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Abstract 

Background Alzheimer’s disease (AD) is a complex and heterogeneous disease, which requires reliable biomarkers 
for diagnosis and monitoring disease activity. Preanalytical protocol and technical variability associated with bio‑
marker immunoassays makes comparability of biomarker data across multiple cohorts difficult. This study aimed to 
compare cerebrospinal fluid (CSF) biomarker results across independent cohorts, including participants spanning the 
AD continuum.

Methods Measured on the NeuroToolKit (NTK) prototype panel of immunoassays, 12 CSF biomarkers were evaluated 
from three cohorts (ALFA+, Wisconsin, and Abby/Blaze). A correction factor was applied to biomarkers found to be 
affected by preanalytical procedures (amyloid‑β1–42, amyloid‑β1–40, and alpha‑synuclein), and results between cohorts 
for each disease stage were compared. The relationship between CSF biomarker concentration and cognitive scores 
was evaluated.

Results Biomarker distributions were comparable across cohorts following correction. Correlations of biomarker 
values were consistent across cohorts, regardless of disease stage. Disease stage differentiation was highest for 
neurofilament light (NfL), phosphorylated tau, and total tau, regardless of the cohort. Correlation between biomarker 
concentration and cognitive scores was comparable across cohorts, and strongest for NfL, chitinase‑3‑like protein‑1 
(YKL40), and glial fibrillary acidic protein.

Discussion The precision of the NTK enables merging of biomarker datasets, after correction for preanalytical con‑
founders. Assessment of multiple cohorts is crucial to increase power in future studies into AD pathogenesis.
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Introduction
High-quality, reliable, well-validated biomarkers, reflec-
tive of biological processes are required to understand 
the complexity of neurodegenerative diseases, such as 
Alzheimer’s disease (AD) [1]. In AD, using biomarkers 
would allow for increasing diagnostic accuracy, guid-
ing patient stratification, monitoring the effect of treat-
ment on underlying pathologies, and providing surrogate 
measures of disease activity to monitor and evaluate out-
comes [2]. Comparability of cerebrospinal fluid (CSF) 
biomarkers between studies has been limited, partially 
due to methodology differences across cohorts. This issue 
has been somewhat circumvented by fully automated 
assays used in research and standardization of preanalyti-
cal procedures [3, 4]. Importantly, some CSF biomarker 
immunoassays (amyloid-β1–42 [Aβ42], phosphorylated 
181P tau [pTau], and total tau [tTau]) are well validated 
for future wide-spread use in the clinical setting [5–7]. 
However, the challenge remains to have standardized 
clinical endpoints, statistical approaches, and immunoas-
say platforms that would enable unified biomarker utility 
and interpretation of results across independent multi-
center studies.

The NeuroToolKit (NTK; Roche Diagnostics Interna-
tional Ltd) is a panel of 12 automated CSF immunoassays 
for biomarkers linked to neurodegeneration [8, 9]. This 
panel is designed to accelerate biomarker development 
in AD and other neurological disorders by generating 
robust, comparable, high-quality biomarker data across 
multiple research and clinical cohorts.

Using CSF biomarker data collected from participat-
ing sites, we aimed to address three prioritized research 
questions: (i) Comparative: Can a correction factor for 
biomarkers affected by different preanalytical procedures 
be applied that allows for comparison across multiple 
cohorts? (ii) Diagnostic: How much do the biomarker 
concentrations vary between cognitively unimpaired 
(CU) individuals and patients with mild cognitive impair-
ment (MCI) or AD-dementia? (iii) Clinical: How well do 
biomarker concentrations correlate with clinical meas-
ures of cognition?

Methods
This analysis utilizes data from three cohorts participat-
ing in the NTK project, which were selected to provide 
data spanning the entire AD continuum. The ALFA+ 
study (NCT02485730) aimed to characterize preclinical 
AD in CU individuals, most with a family history of AD 
(n=398) [8]. The Wisconsin cohort (n=651) comprised 

several longitudinal studies that utilized the same pre-
analytic protocol and included CU individuals, partici-
pants with MCI, or AD-dementia, enriched for parental 
history of AD [10]. The Abby/Blaze cohort (n=164) com-
prised participants in the ABBY (NCT01343966) and the 
BLAZE (NCT01397578) studies for patients with mild 
to moderate AD-dementia [11, 12]. Full eligibility crite-
ria for each of the respective cohorts are described in the 
Supplementary Methods. All cohorts in the present anal-
ysis excluded participants who had comorbidities that 
would affect cognition. Some medications that affected 
cognition, such as sleep aids, were permitted in the Wis-
consin cohort.

For the purposes of this analysis, the correction refer-
ence group for each cohort was defined as participants 
who were CU, APOE-ε4 allele non-carriers, and aged <65 
years. As the Abby/Blaze cohort only included partici-
pants with AD-dementia, a correction reference group 
could not be defined.

Biomarkers
CSF biomarkers included chitinase-3-like protein-1 
(YKL40), soluble triggering receptor expressed on 
myeloid cells 2 (sTREM2), glial fibrillary acidic pro-
tein (GFAP), interleukin (IL)-6, neurofilament light 
(NfL), neurogranin, S100, alpha-synuclein (α-Syn), 
amyloid-β1–40 (Aβ40), Aβ42, pTau, and tTau. CSF bio-
marker samples obtained at baseline/enrollment were 
included. All biomarkers were measured using the NTK 
panel of immunoassays, which currently includes the 
commercially available Elecsys β-amyloid (1–42) CSF, 
Elecsys total Tau CSF, and Elecsys phospho-Tau (181P) 
CSF immunoassays, and robust prototype assays for the 
nine remaining biomarkers. Biomarkers Aβ42, Aβ40, 
pTau, tTau, s100, and IL-6 were measured using the cobas 
e 601 analyzer, and the remaining biomarkers were meas-
ured using the cobas e 411 analyzer (both Roche Diag-
nostics International Ltd).

Preanalytical factor correction
The preanalytical procedures employed by each cohort 
are detailed in the Supplementary Materials. Sample col-
lection within the Wisconsin cohort was initiated ahead 
of standardized preanalytical protocol dissemination 
[9]; therefore, the correction factors are calculated in 
the respective correction reference groups (participants 
who were CU, APOE-ε4 allele non-carriers, and aged <65 
years) of the Wisconsin and ALFA+ cohorts assuming 
the ALFA+ cohort being the “standard cohort.” The cor-
rection factor was calculated using the formula:

Correction factor = median(ALFA + cohort)/median(Wisconsin cohort)
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Application of the correction factor was deemed suc-
cessful in accounting for preanalytical variations by 
assessment of biomarker distribution overlap before 
and after correction, i.e., if following correction the 
biomarker distributions had good overlap, the correc-
tion was a success. The correction was applied to CSF 
biomarkers: α-Syn, Aβ40, and Aβ42 (Table S1), which 
are known to be significantly affected by preanalytical 
protocols, specifically related to the ability of these bio-
markers to stick to the tubes used during testing [4, 13]. 
Conversely, the remaining biomarkers, such as pTau and 
tTau, appear to be unaffected by the tubes employed [4]. 
Natural variations between the cohorts were unaffected. 
Variations between cohorts may also result from inherent 
cohort differences or from cultural bias, e.g., in cognitive 
assessments.

CSF amyloid‑β cut‑off value derivation
Amyloid-β pathology was determined by CSF Aβ42/
Aβ40 ratio for this analysis; the results are provided in 
the Supplementary Materials. To derive the cut-off val-
ues for the CSF Aβ42/Aβ40 ratio, Gaussian mixture 
modeling was independently applied to the ALFA+ and 
Wisconsin cohorts. The optimal number of Gaussians 
was set as two, after testing models with two, three, and 
four Gaussians (Supplementary Materials). Derived cut-
off values were defined as x±2*s with differently defined 
parameters for x and s: (i) x=μ, s=σ (mu, sigma; Gaussian 
parameters of the amyloid-β negative [A−] population); 
(ii) x=mean, s=SD of samples assigned to A− popula-
tion; and (iii) x=median, s=rSD of samples assigned to 
A− population (Tables S2–S5). The resulting cut-off val-
ues for the Aβ42/Aβ40 ratio were defined as 0.071 for the 
ALFA+ cohort [8] and 0.060 (0.075 after correction) for 
the Wisconsin cohort. Only patients with AD-dementia 
were included in the ABBY and BLAZE studies; there-
fore, cut-off values were not defined as this cohort was 
not divided by amyloid-β status. For comparison, the 
cut-off values determined for the ALFA+ cohort were 
applied to the Wisconsin cohort after correction.

Cognitive assessments
All participants completed the MMSE [14] and Clini-
cal Dementia Rating scale Sum of Boxes (CDR-SB) [15] 
cognitive assessments during the respective studies. 
The time between CSF biomarker collection at baseline/
enrollment and cognitive assessment varied for each par-
ticipant and in some cases was up to 1 year. For the lon-
gitudinal studies, the cognitive assessment closest to the 
first lumbar puncture was used in this analysis, including 
those cognitive assessments performed before the lum-
bar puncture. The ALFA+ cohort only included partici-
pants with CDR-SB=0, per the study exclusion criteria 

[16]. Calculations of a modified Preclinical Alzheimer 
Cognitive Composite (PACC) were based on methods 
proposed by Donohue et  al. [17], Papp et  al. [18], and 
Jonaitis et  al. [19]. Variables included in the composite 
in the ALFA+ cohort were Semantic Fluency (animal 
naming), Free and Cued Selective Reminding Test with 
Total Immediate Recall, and Wechsler Adult Intelligence 
Scale-Revised Coding subtest. In the Wisconsin cohort, 
Semantic Fluency (animal naming), Rey Auditory Ver-
bal Learning Test Trials 1–5 Sum, and Wechsler Adult 
Intelligence Scale-Revised Coding subtest were included. 
PACC was not used for the Abby/Blaze cohort.

Statistical analyses
To compare biomarker concentrations across cohorts, 
the median concentration and interquartile range of all 
NTK CSF biomarkers before and after correction were 
calculated for all cohorts, therefore enabling the inclu-
sion of outlying samples. The robust-to-outliers standard 
deviation (rSD) was estimated based on percentile val-
ues (rSD=[value of 84.13% percentile − value of 15.87% 
percentile]/2). The distributions of the CSF biomarker 
concentrations within the same disease stage across the 
cohorts were statistically compared before and after cor-
rection. To compare baseline/enrollment values for each 
CSF biomarker for both CU individuals and patients with 
AD-dementia separately, correlation values were com-
puted using Spearman’s rho.

Fold change was calculated using the canonical fold 
change calculation in CSF biomarker concentrations in 
CU A− individuals from either the ALFA+ or Wisconsin 
cohorts with (i) CU amyloid-β-positive (A+) individu-
als (ALFA+), (ii) CU A+ individuals (Wisconsin), (iii) 
patients with MCI A+ (Wisconsin), (iv) patients with 
AD-dementia (Wisconsin), and (v) patients with AD-
dementia (Abby/Blaze). Receiver operating characteristic 
(ROC) analyses, presented with an area under the curve 
(AUC) and 95% confidence intervals, comparing CSF 
biomarker concentrations in CU A− individuals with 
(i) CU A+ individuals (ALFA+), (ii) CU A+ individuals 
(Wisconsin), (iii) patients with MCI A+ (Wisconsin), and 
(iv) and patients with AD-dementia (Wisconsin) were 
performed.

Spearman’s rho correlation between the concentra-
tion of all the biomarkers and cognitive performance, 
reflected in MMSE and/or PACC scores, in the differ-
ent disease stages was computed. To assess cognitive 
scores from each cohort on a similar scale relative to that 
cohort’s control participants, standardization of each 
individual raw score into z-scores was performed using 
the means and rSDs obtained from the A− samples of 
each control group as a reference. All three obtained 
z-scores were averaged. The obtained PACC values were 
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re-standardized using the mean and rSD from the A− 
samples of the control group. Missing data in any of the 
raw scores led to a missing PACC value.

Results
No differences were found between cohorts in age, sex, 
years of education, MMSE score, or APOE-ε4 carrier-
ship status within the different disease stages (Table  1). 
Prior to correction for preanalytical protocol differ-
ences, concentrations of α-Syn, Aβ40, and Aβ42 were 
significantly higher in CU A− individuals in the ALFA+ 
cohort compared with the Wisconsin cohort. Biomarker 
distributions for the ALFA+ and Wisconsin cohorts 
(Fig. S1) illustrate that biomarker concentrations were 
comparable between cohorts in the reference groups 
following correction. CSF biomarkers GFAP, IL-6, S100, 
pTau, and pTau/Aβ42 were significantly lower in the 
ALFA+ cohort compared with the Wisconsin cohort 
in CU A− individuals (Table  2). These differences may 
arise from intrinsic cohort differences or from measure-
ment bias; therefore, the raw values of these biomarkers 
cannot be directly compared between cohorts, but the 
trends within cohorts can be compared with each other. 
For the remaining biomarkers, there were no significant 
differences between cohorts. The details of all the CSF 
biomarker concentrations, including before and after 
correction for those affected, across all cohorts and dis-
ease stages are reported in Table 2. Biomarker concentra-
tion distributions before and after correction represented 
as boxplots are shown in Figs. 1 and 2. Classification of 
amyloid-β status, including the use of a single cut-off 
value for both the ALFA+ and Wisconsin cohorts, had 
no impact on the comparability of biomarker concentra-
tions across cohorts (Table S6, Table S7).

Of the biomarker values that did not undergo correc-
tion, YKL40, GFAP, NfL, neurogranin, pTau, and tTau 
were all increased in patients with AD-dementia or 
MCI who were A+ compared with CU individuals and 
patients with MCI who were A−. Both α-Syn and the 
pTau/Aβ42 ratio values were increased in patients with 
AD-dementia or MCI who were A+. Values for Aβ42 
and the Aβ42/Aβ40 ratio were decreased in patients with 
AD-dementia or MCI. These results applied to both the 
corrected and uncorrected values. Correlations of CSF 
biomarkers were comparable across cohorts within the 
same disease stage (Supplementary Results, Fig. S2).

Diagnostic variations
The fold change in CSF biomarker concentration com-
pared with CU A− individuals was comparable across 
cohorts (Tables S8–S10). Across all cohorts, the fold 
change showed a similar pattern regardless of whether 
it was calculated using values from the CU A− indi-
viduals group from the same cohort or from a different 
cohort. NfL, pTau, and tTau concentrations were higher 
in patients with AD-dementia, followed by patients with 
MCI, compared with CU individuals. Figure 3 shows the 
fold change displayed as a forest plot of the biomarker 
concentration compared with the CU A− individual 
group (derived from either the Wisconsin cohort or the 
ALFA+ cohort).

ROC analyses (Fig. S3) and AUC data (Fig. 4 and Table 
S11) confirmed the results shown by fold change. Among 
the CSF biomarkers evaluated, NfL (followed by YKL40, 
GFAP, Aβ42, pTau, and tTau) had the greatest diagnos-
tic value for discriminating CU A− individuals from 
patients with MCI or AD-dementia. The results were not 

Table 1 Characterization of cohorts (amyloid status as defined by Aβ42/Aβ40 ratio)

a Amyloid-β status is unknown due to missing Aβ40 analysis

Abbreviations: Aβ42, amyloid-β1–42; Aβ40, amyloid-β1–40; AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating Scale – Sum of Boxes; CU, cognitively unimpaired; 
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NA, not applicable; PACC , Preclinical Alzheimer’s Cognitive Composite; SD, standard deviation

CU (A−) CU (A+) CU (missing)a MCI (A−) MCI (A+) AD‑dementia (all)

Characteristics ALFA+ Wisconsin ALFA+ Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Abby/Blaze

N 263 376 135 160 10 23 33 49 164

Age, mean (SD) 60.5 (4.5) 60.3 (7.5) 62.2 (5.0) 64.0 (7.2) 60.7 (7.6) 69.2 (8.5) 73.7 (7.9) 72.3 (8.5) 69.6 (7.8)

Female, n (%) 163 (41) 250 (38) 81 (20) 107 (16) 8 (1) 12 (2) 12 (2) 17 (3) 85 (52)

Education, mean (SD) 13.6 (3.5) 16.2 (2.5) 13.3 (3.6) 16.3 (2.4) 17.1 (3.1) 15.7 (2.7) 16.2 (2.6) 14.5 (2.7) NA

MMSE, mean (SD) 29.2 (0.9) 29.4 (0.9) 29.1 (1.0) 29.2 (1.0) 29.3 (1.0) 28.2 (1.7) 27.0 (2.2) 21.7 (3.8) 21.7 (3.2)

CDR‑SB, mean (SD) 0 0.04 (0.20) 0 0.13 (0.31) 0 1.38 (1.44) 1.81 (1.18) 4.44 (1.61) 4.56 (1.94)

PACC, mean (SD) −0.16 (0.93) −0.13 (1.13) −0.11 (1.03) −0.35 (1.29) −0.02 (0.98) −2.26 (1.04) −2.93 (0.97) −4.60 (1.42) NA

APOE-ε4 carriers, n (%) 111 (28) 105 (16) 103 (26) 86 (13) 4 (1) 6 (1) 20 (3) 32 (5) 118 (72)

APOE-ε4 non‑carriers, 
n (%)

152 (38) 251 (39) 32 (8) 67 (10) 6 (1) 13 (2) 12 (2) 16 (3) 46 (28)
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affected by amyloid-β status as Aβ42 showed the great-
est ability of all the biomarkers measured to discriminate 
CU A− individuals from CU A+ individuals in both the 
ALFA+ and Wisconsin cohorts.

Correlation with clinical measures of cognition
The correlation between CSF biomarker concentration 
and cognitive scores (MMSE and/or PACC) appears 
comparable across cohorts. The correlation of the bio-
marker concentration and the cognitive scores in the 
different disease stages and cohorts is shown as a forest 

plot in Fig. 5. For CU A+ individuals, the strongest cor-
relation among different biomarker concentrations and 
PACC score was found in YKL40, GFAP, and NfL. For 
patients with AD-dementia (Wisconsin and Abby/Blaze 
cohorts), the strongest correlation between biomarker 
concentrations and MMSE was found in NfL.

Discussion
The NTK project involves the evaluation of a large panel 
of CSF biomarkers of AD pathology and glial activity 
that may address the goals outlined in the introduction 

Fig. 1 Box plots of uncorrected biomarkers by disease stage and amyloid‑β status as defined by Aβ42/Aβ40 ratio. Aβ40, amyloid‑β1–40; Aβ42, 
amyloid‑β1–42; AD, Alzheimer’s disease; CU, cognitively unimpaired; GFAP, glial fibrillary acidic protein; MCI, mild cognitive impairment; NfL, 
neurofilament light; pTau, phosphorylated tau; tTau, total tau; YKL40, chitinase‑3‑like protein‑1
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A

B

Fig. 2 Box plots of biomarkers by disease stage and amyloid‑β status as defined by Aβ42/Aβ40 ratio; A uncorrected values and B corrected 
values. Aβ40, amyloid‑β1–40; Aβ42, amyloid‑β1–42; AD, Alzheimer’s disease; CU, cognitively unimpaired; MCI, mild cognitive impairment; pTau, 
phosphorylated tau
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for diagnosis, prognosis, predicting treatment response, 
and surrogate outcomes in AD. Following recently pub-
lished studies describing the utility of the NTK immu-
noassays in clinical settings [8, 9, 20], this analysis 
demonstrates that the application of a correction fac-
tor for biomarkers affected by preanalytical variability 
improves the comparability of NTK data across three 
independent cohorts spanning the AD continuum. After 
establishing the adequacy of the correction factor, we 
examined the cohorts for insights regarding biomarker 
relationships across the disease stages. In response to 
the three prioritized research questions discussed in 
the introduction, this analysis provided the following 
answers.

Comparative: The correction factor for preanalytical 
protocol variations employed here enabled the com-
parison of data across cohorts, rendering significant 

differences in CSF biomarker concentrations irrelevant. 
The correction factor was not developed specifically for 
the present cohorts and is generalizable, which ena-
bles the introduction of further cohorts into the com-
parative framework. Comparability of CSF biomarker 
data acquired with the NTK was found to be robust 
to methods of amyloid-β status classification, suggest-
ing the possibility of introducing future cohorts with 
or without having calculated their own cut-off values. 
Further investigation with additional cohorts is needed. 
Correlations between all CSF biomarkers were consist-
ent for CU individuals in both the ALFA+ and Wiscon-
sin cohorts and for patients with AD-dementia in both 
the Wisconsin and Abby/Blaze cohorts. These results 
indicate that the data produced by the NTK were com-
parable across cohorts, meaning results and subsequent 
analyses may be combined.

Fig. 3 Fold change vs CU, Aβ42/Aβ40 amyloid‑β negative with age <65 years. Aβ40, amyloid‑β1–40; Aβ42, amyloid‑β1–42; AD, Alzheimer’s disease; 
CU, cognitively unimpaired; GFAP, glial fibrillary acidic protein; IL, interleukin; MCI, mild cognitive impairment; NfL, neurofilament light; pTau, 
phosphorylated tau; sTREM2, soluble triggering receptor expressed on myeloid cells 2; tTau, total tau; YKL40, chitinase‑3‑like protein‑1
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Diagnostic: CSF biomarker differences for CU A− 
individuals compared with patients with AD-dementia, 
were comparable across cohorts, regardless of the CU 
A− individual cohort origin. The fold change for CU 
A− individuals compared with patients with MCI and 
patients with AD-dementia was largest for NfL, pTau, 
and tTau. The diagnostic utility of the aforementioned 
biomarkers was confirmed with ROC and AUC analy-
ses, suggesting these biomarkers, and Aβ42, are the 
most appropriate for disease stage differentiation.

Clinical: Correlations of CSF biomarker concentrations 
with cognitive score were comparable across cohorts. 
Associations between biomarker concentrations and clin-
ical cognitive scores have been the focus of several stud-
ies to validate measures of cognition but only few studies 
include a panel of CSF biomarkers [21–25]. Correlations 

between CSF biomarker concentrations and cognitive 
scores are indicative of the prognostic utility of the bio-
marker in question [21]. Here, we found that clinical 
cognitive scores had the strongest correlation with NfL, 
in the CU A+ and AD-dementia disease stages. For CU 
A− individuals, NfL correlated with the PACC score in 
the Wisconsin cohort, but less so in the ALFA+ cohort. 
Our findings on the moderate, inverse correlation of NfL 
with clinical measures of cognition are consistent with 
the literature [26] indicating markers of neurodegenera-
tion track with cognition. No strong correlations of bio-
markers for patients with MCI A−/A+ were observed.

Consistently across the three prioritized research ques-
tions examining correlations with biomarker concentra-
tions, NfL is the most promising CSF biomarker for AD 
along with the well-established Aβ42, pTau, and tTau. No 
statistically significant differences in NfL concentration 

Fig. 4 Forest plot of ROC analyses AUC with 95% confidence intervals (amyloid status as defined by Aβ42/Aβ40 ratio). Aβ40, amyloid‑β1–40; Aβ42, 
amyloid‑β1–42; AD, Alzheimer’s disease; AUC, area under the curve; CI, confidence interval; CU, cognitively unimpaired; GFAP, glial fibrillary acidic 
protein; IL, interleukin; MCI, mild cognitive impairment; NfL, neurofilament light; pTau, phosphorylated tau; ROC, receiver operating characteristics; 
sTREM2, soluble triggering receptor expressed on myeloid cells 2; tTau, total tau; YKL40, chitinase‑3‑like protein‑1
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between cohorts were observed within disease stage. 
Additionally, NfL differentiated disease stage and corre-
lated with measures of cognition. The observation of NfL 
differentiation between disease stages is consistent with 
recent literature, which includes the correlation of NfL 
with imaging markers of neurodegeneration [27]. How-
ever, NfL is not a specific biomarker for AD, but rather 
for several neuroinflammatory diseases [28–30]. Ana-
lyzing the biomarker results of NfL within the context 
of other biomarkers of neuroinflammation, glial activ-
ity, and known AD pathology is key to the utility of NfL 
within the AD landscape. As such, the NTK panel pro-
vides clinical utility from both the biomarkers at an indi-
vidual level and as a whole. In the current study, NfL did 
not strongly correlate with the other biomarkers included 
in the NTK; these results are in contrast to the literature, 
which describes NfL correlations with (plasma) GFAP 
[31], pTau, tTau, and neurogranin [26].

In the AD field, vast amounts of biomarker data are gen-
erated; however, comparability between biomarker datasets 
is not routinely employed due to the heterogeneity of the 
disease and the technical variability associated with pre-
analytical protocols and the immunoassay platforms used. 
Several pre-competitive efforts to generate comparable 

datasets, harmonize and maximize the interpretability of 
the biomarker results collected, such as the NTK project 
and the Global Biomarker Standardization Consortium 
(GBSC; a collaborative effort in the acceleration of bio-
marker standardization [32]), are ongoing. Measures have 
also been taken to standardize methods of CSF collection 
and measurement to ensure reproducible and consist-
ent results across multiple cohorts and immunoassays [3, 
4]. The aim is to clarify the clinical utility of biomarkers to 
inform clinical trial design and for diagnostic development.

To our knowledge, the NTK project is the first large-
scale project that aims to generate robust and compara-
ble biomarker data across multiple independent cohorts 
in AD. While cross-cohort examinations of datasets 
have been employed for single biomarker validation 
studies [33], a project with the number of biomarkers 
described in this analysis is uncommon. Other large-
scale studies investigating the utility of biomarkers at 
various disease stages include the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) [34] and the Austral-
ian Imaging, Biomarkers and Lifestyle (AIBL) study of 
aging [35]. However, these studies do not include mul-
tiple cohorts and are geographically restricted, and the 
biomarkers are measured using multiple immunoassay 

Fig. 5 Baseline correlation between NTK biomarkers and cognitive scores (amyloid status as defined by Aβ42/Aβ40 ratio). Aβ40, amyloid‑β1–40; 
Aβ42, amyloid‑β1–42; AD, Alzheimer’s disease; CI, confidence interval; CU, cognitively unimpaired; GFAP, glial fibrillary acidic protein; IL, interleukin; 
MCI, mild cognitive impairment; NfL, neurofilament light; NTK, NeuroToolKit; PACC, Preclinical Alzheimer Cognitive Composite; pTau, phosphorylated 
tau; sTREM2, soluble triggering receptor expressed on myeloid cells 2; tTau, total tau; YKL40, chitinase‑3‑like protein‑1
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platforms. The NTK project seeks to maximize the 
comparability of biomarker measurements between 
cohorts by generating and analyzing biomarker data 
using a common platform and immunoassay.

A key strength of this study is the large dataset 
included, spanning several countries and native lan-
guages. Importantly, the cloud-based DRE employed in 
the NTK project allows for an increase in data sharing 
with interpretation unified across several cohorts. The 
researchers involved in the NTK project retain control 
over their data and through collaborative efforts they 
can work with other consenting cohorts to enrich their 
datasets and provide further insights. The standardized 
statistical analysis on single cohorts, as well as the cor-
rection procedure, comparisons, and graphical represen-
tations across different cohorts described here, can also 
be applied to other cohorts via the NTK app (currently 
under development). Following the approval and will-
ingness of collaboration of all data owners, and with the 
accrual of added data and cohorts, the feasibility of the 
NTK app will be thoroughly explored.

Limitations
Possible limitations of the present study include the deci-
sion not to use amyloid-β positron emission tomography 
data as a common comparator across cohorts to determine 
amyloid-β status, and the use of only single-timepoint data 
for individual assessments (e.g., only one MMSE assess-
ment was included per individual). Future studies should 
include the clinical follow-up data for the participants. In 
the longitudinal cohorts included in this study, CSF sample 
collection and cognitive assessments were not necessarily 
completed at the same time. Cognitive assessments and 
CSF sample collection were performed within a year of 
each other, or the sample was excluded from this analysis. 
Although AD is a slowly evolving disease, this may have led 
to variations in the correlations for these measures. How-
ever, for individuals with MCI and CU individuals, pTau, 
tTau, Aβ42, and neurogranin have been shown to be stable 
over a 2-year period [36, 37]. In addition, the Abby/Blaze 
cohort of individuals with AD-dementia, cognitive assess-
ment, and CSF sample collection both occurred at base-
line. Compared with the CU (n=944) and AD-dementia 
(n=213) patient populations, the MCI population (n=56) 
is relatively small. Expanding the results within this impor-
tant patient population may lead to further insights into 
AD disease pathogenesis and the clinical utility of the NTK 
panel of immunoassays.

The correction for preanalytical protocols was based 
on several assumptions: (i) the ALFA+ cohort samples 
were all collected according to the standardized protocol, 
but the Wisconsin cohort samples were not; (ii) sample 
handling procedures only affect α-Syn, Aβ42, and Aβ40, 

which may be disproved with future research; (iii) sample 
handling procedures have a similar effect on samples with 
high concentrations and those with lower concentrations. 
These assumptions may explain for the variations between 
cohorts seen in the biomarker values that were not cor-
rected; however, it is beyond the scope of this study to 
determine the cause of such variations. In addition, cor-
rection for preanalytical protocols was employed and not 
harmonization of all biomarker results. While harmoni-
zation of the biomarker results would have allowed for 
head-to-head analysis, as no bridging samples (measured 
on the same instrument at the same time from all cohorts) 
required to perform a harmonization were collected cor-
rection was employed. The rationale for the correction fac-
tor was that existing cohorts were used, meaning some of 
the samples had been collected prior to the initiation of the 
present analysis. As such, reference materials and methods 
were not used. The correction factor is therefore employed 
as a solution to enable the inclusion of these data. If the 
analysis were to be performed as part of a prospective 
study, the correction factor may not be required if stand-
ardized procedures and reference materials were employed.

In summary, the robust prototype NTK panel of immu-
noassays provides biomarker data that can be used to sup-
port the utility of biomarkers in clinical trials and in the 
diagnostic clinical setting. Our study supports the feasibil-
ity of cross-cohort collation of data provided by the NTK 
immunoassays to enable further insight gathering into the 
underlying pathogenesis of AD. Our next step is to use a 
DRE to implement the standardized statistical analysis 
plan and increase the interpretation of results across stud-
ies. In addition, the NTK project will expand to include 
supplementary CSF immunoassays beyond the 12 in this 
study, as well as plasma biomarker immunoassays.
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