

insufficient sleep or poor sleep quality.28 The observed unadjusted association between 291 

percentage of trees and sleep duration is in accordance with a study that found that an increased 292 

percentage of tree canopy in a census block group was associated with lower odds of short 293 

weekday sleep (<6 hours) (OR 0.76 [0.58-0.98]; N=2,712).6 Another study of adolescents found 294 

that 1-SD increase in neighborhood tree canopy was associated with more favorable sleep timing 295 

(e.g., an 18-minute earlier sleep onset (β = -0.31, 95% CI: -0.49, -0.13).34 Further, the analysis by 296 
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type of vegetation also suggested that the association between greenspace and increased WASO, 297 

or more non-restorative sleep, was driven by percentage of grass. The pathways through which 298 

specific natural features may influence sleep are complex. Particularly, percentage of grass could 299 

positively influence sleep through higher opportunities for physical activity, but it could also 300 

negatively influence sleep through limited attenuation of urban heat island effects35 or crime in 301 

cities,36 as compared to the attenuation provided by trees. A recent systematic review of 302 

neighborhood environments and sleep among children reported that living in a neighborhood 303 

with high crime was associated with poorer sleep outcomes.37 This result is in contrast to a study 304 

that evaluated adults older than 45 years of age and reported no statistically significant 305 

associations between insufficient sleep and open grass or other low-lying vegetation or total 306 

greenspace (N=38,982).38 That study and those by Feng et al. (2020) and Johnson et al. (2018) 307 

did not adjust for NSES.  308 

Stratified analysis by sex and urbanicity level did not support the hypothesis that the 309 

association between greenspace and sleep differed by these factors. These results are similar to 310 

those found in a study of neighborhood determinants of sleep problems in U.S. children and 311 

adolescents, where the authors examined interaction models of built-environment characteristics 312 

(e.g., parks/playgrounds), household SES, and sex, but none were statistically significant.11 313 

However, we found evidence that the association between greenspace and sleep differed by 314 

race/ethnicity and NSES. Consistent with the findings of Grigsby-Toussaint et al. (2015),39 we 315 

found that the satellite-based measures of greenspace (NDVI) were associated with better sleep 316 

among Black participants. Research has shown that racial minorities experience a greater burden 317 

of environmental features, such as higher exposure to air pollution, neighborhood disorder, lower 318 

social cohesion, more crime, and less proximity to green space.40 Racial/ethnic minorities also 319 
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have a high prevalence of insufficient sleep, poorer sleep quality and unrecognized sleep 320 

disorders.41 Evidence indicates that the neighborhood environment is an important determinant 321 

of insufficient sleep for racial/ethnic minorities.42,43 Our results are in accordance to a study on 322 

the neighborhood social environment and objective measures of sleep that found an association 323 

among African Americans, but not among other racial/ethnic groups.43 If the hypothesis that 324 

unhealthy sleep patterns among minorities contribute to racial/ethnic health disparities holds,44 325 

then ameliorating environmental features, particularly green space exposure, across racial/ethnic 326 

groups can potentially improve overall population health.  327 

We observed an association between percentage of grass and less efficient sleep (higher 328 

WASO and lower sleep efficiency) among participants living in neighborhoods of low SES. In 329 

addition, among participants living in neighborhoods with a high SES, we observed that the total 330 

percentage of greenspace and grass was associated with better sleep (more minutes of sleep per 331 

night). These findings are in contrast to the “equigenesis” hypothesis of greenspace, which states 332 

that greenspaces may mitigate health inequalities by providing health benefits for 333 

socioeconomically disadvantaged groups who usually have lower access to health-promoting 334 

resources.8 The observed association between percentage of grass and insufficient sleep in 335 

neighborhoods of low SES may also be related to the differing health effects depending on 336 

vegetation types discussed previously. A recent systematic review on green space quality and 337 

health found that health benefits were more consistently observed in areas with greater tree 338 

canopy, but not grassland.45 A reason may be that due to their foliage, trees have the capacity to 339 

intercept airborne pollutants and buffer against traffic noise, whereas grass might not convey the 340 

same range and levels of benefit.45 In a  longitudinal cohort study of adolescents, results showed 341 

that higher neighborhood noise was associated with lower odds of sufficient sleep, measured 342 
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using actigraphy.34 On the other hand, a systematic review on green space and healthy equity 343 

reported that parks in low-SES neighborhoods tend to be of lower quality (e.g., lower 344 

maintenance) and have higher crime rates than parks in more privileged communities.46 The 345 

authors discuss that research has shown associations between low park quality and low health 346 

status in North American contexts perhaps due to the fact that when parks are of low quality or 347 

unsafe, people may choose to engage in less physical activity in them. Other studies have shown 348 

that large areas of open grass may reduce walkability if it is fenced-off, as can be the case for 349 

private green spaces or golf courses;47 and that large areas of open grass where strangers may be 350 

less easily identified by members of the community may create opportunities for crime.48 A 351 

study of sleep efficiency using actigraphy data found that living in economically and socially 352 

disadvantaged neighborhoods predicts risk for shorter and lower quality sleep in children.49  353 

The strengths of this study include longitudinal data, use of objective detailed greenspace 354 

metrics representing the ground level and objective individual-level sleep measures, and the 355 

inclusion of many covariates to control for confounding. Self-reports of sleep duration, 356 

sleepiness, or trouble sleeping, while convenient and less time consuming to collect, may not be 357 

particularly accurate.50 In this study, we used wrist activity monitoring (actigraphy) to measure 358 

three sleep parameters: sleep duration, efficiency and WASO. Unlike the gold standard of 359 

polysomnography, the advantage of actigraphy is that it is unlikely to actually affect bedtime, 360 

sleep latency, and duration.50 This study represents an advancement in greenspace assessment 361 

compared with previous studies, which were often restricted to satellite-based data. Our 362 

approach, based on individualized addresses as opposed to administrative units in which 363 

participants live, expanded on advances in computer vision and deep learning and resulted in 364 

more accurate exposure metrics that correspond well to participants’ ground-level perspective. 365 
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To our knowledge, this is the first study to examine specific types of greenspace in association 366 

with objective metrics of sleep among children and adolescents. To date, only a handful of 367 

studies have examined greenspace and sleep, and to our knowledge, even fewer have explored 368 

this association in children. Health behaviors during childhood are a strong predictor of health in 369 

adulthood and thus more work in this area is needed.  370 

The limitations of this study should be noted. First, the limited sample size could be a 371 

potential reason for relatively wide CIs. However, we were still able to observe some 372 

associations between SVI and NDVI metrics with sleep, which suggests that future research 373 

should explore these relationships in other datasets. Second, the strong association between SVI-374 

based greenspace and SES measures suggested potential confounding, and although we adjusted 375 

for individual- and neighborhood-level measures of SES, residual confounding is likely. Third, 376 

we examined features of greenspace in isolation, but research has shown that there is likely a 377 

combination of multiple environmental exposures that may exert a positive/negative impact on 378 

health.14,51 Fourth, while use of SVI and deep learning algorithms to create novel metrics of 379 

greenspace features is an advancement in this area of research, images themselves have 380 

limitations as they exclude behavioral aspects of exposure, including time spent indoors or actual 381 

use of the greenspace.14 Images are also a snapshot of a location at a given time and may not 382 

provide an accurate representation of seasonal variability. We also used images within 250 m of 383 

a participant's address, but these images may not be representative of where a participant spends 384 

time, which would contribute to exposure measurement error. Furthermore, studies have 385 

suggested that infancy is a sensitive period of exposure to greenspace that may have 386 

repercussions on health later in life.52 Thus, it may be possible that exposure to greenspace 387 

earlier in life, before mid-childhood, has a stronger association with sleep in early adolescence. 388 
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Since Google SVI started in 2007, and the Project Viva children were born from 1999-2002, we 389 

were not able to test exposure to SVI-based greenspace at earlier periods of life. In addition, we 390 

do not have information on school exposure to greenspace in childhood or adolescence, a 391 

possible source of measurement error. Finally, a recent analysis of sleep characteristics in Project 392 

Viva participants reported that only 2.2% of adolescents met the lower bound of the National 393 

Sleep Foundation’s recommended sleep duration and a majority (58.4%) were classified as 394 

having low sleep efficiency.27 Because insufficient sleep is prevalent among participants in 395 

Project Viva, the beneficial impact of greenspace on sleep may have been harder to detect.  396 

 397 

CONCLUSION 398 

Our study was among the first to integrate deep learning methods into greenspace 399 

exposure assessment in association with objectively measured sleep among children and 400 

adolescents. The results suggested that greenspace overall and specific features of greenspace 401 

(e.g., trees, grass) were not associated with sleep among adolescents in Project Viva. When 402 

stratified by NSES and race/ethnicity, we observed beneficial associations for Black participants 403 

and neighborhoods with a high SES but unfavorable associations for neighborhoods with a low 404 

SES. Future studies should examine whether these results can be replicated in other populations 405 

and whether investment in trees in urban areas is cost-effective. 406 

  407 
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FIGURE CAPTIONS 

Figure 1. Effect modification by neighborhood socioeconomic status (NSES) of the association 

between SVI-based metrics of greenspace and sleep in Project Viva (N=328) 

Figure 2. Effect modification by race/ethnicity of the association between SVI-based metrics of 

greenspace and sleep in Project Viva (N=328) 

 

SUPPLEMENTARY MATERIAL 

Figure S1. Cross-sectional and prospective associations examined in this study 

Figure S2. Pearson correlation coefficients between SVI-based metrics of greenspace (measured 

in early adolescence), NDVI (90 m buffer, measured in early adolescence) and sleep outcomes 

(also in early adolescence) (N=530) 
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Figure S3. Effect modification by sex of the association between SVI-based metrics of 

greenspace in mid-childhood and sleep in early adolescence in Project Viva (N=328) 

Figure S4. Effect modification by urbanicity level of the association between SVI-based metrics 

of greenspace in mid-childhood and sleep in early adolescence in Project Viva (N=328) 
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Table 1. Project Viva study participant characteristics by quartiles of Google street view imagery-based total greenspace in mid-
childhooda 

  

Quartile 1 

0.0-0.15 

N=82 

Quartile 2 

0.16-0.28 

N=82 

Quartile 3 

0.28-0.41 

N=83 

Quartile 4 

0.41-0.77 

N=81 

Overall  

N=328 

Child’s age at early 
adolescence, mean (SD) 13.0 (0.8) 12.9 (0.7) 13.0 (0.6) 12.8 (0.6) 12.9 (0.7) 
Child’s race/ethnicity %         

White 45.1 48.8 61.4 80.2 58.8 
Black 34.1 26.8 14.5 6.2 20.4 
Other  20.7 24.4 24.1 13.6 20.7 

Child’s sex % female 48.8 45.1 49.4 59.3 50.6 
Mother’s education % 
college 54.9 64.2 63.9 87.7 67.6 
Father’s education % 
college 52.1 55.1 71.6 70.0 62.6 
Mother’s marital status % 
married 84.1 86.4 89.2 100.0 89.9 
Household income % 
>$70K 57.9 60.8 76.5 88.3 70.9 
Census tract median 
household income in mid-
childhood ($), mean (SD) 44864.9 (15662.2) 47984.2 (16316.9) 63374.6 (21302.4) 72009.4 (21530.4) 56966.5 (21832.1) 
Urbanicity in mid-childhood 
(population density), mean 
(SD) 974.5 (171.9) 921.1 (206.5) 859.3 (208.7) 671.7 (308.4) 857.8 (254.9) 
Sleep time in minutes per 
night in early adolescence, 
mean (SD)  433.7 (40.9) 436.5 (37.6) 437.8 (39.6) 452.2 (38.5) 440.0 (39.7) 
Time awake in minutes after 
sleep onset (WASO) in 74.2 (24.9) 73.6 (25.7) 78.1 (28.8) 79.6 (35.7) 76.4 (29.0) 
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early adolescence, mean 
(SD) 
% Sleep efficiency in early 
adolescence, mean (SD)  84.0 (4.2) 84.2 (4.4) 83.6 (5.3) 83.8 (5.6) 83.9 (4.9) 
SVI-based metrics of 

greenspace in mid-

childhood      
% Greenspace, median 
(IQR) 10.6 (6.2) 22.2 (7.1) 34.9 (5.2) 48.9 (11.3) 28.3 (25.1) 
% Trees 8.8 (6.2) 17.9 (7.4) 29.5 (9) 44.2 (12.9) 22.2 (23) 
% Grass 0.5 (1) 0.9 (3.1) 2.8 (5.2) 2.7 (9.2) 1.3 (4.6) 
% Plants 0.5 (1.5) 0.9 (1.4) 0.8 (1.7) 0.6 (1.7) 0.8 (1.6) 
Satellite-based metric of 

greenspace in mid-

childhood, median (IQR)      
NDVI 0.4 (0.1) 0.5 (0.1) 0.5 (0.1) 0.6 (0.1) 0.5 (0.2) 

aTable based on participants with complete data for exposure in mid-childhood and outcome in early adolescence (N=328). 
IQR, interquartile range; NDVI, normalized difference vegetation index; SD, standard deviation; SVI, street view imagery.  
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Table 2. Associations of greenspace exposure in mid-childhood with sleep in early adolescence (N=328)a 
 

  

Average daily sleep duration, min  Average daily sleep efficiency, %  Average time awake after sleep onset, 

min 

  Model 0 Model 1 Model 2 Model 0 Model 1 Model 2 Model 0 Model 1 Model 2 

Early 

adolescence  

estimate 

(95% CI) 

estimate 

(95% CI) 

estimate 

(95% CI) 

estimate 

(95% CI) 

estimate 

(95% CI) 

estimate  

(95% CI) 

estimate 

(95% CI) 

estimate  

(95% CI) 

estimate 

(95% CI) 

SVI-based 

exposure (per 

IQR)   

 

   

 

 

   

% Total 
greenspace  

9.4 (3.2, 

15.6) 

3.3 (-2.7, 
9.3) 

3.5 (-3.8, 
10.7) 

0.2 (-0.5, 
1.0) 

0.0 (-0.8, 
0.8) 

-0.2 (-1.1, 
0.8) 

0.5 (-4.1, 
5.2) 

0.7 (-4.1, 
5.4) 

1.8 (-3.9, 
7.5) 

% Trees 
8.1 (1.7, 

14.6) 

1.9 (-4.3, 
8.1) 

1.4 (-5.7, 
8.4) 

0.3 (-0.5, 
1.0) 

0.0 (-0.8, 
0.9) 

0.0 (-1.0, 
0.9) 

0.2 (-4.5, 
4.9) 

0.2 (-4.7, 
5.1) 

0.6 (-5.0, 
6.1) 

% Grass 
5.3 (0.6, 

10.0) 

3.6 (-0.7, 
7.9) 

3.8 (-1.1, 
8.7) 

-0.2 (-0.8, 
0.4) 

-0.2 (-0.8, 
0.3) 

-0.5 (-1.2, 
0.1) 

2.1 (-1.3, 
5.6) 

2.1 (-1.3, 
5.5) 

4.1 (0.3, 

7.9) 

Satellite-based 

exposure (per 

IQR)          

NDVI  
5.1 (-0.4, 

10.6) 
0.9 (-4.2, 

6.1) 
-0.1 (-6.5, 

6.5) 
0.3 (-0.3, 

1.0) 
0.3 (-0.4, 

0.9) 
0.3 (-0.6, 

1.1) 
-1.0 (-5.0, 

3.1) 
-1.2 (-5.3, 

2.9) 
-1.2 (-6.4, 

3.9) 
 

 

aTable 2 includes N=328 participants with non-missing mid-childhood exposure and early adolescent outcome data. We used imputed 
data for missing covariates. 
Model 0: Unadjusted 
Model 1: Adjusted by child's age, sex, and race/ethnicity 
Model 2: Model 1 + maternal and paternal education, marital status, household income, census tract level household income and 
urbanicity. 
NDVI, normalized difference vegetation index; IQR, interquartile range; SVI, street view imagery.  
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Table 3. Cross-sectional associations of greenspace exposure in early adolescence and sleep in early adolescence (N=533)a 
 

 Average daily sleep duration, min 

Average daily sleep efficiency, 

% 

Average time awake after sleep 

onset, min 

 Model 0 Model 1 Model 2 Model 1 Model 1 Model 2 Model 0 Model 1 Model 2 

Early 

adolescence 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

SVI-based 

exposure           
% Total 
greenspace  

8.7 (3.7, 

13.7) 

2.9 (-2.1, 
7.9) 

0.7 (-5.0, 
6.5) 

0.3 (-0.3, 
0.9) 

0.2 (-0.4, 
0.9) 

0.4 (-0.3, 
1.1) 

-0.2 (-3.7, 
3.3) 

-1.2 (-5.0, 
2.5) 

-2.7 (-7.1, 
1.6) 

% Trees 
7.5 (2.6, 

12.3) 

2.3 (-2.5, 
7.1) 

0.5 (-4.9, 
5.8) 

0.2 (-0.4, 
0.8) 

0.1 (-0.5, 
0.7) 

0.3 (-0.4, 
1.0) 

0.1 (-3.3, 
3.5) 

-0.8 (-4.4, 
2.7) 

-2.0 (-6.0, 
2.0) 

% Grass 
4.9 (-0.3, 

10.1) 

0.8 (-4.1, 
5.8) 

-1.1 (-6.4, 
4.1) 

0.4 (-0.2, 
1.0) 

0.3 (-0.3, 
1.0) 

0.4 (-0.2, 
1.1) 

-1.6 (-5.2, 
2.1) 

-2.2 (-5.9, 
1.5) 

-3.0 (-7.0, 
0.9) 

Satellite-based 

exposure (IQR)          

NDVI  
7.1 (2.6, 

11.7) 

1.3 (-3.3, 
5.9) 

-2.7 (-8.5, 
3.2) 

0.1 (-0.4, 
0.7) 

0.0 (-0.5, 
0.6) 

0.2 (-0.5, 
1.0) 

0.6 (-2.6, 
3.8) 

-0.2 (-3.6, 
3.2) 

-2.0 (-6.4, 
2.4) 

 
aTable 3 includes N=533 participants with non-missing early adolescent exposure and outcome data. We used imputed data for 
missing covariates. 
Model 0: Unadjusted 
Model 1: Adjusted for child's age, sex, and race/ethnicity 
Model 2: Model 1 + maternal and paternal education, marital status, household income, census tract level household income, and 
urbanicity 
IQR, interquartile range; NDVI, normalized difference vegetation index; SVI, street view imagery.  
 


