
Received: 14 September 2022 Revised: 5 December 2022 Accepted: 20 December 2022

DOI: 10.1002/alz.12948

R E V I EW ART I C L E

Interpretablemachine learning for dementia: A systematic
review

Sophie A.Martin1,2 Florence J. Townend1 Frederik Barkhof1,2,3

James H. Cole1,2

1Centre forMedical Image Computing,

Department of Computer Science, University

College London, London, UK

2Dementia Research Centre, Queen Square

Institute of Neurology, University College

London, London, UK

3AmsterdamUMC, Department of Radiology

&NuclearMedicine, Vrije Universiteit,

Amsterdam, Netherlands

Correspondence

Sophie A.Martin, Centre forMedical Image

Computing, Department of Computer Science,

University College London, 90High Holborn,

London,WC1V 6LJ, UK.

Email: s.martin.20@ucl.ac.uk

Funding information

Engineering and Physical Sciences Research

Council, Grant/Award Number: EP/S021930/1

Abstract

Introduction:Machine learning research into automateddementia diagnosis is becom-

ing increasingly popular but so far has had limited clinical impact. A key challenge is

building robust and generalizable models that generate decisions that can be reliably

explained. Some models are designed to be inherently “interpretable,” whereas post

hoc “explainability” methods can be used for other models.

Methods:Here we sought to summarize the state-of-the-art of interpretable machine

learning for dementia.

Results: We identified 92 studies using PubMed, Web of Science, and Scopus. Stud-

ies demonstrate promising classification performance but vary in their validation

procedures and reporting standards and rely heavily on popular data sets.

Discussion: Futurework should incorporate clinicians to validate explanationmethods

and make conclusive inferences about dementia-related disease pathology. Critically

analyzing model explanations also requires an understanding of the interpretability

methods itself. Patient-specific explanations are also required to demonstrate the

benefit of interpretable machine learning in clinical practice.

KEYWORDS
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1 INTRODUCTION

Traditional dementia diagnosis typically relies on longitudinal clinical

observations, medical history, and symptoms of cognitive decline such

as impairedmemory andvisuospatial deficits, often supportedby imag-

ing findings. Computer-aided decision tools are increasingly making

use of machine learning to speed up diagnosis, provide support where

expert knowledge is sparce, and reduce subjectivity.1 Machine learn-
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the original work is properly cited.
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ing models have been shown to perform as well as, or even exceed the

accuracy of predictions made from imaging by radiologists, as they can

exploit the rich information present in dense, high-dimensional data.2

Theyalso showpromiseat identifying thoseat risk earlier in thedisease

trajectory, because relying on longitudinal clinical observations usually

means that the disease has already progressed beyond the point that

preventiveprotocols or adjustments canbeeffective.However, despite

promising results inmedical research, computer-aided tools haveyet to
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2 MARTIN ET AL.

be widely adopted in the clinic. A major factor in this is the black-box

nature of predictive models, which makes them difficult to interpret

and, ultimately, to trust.3,4

Interpretable machine learning (IML) often used synonymously

with explainable artificial intelligence (XAI), can be used to explain

the output of predictive models by (1) describing the mechanism by

which the model generates its decision, (2) highlighting which of the

input features are most influential on the decision, or (3) produc-

ing examples that maximize its confidence for a specific outcome. As

shown in Figure 1, an interpretation stage can be introduced into

the machine learning pipeline that can confirm a clinician’s diagnosis

or provide patient-specific evidence of the disease. Although argu-

ments for explainability often focus on trust,5–12 other goals include

fairness, accessibility, interactivity, and exploration; the process of

model interpretation may uncover new knowledge about the model,

data, or underlying disease.13 There is also growing pressure from a

legal standpoint to provide explanations—both to the clinician and the

patient. This became evident when new European General Data Pro-

tection Regulations (GDPRs) were introduced in 2018 calling for more

transparency, and individuals were given a “right to explanation.”14

Moreover, a report from the National Health Service (NHS) Artifi-

cial Intelligence (AI) Lab and Health Education England published in

May 2022 noted that “adopting AI technologies [is] at a critical junc-

ture” with calls for “appropriate confidence” in AI for both health

care workers and the public. The phrase “appropriate confidence”

shifts focus way from trust (a subjective and qualitative measure) to

reflect howusersmust be able to “make context-dependent value judg-

ments and continuously ascertain the appropriate level of confidence

in AI-derived information.”15 This distinction mirrors the difference

between the use of AI for lone decision-making versus as a decision-

support tool, with the latter being the focus of translational research.

The field of IML has grown rapidly over the last 20 years,3,4,13 par-

ticularly in tasks involving natural language processing or computer

vision. This rapid growth has led to inconsistencies in the terminology

used to describe such methods, making it difficult to identify rele-

vant studies. Although many reviews on IML introduce taxonomies

that bring clarity to the different methods,16 there is still inconsis-

tency across research paperswhen incorporating explanationmethods

in their analysis. In dementia studies specifically, coupledwith the vari-

ety of data available for differential diagnosis and prognosis, this has

led to a complex landscape of methods that makes it hard to identify

best practice. There is also variability across machine learning stud-

ies in the reporting of implementation details, which can also inhibit

translation to clinical practice. This systematic review aims to sum-

marize current progress and highlight areas for improvement to allow

dementia researchers to better navigate this emerging field.

2 BACKGROUND

The landscape of interpretable machine learning has grown rapidly

with the development of new techniques and their applications across

domains. Details on thesemethods and their properties can be found in

RESEARCH INCONTEXT

1. Systematic Review:We reviewed the literature and iden-

tified 92 studies published by March 1, 2022 (PubMed,

Scopus, Web of Science) that use machine learning to

predict dementia and provide evidence of explaining the

predictions.

2. Interpretation: Studies demonstrated promising classifi-

cation performance, withmany incorporating neuroimag-

ing into their models and using methods such as class

activation mapping and occlusion to explain the models

predictions. Our findings align with existing analyses of

machine learning applications for dementia including an

over-reliance on large open-source datasets, inconsistent

reporting of sample sizes, and insufficient assessments of

model generalisability.

3. Future Directions: Future work should incorporate clin-

icians into the validation of model explanations to assess

their clinical utility andexplore the impact ofmodel expla-

nations on trust. There are also opportunities to explore

inherently interpretable models that produce pixel-level

explanations and develop context-specific measures of

robustness.

resources such as ChristophMolnar’s guide.17 Recent reviews of inter-

pretable machine learning have introduced frameworks (taxonomies)

that summarize their properties, provide a visual aid, and promote

consistency across future work.13,16,18

2.1 Properties of interpretable methods

Here we introduce some of the key properties of model interpreta-

tion methods. Understanding their properties can help researchers

to critically analyze the resulting explanations, and identify which

methods are most appropriate for a given clinical scenario or ques-

tion. These properties include whether they are intrinsic or post hoc,

model-agnostic or model-specific, and whether they produce model,

individual, or group level explanations. However, the categorization of

these methods varies across the literature and some methods can fall

into more than one group. Therefore, these properties and the meth-

ods associatedwith them are best consideredwithin the context of the

predictive task.

2.1.1 Intrinsically interpretable models versus post
hoc interpretation methods

Machine learning methods such as linear regression, k-nearest

neighbors, decision trees, and their extensions can be classified as

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12948 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MARTIN ET AL. 3

F IGURE 1 Wepropose a diagnostic pipeline that starts with data acquisition through to clinical interpretation. Data can be categorized into
imaging and non-imaging groups. Data items can be used individually or combined tomake a prediction. Amodel can be trained to predict the
probability an individual’s likelihood to have or develop dementia using these data. A clinician using this model maywish to interpret the result, to
understand “why” this person has been classified as having dementia, which could influence themost appropriate treatment response or help to
confirm their own diagnosis. The interpretationmethod depends on themodel and data types involved. Most methods either produce heatmaps,
which visualize influential regions or use techniques to rank themost important features

intrinsically interpretable because for a given set of inputs and out-

puts, the end-user can easily trace how the inputs have been used to

arrive at the final probability, value, or prediction often via a formula or

rule-based framework. For example, linear regression predictions are

a weighted sum of the input features, or subset of important features

based on their assigned weights if regularization techniques (such as

Least Absolute Shrinkage and Selection Operator (LASSO)) are used.

Similarly, decision trees can be interpreted because their final prob-

abilistic outputs or values are derived via a rule-based framework

allowing users to trace the decision boundaries from input to output.

Post hoc interpretation methods involve an additional step of

exploration after training, in which the trained model is probed or

manipulated to generate information on how input features influence

the output. Such methods include perturbation methods, backprop-

agation, feature relevance ranking, or example-based explanations.

Perturbation methods, sometimes referred to as sensitivity analysis,

involve systematically changing the input data (e.g., removing fea-

tures) and observing its effect on the output. This allows users to

determine whether the model is more sensitive to specific features

or regions. Backpropagation is often used for “black-box” models such

as deep neural networks, where the underlying predictive process

is complex due to non-linear operations and high-dimensional input

data. These methods utilize the weights learned during training to

propagate the output probability back into the input space, result-

ing in heatmaps that highlight the importance of pixels, regions, or

features. By probing the model after training, post hoc approaches

have the advantage of deriving explanations without compromising

accuracy for instances where deep models outperform less-complex

linear approaches. Figure 2 contains schematic representations of two

post hocmethods: class activationmapping (CAM) and occlusion, their

properties, and questions an end-user could use to determine which

method is most appropriate.

Creating intrinsically interpretable models is more challenging for

neural networks due to their complex architectures. However, exam-

ples include ProtoPNet,19 a neural network for which the final clas-

sification is generated by chaining learned “prototypes” (or parts of

the image) through a transparent algorithm. Transformer networks can

also be considered as an interpretable deep learning models because

the self-attention mechanism that generates their output can also be

used to highlight important regions or features.20,21 Although trans-

formers were designed initially for use in natural language processing

tasks, the evolution of vision transformers has led to a rise in use

across the medical imaging domain.22,23 Transformers and their vision

counterparts show promise for being able to maintain the predictive

power of deep neural networkswhile incorporating attention into their

architectures.

2.1.2 Model-agnostic versus model-specific

Methods such as occlusion are model agnostic: they can be applied

to any predictive model. Other examples include Shapley values,24

local interpretable model explanations (LIME),12 and counterfactual

examples. Counterfactual examples explain models by producing syn-

thetic representations of the input data that maximize the probability

of a chosen outcome. For instance, warping the input image from a

healthy participant so that the model believes it is likely to belong to

a person from the dementia class would highlight features that the

model associates with the disease. However, the generalizability of

model-agnostic methods is limited as they are often unable to produce

fine-grained explanations.

Model-specific methods may be more appropriate for interpret-

ing neural networks, where information is needed on a pixel or

voxel level. Examples include Grad-CAM25 and layer-wise relevance

propagation.26 However, model-specific methods rely on assumptions

about the underlying architecture such as the presence of convolu-

tional layers to produce an explanation, which limits their use for

comparing results across model types.
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4 MARTIN ET AL.

(A) (B)

(C)

F IGURE 2 Example brain scan.80 (A) High-level illustration of class activationmapping for image-based classification. An individual case is fed
through themodel and the output probability is backpropagated to the last convolutional layer in the network. The values across all filters in the
layer are pooled (typically global pooling is used) and up-sampled to the input space to produce a heatmap that indicates which features havemost
influence on the final prediction. (B) Illustration of occlusionmethods for interpreting image-basedmodels. Occlusion-basedmaps are produced by
comparing the output of themodel between the original image and the imagewhen a patch is removed (or perturbed, e.g., using a fixed value). This
process is repeated for different patches to build up an image that indicates themodel’s sensitivity to a given patch. (C) Descriptions of the top
three interpretationmethods, their properties, and example questions of their use-case in a clinical setting

2.1.3 Model- versus individual- versus group-level
explanations

IML methods can also be categorized according to the application-

level of the explanation. Model-level (or global) explanations describe

the overall model and can be used to identify the most important

features across all classes. Methods such as LIME can be used to

produce individual-level explanations, which describe the important

features for a specific case. This is likely to be more useful in clin-

ical settings, as patient-specific explanations can be used to inform

future treatment or confirm a diagnosis. In many cases, a single IML

method can be used to produce explanations across several levels.

For example, group-level explanations can be produced by combining

or averaging the individual explanations produced by LIME for each

subject group. On the other hand, perturbationmethods such as occlu-

sion are not useful for deriving patient-specific explanations because

they rely on the learned model’s behavior across all examples seen

during training. Moreover, some methods require the class of inter-

est to be specified to calculate the explanation such as class activation

mapping (or CAM) and layer-wise relevance propagation (LRP). In

these cases, the output is produced based on the gradient of the loss

function with respect to a specific class (via backpropagation) and the

result is a heatmap representing the relevance to that group. Many

neural network–based approaches rely on backpropagation and differ

mainly in the way non-linear operations are handled and propagated.

2.2 Study motivation

Although there are several reviews that summarize IML literature

across medical imaging and computer vision,2,3,27 few focus on their

application to dementia research and machine learning. Borchert

and colleagues recently reviewed neuroimaging-based machine learn-

ing for dementia prediction, with recommendations on how to

increase impact in memory clinic settings.28 Similarly, Thibeau-Sutre

and colleagues performed a review on interpretable methods in
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MARTIN ET AL. 5

neuroimaging, where they highlighted various methods and assessed

their reliability.29 However, to our knowledge this systematic review

is the first to consider both imaging and non–imaging-based machine

learning methods for dementia diagnosis, where model interpretabil-

ity is a specific inclusion criterion. Our review is also not limited to

Alzheimer’s disease but considers approaches that include a range

of dementia-causing neurodegenerative diseases. This review aims to

(1) summarize the different approaches to interpretable or explain-

able dementia prediction, (2) report and highlight the variability in

study design and how this impacts clinical interpretability, and (3) offer

recommendations for dementia researchers that wish to incorporate

interpretable methods in future work.

3 MATERIALS AND METHODS

We conducted a systematic review of studies that used machine

learning or deep learning for diagnostic classification of dementia

and interpret the results either using post hoc analysis or inferring

from an interpretable model. A protocol for this systematic review

was registered on PROSPERO (ID: CRD42021291992).30 PROSPERO

is an international prospective register of systematic reviews that

helps to avoid duplication and reduce reporting bias. A database

search was used to identify reports published before March 1, 2022,

across PubMed, Scopus, and Web of Science. We constructed our

search query by linking four key concepts together: dementia, clas-

sification, machine learning, and interpretability. The search query

run on each database is given below (adapted for each database)

and all terms were searched across titles, abstracts, and keywords

(if available):

(“dementia” OR “alzheimer*”)

AND

(“predict*” OR “classif*” OR “diagnosis”)

AND

(“deep learning” OR “machine learning” OR “neural network*”)

AND

(“explain*” OR “interpret*” OR “saliency” OR “Grad-CAM”

OR “Layer?wise relevance propagation” OR “occlusion” OR

“visuali*” OR “transformer”)

This returned 219 records on PubMed, for which the MeSH terms

“dementia” and “diagnosis, computer assisted” were also used. On

Scopus the query returned 531 records and on Web of Science the

query returned 308 records. A total of 530 records were removed

with EndNote’s automated de-duplication tool andmanual assessment

before screening.

3.1 Screening process

All records were screened using a two-stage process using two inde-

pendent reviewers based on: (1) title and abstract only and (2) full-text.

The inclusion and exclusion criteria used to filter studies are summa-

rized below:

1. Article type

∙ Inclusion: Anypublishedoriginal researchpaper (or pre-prints) in

peer-reviewed academic journals or conferences.

∙ Exclusion: Conference proceedings, corrections, erratum’s,

reviews, andmeta-analyses.

2. Task

∙ Inclusion: Application of machine learning to do one or both of

the following: (i) classify dementia patients fromhealthy controls

or mild cognitive impairment patients, (ii) classify individuals

that convert from stable/early mild cognitive impairment to

progressive/late mild cognitive impairment or dementia.

∙ Exclusion: Unsupervised algorithms (e.g., clustering methods,

generative adversarial networks) or applications of supervised

machine learning to non-diagnostic tasks (e.g., segmentation,

brain atrophy, brain parcellation, brain-age prediction, prediction

of cognitive assessment scores, genome-wide analysis, survival

analysis).

3. Application to dementia

∙ Inclusion: Studies with patient groups based on a clinical diag-

nosis of dementia, Alzheimer’s disease, or phenotypic syndrome

(e.g., frontotemporal lobar degeneration).

∙ Exclusion: Studies with patient groups based on other neurode-

generative diseases (e.g., Huntington’s or Parkinson’s disease)

without an accompanying dementia diagnosis.

∙ Exclusion: Classification of other forms of neurodegeneration

(e.g., multiple sclerosis, traumatic brain injury, stroke, or mild

cognitive impairment only).

4. Model interpretability

∙ Inclusion: Studies must refer to the interpretability of the clas-

sification model in the abstract or provide example model

explanations in themain text.

∙ Exclusion: Classical data-driven feature selection or dimension-

ality reduction studies (e.g., principal component analysis).

5. Data

∙ Inclusion: Studies must report experimental details including the

type of prediction model used, and at least one of the following

performance metrics: accuracy, area under the curve, precision,

recall, sensitivity, or specificity within the text or figures.

6. Not human

∙ Exclusion: Non-human studies, for example, mousemodels.

A PRISMA flowchart31 describing the study selection process is

shown in Figure 3. For title and abstract screening, any papers that

were on the borderline for inclusion were assessed blindly by a sec-

ond reviewer. Any studieswithout consensus automatically progressed

onto the second screening stage. This led to 144 papers requiring a

full-text screening for inclusion. We removed 48 reports upon reading

the full-text for failing the eligibility criteria.We contacted the authors

for any full-text papers we could not retrieve online. We applied the

same blind review process for borderline full-text reports to obtain a
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6 MARTIN ET AL.

F IGURE 3 PRISMA flowchart outlining the screening strategy used to identify relevant studies.31 A search was performed on three
databases: PubMed, Scopus, andWeb of Science and returned a total of 1058 records. After duplication removal and screening against eligibility
criteria, 92 full-text studies were left for inclusion in this review. Studies were excluded for not being focused on dementia (non-dementia), not
clearly demonstrating interpretable methods or model explanations (nomodel explanations), focusing on the wrong task, for example, regression
or survival analysis (wrong task), missing data (such as performancemetrics), or being of the wrong article type (review papers, book chapters,
conference proceedings)

final list of 92 publications. For these included studieswe extracted the

following information where applicable:

∙ Data sources

∙ Group labels / diagnostic categories

∙ Sample size (total number of participants across datasets)

∙ Validation or test split procedure used

∙ Whether quality control or data augmentation had been performed

∙ The type of input data used by themodel

∙ The predictivemodel used

∙ Whether the task was binary or multiclass

∙ Performance metrics (e.g., accuracy, precision, recall, specificity,

sensitivity)

∙ The interpretability method

∙ Important features (or regions) derived from themodel

∙ Whether attempts had been made to validate the interpretability

method

∙ Whether the code has beenmade publicly available
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MARTIN ET AL. 7

3.2 Risk of bias

During screening, 200 papers were excluded because they did not

address model interpretability. However, ascertaining what qualifies

as interpretable raises important questions about what counts as an

“explanation.” For instance, many studies involved the use of feature

selection methods or dimensionality reduction prior to model train-

ing, for example, using principal component analysis. These studiesmay

refer to the reduced features as being “interpretable”; however, we do

not include these studies here as the emphasis was on the input fea-

tures and not the trained predictionmodels. It is also important to note

that not all studies explicitlymention the interpretability of theirmodel

despite them being inherently interpretable. This is particularly rel-

evant for earlier studies that use classical regression techniques but

may not have been captured by our search query. In addition, disease

progression models can be used to predict diagnosis and can be inher-

ently interpretable.32 However, they are not included in our review,

as these models typically rely on unsupervised clustering methods.

As such there is a risk of bias, as we focus only on machine learn-

ing studies that explicitly mention interpretability and include example

inferences.

4 RESULTS

We reviewed and extracted data from all included studies using Excel

to highlight trends in the study design, performance, and IMLmethods

used. The key findings are summarized in Figure 4 and extracted data

items can be found in the SupplementaryMaterial.

4.1 Study details

The key study details across all studies can be found in Table S1. Here

we summarize the trends seen in the data sets used, variability in

sample size, and use of neuroimaging data.

We identified that 67 of 92 studies used the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset. The ADNI is a longitudinal

multicenter consortiumofmulti-modal (imaging andnon-imaging) data

which started in 2004 and has since grown to include four studies

exploring the early detection, intervention, prevention, and treatment

of Alzheimer’s disease dementia.33 The open-source, longitudinal, and

multi-modal features of this studymake it attractive formachine learn-

ing research. This reliance and overrepresentation of studies using

ADNI poses a limitation on the generalizability of the methods used.

ADNI was designed to represent a clinical trial population that is

biased toward older ages and more advanced pathology than may

be observed population-wide34,35 and is also subject to demographic

sampling biases toward socioeconomic status and ethnicity.

Other popular open-source data sets include the Australian Imag-

ing, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), and the

OpenAccess Series of Imaging Studies (OASIS). These research studies

often have strict imaging protocols resulting in highly quality con-

trolled imaging data; however, in hospital and memory clinics data

quality can be more variable. Solely relying on large research studies

can, therefore, limit generalizability. Fifteen studies utilized in-house,

custom data sets frommemory clinics or hospitals. These studies have

the advantage of being able to tailor the imaging protocol to the

specific study, balance group sizes, and ensure consistency across time-

points. However, due to constraints in recruiting participants, such

studies often have smaller sample sizes (n = 40 to n = 2169), with the

largest being a non-imaging study based on routinely available clinical

test scores.

We identified variability in sample size across all included stud-

ies with 11 ≤ n ≤ 95,202 (n = total number of participants across

all included data sets). This is important, as increasing the number of

examples seen during training can improve performance and robust-

ness to heterogeneity. Twenty-one studies combined multiple data

sets to increase the training power. Sample size is also important for

during inference, since larger test sets provide better estimations of

performance on unseen data and increased confidence. Forty-five of

92 studies used a hold-out test set, either from a subset of the ini-

tial data or an additional, independent source. The remaining studies

opted for nested, or internal cross-validation approaches to quantify

performance. However, cross-validation has been shown to underes-

timate confidence intervals errors, particularly when using small data

sets, and is therefore not suitable as a reliable estimate of predictive

power.36 Only 17 studies used data from external sources to create

an independent test set and explicitly test the generalizability of the

trainedmodels. Although the performance often drops in external data

sets, it can provide a better indication of out-of-sample model behav-

ior, which is useful for clinical translation. This is also important for

interpretability, as models with generalizable performance are better

positioned to distinguish significant, robust important features from

noise.

Seventy-seven of 92 studies used imaging as part of the study, and

59 used imaging alone (one used retinal instead of brain imaging).

Some of these (n = 28) fed the whole image into the prediction model,

whereas others performed voxel- or vertex-wise analysis (n = 17), for

example, voxel-based morphometry or extracted regional measures,

for example, cortical thicknesses (n = 27). Most whole image–based

studies utilized 3D data (approximately isotropic voxels or multiple

slices per participant, n = 21) as opposed to single 2D slices (n = 7).

We observed a shift toward 3D whole image–based studies with time,

likely due to hardware advancements and the increased performance

benefits of deep learning over tabular data-based machine learning

methods.

4.2 Implementation details

Technical details regarding the choice of predictive model, reported

performance, and interpretation across all included studies can be

found inTable S2.Herewecommenton theobservedmodel accuracies,

identified important regions, and the various approaches to validate

their explanations.
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8 MARTIN ET AL.

F IGURE 4 Key characteristics identified across all 92 included studies. (A) The number of papers per year. (B) Themodalities used in the study.
(C) The type of machine learning or deep learningmodel used to predict and interpret. (D) The type of interpretability method. For imaging studies
only (n= 77): (E) The type of input data used by the predictivemodel. Tabular is used to denotemeasures such as cortical thickness or volume. One
study used both tabular and voxel-wise features. (F) The proportion of studies that used 3D or 2Dwhole images. (G) The top six important brain
regions identified. Blood-based: Blood-based biomarkers; CAM, class activationmapping; [C/D/S/R]NN, [convolutional/deep/spiking/recurrent]
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MARTIN ET AL. 9

4.2.1 Model accuracy

For the task of classifying patients with Alzheimer’s disease from

healthy controls, reported model accuracies ranged from 77.0% to

96.8%.However, Rieke and colleagues37 clearly state that “[their] focus

was on the different visualization methods and not on optimizing the

network,” which may explain the lower reported accuracy values. On

the other hand, the highest accuracy of 96.8% (area under the curve

[AUC] = 99.6%, n = 83) was reported by Qiu and colleagues,38 where

they used a multi-modal approach combining a fully convolutional

neural network with age, gender, and cognitive scores (Mini-Mental

State Examination [MMSE]). They also evaluate the generalizability of

their model using independent, external data sets acquired from the

Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing

(AIBL) and the National Alzheimer’s Coordinating Center (NACC) and

reported accuracy values of 93.2% (AUC = 97.4%, n= 382) and 85.2%

(AUC= 95.4%, n= 565), respectively.

For the more challenging task of identifying individuals with mild

cognitive impairment (MCI)who later converted toAlzheimer’s disease

(pMCI) from those that remained stable (sMCI), the range of reported

classification accuracies was 65.4% to 88.5%.39,40 The overall drop in

performance for this task is expected, since the definition of the MCI

label is ambiguous and can differ between centers, leading to a hetero-

geneous group of participants at various disease stages.41 In addition,

there is a less-distinct difference in the neuropathology between these

twogroups compared to individualswith andwithout dementia. There-

fore, most machine learning studies rely on clinical diagnosis based on

symptoms or follow-up assessments to identify subjects in the MCI

group. Nine studies performed multi-class classification to identify

individuals with MCI from healthy controls and dementia patients, or

to classify patients with varying degrees of disease severity (e.g., very

mild, mild, or moderate dementia).42

For tasks involving other phenotypes such as frontotemporal or

Parkinson’s disease dementia, similar accuracies up to 97.0%43–45

were found, highlighting the predictive power of machine learning

approaches to diagnosis outside of Alzheimer’s disease. It is impor-

tant to note that without performing a thorough meta-analysis, care

must be takenwhen comparing results due to variability in sample size,

validation strategies (whether values are given from cross-validation

or hold-out test sets), and the amount of time spent optimizing

hyperparameters.

4.2.2 Model interpretability

All studies applied interpretability techniques to identify or visualize

the most important features. The choice of interpretability method

is strongly dependent on the underlying prediction model. Popular

approaches included simple visualization or ranking features based

on learned weights to more complex occlusion-based techniques and

class-activation mapping. Although the latter two are more commonly

associatedwith explanations in the image domain, weight visualization

or ranking is useful for models such as support vector machines (SVM)

or logistic regression, as each weight corresponds to an input feature

and can be used to infer their relative importance.

For studies with neuroimaging, this typically involved overlaying

heatmaps on a representative brain scan and discussing the regions

associated with a specific class. For example, disease probability maps

produced by the classification model of Qiu and colleagues identified

the temporal lobes, hippocampus, cingulate cortex, corpus collosum,

and parts of the parietal and frontal lobes as high risk for classification

as an Alzheimer’s disease patient.38 This was replicated across many

of the included studies, with the hippocampus consistently reported

as one of the most informative regions (n = 43/76). Eight studies did

not infer any specific regions from their visualizations or model expla-

nations. For non-imaging studies, the type of explanations varied due

to the different input features and modeling approaches. For example,

studies that utilized electronic health records and clinical information

(n = 5) commonly reported known risk factors such as age, smoking,

cardiovascular problems, and lack of exercise as predictive of future

dementia diagnosis.

Multi-modal approaches provide opportunities to investigatewhere

imaging or non-imaging data were most predictive. Although this

depends heavily on the nature of the experiment and data fusion

method, such studies demonstrate the utility of including multiple

sources of information via increased performance and by ranking the

most important features. For example, Venugopalan and colleagues

found that the Rey Auditory Verbal Learning Test was a distinguish-

ing feature even in the presence of other imaging-derived regional

features.46 Velazquezandcolleagues also included this test as a feature

but instead found that the 13-item Alzheimer’s Disease Assessment

Scale (ADAS) and Functional Activities Questionnaire were more use-

ful, among other factors such as age and hippocampal volume.47

However, given that cognitive tests are designed specifically to be

used as dementia biomarkers, it is unsurprising that these are high-

lighted by predictivemodels for classification tasks. On the other hand,

Polsterl and colleagues noted that whilst clinical variables were as rel-

evant as hippocampal shape inmost cases, therewere a few exceptions

amongst Alzheimer’s Disease patients, demonstrating subject-level

variability.48

For other diagnoses such as frontotemporal dementia, Hu and

colleagues identified the right frontal white matter, left tempo-

ral, bilateral inferior frontal, and parahippocampal regions as valu-

able for prediction.44 The model used by Morales and colleagues

neural network, tree-based (e.g., random forests, decision trees); CSF, cerebrospinal fluid, DTI: diffusion tensor imaging; EBM: explainable boosting
machine; EEG, electroencephalography; [F/G]CN, [fully/graph]convolutional network; [f]MRI: [functional] magnetic resonance imaging; KNN,
k-nearest neighbors; LIME, local interpretable model explanations; LRP, layer-wise relevance propagation;MKL, multi-kernel learning; OCT,
optical coherence tomography; PET, position emission tomography; SPECT, single-photon emission computed tomography; SPHOG: spatial
pyramid histogram of oriented gradient.
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10 MARTIN ET AL.

highlighted cerebral white matter and volumes of the lateral ventricles

and hippocampi as most relevant to dementia in Parkinson’s disease.45

Studies that performed differential diagnosis were also able to com-

pare the important regions across dementias. For example, Iizuka and

colleagues highlight the significance of the cingulate island sign on

brain perfusion single-proton emission computed tomography (SPECT)

imaging for differentiating between subjects with dementia with Lewy

bodies and those with dementia of the Alzheimer’s type.49

4.2.3 Validation approaches

A crucial challenge is how to validate the resulting explanations, par-

ticularly in the absence of in vivo ground truth. Most imaging-based

studies (n = 41/58) relied on previous research on the neuroanatomic

correlates of dementia to qualitatively assess whether their model is

utilizing disease-specific regional information. Seven studies designed

statistical tests to quantify the discriminative power of the identi-

fied regions of interest or their correlation with other biomarkers

and predictors. Both Böhle and colleagues and Dyrba and colleagues

correlated the relevance assigned to hippocampus with hippocampal

volume; an indicator of atrophy.50,51 Bae and colleagues correlated

the mean intensity values of identified regions with the rate of change

of several measures of cognitive decline.52 Others (n = 4) used t-

tests to compare their findings with traditional analysis methods such

as voxel-based morphometry.2,51,53,54 Hu and colleagues performed

a t-test to compare the important regions associated with patients

with Alzheimer’s disease with those associated with frontotemporal

dementia.44 Liu and colleagues conducted causal analysis using genetic

information alongside imaging-driven important regions.55

Three studies made use of simulated data sets, where they had con-

trol over the group-separating features to perform preliminary tests of

the explanation method.56–58 Studies that used multiple interpretabil-

ity methods (n = 9) were also able to comment on whether these

highlighted the same regions. Four studies validated their findings by

reporting a second classification accuracy using the identified regions

of interest as input features57,59,60 or incorporating them as anatomic

landmarks.61

Despite these efforts, most studies were unable to assess the utility

of other regions that were highlighted by the model but were without

known pathological relevance. AlthoughQiu and colleagues correlated

their findings for 11 subjects with post-mortem neuropathology, they

lacked the statistical power todrawany significant insights.38 This chal-

lenge also prevailed for non-imaging studies, although models based

on demographic information utilized known risk factors,62 and speech-

based models were able to contextualize their findings with phrases

and indicators associated with Alzheimer’s disease.63 Moreover, many

of the diagnostic labels in publicly available data sets are based on clin-

icians’ ratings, which have been shown to be subjective and can be

confirmedonly throughpost-mortemanalysis. Therefore, somestudies

may include dementia patients with mixed pathology, including vas-

cular dementia, which should be considered when assessing potential

diagnostic specificity of model predictions.

5 DISCUSSION

Our results highlight the growth in this cross-disciplinary research

area, particularly through the combination of neuroimaging and neural

networks, which can match and outperform clinical predictions across

a range of dementia-related tasks. The range of accuracies indicate

that interpretable models do not necessary require a loss in perfor-

mance, previously seen as a limitation of IML, as studies have still been

able to demonstrate ways to probe the “black-box,” identify impor-

tant features, or provide rule-based explanations.64,65 Tomaximize the

impact of machine learning in clinical practice, we provide recommen-

dations to aid clinicians when interpreting results, encourage more

homogenous reporting standards, and highlight several challenges that

remain.

5.1 Recommendations for interpreting
interpretability studies

Here we provide recommendations for comprehending studies on IML

to help researchers interpret the results accurately:

Scrutinize the interpretability method details: Currently all inter-

pretability methods have limitations and drawbacks. Techniques such

as occlusion are strongly linked to the sample size, as the more sam-

ples seen during training, the more robust it will be to changes in

non-disease relevant patches. Sample size is also important for het-

erogenous disease pathologies. Data augmentation methods help to

build models that generalize well to new cases; however, heterogene-

ity can make it difficult to decipher between patient-specific disease

relevant pathology and spurious artifacts of the interpretation tech-

nique. There is also a strong dependence on model performance. This

should be considered when being presented with interpretability find-

ings, as explanations from models with poor predictive power may be

inaccurate and group-level findings are likely to be affected by falsely

classified samples.

Identify whether the method is model-, group-, or individual-level:

The results can differ greatly depending on whether the output is

group-level or individual-level, and the pathways to clinical impact will

vary as a result. Occlusion techniques are often not suitable for mak-

ing individual-level explanations for a given prediction. The results

obtained by occluding patches across a single example case are still a

representation of the overall model susceptibility to a given patch. In

contrast, methods such as LRP and CAM allow for individual heatmaps

that reflect the regional relevance associated with a single case.

Relevance and importance do not guarantee biological signifi-

cance: Although interpretable methods present exciting opportunities

to improve our understanding of model predictions, the results are

not necessarily related to biological or pathological features. Many of

these methods are model agnostic or have been developed primarily

outside the medical imaging context. Therefore, they lack consider-

ations of causation needed to correlate their outputs with biological

relevance. The values and scores derived from methods such as LRP

are better interpreted as “where the model sees evidence” 50 or in the
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MARTIN ET AL. 11

case of class activation maps, “which features has the model learned

as relevant to this class.” However, they are not sufficient for identi-

fying potential interactions between voxels or features, or high-level

concepts such as atrophy. Similarly, some identified features may be a

result of the presence of noise, artifacts, or group differences from the

underlying data, which can bemisleading.

5.2 Recommendations for study design and
report writing

When carrying out studies that incorporate interpretablemethods, we

highlight three recommendationswhen (designing the experiment and)

reporting their findings:

Design the entire study with the end-user in mind: The choice of

interpretability method depends on the needs of the end-user. There-

fore, it can be beneficial to conceptualize the type of questions to be

asked, whether that may be “which features are most important to

the model” or “for this individual, how have the input features been

used to arrive at the final prediction?” Addressing the interpretability

of the study early onwill allow researchers to better design their study,

such as determiningwhether ground-truth annotationsmaybe desired

to validate their interpretability models or if simulated preliminary

results could benefit them as previously seen.56,58,66 Research aiming

to perform classification between disease groups may be better suited

toward group-level post hoc explanations that are able to highlight spe-

cific features of interest. Alternatively, if the focus of the research is

to better understand the disease-causing pathology, then counterfac-

tual examples that provide clinicianswith an explanation ofwhich brain

changes would convert a diagnosis from healthy to dementia may be

more useful.

Use diverse data sets: Our review identified a strong bias toward

certain data sets in data-driven approaches for dementia research,

such as the ADNI (Alzheimer’s Disease Neuroimaging Initiative). To

better understand the limitations and potential application for both

interpretable methods and the predictive models themselves, it is

important to use data derived from different cohorts and different

acquisition methods. For example, in Etminani and colleagues,43 data

across multiple studies was used to evaluate a model using indi-

viduals with Alzheimer’s disease, dementia with Lewy bodies, and

frontotemporal dementia such that they could evaluate the model’s

generalizability. Although open-source data sets are crucial for the

development of robust predictive models, they do not always provide

a reliable measure of performance in a clinical setting, where image

quality may be poorer, sample sizes are smaller, and cohorts may be

more demographically diverse. Extending research in this area to clin-

ically acquired data sets could also create opportunities to explore

and identify bias by observing differences inmodel explanations across

groups.

Consistently adhere to reporting standards: Adherence to report-

ing standards will play a crucial role in the development of this field as

researchers will be able to quantitatively compare performance across

studies (e.g., meta-analyses) and better contextualize results. Although

several checklists and guidelines such asCLAIM (Checklist for Artificial

Intelligence in Medical Imaging)67 and STARD (Standards for Report-

ing of Diagnostic Accuracy Studies)68 exist for AI applications in health

care, here we emphasize areas in which we observed large variabil-

ity across the included studies. For example, when reporting model

performance results, we suggest that researchers provide confusion

matrices, as they provide concise access to several measures of per-

formance such as balanced accuracy, sensitivity, and specificity. Single

measures of accuracy may not be sufficient, particularly in dementia

studieswhereunbalanceddata sets are common, and sensitivity to true

positive cases may be more desirable than robustness to false posi-

tives. We also re-emphasize the importance of clearly specifying the

sample size across prediction tasks and data sets and providing con-

fidence intervals where available. This amount of detail varied among

the studies included in our review but is important, particularly when

reporting results from multiple prediction tasks. Data sets also differ

in their labeling procedures, so studies must be careful when training

models across cohorts and clearly highlight any discrepancies. Many

dementia-causing diseases can only truly be diagnosed post-mortem,

and definitions of categories such asmild cognitive impairment are still

debated.69 Furthermore, in imaging studies where multiple scans are

available per participant (i.e., from several time points), researchers

should ensure that their methods are robust to data leakage by split-

ting their data sets ona subject level and clearly stating ifmultiple scans

have been used during training or testing. Models should be tested on

hold-out test sets (and external data sets where possible) rather than

relying on cross-validation formore a reliable estimate of performance

on new data.

5.3 Remaining challenges

A key challenge that remains is that IML methods have yet to be

thoroughly tested to ensure that they are robust and reliable. Some

research efforts in computer vision have attempted to address this.

For example, Adebayo and colleagues define and tested several post

hoc explanation methods against pre-defined sanity checks to see if

explanations were robust to small perturbations in the data and dif-

ferent architectures.70,71 Several methods failed these tests and were

deemed to be unreliable. Moreover, Tian and colleagues evaluated the

test-retest reliability of feature importance for models trained to pre-

dict cognition, and they elucidated a trade-off between feature weight

reliability and model performance.72 Our review identified one study,

which assessed the robustness of two explanation methods by defin-

ing a continuity and selectivity metric. In that study, the authors tested

whether the heatmaps produced via perturbation and occlusion tech-

niques are consistent across similar images (continuity) and whether

relevant occluded regions correlatedwith the change in class probabil-

ity (selectivity).73 They also quantitatively compared the heatmaps and

their robustness characteristics across different model architectures.

A similar test was carried out by Thibeau-Sutre and colleagues who

compared heatmaps produced across multiple cross-validation folds

as well as different hyperparameter values.74 However, none of these
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12 MARTIN ET AL.

measures consider characteristics that are application specific, such as

robustness to scanner artifacts or non–disease-related variability in

brain structure that may arise in more clinical, diverse data sets. More-

over, a particular explanation method may be insufficient according to

the test defined in computer vision–based studies but may still be suf-

ficient for decision support. Context-specific quality criteria is needed

to ensure that the outputs are clinically useful, while affording some

flexibility against strict test as the field of IML continues to develop.

There was also a limited involvement of neuroradiologists and clini-

cians throughout these studies. This is essential to designing informed

experiments that address the relevant questions and ensuring that

work in this field has an impact on translation. Ding and colleagues

used radiologists at the diagnostic level to demonstrate whether the

deep learning model outperforms on an independent test set.75 How-

ever, none of the studies identified through our review incorporated

clinicians to systematically validate model explanations. Although

there is a range of supporting literature, perspectives and reviews

highlighting the need for interpretable machine learning in medical

imaging,11,27,29,76,77 being able to demonstrate its impact through

semi-structured interview and qualitative analysis would be a key step

toward proving how such techniques can fulfil it. Moreover, the com-

plexity and heterogeneity of neurogenerative disease pathology has

limited researchers’ ability tomake conclusive statements about newly

identified regions of interest. The lack of expert validation meant that

studies rely on comparisons to previous literature, as discussed in

Section 4.2.2. This creates a potential contradiction that can inhibit

the discovery of new mechanistic insights. Therefore, a challenge lies

in finding balance between designing experiments that can system-

atically evaluate and quantify the accuracy of model explanations,

while also being able to identify clinically useful biomarkers from the

results.

5.4 Future directions

Interpretable machine learning has the potential to enhance the

dementia prediction pipeline and open avenues for new insights into

disease mechanisms. Group- or patient-level explanations could be

useful for identifying features that are relevant to specific pheno-

types or stages and aiding the development of preventative therapies.

Identifying which regions the model focuses on could also be used to

influence other stages in the imaging protocol. For instance, acqui-

sition sequences could be optimized for imaging-specific regions of

interest, even in real time.78 More generally, being able to differen-

tiate between biologically relevant features specific to groups with

similar clinical profiles helps to demonstrate the benefit of computer-

assistive technologies. Individualized, patient-specific explanations can

serve as a huge step toward personalized medicine with clinicians

being able to identify key drivers of a patient’s diagnosis. Look-

ing ahead, interpretable models could help to advance scientific

discovery by identifying novel biomarkers such as disease-specific

genes.79 Although machine learning is not currently used in clinical

trial recruitment, model explanations also provide opportunities to

enhance patient stratification or explore treatment response through

predictors associated with specific brain regions.

6 CONCLUSION

Interpretability is key for the clinical application of machine learning

in decision-making tools for dementia prediction. The need for model

explanations has been identified both in the legal sector and health ser-

vices as the use of machine learning based solutions continues to rise.

In this systematic review, three databases were searched to identify

92 studies that have applied interpretable methods to machine learn-

ing models designed for the prediction of dementia. We found a large

bias toward open-source data sets such as ADNI, which may have lim-

ited the generalizability of findings. A key emerging theme was the

challengeof validating interpretationmethods.Although this challenge

also exists outside of dementia research, we highlight that domain-

specific quality criteria may also require critical assessment of the clin-

ical utility. Dementia prediction tasks are made ever more difficult by

the high dimensionality of data and interactions between factors such

as age, sex, genetic history, and lifestyle. Buildingmodels thatmake use

of this multi-modal landscape of information but can still disentangle

their influences on the output would help bring the power of machine

learningmodels one step closer to large-scale clinical adoption.
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