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Abstract 

Background and Aims: Chronic kidney disease (CKD) increases risk of cardiovascular disease 

(CVD). Less is known about how CVD associates with future risk of kidney failure requiring 

replacement therapy (KFRT). 

Methods: We analyzed data on 25,903,761 individuals from the CKD Prognosis Consortium 

with baseline eGFR and follow-up for CVD and KFRT. We assessed impact of prevalent and 

incident coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) 

events as time-varying exposures on KFRT outcomes. 

Results:  Mean age was 53 years (SD 17) and mean estimated glomerular filtration rate (eGFR) 

was 89 ml/min/1.73m2, 15% had diabetes and 8.4% had urinary albumin-to-creatinine ratio 

(ACR) available (median 13 mg/g); 9.5% had prevalent CHD, 3.2% prior stroke, 3.3% HF and 

4.4% prior AF. During follow-up there were 269,142 CHD, 311,021 stroke, 712,556 HF, and 

605,596 AF incident events and 101,044 (0.4%) patients required KFRT. Both prevalent and 

incident CVD were associated with subsequent KFRT with adjusted hazard ratios (HR) of 3.1 

(95% CI 2.9-3.3), 2.0 (1.8-2.1), 4.5 (4.2-4.8), 2.8 (2.6-3.1) after incident CHD, stroke, HF and 

AF, respectively.  HRs were highest in first three months post CVD incidence declining to 

baseline after three years. HF showed the strongest association with KFRT (HR 46 (43-49) 

within 3 months) after adjustment for other CVD subtype incidence.  

Conclusions: Incident CVD events strongly and independently associate with future KFRT risk, 

most notably after HF, then CHD, stroke, and AF. Optimal strategies for addressing the 

dramatic risk of KFRT following CVD events are needed.   
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Background 

It is well established that chronic kidney disease (CKD) is a risk factor for developing 

cardiovascular disease (CVD)1,2. However, whether CVD is a risk factor for CKD progression 

and subsequent need for kidney failure replacement therapy (KFRT, i.e. dialysis or kidney 

transplant) is less clear. Such bidirectional association is plausible and consistent with the 

hypotheses postulated in the cardiorenal syndrome3,4. Many aspects of CVD, including 

inflammation5,6, oxidative stress7, haemodynamic changes (e.g. renal congestion, 

neurohormonal activation)8, and medical interventions (e.g. use of loop diuretics, 

radiocontrast agents)9 may negatively impact kidney function.   

 

Epidemiological data exploring CVD as a cause of CKD is scarce, and potentially limited by 

small sample sizes, single-center studies, the timing of the CVD event and varying definitions 

of CKD outcomes mostly focused on relative declines of estimated glomerular filtration rate 

(eGFR). Early reports disclosed that patients with prevalent CVD were at higher risk of 

receiving a diagnosis of CKD or having a more rapid eGFR decline10-12; More recently, incident 

major CVD events, particularly heart failure (HF)  have been associated with a faster eGFR 

decline13 and need for KFRT 14,15. 

 

A comprehensive analysis evaluating the robustness and consistency of this association is 

lacking, perhaps because the outcome of KFRT is rare and requires large sample sizes with 

long follow-up. Using data from the multinational CKD-Prognosis Consortium, we sought to 

quantify the association of CVD incidence, prevalence and subtypes on subsequent risk of 

KFRT. We hypothesized that incident CVD events would be associated with increased risk of 

need for KFRT.   
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Methods 

This study was approved for use of de-identified data by the institutional review board at the 

Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (#IRB00003324). 

The need for informed consent was waived by the institutional review board. 

Populations 

We included cohorts in the CKD-PC with available data for the present study. The details of 

CKD-PC are described elsewhere16, but in brief, this consortium included both research 

cohorts and health system datasets, with participants from 41 countries from North America, 

Europe, the Middle East, Asia, and Australia. These cohorts included general population 

(screening cohorts and health systems), high-risk (specifically selected for clinical conditions, 

such as diabetes), and CKD (exclusively enrolling individuals with CKD) cohorts. For the 

present study, cohorts were required to have data on at least one CVD subtype and 

subsequent follow-up for KFRT as the outcome. Cohorts also needed to have baseline 

information on eGFR and some urine albuminuria data. In total, 81 cohorts had adequate data 

and agreed to participate. Further information on cohorts is available in Appendix 1.  

Exposures: CVD types of interest 

We explored the risk associated with prevalent and incident non-fatal coronary heart disease 

(CHD), stroke, HF, and atrial fibrillation (AF) events on the outcome of KFRT. Prevalent CHD 

was defined as positive history of myocardial infarction (MI), bypass grafting, or percutaneous 

coronary intervention. Incidence of CHD was defined as the occurence of a de novo MI. Most 

cohorts did not have information on HF type, so we analyzed overall HF (see Appendix 1.4 for 

details and ICD codes).  

Outcomes 
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The main outcome of interest was KFRT defined as initiation of dialysis or transplant. The 

secondary outcome was the combined end point of kidney failure defined as KFRT or having 

a follow-up eGFR <15 ml/min/1.73m2. We also considered mortality as a competing outcome.  

Covariables 

Demographic variables included age, sex, and race. Body mass index was modelled as linear 

spline with knot at 30 kg/m2. Smoking status was recoded as current smoking, former smoking 

versus never smoking. eGFR was estimated by the CKD-EPI equation using age, sex, race, and 

serum creatinine.17 eGFR was modelled as linear spline with knot at 60. Albuminuria was 

recorded as the urinary albumin-to-creatinine ratio (ACR) or protein-to-creatinine ratio and 

converted to ACR as done previously18. If these measurements were not available, we used 

dipstick proteinuria information and converted to ACR18. When albuminuria was missing 

more than 25% in a single study, a missing indicator was used (a value of 10 mg/g was used 

to anchor the missing ACR category); this occurred in health systems and the missing ACR 

indicator stands reflect clinical practice. Hyperlipidemia status was controlled for with 

information on total cholesterol, HDL cholesterol and use of lipid lowering medication. 

Diabetes mellitus was defined as the use of glucose lowering drugs, a fasting glucose ≥7.0 

mmol/L or non-fasting glucose ≥ 11.1 mmol/L, hemoglobin A1c ≥6.5%, or self-reported 

diabetes. Hypertension was modelled as continuous systolic blood pressure and 

antihypertensive medication use. These variables were imputed to the sample mean if less 

than 50% missing in a single study, otherwise the variables were excluded from the model. 

Statistical Analyses 

Descriptive data are presented as mean and standard deviation (SD) or median and inter 

quartile interval (IQI). Time to event analysis was analyzed for each CVD event separately with 

follow-up from baseline as the time scale. Baseline was selected on the first serum creatinine 
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measurement 12 months after start date in health system cohorts to allow adequate 

information for determining prevalent CVD. Incident CVD was modelled as a time dependent 

exposure. Hazard ratios and 95% confidence intervals were obtained from Cox regression 

models in each cohort. Estimates were meta-analyzed using a random effects meta-analysis. 

Following analysis of each CVD event type separately, we analyzed all 4 CVD subtypes in a 

single model adjusting for each other. The latter analysis was limited to cohorts that had data 

on all CVD subtypes. Timing of excess risk and absolute risk after CVD were estimated in the 

Optum Labs Data Warehouse (OLDW) cohorts only due to their large sample size and 

representativeness of health system data. The OLDW is a longitudinal, real-world data asset 

with de-identified administrative claims and electronic health record (EHR) data.19 Time after 

incidence of CVD was modelled in three month categories to quantify a priori hypothesized 

higher risk proximal to the CVD event. Baseline absolute risk was estimated from a Fine and 

Gray competing risk of mortality model for each CVD type20. Risks were expressed across 

categories of eGFR and ACR and adjusted to age 70 and 50% male to facilitate comparisons 

across CVD events. Absolute risk was not included for times without CVD since the focus of 

this risk analysis was time after an event and a comparison of absolute risk across CVD 

subtypes. Sensitivity analyses adjusted for the last eGFR before the CVD event to 

conservatively remove the part of the risk associated with eGFR decline prior to the event. 

Analyses were done in Stata version 16 (StataCorp). Statistical significance was determined 

using a 2-sided test with a threshold P value of <0.05. 

 

Results 

Baseline characteristics   
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Across 25,903,761 patients from 81 cohorts, the mean age was 53 (SD 17), 52% were female, 

the mean baseline eGFR was 89 ml/min/1.73m2 (SD 23), 8.8% were black, 15% had diabetes 

and 8.4% had ACR available (median 13 mg/g, IQI 6-36); 2,450,902 (9.5%) had prevalent CHD, 

824,717 (3.2%) prior stroke, 848,609 (3.3%) HF and 1,071,615 (4.4%) a history of AF (Table 1 

and Tables S1-S3). 

 

Incidence of CVD and KFRT 

During a mean follow up of 4.2 years 269,142 (1.0%) participants experienced CHD, 311,021 

(1.2%) stroke, 712,556 (2.8%) HF and 605,596 (2.5%) AF incident events. Respective mean 

(SD) age for these incident events were 69 (13), 71 (13), 72 (12) and 73 (11) years, with details 

in Table S3. In this period, 101,044 participants developed KFRT in the overall population, 

whilst 221,659 participants developed the combined end point of KFRT or eGFR <15 

ml/min/1.73m2 in the subpopulation with repeated eGFR available after the index eGFR 

(Table S4). Among participants who developed KFRT, 53% experienced CVD events (including 

both prevalent and incident cases) prior to KFRT, compared to only 17% experiencing CVD 

events among participants who did not develop KFRT. Figure 1 shows   distribution CVD events 

by occurrence of KFRT during follow-up. 

 

Prevalent and incident CVD and subsequent risk of KFRT 

Patients with prevalent CHD, stroke, HF, and AF at cohort entry were at higher risk of future 

KFRT with adjusted hazard ratios of 1.21 (95%CI 1.17, 1.26), 1.14 (1.10, 1.18), 1.41 (1.34, 1.49), 

and 1.12 (1.07, 1.18) respectively (Table 2). Incident CVD during follow up was strongly 

associated with subsequent risk of KFRT with hazard ratios ranging from 1.98 for stroke to 

4.50 for HF. Analysis of each CVD event adjusted for the other CVD events in 55 cohorts 
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showed the largest hazard ratio for KFRT was associated with HF. Among prevalent events, 

the hazard ratios were 1.12 (1.08, 1.15), 1.07 (1.03, 1.11), 1.37 (1.31, 1.44), and 0.98 (0.94, 

1.02) for CHD, stroke, HF, and AF adjusted for each other. For incident events, the hazard 

ratios were 1.49 (1.38, 1.61), 1.33 (1.22, 1.45), 3.69 (3.36, 4.04), and 1.39 (1.28, 1.52) for CHD, 

stroke, HF, and AF adjusted for each other.  

 

The excess risk was highest in the months following the CVD events, persisted for two years 

and returned to baseline three years after CVD among those who survived (Figure 2, Table 

S5). This analysis was limited to the OLDW cohorts since their large sample size (greater than 

19 million) allowed for a detailed examination of the change in hazard ratio of KFRT for each 

quarter year. This revealed adjusted relative hazards of KFRT ranging from 45 (41, 49) for 

stroke to 106 (102-110) for HF in the first 3 months following the CVD event. The risks declined 

progressively until three years after each event. An analysis adjusting each incident CVD event 

for the other events showed very high risks persisting for HF with an adjusted hazard ratio of 

46 (43, 50) in the first months after HF incidence. In contrast, adjusted for HF and the other 

CVD events, the adjusted hazard ratio for CHD, stroke and AF declined markedly with 

remaining short term risks ranging from 2.1 to 3.6 which declined to less than two-fold after 

3 months but stayed statistically significant for over a year.   

 

Sensitivity analyses showed that the excess risk associated with CVD remained, even after 

adjustment for the most recent eGFR recorded prior to the CVD event (Table S6). Results 

were consistent if shorter follow-up time after the CVD event was considered (Table S7) as 

well as for the secondary broader outcome including eGFR <15 ml/min/1.73m2 during follow-
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up (Table S8). Interaction models showed that the hazard ratios of KFRT after CVD incidence 

were somewhat smaller at lower eGFR and higher albuminuria (Table S6 and S7).  

 

Absolute risk of KFRT 

The 2-year risk of KFRT following CVD events was higher at lower eGFR and elevated ACR with 

highest absolute risk in HF compared to other CVD subtypes. The 2-year risk of KFRT in eGFR 

15-29 and ACR 300+ was 21.1%, 17.9%, 25.6%, and 19.1% for CHD, stroke, HF, and AF adjusted 

to age 70 and half male population after taking death into account as a competing outcome 

(Table 3). The risk of death after CVD events was substantial and higher with lower eGFR and 

higher ACR (Table S9). Among those with eGFR above 60 ml/min/1.73m2, the risk of KFRT was 

higher among younger individuals with diabetes (Table S10). 
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Discussion 

In this large multinational individual participant meta-analysis, we observed strong 

associations between major CVD events and subsequent risk of KFRT. The risk of KFRT were 

strikingly elevated after incident HF, but also after CHD, stroke and AF. Excess risk was present 

for prevalent CVD events but much higher for incident CVD events, particulary HF with 

consistent results across subgroups and a wide range of sensitivity analyses. Given the poor 

clinical and patient-reported outcomes as well as the excessive healthcare costs of KFRT21-23, 

our results have implications on need of detection and monitoring of kidney function as well 

as on need of therapeutic strategies to delay KFRT after CVD events.  

Previous smaller studies have shown prevalent or ‘baseline’ CVD to be associated with 

subsequent accelerated decline in kidney function10-12. However, studies of prevalent CVD 

and future eGFR decline are biased by their inability to take into account the decline in eGFR 

that occurs between the CVD event and subsequent entry into the cohort studied. Hence 

these analyses give limited insight into the degree of risk directly attributable to the CVD 

event. Our results are generally in agreement with analyses of the Atherosclerosis Risk in 

Communities (ARIC) study, which examined the impact of incident CVD and future KFRT, in 

both degree of risk and effect of each of the CVD subtypes14. However, the number of KFRT 

results in ARIC was relatively small (n=210), and the study only included participants from US. 

In the Stockholm CREAtinine Measurements (SCREAM) project, incident CVD was associated 

with an acceleration in decline in eGFR over the subsequent two years post CVD event13. This 

was most marked for HF events, with a 1.09 ml/min/1.73m2/year faster decline post-event 

compared to pre-event, and a similar but lesser magnitude decline observed following CHD 

events. However, quantification of pre-post eGFR slopes depended on testing and on 

surviving two years post CVD event.  
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The mechanisms underlying the increased risk of KFRT in patients with CVD in general and 

with HF in particular, are complex. On one hand, both conditions share common risks factors, 

such as hypertension, diabetes, smoking, obesity and physical inactivity1,24. On the other 

hand, accumulated evidence suggests that both conditions have shared deleterious 

pathophysiological mechanisms often inducing a ‘vicious cycle’ of dysregulated homeostatic 

mechanisms including neurohormonal activation, anaemia, endothelial dysfunction, arterial 

calcification and fibrotic responses leading to the injury in the kidney25.  

 

The large increase in need for KFRT in the immediate 90 days following a HF event requires 

detailed consideration. The risk was highest early after the CVD event, remained elevated for 

up to three years after the CVD event for HF, but waned for other CVD subtypes. Some KFRT 

events following HF may be described as ‘type 1 cardiorenal syndrome’ whereby acute kidney 

injury occurs in the setting of renal haemodynamic compromise accompanying 

decompensated HF26-28. Patients with HF are particularly susceptible to kidney insults. A 

previous report has highlighted the cumulative impact of multiple HF hospitalisations on 

subsequent increased risk of KFRT in patients attending nephrology clinics in Canada15. The 

presence of HF has been shown to be a consistent risk factor for acute kidney injury in studies 

of community prescribing, reiterating the notion that kidney function is precarious in people 

with HF and susceptible to acute deterioration29,30. Some HF events may represent diagnostic 

coding of the clinical syndrome of ‘fluid overload’ representing the inability of the kidneys to 

handle salt and water in advanced CKD.  For other CVD subtypes, acute kidney injury is 

common in the setting of major atherothrombotic CVD event such stroke or CHD and 
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subsequent KFRT risk may reflect subsequent loss of kidney function after an episode of AKI 

or de novo accelerated eGFR decline as suggested previously31,32.  

Our findings have clinical implications on risk stratification and informing decisions around 

therapeutic interventions, intensity of kidney function monitoring, and planning for long term 

KFRT. Although eGFR monitoring is already emphasized by cardiology guidelines33, and 

creatinine is included in some risk calculators for predicting survival of patients with HF34, 

albuminuria testing is an additional and inexpensive early sign of kidney damage35,36 that can 

be added to the routine workout for secondary CVD prevention and hence inform KFRT risk 

simultaneously37. Measures of albuminuria add prognostication to current risk calculators for 

secondary CVD management38,39. Our results also evidence the need of preventing KFRT 

through established therapies. Indeed, there are several pharmacological strategies that have 

demonstrated efficacy in improving albuminuria and delaying eGFR decline and/or KFRT 

onset in persons with established CVD, with or without HF, including renin angiotensin system 

inhibition40-42, sodium glucose transport 2 (SGLT2) inhibition43-45 and finerenone46,47. 

Judicious use of diuretics and optimal fluid management has a role in both treatment of HF 

and maintenance of kidney function48. Whilst these therapies are nowadays mainstay of both 

cardio- and nephroprotection in clinical guidelines, routine care data shows suboptimal use 

and evidence opportunities for improvement49,50. 

Future studies should identify CVD patients at highest risk of CKD progression. Such patients 

may benefit from additional management efforts to avoid damage or overload to the kidneys, 

including the avoidance of nephrotoxins like non-steroidal anti-inflammatory drugs, proton-

pump inhibitors, warfarin or certain antibiotics, whilst proactive use of SGLT2 inhibition may 

both reduce risk of HF hospitalisation and KFRT risk in appropriate patients43,51. Those at 

highest risk of progressive CKD may also require management of CKD specific complications 
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such as anaemia, acidosis, mineral bone disorders and long-term planning to consider dialysis 

modality and/or consider whether kidney transplantation is feasible. Collaborative efforts 

between nephrology and cardiology are crucial in personalising preparation for KFRT. For 

example, creation of an arteriovenous fistula as access for haemodialysis may promote left 

ventricular hypertrophy and elevation in natriuretic peptides, risking exacerbating pre-

existing HF52. The workup of kidney transplant candidates with existing cardiovascular disease 

is controversial and requires more advance planning than in those without CVD53. 

Strengths of this study include the large sample sizes of the study populations; the clinical and 

geographic diversity of the participants; and the rigorous analytical approach. However, some 

limitations should also be acknowledged. There are potential sources of misclassification: 

from heterogeneity on how CVD subtypes were determined or defined across cohort; and 

from defining baseline eGFR or albuminuria status by a single level. We would argue that the 

consistency of our findings despite this inevitable heterogeneity speaks, however, in favor of 

generalizability. We could neither examine whether the severity/subtype of HF or stroke 

modify our conclusions, nor the contribution of socioeconomic status. Whilst CHD, HF and 

stroke are likely to represent cardiovascular events with a definitive date of occurrence, the 

incidence and timing of atrial fibrillation diagnosis may be prone to acquisition bias across 

cohorts, depending on how actively clinicians ‘screen’ for AF (i.e., the prevalence of 

‘asymptomatic’ AF varies widely depending on the age and risk profile)54. Inherent to 

observational studies, residual confounding may exist, and we are unable to separate the 

effect that incident CVD has per se on KFRT risk from that of CVD-management. 

Understanding best management strategies within secondary CVD prevention that may alter 

CKD progression warrants further study and may serve to individualize treatment pathways.  

The time dependent analysis of risk after CVD had to be limited to the largest datasets. 
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In summary, we show evidence that incident CVD events are strongly and independently 

associated with risk for KFRT, with greatest risk in the first year following HF, then CHD and 

stroke. Patients, clinicians and healthcare systems engaged with the management of major 

CVD should be aware of this risk to optimise long-term care ensuring that those at highest 

risk receive appropriate counselling, therapy and referral for management of progressive 

CKD.   
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Table 1. Overall baseline characteristics of 81 participating cohorts 

Baseline characteristics – Overall 

Number of cohorts 81 

Sample size, total 25,903,761 

 Median (25th-75th percentile) 
165,729 
(9,512-366,016) 

Age (SD), years 53 (17) 

Female, % 52% 

Black, % 8.8% 

eGFR (SD), ml 89 (23) 

ACR ₤ 
N 2,178,788 (8.4%) 

Median (IQI), mg/g 13 (6-36) 

Dipstick 

N 5,605,219 

Trace 8.9% 

+ 6.8% 

++ 2.9% 

>++ 0.90% 

Smoker 
Current, % 7.8% 

Former, % 10% 

Diabetes, % 15% 

Hypertension, % 36% 

SBP (SD), mmHg 126 (17) 

HTN meds, % 18% 

Total Cholesterol (SD), mM 4.7 (1.0) 

HDLC (SD), mM 1.3 (0.4) 

Lipid lowering meds, % 13% 

BMI (SD), kg/m2 30 (7) 

Supplementary tables 1 and 2 show details of the characteristics in each cohort at baseline 
and the number of KFRT events during follow up. 
₤ PCR was converted to ACR when ACR was not available. 
ACR: albumin-to-creatinine ratio ; BMI : body mass index; eGFR: estimated glomerular 
filtration rate; HDLC high density lipoprotein cholesterol; HTN meds: hypertension 
medications; SBP : systolic blood pressure.  
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Table 2. Adjusted hazard ratios of kidney failure replacement therapy (KFRT) after different 

cardiovascular events by prevalence, incidence, and timing after the incident event 

modelled separately and simultaneously adjusted for each other. 

 Cardiovascular event types modeled separately  

 CHD Stroke HF Atrial fibrillation 

All participants, N 25,902,290 25,902,290 25,858,471 24,353,175 

Prevalent CVD, N 2,450,902 824,717 848,609 1,071,615 

Incident CVD, N 269,142 311,021 712,556 605,596 

Incident KFRT, N 100,931 100,931 98,001 93,600 
 HRs (95%CI) of KFRT after Baseline Prevalent CVD 

Prevalent CVD 1.21 (1.17, 1.26) 1.14 (1.10, 1.18) 1.41 (1.34, 1.49) 1.12 (1.07, 1.18) 

 HRs (95%CI) of KFRT after Incident CVD During Follow-up 

Incident CVD 3.09 (2.87, 3.32) 1.98 (1.83, 2.14) 4.50 (4.17, 4.85) 2.84 (2.63, 3.06) 

 

 Cardiovascular event types adjusted for each other 

 CHD Stroke HF Atrial fibrillation 

All participants 24,333,904 

Prevalent CVD, N 2,389,565 806,562 836,417 1,071,399 

Incident CVD, N 255,291 293,547 693,115 604,601 

Incident KFRT, N 92,348 

  HRs (95%CI) of KFRT after Baseline Prevalent CVD 

Prevalent CVD 1.12 (1.08, 1.15) 1.07 (1.03, 1.11) 1.37 (1.31, 1.44) 0.98 (0.94, 1.02) 
 HRs (95%CI) of KFRT after Incident CVD During Follow-up 

Incident CVD 1.49 (1.38, 1.61) 1.33 (1.22, 1.45) 3.69 (3.36, 4.04) 1.39 (1.28, 1.52) 

 

Footnote: When modelled separately, but limited to individuals free of all CVD at baseline, 
the adjusted hazard ratios (95% CIs) for incident CVD events are 3.35 (3.12-3.59) for MI, 
2.20 (2.02-2.40) for stroke, 4.76 (4.48-5.06) for HF, and 3.43 (3.14-3.75) for atrial fibrillation. 
CHD: coronary heart disease; CVD: cardiovascular disease; HF: heart failure; KFRT: kidney 
failure replacement therapy;  
Model adjusted to age, sex, black race, eGFR, smoking status, diabetes mellitus, systolic 
blood pressure and antihypertensive medication use, total cholesterol, HDL cholesterol and 
use of lipid lowering medication use, body mass, missing indicator of ACR and 
logtransformed ACR. Details of modelling in  method section.
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Table 3. Absolute 2-year risk of KFRT after incident CVD in the Optum Labs Data Warehouse (OLDW) by eGFR and ACR category 

  eGFR 
All participants ACR <30 or missing ACR 30-299 ACR 300+ 

CHD Stroke HF AF CHD Stroke HF AF CHD Stroke HF AF CHD Stroke HF AF 

N 

90+ 45609 48397 88507 77038 42767 45313 82029 50390 2104 2297 4559 3402 738 787 1919 791 

60-89 82966 99212 215338 211302 77830 92808 200269 160355 3636 4655 10784 11327 1500 1749 4285 2442 

45-59 32789 41675 111743 96564 29735 37936 101483 79123 2059 2575 6863 6956 995 1164 3397 1879 

30-44 21201 24691 80702 62272 18286 21450 69905 50666 1824 2046 6737 5897 1091 1195 4060 1995 

15-29 10190 9570 39442 27253 7977 7614 31274 20076 1010 950 3834 2997 1203 1006 4334 1746 

                  

Age and sex 
adjusted risk 
of KFRT 
accounting 
for death as 
a competing 
risk 

90+ 0.2% 0.2% 0.3% 0.3% 0.2% 0.2% 0.3% 0.2% 0.5% 0.4% 0.4% 0.4% 1.1% 0.3% 1.3% 0.4% 

60-89 0.3% 0.2% 0.4% 0.3% 0.2% 0.2% 0.3% 0.2% 0.5% 0.3% 0.6% 0.5% 1.2% 0.9% 1.3% 0.8% 

45-59 0.9% 0.5% 1.0% 0.8% 0.8% 0.4% 0.9% 0.7% 0.7% 0.4% 1.5% 1.1% 3.9% 2.1% 3.0% 1.6% 

30-44 2.4% 1.8% 2.8% 2.3% 2.1% 1.4% 2.4% 2.0% 3.4% 2.3% 3.4% 3.2% 6.2% 5.6% 7.3% 5.3% 

15-29 11.9% 9.0% 14.0% 10.6% 10.1% 7.5% 12.1% 9.4% 14.4% 9.9% 14.6% 12.1% 21.1% 17.9% 25.6% 19.1% 

  

Footnote: Risk of KFRT takes into account death as a competing risk and is age and sex adjusted to age 70 and half male to allow comparisons 
across the CVD subtypes.   
ACR: albumin-to-creatinine ratio ; CHD: coronary heart disease; CVD : cardiovascular disease; eGFR: estimated glomerular filtration rate; HF: 
heart failure; KFRT: kidney failure replacement therapy 
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Figure 1.  CVD events distribution by occurrence of KFRT during follow-up.  Both prevalent 
and incident CVD events are included. Among individuals who developed KFRT events are 
limited to CVD prior to KFRT while among individuals without KFRT all events during follow-
up are included 

 

  

46.5%

83.4%

2.8%

2.0%

4.1%

2.2%

8.6%

4.8%

4.7%

2.0%

8.0%

1.3%

25.4%

4.3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

People who developed
KFRT

People who did not
develop KFRT

HF with other CVD events

HF alone event

Multiple non-HF CVD
events

CHD alone event

Stroke alone event

Afib alone event

No CVD event



 31 

Figure 2. Adjusted hazard ratios of kidney failure replacement therapy (KFRT) associated 
with different cardiovascular (CVD) events modelled (A) separately or (B) simultaneously 
adjusted for each other by timing after the incident CVD event in OLDW 
Panel A 

 
Panel B 

 

 


