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Abstract 

 

Background: Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder of 

complex genetic architecture, characterized by multiple motor tics and at least one vocal tic 

persisting for more than one year.  

Methods: We performed a genome-wide meta-analysis integrating a novel TS cohort with 

previously published data, resulting in a sample size of 6,133 TS individuals and 13,565 

ancestry-matched controls. 

Results: We identified a genome-wide significant locus on chromosome 5q15. Integration of 

eQTL, Hi-C and GWAS data implicated the NR2F1 gene and associated lncRNAs within the 

5q15 locus. Heritability partitioning identified statistically significant enrichment in brain 

tissue histone marks, while polygenic risk scoring on brain volume data identified statistically 

significant associations with right and left thalamus volumes and right putamen volume.  

Conclusions: Our work presents novel insights in the neurobiology of TS opening up new 

directions for future studies. 
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Introduction 

Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder characterized by 

multiple motor tics and at least one vocal tic persisting for more than one year (1). The 

prevalence of TS is estimated in the range of 0.6-1% in school-aged children (2,3). It is a highly 

heritable disorder (4) with a population-based heritability estimated at 0.7 (5,6) and SNP-based 

heritability estimates ranging from 0.21 (7) to 0.58 (4) of the total heritability. TS exhibits high 

polygenicity and its genetic background is influenced by both common and rare variants of 

small effect spread throughout the genome (4,8,9). Two previously conducted genome-wide 

association studies (GWAS) (7,10), have indicated enrichment of TS genetic susceptibility 

variants in tissues within the cortico-striatal and cortico-cerebellar circuits, and in particular, 

the dorsolateral prefrontal cortex (7,10). Furthermore, gene set analyses of GWAS data 

implicated ligand-gated ion channel signaling, lymphocytic, and cell adhesion and trans-

synaptic signaling processes as potential biological underpinnings in the pathogenesis of TS 

(11). Polygenic risk scores derived from the second TS GWAS can predict tic presence and 

severity at a statistically significant level (7,12). Additionally, the hypothalamus-pituitary-

adrenal (HPA) axis was implicated in recent cross-disorder GWAS analysis for TS, attention 

deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) (13). 

Here, we present a genome-wide meta-analysis for TS integrating novel and previously 

published data resulting in a combined sample size of 6,133 TS individuals and 13,565 

ancestry-matched controls. We identify a novel genome-wide significant locus in the novel 

(TS-EUROTRAIN) GWAS and the TS GWAS meta-analysis. Our results provide further 

insight into the genetic basis of TS. 
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Methods and Materials 

Datasets 

The TS-EUROTRAIN dataset brings together three major TS cohorts, including 632 

participants from the European Multicenter Tics in Children Study (EMTICS) (14), 763 

participants from the TS-EUROTRAIN study (15), 238 participants from the TSGeneSEE 

study (16), and 52 participants from Sweden. These studies included participants from multiple 

European sites who were diagnosed using DSM-IV-TR or DSM-5 criteria for TS, consistent 

with previously published TS studies. In total, we collected samples from 1,685 individuals 

with TS (Supplementary Table 1). Additionally, 4,454 population-matched control individuals 

were recruited. Ancestry-matched controls were also used from the following public datasets 

following appropriate approvals: British WTCCC2 1958 Birth Cohort samples (Study 

accession code: EGAS00000000028), German control samples obtained from the POPGEN 

biobank (17), and French controls from the Three City Study (18), leading to a total of 8,558 

general population controls (Supplementary Table 1). Written informed consent was obtained 

from all participants, as approved by the ethics committees of all participating institutions. 

Genotyping, merging and imputation 

Samples from the TS-EUROTRAIN dataset were genotyped on the Illumina 

HumanOmniExpress BeadChip at Decode genetics. The control samples obtained from 

collaborators and public repositories were genotyped on multiple Illumina arrays and full 

details are provided in the respective references and Supplementary Table 1. We applied 

standard GWAS quality control procedures to our data before and after the imputation, as 

described in previous GWAS performed by the Psychiatric Genomics Consortium (PGC) (7). 

Quality control procedures included the removal of samples that fit any of the following 

criteria: call rate < 0.98, absolute value of inbreeding coefficient < 0.2, genomic sex 
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discrepancy with reported sex, and formation of pairs with relatedness > 0.1875. We applied 

variant quality control, excluding markers with call rate < 0.98, differential missingness 

between cases and controls < 0.02, Hardy–Weinberg equilibrium P-value < 10-6 in controls 

and < 10-10 in cases. 

The quality control steps were applied on each dataset separately. Imputation was performed 

on the Sanger Imputation Server using a reference panel of 64,940 European ancestry 

haplotypes (v1.1) from the Haplotype Reference Consortium (HRC) (19,20). We performed 

batch effect tests in samples of same status (case/control) between different sources, as they 

are shown in Supplementary Table 1, excluding markers that achieved a p-value < 10-5. X 

chromosome data were excluded from the final analysis. To avoid ancestry bias, we matched 

the ancestry of the controls to TS individuals, at a three to one ratio, using the first five principal 

components as basis for a final dataset of 1,438 individuals with TS and 4,356 controls on 

2,949,675 markers. 

Genome-Wide Association Study 

We conducted a GWAS using an additive logistic regression model on the best guess genotypes 

produced by imputation. We incorporated the principal components identified by Tracy-

Widom statistics, as calculated by EIGENSOFT(21,22), as well as sex and imputation batch. 

We excluded SNPs when their MAF was <1% and minor allele count was <10, in either cases 

or controls. We set the level of genome-wide significance at P = 5×10- 8. We estimated 

confounding bias in our results by performing LD Score Regression with ldsc (23) and using 

the attenuation ratio, as well as the p-value of the intercept to evaluate our results. Results were 

plotted using matplotlib in Python and the package region-plot (24).  
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Meta-analysis 

We conducted a meta-analysis with the results of the second TS GWAS study conducted by 

the TS Working Group of the PGC (TSGWAS2) (7). Sample overlap was verified through 

genotypic identity-by-descent analysis, so the TS-EUROTRAIN GWAS was re-analyzed after 

excluding the overlapping samples (124 cases and 279 controls), leading to a non-overlapping 

sample size of 1,314 cases and 4,077 ancestry-matched controls. The summary statistics were 

used as input to METASOFT (25). METASOFT implements an array of methods for meta-

analysis, especially in the case of heterogeneity in the results. In our study, we employed Han 

and Eskin’s random effects model (RE2), which separates hypothesis testing from effect-size 

estimation, and is demonstrated to increase statistical power under heterogeneity compared to 

the conventional random effects model (26,27). We also employed METASOFT to produce m-

values, that is, estimates of the posterior probability that an effect exists, with small values 

indicating absence of effect, large values indicating presence of effect, and intermediate values 

indicating ambiguity (25).  

Heritability and heritability partitioning 

SNP-based heritability was estimated through LD Score Regression (LDSC) (23). We further 

investigated heritability partitioning into functional categories using stratified (LDSC) (28). TS 

heritability was partitioned into 53 functional categories as well as into 220 cell-type-specific 

and 10 cell-type-group-specific annotations produced on the data derived from the Roadmap 

Epigenomics Project (29). The significance threshold for the heritability enrichments was 

defined at a Benjamini-Hochberg false discovery rate (FDR) < 0.05.  
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Genetic correlations 

Bivariate LD score regression (23) was conducted to identify genetic correlations between the 

TS-EUROTRAIN GWAS, the TS EUROTRAIN/GWAS2 meta-analysis, and TSGWAS2 (7). 

We then examined each of these studies’ cross-disorder correlations with multiple psychiatric 

and neurological disorders for which data were accessible and are listed in Supplementary 

Table 2. To avoid confounding due to sample size, we selected summary statistics from studies 

with more than 5,000 samples and all studies, except anxiety (h2
SNP z-score= 2.5), have a 

heritability z-score >4. For the correlation analysis we used the European LD scores and 

merged alleles based on the HapMap3 reference panel for each trait, excluding markers residing 

in the Major Histocompatibility Complex region on chromosome 6. Significance threshold was 

defined by Benjamini-Hochberg FDR as p< 0.05.  

Polygenic Risk Scoring 

We used PRSice-2 (30) for our Polygenic Risk Score (PRS) analysis. We performed a unilateral 

PRS analysis between the TS-EUROTRAIN cohort and the TSGWAS2 (7) cohort, using the 

TSGWAS2 summary statistics as discovery and the TS-EUROTRAIN GWAS, after excluding 

the overlapping samples, as the target dataset. The TSGWAS2 summary statistics were 

clumped on the LD information of the TS-EUROTRAIN GWAS, using a window of 250kb 

and an r2 threshold of 0.1. PRSice performed the scoring on subsets of the dataset based on 

nine thresholds of p-value leniency (5×10-8, 10-4, 10-3, 0.01, 0.05, 0.1, 0.2, 0.5, 1). The resulting 

PRS was tested for association with TS, using logistic regression with the previously mentioned 

ancestry components, sex, and imputation batch as covariates. The model fit for best p-value 

threshold was run using 10,000 permutations. Liability scale was calculated on the variance 

explained by the PRS (R2), using a TS population prevalence of 1%. 
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Biological annotation of results 

We used FUMA (31) to perform gene-based and gene-set analyses on the results from the TS-

EUROTRAIN GWAS and the subsequent TS-EUROTRAIN/GWAS2 meta-analysis. The 

genetic variants were assigned to protein-coding genes based on their GRCh37 build genomic 

position, using a ±20kb window size. After quality control, 18,089 genes contained at least one 

variant and as such were used for the gene-based analysis, thus setting the Bonferroni threshold 

at p < 2.764×10-6. The gene-based association results were subsequently used for gene-set 

analysis under a competitive model. Tissue Expression Analysis was conducted on the GTEx 

v8 expression data (32,33). We investigated chromatin contact points through Capture Hi-C 

data available from the 3D Genome Browser (34), using promoter-centered long-range 

chromatin interaction data derived from human dorsolateral prefrontal cortex tissues(35). 

We performed a set-based association analysis using PLINK (36,37) on the gene-sets that were 

previously identified as significantly associated with TS (11,38). We used logistic regression 

as the association model on the genotypes and principal components that were identified by 

Tracy-Widom statistics in the GWAS. Another repetition of this step was performed with the 

χ2 association test, to test for this method’s robustness to population structure. We proceeded 

to run the analysis on all samples, using a 10kb genomic window size and a million 

permutations. Since the permutations were performed on the phenotypic status of the samples, 

and only served as a method of association of the trait with the gene sets, we also corrected the 

results by defining the significance threshold through Bonferroni correction. 

Investigating genetic relationships with  Subcortical  Brain Volumes 

Using the TS-EUROTRAIN/GWAS2 meta-analysis summary statistics as base, we computed 

TS PRS (PRSTS) for individuals in the UK Biobank (UKBB) (39) using PRScs (40) and 

subsequently evaluated the association between risk scores and subjects’ 14 subcortical 
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volumes (FIRST) that were available in the UKBB (category 1102). Since we had access to 

individual-level UKBB data, it was possible to calculate the association of PRSTS and different 

brain volumes, instead of just evaluating their genetic correlation with LDSC. After quality 

controls (see Supplementary methods), 29,798 samples with brain MRI phenotypes available 

were included in the analysis. To calculate the PRS for these individuals we applied the 

continuous shrinkage method implemented in PRScs to obtain the updated effect sizes for all 

SNPs in TS-EUROTRAIN/GWAS2 meta-analysis summary statistics using European 1000 

Genomes data as the reference for LD structure. We then used these updated effect sizes to 

calculate the PRS using the score function in PLINK (37). Regressions between PRSTS and 

brain volume measurements were performed using the PHESANT tool (41) while using age, 

sex, genotyping batch and the first ten UKBB PCs, as covariates. Significance threshold was 

defined by Benjamini-Hochberg FDR as p< 0.05. Additionally, to leverage results from larger 

datasets for which individual-level data were not accessible, we used LDSC to test the genetic 

correlation of the TS-EUROTRAIN/GWAS2 meta-analysis and seven subcortical brain 

volumes GWAS summary statistics from the ENIGMA consortium (42). 

Results 

Mega-analysis of TS-EUROTRAIN GWAS 

GWAS analysis was performed as a mega-analysis, on the combined genetic data of all TS-

EUROTRAIN samples (1,438 TS cases and 4,356 controls), using a logistic regression model 

on the best-guess genotypes (genotype probability > 0.9) with INFO score > 0.9 and 

MAF> 0.01. As covariates, we included the ancestry components 1,2,4, and 5 to account for 

population stratification as identified by ANOVA statistics (Supplementary Table 3), sex, and 

imputation batch. 

Jo
urn

al 
Pre-

pro
of

https://paperpile.com/c/wvCZbE/bvVws
https://paperpile.com/c/wvCZbE/B1Hie
https://paperpile.com/c/wvCZbE/FGnv


 

13 
 

The TS-EUROTRAIN GWAS identified three highly-correlated (r2>0.8) genome-wide 

significant SNPs, located near the NR2F1 Antisense RNA 1 long non-coding RNA (NR2F1-

AS1 lncRNA) locus (Supplementary Figures 1 and 2a). The strongest signal was found for 

rs2453763 (chr5:92376460:T/A, OR = 0.7512, P = 2.62×10-8, MAF=0.3581), a variant 350kb 

upstream of NR2F1-AS1, and associated with decreased risk for TS. The imputation statistics 

for this SNP indicate high imputation quality (MAF= 0.3581, INFO= 0.99). The proximal SNPs 

were rs2009416 (chr5:92415111:T/C, OR = 0.7532, P =3.31×10-8, MAF=0.3562) and 

rs1496337 (chr5:92411293:T/C, OR= 0.7534, P = 3.33×10-8, MAF=0.3563). Conditional 

analysis using the lead SNP as covariate showed no secondary signals in the region. The top 

(P < 10-5) loci detected in the novel GWAS are reported in Table 1. LD Score Regression 

analysis of the summary statistics did not provide evidence for genomic inflation (λGC = 1.07, 

intercept=1.0061, intercept p-value=0.28, attenuation ratio=0.0887), while using the full 

GWAS SNPs the λGC is 1.05 (Supplementary Figure 1b).  

TS-EUROTRAIN Meta-analysis with TSGWAS2 

The TS-EUROTRAIN GWAS was then meta-analyzed with summary statistics results from 

the previous largest meta-analysis of TS to date (TSGWAS2) (7) using Han and Eskin’s 

random effects model (25,26). Since there was a small but known sample overlap between the 

two studies, the TS-EUROTRAIN GWAS was re-analyzed after excluding the overlapping 

samples (124 cases and 279 controls) resulting in a dataset of 1,314 cases and 4,077 ancestry-

matched controls, with the results being very similar to the full dataset TS-EUROTRAIN 

GWAS (Supplementary Figure 3). Only variants overlapping in both studies were included, 

leading to a total of 6,133 cases, 13,565 controls and 1,955,677 variants in the final meta-

analysis.  
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The TS-EUROTRAIN/GWAS2 meta-analysis (Figure 1, Supplementary Table 4) pointed 

again to the three genome-wide significant SNPs of the TS-EUROTRAIN GWAS, which 

remained genomewide significant in the meta-analysis with rs2453763 again being the most 

strongly associated (chr5:92376460:T/A, random effects P = 4.05×10-8). SNP, rs10209244 

(chr2:161561898:A/G, random effects  P = 6.16×10-8, MAF = 0.01) that resides 200kb 

downstream of RBMS1 (Supplementary Figure 2b) was the next hit and did not manage to 

achieve genomewide significance. The top loci detected from the meta-analysis are reported in 

Table 2. LD Score Regression analysis of the summary statistics did not provide evidence for 

genomic inflation (λGC = 1.16, intercept=1.016, intercept p-value=0.11, attenuation 

ratio=0.0869). 

Genetic relationship between the TS-EUROTRAIN GWAS and TSGWAS2 

The SNP with the strongest signal in the previously published TSGWAS2 study was absent 

from the TS-EUROTRAIN dataset due to the differences in reference panels used (1000 

Genomes for TSGWAS2 and HRC for the novel study) and stringent batch effect quality 

control performed on the novel dataset. However, we observed no genomewide significant 

heterogeneity (Cochran’s Q-test p-value< 5×10-8) in the meta-analysis. 

To explore the relationship between the TS-EUROTRAIN GWAS and TSGWAS2, we used 

LDSC (23) to compute their genetic correlation, after excluding the overlapping samples. 

LDSC identified a strong genetic correlation between the two studies (rg = 0.95, p = 6×10-8), 

and provided evidence of consistency across them (Figure 2). Investigation of the gene sets 

found previously associated with TS (11,38) also successfully replicated the associations for 

the lymphocytic, the ligand-gated ion channel signaling, the cell adhesion and trans-synaptic 

signaling, as well as the astrocyte-neuron metabolic coupling gene sets (Supplementary Table 

5). 
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PRS analysis displayed consistency between the two studies. PRS were computed using the 

summary statistics of TSGWAS2 as a training dataset and the TS-EUROTRAIN raw genotypes 

as discovery in PRSice (43). The best fit p-value threshold was determined at p = 0.1182 (model 

fit p = 1.26×10-28) (Figure 3a-b). Maximum variance explained at the best fit model was 

estimated by Nagelkerke’s R2 at 3.3%. 

Cross-disorder analysis 

Pairwise genetic correlations were computed between ten psychiatric and six neurological traits 

using LDSC (23) and results are shown in Figure 2. Benjamini-Hochberg FDR correction with 

an α=0.05 was used to correct for multiple testing. After correction, the TS-

EUROTRAIN/GWAS2 meta-analysis was significantly correlated with OCD (rg = 

0.39, pFDR = 3.4×10-3. We also observed genetic correlations with p<0.05 for the meta-analysis 

with ADHD, SCZ, and Migraine which were however not significant after FDR correction. 

Heritability estimation and partitioning 

We used LDSC (23) to estimate the SNP-based heritability (h2
SNP) using the summary statistics 

of the novel GWAS and the meta-analysis. The summary statistics were merged with the 

HapMap3 marker panel provided by the authors. For the TS-EUROTRAIN GWAS, analysis 

yielded an h2
SNP estimate of 0.4385 (SE: 0.1167) on the observed scale, and 0.2736 (SE: 0.0728) 

assuming a TS prevalence of 0.01 on the liability scale, while the LD score regression analysis 

intercept was computed at 1.0157 (SE: 0.013) (p-value 0.028) and the ratio of stratification to 

polygenicity was estimated at 0.0863 (SE: 0.0711). For the meta-analysis the h2
SNP estimate 

was 0.3504 (SE : 0.0439) and 0.2184 (SE: 0.0269) on the liability scale. 

We proceeded to partition the heritability of the meta-analysis GWAS by functional genomic 

categories using stratified LD Score Regression (28) on the full baseline model and a model 

based on the Roadmap epigenomics data, as provided by the authors (28). The full baseline 
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model included 24 main overlapping functional categories and identified statistically 

significant enrichment in two categories, after Benjamini-Hochberg FDR correction at an 

α=0.05. The H3K4me1 sites category (enrichment value 1.61, P = 9.5×10-4) was the top 

significant signal in the analysis, with the conserved elements category (enrichment value 2.05, 

P = 3.8×10-3) being the second significant signal. The Roadmap model includes epigenomic 

mapping data from 395 tissues (29) and when applied to our data for heritability partitioning, 

yielded 13 statistically significant modifications after Benjamini-Hochberg FDR correction at 

an α=0.05. These 13 signals marked the enrichment of the histone marks H3K27ac, H3K4me1, 

and H3K9ac on five brain tissues. H3K27ac was identified on the angular gyrus, the cingulate 

gyrus, the dorsolateral prefrontal cortex, and the inferior temporal lobe; H3K4me1 on the 

angular gyrus, the cingulate gyrus, the dorsolateral prefrontal cortex, the inferior temporal lobe, 

and the substantia nigra; H3K9ac on the angular gyrus, the anterior caudate, the dorsolateral 

prefrontal cortex, and the inferior temporal lobe (Supplementary Tables 6 and 7). 

Biological annotation and enrichment analysis 

Functional mapping, annotation, and gene set enrichment using the FUMA pipeline did not 

produce significant results. The identified top signals from the TS-EUROTRAIN GWAS and 

the TS-EUROTRAIN/GWAS2 meta-analysis reside in large intergenic regions exceeding the 

distance limits set by the software, and were thus excluded from the annotation step of the 

pipeline. The top signal of the TS-EUROTRAIN/GWAS2 meta-analysis gene-based analysis 

was RANGAP1 (P = 3.36×10-6) on chromosome 22; it did not meet the genome-wide 

significance threshold (P = 2.8×10-6) (Supplementary Table 8). MAGMA tissue expression 

analysis using FUMA did not produce any statistically significant results for the TS-

EUROTRAIN GWAS or the meta-analysis (Supplementary Figures 4a-b and 5a-b). MAGMA 

tissue expression analysis of the meta-analysis, using the 53 tissue sample set from GTEx, 

indicated stronger putative enrichment in various brain tissues, with the top signals in the 
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cerebellar hemisphere, cerebellum, and frontal cortex (area BA9). Using the 30 tissue sample 

set from GTEx, stronger evidence of potential enrichment could be identified in the brain, 

followed by the pituitary and the ovary (Supplementary Figure 5a-b).  

Regarding the top SNP in our GWAS, the GTEx portal (32) reports SNP rs2453763 to be 

significantly associated as a splicing quantitative trait locus (sQTL) for CTD-2091N23.1 in the 

tibial nerve, and as an expression quantitative trait locus (eQTL) for NR2F1 and NR2F1-AS in 

the esophagus smooth muscles and for CTD-2091N23.1 in cultured fibroblasts (Table 3). 

Capture Hi-C (34) showed strong evidence for the SNP being related to the regulation of 

NR2F1 (Supplementary Figure 6a).  

Genetic correlation to Subcortical Brain volumes  

The genetic correlation analysis for our TS-EUROTRAIN/GWAS2 meta-analysis and 

ENIGMA GWAS summary statistics for seven subcortical brain volumes (42) did not reveal 

any significant correlation (Supplementary Table 9). However, with individual-level data 

available within the UKBB, we were also able to test for association of TS PRSTS to specific 

brain phenotypes. Our results highlighted the previously described relationship (44) between 

genetic risk for TS and putamen volume. We observed that increase in the genetic risk of TS 

was associated with decrease in right putamen (beta: -0.0175, adj.p: 0.0069) and left pallidum 

(beta: -0.0137, adj.p: 0.043) volumes. Significant associations were also observed between 

PRSTS and bilateral thalamic volume indicating that increase in PRSTS was associated with 

decrease in right thalamus volume (beta: -0.0138, adj.p: 0.035) and left thalamus volume (beta: 

-0.0132, adj.p: 0.037) (Supplementary Table 10). 

Discussion 
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We present results from a novel TS GWAS and integrate with a previous study to report the 

largest GWAS meta-analysis on TS at this time (6,133 TS individuals of European ancestry 

and 13,565 matched controls). We find one novel independent genome-wide significant locus 

associated with TS on chromosome 5q15 upstream of a gene cluster that harbors NR2F1-AS, 

NR2F1, and lnc-NR2F1. The top associated SNP is located within CTD-2091N23.1, a gene 

encoding a long non-coding RNA that has yet to be functionally characterized. Our study 

provides novel insights into the genetic cause and pathophysiology of TS. However, replication 

of results in independent samples and even larger studies are needed in order to ultimately 

elucidate the background of this complex disorder and lead towards interventions that will be 

informed by genetic discoveries.  

The 5q15 region that is highlighted by our study has previously been implicated in 

neurodevelopmental phenotypes (45–48). The 5q14-5q15 regions have been reported to 

contain fragile sites that are associated with genomic and epigenomic instability as well as 

linked to schizophrenia and autism (49). The exact genes are yet to be identified, with recent 

evidence suggesting a role for NR2F1-related genes, and more intriguingly, the lnc-NR2F1 

gene. lnc-NR2F1 is a long non-coding RNA locus discovered to be recurrently mutated in 

individuals with autism spectrum disorders and intellectual disability, with translocations in 

this locus reported to show patterns of Mendelian inheritance (50). A functional study of lnc-

NR2F1 identified its role in neuronal maturation in vitro through expression regulation of a 

network of genes that have been linked to autism (50). Functional studies of the NR2F1 gene 

also have indicated its critical role for neurodevelopment through investigations into human 

and mouse haploinsufficiency (51), insertion of point mutations in mouse models that lead to 

excitatory/inhibitory neuronal imbalance (52), and the study of knock-out mouse models (53). 

Notably, in the absence of NR2F1, an imbalance between oligodendrocytes and astrocytes 

develops, leading to postnatal hypomyelination and astrogliosis (51).  
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NR2F1 is a highly conserved orphan nuclear receptor which is a regulator of transcription. It 

belongs to the steroid/thyroid hormone nuclear receptor superfamily, involved in a wide range 

of roles, including cell differentiation, cancer progression, and central and peripheral 

neurogenesis (54). A multitude of pathogenic variants have been identified in NR2F1, leading 

to Bosch-Boonstra-Schaaf optic atrophy syndrome, and autosomal dominant 

neurodevelopmental disorder (55). NR2F1 is also known by its historical name, COUP-TF1; it 

is a target of the androgen receptor (AR), along with SOX9 and OCT4 (56). NR2F1 interacts 

with SOX9 (56,57)) and represses a host of targets in multiple tissues, including CYP17A1, 

Oxytocin gene OXT, and OCT4 (58). Especially in the case of CYP17A1, encoding for a key 

enzyme of steroid biosynthesis, NR2F1 and SF-1 exert opposing effects, as repressor and 

activator, respectively (59).  

A limitation of our study is that we did not replicate our findings in independent samples due 

to lack of data availability. Future studies will help evaluate the magnitude of the contribution 

from the locus implicated by our study. Nevertheless, we sought to validate our results through 

means of heritability correlation patterns and polygenic risk scoring. Heritability analysis in 

the TS-EUROTRAIN dataset indicated that a large proportion of TS SNP-based heritability 

can be attributed to common variants (h2
SNP =0.4385), in concordance with the estimate ranges 

in previous investigations (4,7). The lower SNP heritability (h2
SNP =0.3504) we observed in 

meta-analysis, we suspect could be due to the heterogeneity with additional samples and 

different populations included in the meta-analysis. Polygenic prediction in the TS-

EUROTRAIN cohort using the TSGWAS2 results as discovery achieved significant predictive 

levels, on par with the inter-cohort predictive Nagelkerke’s R2 levels in the previous TS GWAS 

(7) and substantially increased by more than an order of magnitude compared to tic prediction 

in a general population cohort (12). 
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Like most GWAS, this study does not yet have direct clinical implications. However, this work 

can motivate future studies that may have significant clinical impact, like for instance patient 

stratification according to genetic risk to inform clinical practice or drug discovery based on 

genetic loci that are identified through genetic association. Our recently described 

phenomewide association analysis of TS genetic risk and  a large number of clinical traits 

available in the UKBB represents one further step towards clinically related discoveries (60). 

Our study is an important stepping stone towards understanding the genetic background of TS 

and confirms the value of collaborative efforts towards expanding sample size and datasets 

available for analysis (such as the TS-EUROTRAIN, EMTICS, TSGeneSEE, and PGC 

initiatives). However, we still only capture a small fraction of the risk for TS attributable to 

common variants. Larger studies, bringing together even larger datasets are necessary and 

warranted and indeed are currently underway, with participation from authors of this work. 

Increased statistical power will further enable the identification of more leads towards the 

elucidation of the underlying biology of TS and potential future interventions.  
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Tables and figure legends 

 

Table 1: Top regions (p<10-5) in the TS-EUROTRAIN GWAS. The total sample size was 1,438 

cases and 4,356 controls on 2,949,675 variants). One variant was identified as genome-wide significant 

(p<5×10-8). Chromosome and region (based on hg19) are shown for index SNPs (LD-r2 >0.1), as well 

as the number of LD-associated markers in proximity (N). A1 refers to the associated allele. The odds 

ratio (OR) and standard error (SE) are shown for the association between A1 and TS. MAF indicates 

the allelic frequency of allele 1 in the dataset. The reported nearest genes were determined by genomic 

location (±500 kb). The analysis was restricted to variants with MAF ≥ 0.01 and information quality 

(INFO) score ≥ 0.9. Chromosome X was not analyzed, since it was absent from a significant portion of 

the acquired datasets. 

 

Table 2: Top regions (p<10-5) in the TS GWAS meta-analysis (TS-EUROTRAIN and TSGWAS2). 

The analysis performed on 6,133 cases, 13,565 controls on 1,955,677 variants using Han and Eskin's 

random effects model (24). One variant was identified as genome-wide significant (p<5×10-8) while 

the second top hit reached a (p<10-7). Chromosome and region (based on hg19) are shown for index 

SNPs (LD-r2>0.1), as well as number of LD-associated markers in proximity (N). The reported nearest 

genes were determined by genomic location (±500 kb). MAF indicates the allelic frequency of the minor 

allele in the dataset. MAF EUR (1KG) indicates the frequency of the minor allele in the meta-analysis 

in the 1000 Genomes Project European samples. 

 

Table 3: Significant SNP-gene pairings identified through GTEx eQTL and sQTL data (37, 38). 

Four significant associations were identified for SNP rs2453763, while no significant associations 

were identified for rs10209244. rs2453763 is an eQTL for three genes on two tissues, and an sQTL 

for one gene on one tissue. Reported are the symbol of the associated gene, the respective associated 

tissue, and the normalized effect size (NES). a) GTEx eQTL associations for the top variant 

in NR2F1 (rs2453763). b) GTEx sQTL associations for the top variant in NR2F1 (rs2453763) 

 

Figure 1. The Manhattan plot for the genome-wide association meta-analysis of Tourette Syndrome 

with the TS-EUROTRAIN and the TSGWAS2 datasets (6,133 TS cases and 13,565 controls of 

European descent on 1,955,677 variants) using Han and Eskin's random effects model (24). The -

log10(p) values for the association tests (two-tailed) are shown on the y axis and the chromosomes are 

ordered on the x axis. One genetic locus on chromosome 5 surpassed the genome-wide significance 

threshold (p<5×10-8; indicated by the red line). Gray and black differentiate adjacent chromosomes. 

 

Figure 2. Genetic correlations with Tourette Syndrome. The genetic correlations were estimated with 

bivariate LD score regression (21). We showcase the correlations between three TS studies (TS-

EUROTRAIN, TS-EUROTRAIN/TSGWAS2 meta-analysis, and TSGWAS2) and 16 psychiatric and 

neurological traits (see supplementary Table 2 for full list of studies and abbreviations). The number 

in each square denotes the correlation rg.  Two asterisks (**) denote the correlations that were 

identified as statistically significant after Benjamini-Hochberg FDR correction (a=0.05), while one 

asterisk (*) shows the correlations with nominal p<0.05. 

 

Figure 3. Polygenic Risk Scoring analysis using the TSGWAS2 dataset (7) as discovery and the TS-

EUROTRAIN dataset as target. Best fit p-value threshold was determined at p=0.1182 (model fit 

p=1.26×10-28). Maximum variance explained at the best fit model was estimated by Nagelkerke's R2 

at 3.3%. a) PRS distribution comparison between cases and controls for the best fit model. b) PRS 
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histogram for each p-value bin, including the best fit bin. 
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Tables 

Table 1: Top regions (p<10-5) in the TS-EUROTRAIN GWAS. 

 

 

SNP ID Ch

r 

P-value A1 OR SE N MAF 

Cases 

MAF 

Controls 

Location KB Nearest 

Genes 

rs2453763 5 2.623E-08 T 0.751 0.051 25 0.314 0.373 chr5:9232242

7..92559372 

236.9

46 

NR2F1-AS1 

rs2197383 3 4.681E-07 A 0.595 0.103 165 0.050 0.077 chr3:7988949

7..80380401 

490.9

05 

ROBO1 

rs3773057 3 1.388E-06 T 0.198 0.335 23 0.003 0.019 chr3:2956316

4..29627731 

64.56

8 

RBMS3, 

RBMS3-AS3 

rs9382365 6 1.829E-06 G 0.677 0.081 77 0.087 0.112 chr6:5441835

1..54531232 

112.8

82 

FAM83B, 

TINAG 

rs152061 5 2.085E-06 T 1.26 0.049 196 0.434 0.379 chr5:6477894

4..64989139 

210.1

96 

ADAMTS6, 

CENPK, 

ERBB2IP, 

NLN, PPWD1, 

SGTB, 

TRAPPC13, 

TRIM23 

rs2278796 1 6.882E-06 T 1.26 0.052 9 0.330 0.279 chr1:2049512

09..20497155

3 

20.34

5 

CNTN2, 

DSTYK, 

NFASC, 

RBBP5, 

TMCC2, 

TMEM81 

rs34940828 3 7.531E-06 C 2.10 0.16 64 0.027 0.015 chr3:1232138

95..12339846

6 

184.5

72 

ADCY5, 

CCDC14, 

MYLK, MYLK-

AS1, PTPLB, 

SEC22A 

rs2076218 1 9.746E-06 A 1.25 0.05 3 0.380 0.340 chr1:2097453

95..20976869

9 

23.30

5 

C1orf74, 

CAMK1G, 

DIEXF, G0S2, 

HSD11B1, 

IRF6, LAMB3, 

MIR205, 

MIR205HG, 

MIR4260, 

TRAF3IP3 
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Table 2: Top regions (p<10-5) in the TS GWAS meta-analysis (TS-EUROTRAIN and 

TSGWAS2). 

 

SNP ID Ch

r 

P-value OR MAF MAF 

EUR 

(1K

G) 

N Location KB Nearest Genes 

rs2453763 5 4.054E-

08 

0.83 0.35

8 

0.34

7 

25 chr5:92322427

..92559372 

236.9

46 

NR2F1-AS1 

rs1020924

4 

2 6.156E-

08 

2.32 0.01

2 

0.00

1 

29 chr2:16142288

0..161676570 

253.6

91 

MIR4785, RBMS1 

rs1340191

6 

2 2.441E-

07 

2.08 0.01

4 

0.00

3 

13 chr2:16194510

3..162055548 

110.4

46 

LOC100996579, 

LOC101929512, 

PSMD14, TANK, 

TBR1 

rs139469 22 9.997E-

07 

0.89 0.34

5 

0.32

7 

33 chr22:4145118

5..41627527 

176.3

43 

ACO2, CHADL, 

DNAJB7, EP300, 

EP300-AS1, 

L3MBTL2, MIR1281, 

MIR4766, MIR6889, 

PHF5A, RANGAP1, 

RBX1, SLC25A17, 

ST13, TEF, TOB2, 

XPNPEP3, ZC3H7B 
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Table 3: Significant SNP-gene pairings identified through GTEx eQTL and sQTL data 

a) 

Gencode Id Gene Symbol SNP Id P-Value NES Tissue 

ENSG00000175745.11 NR2F1 rs2453763 5.7E-10 0.25 Esophagus - Muscularis 

ENSG00000237187.8 NR2F1-AS1 rs2453763 1.9E-7 0.22 Esophagus - Muscularis 

ENSG00000251361.1 CTD-2091N23.1 rs2453763 2.3E-4 -0.19 Cells - Cultured 

fibroblasts 

 

b) 

      

Gencode Id Gene Symbol SNP Id Intron Id P-Value NES Tissue 

ENSG00000251361.1 CTD-2091N23.1 rs2453763 93051776:930756

58:clu_40848 

4.6E-09 0.39 Nerve - 

Tibial 
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