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Dysregulated B cell function
and disease pathogenesis in
systemic sclerosis
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Systemic sclerosis (SSc) is a complex, immune-mediated rheumatic disease

characterised by excessive extracellular matrix deposition in the skin and

internal organs. B cell infiltration into lesional sites such as the alveolar

interstitium and small blood vessels, alongside the production of defined

clinically relevant autoantibodies indicates that B cells play a fundamental

role in the pathogenesis and development of SSc. This is supported by B cell

and fibroblast coculture experiments revealing that B cells directly enhance

collagen and extracellular matrix synthesis in fibroblasts. In addition, B cells

from SSc patients produce large amounts of profibrotic cytokines such as IL-6

and TGF-b, which interact with other immune and endothelial cells, promoting

the profibrotic loop. Furthermore, total B cell counts are increased in SSc

patients compared with healthy donors and specific differences can be found in

the content of naïve, memory, transitional and regulatory B cell compartments.

B cells from SSc patients also show differential expression of activation markers

such as CD19 which may shape interactions with other immune mediators

such as T follicular helper cells and dendritic cells. The key role of B cells in SSc

is further supported by the therapeutic benefit of B cell depletion with rituximab

in some patients. It is notable also that B cell signaling is impaired in SSc

patients, and this could underpin the failure to induce tolerance in B cells as has

been shown in murine models of scleroderma.
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1 Introduction

Systemic sclerosis (SSc) is a rare, immune-mediated

rheumatic disease characterised by pathogenic microvascular

damage and progressive fibrosis of the skin and internal organs.

It has the highest case-specific mortality of any rheumatic

disease and carries significant morbidity for the patient.

Although the updated American College of Rheumatology

(ACR) and European League Against Rheumatism (EULAR)

classification criteria have improved sensitivity and specificity of

diagnosis, understanding of disease aetiopathogenesis and

development remains unclear (1–3). In addition, SSc is highly

heterogenous, so it can be difficult to stratify patients and devise

optimal treatment strategies (2, 4).

Skin fibrosis is the major diagnostic feature of SSc, and the

extent of skin involvement is used to stratify patients into two

subsets. These are limited cutaneous systemic sclerosis (lcSSc)

and diffuse cutaneous systemic sclerosis (dcSSc) (5). Patients

with lcSSc generally exhibit skin fibrosis which is distal to the

elbows and knees, whereas diffuse involvement occurs

proximally to the elbows and knees (3). Patients with dcSSc

are at an increased risk of complications such as scleroderma

renal crisis and interstitial lung disease (ILD), although some

patients with lcSSc can also develop these complications (4, 6, 7).

Importantly, there is no difference in the frequency and timing

of development of significant ILD between patients for both skin

subsets (8). Therefore, classification based upon skin subset

alone does not offer accurate risk stratification of internal

organ involvement.

Pathogenesis of systemic sclerosis is mediated by several

immune and inflammatory cells. Currently, it is thought that

vascular injury drives an infiltration of mast cells, T lymphocytes

and macrophages into lesional tissues early on in the disease.

Ultimately, this results in an unresolving pro-inflammatory and

pro-fibrotic response mediated by myofibroblast differentiation

and the production of cytokines such as interleukin-6 (IL-6) and

transforming growth factor b (TGF-b). Evidence for B cell

involvement comes from multiple studies outlining

dysregulated B cell signaling and homeostasis within SSc

patients, as well as evidence from mouse models and B cell

modulating therapeutics. The key immunological feature of SSc

is the presence of high levels of self-reactive antibodies in the

blood. Patients present with various autoantibody profiles and,

in clinical practice, this is one of the best indications to stratify

patients and predict organ involvement (9). In addition,

detection of autoantibodies can precede clinical onset of SSc,

highlighting their pathological relevance (10). As such it is likely

that autoreactive B cells are a driving factor in SSc, but the

complete relevance and origin of these cells has not been

fully determined.
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2 B cell biology

B lymphocytes are pleiotropic cells with multiple functions

including antibody and cytokine production, antigen

presentation to T cells, modulation of dendritic cell function,

and lymphoid organogenesis. As a result, B cells can orchestrate

immune responses and influence the local environment at sites

of infection and tissue injury/inflammation. With regards to the

latter, dysregulated B cell responses have been implicated in a

number of autoimmune diseases including systemic lupus

erythematosus (SLE), Sjogren’s syndrome and rheumatoid

arthritis (RA) (11).

B lymphocytes develop within the bone marrow from

hematopoietic stem cells where they acquire a functional B cell

receptor (BCR) fo l lowing rearrangement of the i r

immunoglobulin (Ig) heavy (H) and light (L) genes in the

presence of selective growth factors. Following Ig gene

rearrangements, immature B cells express surface IgM and are

then purged of autoreactive cells that recognise self-antigens in

the bone marrow with high affinity. Most self-reactive clones are

tolerised at this central checkpoint through mechanisms of

receptor editing and clonal deletion. Immature B cell clones

that do not recognise local self-antigens leave the bone marrow

and migrate to the periphery for development as transitional

cells to naïve mature B cells in a linear pathway (Figure 1)

(12, 13).
3 B cell regulation in scleroderma

Differences in B cell homeostasis in SSc patients compared

with healthy individuals have been documented in a number of

studies (14–16). Typically, these studies have reported an overall

increase in the number of B cells and/or differences in the

distribution of B cell subsets in scleroderma patients compared

with healthy individuals (14–16). However, it is pertinent to

highlight that disease duration and immunosuppressive

medications are likely to have impacts on lymphocyte

homeostasis and subset distribution. Therefore, inclusive

analyses are important to mitigate the effect of these factors on

altered B cell homeostasis in SSc.

An early study by Sato et al. analysed B cell subsets in 39

Japanese SSc pat ients who had not rece ived any

immunosuppressive therapy. This study observed an increase

in the number of circulating CD27- naïve B cells compared with

healthy individuals with a reduction in CD27+ memory B cells

and CD27+ plasmablasts (15). Additionally, memory B cells

from SSc patients displayed augmented ability to undergo

apoptosis and an overexpression of CD19 – possibly relating

to their functional hyperactivity (15). These findings have been
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confirmed in subsequent studies which have revealed further

differences between CD27- naïve B cells in healthy individuals

and patients. Following from these earlier studies, transitional

CD27-CD24hiCD38hi B cells have also been implicated in

scleroderma (17–19). Transitional B cells encompass a

heterogenous population comprised of at least three distinct

subsets (T1 – T3) with differential expression of IgM and IgD

and a differential capacity to respond to antigen stimulation. T1

B cells define a population which has recently emigrated from

the bone marrow and must acquire survival signals and undergo

peripheral tolerance before the cells can proceed through the T2/

3 pathway and develop to maturity (20). The T1 and T2 subsets

are distinguishable by their differential capacity to survive or

undergo apoptosis following BCR engagement, whilst the T3

subset display a functional status which is similar to that of

anergic B cells (20). In some studies, a CD27+ subset has also

been identified (18, 20). This subset responds rapidly to T cell

independent stimulation and is able to produce natural IgM

antibodies and secrete high levels of IL-10 (18). Taher et al.

studied transitional B cells in SSc patients and reported reduced

numbers of T1 cells and expanded T2 cells in SSc patients

compared with matched healthy individuals (18). Importantly,

T1 cells from SSc patients displayed reduced capacity to undergo

apoptosis and contained large numbers of B cells that were

specific against the SSc-associated antigen Scl-70. Furthermore,

B cell specificity for Scl-70 was demonstrated in patients who

were seropositive for Scl-70 autoantibodies, highlighting the

significance of this finding (18). This study also analysed the

phosphorylation of the STAT-3 signalling pathway when

transitional B cells were stimulated through toll-like receptor

(TLR)9. STAT-3 has a fundamental role in suppressing pro-

inflammatory signal transduction through the TLRs and is
Frontiers in Immunology 03
crucial for anti-inflammatory IL-10 signalling (21). Taher and

colleagues observed a significant reduction in STAT-3

phosphorylation in transitional T1 and CD27+ cells from SSc

patients and this is consistent with reduced IL-10 production

from these cells (18). Taken together this may implicate a failed

tolerance checkpoint at the developmental T1 – T2 stage in SSc

patients and similar findings have been reported in a recent

study by Glauzy and colleagues who concluded that central and

peripheral B cell tolerance checkpoints are likely breached in SSc

patients (18, 19). However, STAT-3 is also involved in the

regulation of several other cytokines including IL-6, indicating

that the observation of reduced IL-10 production in SSc B cells

may relate to a signalling molecule upstream of STAT-3 (22, 23).

Differences in the number and function of IL-10 producing

regulatory B cells, or Bregs have been noted in multiple studies of

SSc (24–26). There is no definitive marker to define Bregs,

therefore, current classification is based upon Breg capacity to

produce high levels of anti-inflammatory IL-10 and immune-

regulatory IL-35 and TGF-b – a key cytokine also involved in

fibrotic pathways (27). In SSc patients, IL-10 producing B cells

are markedly reduced compared with healthy individuals and B

cell capacity to produce IL-10 is reduced (16, 18, 24, 25).

Diminished Breg populations have been linked with an

increased risk of ILD, whilst IL-10 specific B cell expansion

has been shown to correlate positively with patient responses to

autologous haematopoietic stem cell transplant (16, 25, 28).

A study to examine CD27+ memory B cell populations in SSc

patients highlighted a reduction in the non-switched memory

compartment, resulting in an imbalance between tolerogenic

and activated memory B cells (29). In addition, elevated

numbers of switched and activated memory B cells were

associated with dcSSc and are likely to be relevant through
FIGURE 1

A simplified overview of the developmental pathway of B cells. They develop in the bone marrow from hematopoietic stem cells to pro- and pre-B
cells once the IgH genes are rearranged. Following successful IgL gene rearrangement the cells develop to immature B cells expressing IgM. These
cells then migrate from the bone marrow to the periphery as transitional 1 (T1) B cells which pass through peripheral checkpoints with most
autoreactive B cells becoming anergic-like T3 cells. T2 cells can mature to become either follicular (Fo) or marginal zone (MZ) B cells expressing
IgM and IgD. Fo B cells can differentiate to low affinity antibody producing plasmablasts (PB) or undergo class switching and affinity maturation in
germinal centres (GC) to become high affinity antibody producing plasma cells or memory cells. Figure created with BioRender.com.
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autoantibody and cytokine production. However a significant

proportion (52.6%) of the dcSSc patients had received

immunosuppressive medications suggesting that these results

should be interpreted with caution (29).
4 Autoantibodies in SSc

Whilst the pathological relevance of SSc-specific autoantibodies

remains incompletely understood, autoantibodies are strongly

associated with the disease and are the strongest predictors of

disease course and outcome. This means that autoantibodies are

valuable clinical tools which are routinely used to stratify patients

and predict patient prognosis (9, 30). Typically, these

autoantibodies are of high specificity against nuclear antigens and

are present at a high concentration (10).

The three autoantibodies which are most frequently

associated with SSc are anti-centromere antibodies (ACA),

anti-topisomerase I antibodies (ATA) and anti-RNA

polymerase III antibodies (ARA). A patient will typically

present with one dominant autoantibody specificity and is

unlikely to change this autoantibody subtype. One of these

three subsets of autoantibodies (ACA, ATA or ARA) are

present in over 50% of those with scleroderma (9).

ACA are the most frequently observed autoantibodies in SSc

patients (9). These autoantibodies are highly specific for SSc and

are associated with lcSSc (31). Most commonly, ACA are specific

for centromere protein B (9). Centromere protein B is a highly

conserved nuclear protein which facilitates centromere formation.

Patients with ACA are often thought to be at risk of developing

pulmonary hypertension (PAH) but these studies are either based

on enriched cohorts or have used echocardiogram-diagnosed

PAH which is not sufficient for PAH diagnosis (32, 33).

However, a number of studies have demonstrated that B cell

depletion or B cell deficiency can be protective against vascular

remodeling in rodent models of PAH (34–36).

ATA positivity is strongly associated with SSc and is present

in up to 40% of individuals with the disease. ATA was initially

named as anti-Scl-70 as these autoantibodies react with a 70 kDa

protein on immunoblots, but it was later realised that Scl-70 was

in fact a breakdown product of the larger 100 kDa topoisomerase

I protein (37). ATA-positive patients can be dcSSc or lcSSc,

although there is a slight predominance of dcSSc with ATA (9).

ATA are a strong predictor of digital ulcer, pulmonary fibrosis

and ILD development irrespective of skin involvement and ATA

levels positively correlate with disease severity and activity (10).

Multiple studies have shown that purified ATA from SSc sera

can bind to the cell surface of fibroblasts, providing a potential

mechanism by which ATA-positivity could influence disease

(38, 39).

Unlike anti-RNA polymerase I and II autoantibodies that

can be detected across various autoimmune rheumatic diseases,

anti-RNA polymerase III antibodies (ARA) are strongly
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associated with SSc (9). In a recent meta-analysis, the pooled

prevalence of ARA positivity in SSc patients was 11% (40). ARA

positivity is a strong predictor of scleroderma renal crisis and up

to 59% of those with scleroderma renal crisis are seropositive for

ARA (41). ARA levels correlate with skin involvement, but they

do not predict organ complications or disease outcome (9).

However, patients with ARA have a higher risk of cancer (42).

In terms of disease pathogenesis, autoantibodies can amplify

immune responses and initiate inflammation and fibrosis

through immune complex formation. Recently, a new class of

autoantibodies reactive against various cell surface receptors

have been identified in those with SSc. These include

antibodies with specificity for platelet-derived growth factor

receptor alpha (PDGFRa), angiotensin II type 1 receptor

(AT1R) and endothelin-1 type A receptor (ETAR). Antibodies

against PDGFRa have been linked with fibrosis in both in vitro

and in vivo studies, whilst antibodies against AT1R and ETAR

have been linked with vascular damage (43). These

autoantibodies, however, are only detected in a small number

of SSc patients and have low disease specificity compared with

ACA, ATA and ARA positivity (44).

Additionally, autoantibodies with specificity for CD22 have

been detected in a subset of patients. CD22 is an inhibitory B cell

receptor that dampens BCR signalling via a tyrosine

phosphorylation-dependent mechanism. Patients with CD22

autoantibodies exhibit significantly worse skin scores than SSc

patients without these antibodies and it is hypothesised that anti-

CD22 autoantibodies are likely to interfere with CD22-mediated

suppression of B cell activation, resulting in further

dysregulation of B cell homeostasis (45). However, these

autoantibodies have been found in other autoimmune diseases

and are only present in a small subset of SSc patients so are not

likely to be a driving factor of disease (17, 45).
5 Abnormalities in B cell signalling
and B cell activation

In order to mount an effective immune response, B cells

must coordinate signalling through multiple innate and adaptive

immune receptors. Alongside the BCR, B cells express a variety

of coactivating and coinhibitory receptors that regulate B cell

activation status. Remarkably, even a minor change in the

expression or function of these receptors can result in a

defective B cell response. These abnormalities have been

reported in murine models of autoimmunity and in patients

with autoimmune diseases including SSc (Figure 2).

There is considerable evidence to show that B cells in SSc

patients are in a hyperactivated state induced, at least partly, by

increased levels of BAFF (46). This hyperactivation state is marked

by increased expression of the BCR coreceptor CD19

(approximately 20% higher) in SSc patients compared with

healthy controls (15, 47). As CD19 lowers the threshold for
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antigen-dependent stimulation of the BCR, enhanced CD19

expression could augment B cell signalling, resulting in an

autoimmune humoral response. Indeed, various autoantibodies,

including SSc-specific ATA antibodies were considerably

enhanced in transgenic mice that overexpressed CD19 by 20%.

This implies that a minor increase in CD19 expression in human

SSc may be enough to skew B cell signalling and, thus, trigger

autoantibody production (48, 49). CD19 also strengthens

antigenic signals generated by the BCR and with CD40

engagement by the CD40 ligand (CD40L) expressed on

activated T cells (50). Upregulation of CD19 has been observed

in other autoimmune diseases and is considered to be a possible

target for future therapy in SSc (17). On B cells, CD19 forms a

complex with CD21, also called complement receptor 2 (CR2)

which binds to cleavage products of the C3 complement

component and transduces signals through CD19, thus lowering

the threshold for B cell activation (48). Besides CD21, CD19 also

forms a complex with CD225 and CD81, where CD225 could

regulate CD19-mediated PI3K signalling (51). On the other hand,
Frontiers in Immunology 05
CD81 interaction with CD19 is important for CD19 expression

and function.

In contrast to CD21, which delivers a costimulatory signal,

the complement receptor CD35 (CR1) transduces inhibitory

signals by inhibiting the induced increase of cytoplasmic Ca2+

levels through BCR and CD40 signalling (17, 52, 53). This

suggests that CR1 is a late checkpoint to prevent autoreactive

B cell maturation and reduced CR1 expression has been found in

memory B cells from SSc patients, potentially augmenting their

ability to respond to self-antigen (17).

Programmed cell death protein 1 (PD-1) is a cell surface

molecule which is expressed on leukocytes and has been linked

to the loss of B cell tolerance and development of autoimmunity.

PD-1 regulates immunity by promoting self-tolerance when it is

engaged with its ligands PD-L1 and PD-L2 (54, 55). PD-L1 is

expressed on many cell types while PD-L2 is expressed on

antigen presenting cells. The interaction between PD-1/PD-L2

on B cells and T cells is suggested to suppress tumor necrosis

factor alpha (TNF-a) production from antigen-specific B cells
FIGURE 2

Dysregulated B cell signalling in SSc patients. Overexpressed molecules are shown in blue, underexpressed molecules are shown in red and
those shown in green are of interest in SSc, but are neither up or downregulated. SSc B cells are in a hyperactive state marked by differential
expression of the BCR coreceptors CD19 and inhibitory CR1. TLR signalling is augmented through differential TLR4, TLR7, TLR9 and CD180
expression, whilst increased levels of serum soluble PD-1 and PD-L2 inhibit the PD-1 and PD-L2 interaction between T and B cells. Figure
created with BioRender.com.
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and increase IL-10 production (56, 57). This interaction can be

blocked by serum soluble PD-1 (sPD-1) and PD-L2 (sPD-L2),

resulting in augmented T and B cell responses. Indeed, sPD-1

and sPD-L2 levels are elevated in SSc patients and this correlates

with severity of disease, as well as an increase in TNF-a
producing B cells and a reduction in IL-10 producing B cells

(56, 58).

Signalling through innate immune receptors, such as TLRs

can associate with the development of autoimmunity and the

loss of B cell tolerance. TLR signalling enables immune cell

responses to various stimuli such as pathogen associated

molecular signals (PAMPs) and danger associated molecular

signals (DAMPs). Defects in TLR signalling have been

implicated in several fibrotic diseases and B cell-specific TLR

expression dictates developmental trajectories within these cells

(59). For example, TLR4 which recognises lipopolysaccharide is

thought to promote B cell survival and maturation during

transitional development, whilst TLR2 arrests this process

(60). In addition, DAMP induced TLR4 activation is known to

be a key mediator of myofibroblast differentiation and is relevant

in scleroderma as TLR4 and several associated DAMPs are

significantly elevated in lesional tissues of SSc patients (61).

Additionally, TLR7 and TLR9 can operate in conjunction with

BCR-mediated signals and these receptors have important

regulatory functions in B cell development and autoimmunity.

TLR7 and TLR9 are intracellular endosomal receptors found in

eosinophils, dendritic cells and B cells. They recognise bacterial

and viral DNA and induce IRF7 signalling and IFN-a
production (62). In SLE patients, high TLR7 expression driven

by the TLR7 polymorphism rs3853839 C/G was associated with

increased disease activity and an upregulation of IFN-responsive

genes. Patients with higher TLR7 expression had greater

numbers of B cells than patients with lower TLR7 expression

and this was most notable in the transitional B cell subset (63).

Analysis of the expression of TLR7, TLR9 and JAK2 in PBMC

samples from 50 SSc patients and 13 healthy individuals revealed

significant TLR7 upregulation in the SSc patients and decreased

levels of TLR9 and JAK2. However, this study was carried out

using total PBMC and most of the patient cohort were receiving

immunosuppressive therapy (64). An in vitro study on B cells

isolated from SSc patients and healthy donors reported

significantly reduced IL-10 production when the SSc B cells

were stimulated via TLR9 perhaps indicating defective TLR9

signalling in the B cells from SSc patients (18).

Upon BCR engagement, intracellular protein kinases such as

SYK and BTK are activated. These kinases then phosphorylate

CD19 and B cell adapter for PI3K (BCAP) which provide

docking sites for PI3Ks leading to PI3K activation. PI3K

activation leads to further downstream activation of Akt and

mTOR serine/threonine kinase signalling, as well as NF-kB
pathway activation (65–69). These pathways are critical for B

cell survival, proliferation and differentiation with defective class

1A PI3K function preventing B cell development beyond the
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pre-BCR stage (70). Additionally, ubiquitination is a key

mechanism for regulating BCR-driven signalling where

inappropriate ubiquitination has been associated with

autoimmunity. A20 is a widely expressed deubiquitinating and

ubiquitin-editing enzyme which restricts NF-kB signalling and

protects against TNF-a induced programmed cell death. A20

has been linked with SSc in multiple genome-wide association

studies (GWAS) and single nucleotide polymorphism (SNP)

analyses which implicate the Tnfaip3 gene (71, 72). Tavares and

colleagues studied this gene using a floxed allele of Tnfaip3 to

generate mice deficient in A20 in B cells (73). The B cells from

these mice were hyper-responsive and displayed enhanced NF-

kB signalling through CD40 induced signals. The B cells were

also resistant to Fas mediated cell death, likely due to increased

expression of anti-apoptotic proteins such as Bcl-x produced via

the NF-kB pathway, potentially providing a mechanism by

which autoreactive B cells in genetically susceptible individuals

may survive tolerance checkpoints and develop to maturity in

SSc (74).

Similar to other autoimmune diseases, SSc development

l ike ly resul ts from a combinat ion of genet ic and

environmental factors with genome-wide association studies

(GWAS) identifying a number of polymorphisms associated

with SSc. Some of these polymorphisms relate to B cell

signalling, but a 2011 association study of B cell gene

polymorphisms in a cohort of 900 SSc patients and 1034

heathy individuals did not find evidence of SSc-associated

polymorphisms in CD19, CD20, CD22 and CD24 (68).

However, there is evidence for increased SSc susceptibility

resulting from genetic polymorphisms in coding domains of

other B cell signalling molecules. These include polymorphisms

in BANK1, BLK, PTPN22 and CSK (69, 75–77). Some of these

polymorphisms are known to be associated with multiple

autoimmune diseases and are associated with a patient’s

ethnicity and autoantibody subset. For example, the PTPN22

1858T risk allele is associated with patients who are seropositive

for ATA autoantibodies and results in a memory B cell deficit

with reduced responsiveness to antigen stimulation via the BCR

(77). In addition, polymorphisms in the negative regulators of B

and T cell activation, suppressors of cytokine signalling 2

(SOCS2) and SOCS3, were noted to be associated with SSc

(78). Further research is needed to understand the functional

relevance of these polymorphisms in SSc disease development.

A recent study analysed the expression of PI3K associated

molecules in 21 patients with early dcSSc (79). The study

identified altered mRNA expression in PI3K associated

signalling molecules including TLR homolog CD180, TLR4 and

C3 (79). Co-engagement of CD180 and the BCR enhanced NF-kB
phosphorylation in dcSSc B cells, but not in healthy controls,

whilst activation via CD180 increased the percentage of switched

memory B cells in dcSSc patients compared with healthy controls

(79). Additionally, in 2001, Koarada and colleagues reported that

the percentage of SSc patients with CD180-negative B cells was
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significantly higher than healthy controls, although not as high as

those with Sjogren’s syndrome or dermatomyositis (80). This may

be significant as ligation of CD180 induces affinitymaturation and

programs immature (including T1) and mature B cell subsets to

become efficient antigen presenting cells to T follicular helper cells

(81, 82). Interestingly, another study confirmed these findings and

reported reduced CD180 mRNA expression in B cells from dcSSc

patients. In lupus CD180-negative B cells have been described as

highly activated and CD180 can be internalised after stimulation,

indicating that CD180-negative B cells may result from B cell

activation via CD180. Of note, anti-CD180 stimulation induced

natural autoantibody production and significantly increased the

concentration of IL-6 in the supernatant of healthy tonsillar B cells

providing a mechanism by which CD180 stimulation could

increase the number of CD180-negative autoantibody producing

B cells in SSc (83).
6 Perturbations in the B cell
repertoire in SSc patients

Xiadong Shi and colleagues completed a study to analyse the

B cell repertoire in SSc patients compared with healthy controls.

These investigators reported differential IGHV-J gene usage in

SSc patients compared with healthy controls. In addition, they

noted that the average CDR3 region was significantly shorter in

SSc patients compared with the healthy controls. This is

important as the CDR3 region is the most variable region of

the BCR and is the prime determinant of antigen specificity (84).

Conversely, using immunoglobulin repertoire analyses in new

emigrant/transitional B cells in SSc patients and healthy

controls, Glauzy and colleagues observed a significantly higher

frequency of long IgH CDR3s which are associated with self-

reactivity (19). The discrepancy between these studies may

reflect the different B cell populations which were sampled as

the CDR3 region varies in length between subsets such as naïve

and memory B cells (85). Therefore, more research is needed to

determine whether the CDR3 region is involved in

autoimmunity in SSc.
7 Profibrotic and proinflammatory B
cell cytokines

B cells contribute to fibrosis via a number of mechanisms,

including direct cell-cell contact and production of stimulating

cytokines such as IL-6 (Figure 3). IL-6 is a pleotropic,

proinflammatory cytokine which can promote fibrosis (86).

Serum levels of IL-6 are increased in SSc patients and this has

been linked to worsening disease in human and animal studies

(11, 17, 86, 87). IL-6 promotes CD4+ T cell differentiation into

pro-inflammatory and pro-fibrotic Th1 and Th17 cells (86, 88).
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Furthermore, B cell derived IL-6 drives spontaneous germinal

centre formation in murine lupus, thus, providing a mechanism

by which excessive IL-6 production by B cells can result in

autoantibody production and autoimmunity (87). IL-6 also acts

as a stimulant for B cell proliferation and it enhances plasma cell

generation and antibody production, potentially inducing a

pathogenic IgG autoantibody response as has been described

in a murine model of lupus (89, 90).

Additionally, activated B cells produce high levels of TGF-b
which is a central player in fibrosis (91). When TGF-b binds to

its receptor on fibroblasts, it induces collagen synthesis and

extracellular matrix deposition through Smad signalling (91). In

addition, TGF-b promotes fibrosis via the inhibition of matrix

degrading proteolytic enzymes such as serine proteinases (92).

Elevated levels of TGF-b and enhanced expression of its

receptors have been found in the skin of SSc patients (93).

IL-10 is a potent anti-inflammatory cytokine and is,

therefore, very important in the context of autoimmune

disease (94). IL-10 can suppress CD4+ T cell proliferation

through downregulation of CD86 in an autocrine manner.

This also reduces IFN-g and TNF-a production which are

functionally important in scleroderma due to their profibrotic

and proinflammatory effects (88). In SSc patients, IL-10

producing B cells are markedly reduced compared with

healthy controls and B cell capacity to produce IL-10 when

stimulated via TLR9 is also reduced (18, 95).

IL-13 is another important Th2-type cytokine with several

unique effector functions. IL-13 has been demonstrated tomediate

tissue fibrosis in asthma, indicating that it is a key regulator of the

extracellular matrix (96). In the context of B cells, IL-13 can

upregulate MHC class II expression, induce Ig production,

promote IgE class switching and induce B cell proliferation and

differentiation (96–98). Serum levels of IL-13 are increased in SSc

patients and this correlates with levels of C-reactive protein which

is a biomarker of inflammation (99). In addition to IL-13, IL-33 is

another important Th2 cytokine which is overexpressed in SSc.

This cytokine is constitutively expressed at epithelial barrier sites

and its overexpression is of interest since IL-33 can drive tissue

fibrosis (100). Importantly, chronic exposure to IL-33 can also

promote significant BAFF production via neutrophils and

dendritic cells resulting in germinal centre formation and an

IgG autoantibody response (101).

CXCL-13 is a chemokine that regulates B cell migration

through secondary lymphoid tissues and is important for

neogenesis of ectopic lymphoid structures in the lungs (102).

It is overexpressed in SSc patients and CXCL-13 blood

concentrations have been linked with worsening prognosis in

patients with idiopathic pulmonary fibrosis (95, 103). It is

currently thought that CXCL-13 is produced by monocyte-

derived macrophages and that its gene expression is controlled

by TNF-a and IL-10 (103, 104).

In addition to these key cytokines, high levels of BAFF have

long been noted in SSc patients and are associated with disease
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progression (46). BAFF is a pleiotropic cytokine (also known as

BLyS) which promotes B cell proliferation and is a key regulator

of peripheral tolerance. BAFF is also a fundamental survival

factor and is involved in multiple cell-fate decisions during B cell

development (105–107). BAFF overexpression has been linked

with autoimmunity in human and animal studies and BAFF

inhibition attenuated skin and lung fibrosis in a mouse model of

scleroderma (108). As a homologue of BAFF, elevated levels of a

proliferation-inducing ligand (APRIL) have also been reported

in SSc patients and have been identified as a marker for

pulmonary fibrosis, whilst high BAFF levels indicate severe

skin sclerosis (109). A recent study by Glauzy and colleagues,

however, did not find elevated BAFF levels in SSc patients

compared with healthy controls and hence these authors

concluded that BAFF is unlikely to be a driving factor in SSc

pathogenesis (19).

Finally, T follicular helper (Tfh) cell production of IL-21

drives autoantibody producing plasma cell differentiation from
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effector B cells and can promote fibrosis through induction of IL-

6, TGF-b and CC chemokine ligand 2 (CCL2) and B cell

interaction with fibroblasts. In this respect it is notable that

SSc fibroblasts have increased IL-21R expression (110).
8 B cell involvement in scleroderma
pathogenesis: Evidence from
animal models

SSc is a complex disease with high patient-patient

heterogeneity. As such, it has been difficult to develop an

animal model of SSc which captures all aspects of disease

pathogenesis. Generally, these models are murine based and

have a fibrotic skin and lung signature induced by either pro-

fibrotic agents such as bleomycin, or genetic manipulations

leading to pro-fibroblast signalling (111).
FIGURE 3

Potential pathway for B cell mediated fibrosis in scleroderma. Direct cell-cell contact can induce changes in gene expression in fibroblasts
leading to increased collagen production and myofibroblast differentiation. In addition, B cell production of cytokines such as IL-6 and TGF-b
also induce myofibroblast differentiation. Meanwhile, autoantibodies can form immune complexes which bind to fibroblasts and trigger pro-
fibrotic effects, whilstsome autoantibody specificities, such as PDGF, observed in a subset of SSc patients can bind fibroblasts directly and have
stimulating effects. Figure created with BioRender.com.
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The tight-skin mouse (TSK) model of SSc is characterised by

skin fibrosis and autoantibody production, as well as an

abundance of BAFF and overexpression of CD19 (112–114).

Using this model, it was shown that B cell activation is important

for fibrosis and autoantibody production as CD19 deficiency

decreased skin fibrosis and abrogated autoantibody production

in TSK mice (113). Moreover, skin fibrosis and autoantibody

production were prevented with the use of a BAFF

antagonist (114).

Another mouse model of SSc involves using a subcutaneous

injection of bleomycin to induce skin and lung fibrosis as well as

autoantibody production. In this setting, bleomycin induces

hyaluronan production which activates B cells through TLR4

(115). In the bleomycin model for lung fibrosis, it was

demonstrated that CD19 signalling is crucial for B cell

infiltration into the lung tissue and is associated with up-

regulation of the chemokine CXCR3. Loss of CD19 attenuated

inflammation and reduced morta l i ty , whi le CD19

overexpression increased mortality (115). Moreover, transgenic

mice that overexpress CD19 spontaneously produce

autoantibodies and lose immunotolerance (16, 116).

Sanges and colleagues developed a new murine model of SSc

which was induced through daily intradermal injections of

hypochlorous acid (HOCL) (26). The authors found significant

B cell infiltration in the skin of HOCL injected mice in the later

stages of disease but not in the earlier stages when compared with

PBS-treated mice. In addition, splenic B cells in HOCL-treated

mice produced significantly more IL-6 and CCL3 while IL-10

production was significantly reduced during the early stages of the

disease, but levels of IL-10 production matched those of control

mice at the later stage (26). This model showed high concordance

with observations of B cell perturbations in human scleroderma

patients. This is defined by B cell involvement through an early

expansion of transitional B cells and late expansion of the mature

naïve subset with an overall decrease in the number of Bregs,

plasmablasts and memory B cells (26).

Interestingly, a study using a bleomycin-induced model of

scleroderma highlighted how B cell-specific IL-6 deficient mice

had attenuated skin and lung fibrosis whilst B cell-specific IL-10-

deficient mice had more severe fibrosis. Using this model it was

also shown that IL-6 producing B effector cells or Beffs infiltrated

inflamed skin and were induced to proliferate through BAFF.

However, BAFF suppressed Breg generation. In addition, a BAFF

antagonist attenuated skin and lung fibrosis and reduced Beffs but

not Bregs. These data provide further evidence for a pathogenic

role for BAFF and IL-6 produced by B cells in scleroderma models

and a protective role for IL-10 (108).

Recently, a new mouse model of SSc has emerged. This

model depends on topoisomerase I injection with complete

Freud’s adjuvant. The mice then develop skin and lung fibrosis

with a defined Th2/Th17 response and increased IL-6

production. Using this model, it was shown that loss of IL-6

expression significantly improved skin and lung fibrosis (117).
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9 B cell infiltration in the skin
and lungs

Various studies have examined the cellular infiltrates in

lesional tissue of SSc patients (118–122). Bosello and colleagues

characterised the inflammatory cell infiltrate in scleroderma skin

and found CD20+ B cells in 60.7% of SSc patients. There was an

increased number of CD20+ B cells in patients with early disease

and B cell infiltration appeared to correlate with worsening skin

score. Importantly, no CD20+ B cells were found in the skin of

healthy individuals (120). Evidence suggests that IL-10 producing

B cells migrate from the peritoneum to inflamed skin sites where

they play important regulatory and protective functions. Hence, if

B cell capacity to produce IL-10 is reduced in SSc patients, then

the function of these regulatory skin-homing B cells are likely to

be impaired (123).

B cell aggregates have been found in lung tissues of SSc

patients with ILD, whilst transcriptomic data has also found

evidence of lesional B cell infiltration (118, 121, 122).

Furthermore, foci of B cell aggregates have been found in lung

alveolar interstitium of SSc patients with ILD (122). Recent data

using next-generation RNA sequencing in patients with early

dcSSc demonstrated B cell signatures in 67% of patients, higher

than published data in established disease (121).
10 Therapeutic strategies targeting B
cells in SSc

The benefits of immunosuppressive therapies for

scleroderma lung and skin disease provide further evidence for

the role of B cell autoimmunity in SSc. However, the mixed

effects of these biologic treatments also reveal the complexity of

SSc pathogenesis and the strategic challenges faced when

treating this disease (124).

The Scleroderma Lung Study (SLS) 1, comparing oral

cyclophosphamide for 1 year vs placebo, reported a small

improvement in forced vital capacity (FVC) with the treatment

alongside improvements in dyspnoea scores and skin thickening

(125). Using single cell analysis, an individual’s B cell profile has

been associated with cyclophosphamide response. Of note,

cyclophosphamide responders had increased IL-10 producing

regulatory B cells and reduced IL-6 effector B cells post-

treatment (126). The SLS 2 study subsequently showed

equivalence between 24 months of mycophenolate mofetil

(MMF) and 12-months of oral cyclophosphamide followed by

placebo with the average improvement in FVC of 7-8% (127).

Post-hoc analysis of both the SENSCIS trial assessing nintedanib (a

tyrosine kinase inhibitor) and the RESOLVE-1 trial assessing

lenabasum (a cannabinoid type 2 receptor) in SSc, further

demonstrated the efficacy of MMF in SSc. MMF inhibits both B

and T cell proliferation and antibody production (128–130). With
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cyclophosphamide and MMF both impacting B cells alongside

other mechanisms of action, further research is needed to

disentangle the relative importance of their effects on B cell

mediated pathogenesis.

Autologous stem cell transplant (aSCT) has emerged as a

treatment option for autoimmune diseases with the rationale that

a subsequent new self-tolerant immune system develops post-

transplant (131). Three randomised controlled trials have

supported this approach in patients with severe SSc with the

ASSIST and ASTIS studies performing non-myeloablative aSCT

and SCOT trial using myelo-ablative aSCT (132–134). All three

trials reported sustained improvements in both skin and lung

disease compared with standard of care with cyclophosphamide.

The SCOT trial reported a lower treatment related mortality than

previous studies, however, early treatment mortality due to

increased rates of infection remains a concern (133). Gernert

and colleagues demonstrated that the predominant B cell

population post-transplantation was naïve B cells (CD27-/IgD+)

with reduced percentages of memory B cells at 1-year post aSCT.

An increased regulatory B cell phenotype with increased B cell IL-

10 production was also found post-aSCT (28). A further study on

22 patients pre- and post- aSCT for SSc demonstrated similar

changes in B cell populations with increased naïve B cells over

prolonged follow-ups and sustained decreases in unswitched,

switched and double negative B cells (135).

Rituximab, a chimeric monoclonal antibody against human

CD20 on B cells provides compelling and more specific evidence

for the role of B cells in SSc. Initial studies including small case

series and open label trials demonstrated promising results with

improvements of lung and skin fibrosis with rituximab (136–144).

Alongside these studies, an initial observational EUSTAR study

comparing 63 patients who received rituximab in routine clinical

practice to matched controls found improved skin thickening and

stabilisation of ILD with rituximab treatment (145). These

findings are supported by mechanistic evidence that dermal B

cells are completely, or nearly completely, depleted by rituximab

therapy and a significant reduction in IL-6 at 6 months post

treatment occurred with IL-6 known to be predictive of decline in

FVC (136, 139, 146). A downregulation of fibroblast type I

collagen gene expression with rituximab has also been

demonstrated and early depletion of peripheral B cells at 2

weeks after rituximab therapy was negatively correlated with %

forced vital capacity improvement at week 24 (147, 148).

The subsequent larger prospective EUSTAR study including

254 patients treated with rituximab vs 9575 propensity-score

matched patients showed a significant improvement in skin

fibrosis but failed to show an effect of rituximab on FVC or

carbon monoxide diffusion capacity (DLCO) decline (149). A

recent meta-analysis of rituximab in SSc-ILD from Goswami and

colleagues, included 20 studies, with 575 SSc patients receiving

rituximab treatment. Rituximab improved FVC and DLCO by

4.48% and 3.47%, respectively at 6 months and 7.03% and 4.08%

at 12 months. Additionally, there were concomitant reductions in
Frontiers in Immunology 10
the Modified Rodnan skin score (mRSS) which is used to evaluate

skin thickness, with a higher score indicating thicker skin (150). It

must be noted that only 2 of the 20 studies included were

randomised control trials and neither were double-blinded.

Another meta-analysis published in 2020 by Tang and

colleagues including 14 studies with 597 participants found

rituximab resulted in stability but not improvement of FVC (151).

The DESIRES trial, a double-blind placebo-controlled trial

published in 2021, randomised both diffuse and limited SSc

patients with an mRSS of ≥10 to receive weekly rituximab for 4

weeks, or placebo with absolute change in mRSS at 6 months as

the primary endpoint (152). An improvement in skin score with

rituximab vs placebo (absolute change in mRSS at 6 months

-6.30 rituximab vs 2.14 placebo, difference -8.44 p<0.0001) was

found and although most patients included in this study had

relatively mild associated interstitial lung disease (ILD),

rituximab did improve % FVC at 24 weeks (0.09% vs -2.87%,

difference 2.96%, 95% CI 0.08 – 5.84, p=0.044). This provides

more definitive evidence for the role of B cell depletion. We will

wait to see if these results are reinforced by the soon to be

published randomised controlled RECITAL trial assessing the

effect of rituximab vs cyclophosphamide in connective tissue-

disease-associated ILD (153).

Changes in autoantibody levels have been inconsistently

reported following rituximab therapy (154–156) with the inability

of rituximab to deplete autoantibody-producing long lived plasma

cells seen in SSc (157). CD19 is expressed on a broader range of B

cell subsets than CD20, including earlier B cell precursor cells,

plasmablasts and some plasma cells (157). Elevated plasma cell gene

signatures have been found in SSc compared with healthy controls

and correlated with disease activity (158). A phase-I randomised

placebo-controlled trial assessing a humanised monoclonal

antibody targeting CD19 (MEDI551, inebilizumab) found it

effectively depleted B cells and plasma cells and appeared well

tolerated in SSc (159). At baseline patients with a high plasma cell

gene signature were more likely to respond to inebilizumab than

those with low plasma cell gene signatures, thereby supporting a

role for plasma cells in disease pathogenesis (158). Targeting CD38,

a type II glycoprotein highly expressed on several B cell subsets

including short and long lived plasma cells, may provide another

approach to target autoantibody production; however, studies are

yet to assess anti-CD38 therapy in SSc (160).

Belimumab, a treatment licensed in SLE, binds soluble

BAFF/BLyS. A double blind randomised control trial of

belimumab vs placebo with background MMF including 20

SSc patients failed to reach statistical significance but

demonstrated greater improvement in mRSS with belimumab

compared with MMF alone (161). Responders to belimumab

had significant changes in gene expression involved in B cell

signalling and fibrotic signalling, consistent with the mechanism

of action of the drug (161).

Blocking IL-6 signalling using tocilizumab, a humanized

monoclonal antibody against the human IL-6 receptor a chain
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has been assessed in the phase II FaSScinate trial and subsequent

phase III FocuSSced trial (162, 163). Although both failed to meet

their primary endpoint regarding difference in mean change in

baseline mRSS at week 24 and 48, both found that tociluzumab

slowed lung function decline in early active disease (FVC decline

>10%: 17% placebo vs 5% tocilizumab). The interaction of IL-6

and B cells discussed earlier in this review suggests some treatment

effects are likely driven by effects of the drug on B cells; however,

further research is required to delineate this (89, 90).

Both the SENSCIS trial and the ongoing Scleroderma lung

study III are assessing the effect of combination therapy with oral

anti-fibrotics and MMF. It is therefore likely that future

treatment approaches will include a combination of immune

modulatory and anti-fibrotic therapy with B cells appearing to

play a crucial role in the interaction of these pathways (164, 165).
11 Future perspectives

B cells are able to shape SSc pathogenesis through a number

of mechanisms as described throughout this review. Improved

understanding of these mechanisms is needed to demonstrate

the overall relevance and description of these pathogenic B cells

and outline their involvement in the wider context of SSc such as

their interaction with other immune and endothelial cells. A

potential pathway for B cell autoreactivity and pathogenic SSc

involvement could be triggered by an initial environmental

signal such as high levels of IL-6. This could then lead to

inappropriate B cell activation and survival marked by

inflammatory cytokine and autoantibody production.

Autoreactive B cells are likely to interact with other immune

cells throughout this process such as fibroblasts, Tfh cells during

germinal centre reactions and CD4+ T helper cells in antigen

presentation. In the future, increased knowledge of these

interactions in the context of SSc will improve overall

understanding of disease pathways and could lead to new and

more targeted therapeutic strategies with less side effects.

Thus, as studies continue to delineate the relevant

pathogenic B cell signalling pathways, disease treatment is

likely to significantly improve with better and safer biologic

therapies. For example, improved understanding of the

biomarkers which predict patient response to B cell

modulating drugs through single-cell RNA sequencing is likely

to improve patient stratification. Meanwhile, other studies may

reveal B cell signalling pathways or protein targets that are

responsible for maintaining the pro-fibrotic disease state.
12 Conclusions

SSc is a complex disease with multiple cell types and

pathways likely to contribute towards pathogenesis. B cells can
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interact with many of these pathways directly contributing to the

inflammatory and profibrotic phenotype characteristic of SSc. It

is currently thought that the initial stages of disease are marked

by a proinflammatory response which later leads to a more

pronounced fibrotic response. This has implications for when to

treat patients and with which biologics. No matter the disease

stage, B cells are key immune mediators and are, therefore, likely

to be central in scleroderma pathology. As understanding of

disease development, B cell involvement and patient

heterogeneity continue to improve, this will result in improved

patient prognosis in SSc.
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