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Abstract—Beam training and tracking (BTT) are key tech-
nologies for millimeter wave communications. However, since the
effectiveness of BTT methods heavily depends on wireless envi-
ronments, complexity and randomness of practical environments
severely limit the application scope of many BTT algorithms and
even invalidate them. To tackle this issue, from the perspective
of stochastic process (SP), in this paper we propose to model
beam directions as a SP and address the problem of BTT via
process inference. The benefit of the SP design methodology is
that environment priors and uncertainties can be naturally taken
into account (e.g., to encode them into SP distribution) to improve
prediction efficiencies (e.g., accuracy and robustness). We take the
Gaussian process (GP) as an example to elaborate on the design
methodology and propose novel learning methods to optimize
the prediction models. In particular, beam training subset is
optimized based on derived posterior distribution. The GP-based
SP methodology enjoys two advantages. First, good performance
can be achieved even for small data, which is very appealing in
dynamic communication scenarios. Second, in contrast to most
BTT algorithms that only predict a single beam, our algorithms
output an optimizable beam subset, which enables a flexible
tradeoff between training overhead and desired performance.
Simulation results show the superiority of our approach.

Index Terms—Beam training and tracking, Bayesian learning,
Gaussian process, millimeter wave communications.

I. INTRODUCTION

Millimeter wave (mmwave) communications, occupying 30-
300 GHz spectrum resources and offering significant under-
utilized bandwidth, have been considered as one of the most
promising solutions to meet high-speed wireless data demands
in the era of 5G and beyond [1]. However, the high frequency
of mmwave signals leads to a large path-loss, which poses
a severe challenge to mmwave communications. To combat
the large path-loss, an effective solution is beamforming with
high array gains, which is realized by packing a large number
of antennas into a small size thanks to the short wave-length.
Nevertheless, narrow high-gain beams make beam alignment
challenging, especially in mobile applications and/or dynamic
environments [2], [3].
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To obtain the channel state information in mmwave com-
munications, different design methodologies have been inves-
tigated, among which the most widely accepted methodology
is BTT [4]–[9]. In BTT, candidate beams at the transmitter
and/or receiver are trained via a predefined search mode by
choosing the ones that can optimize some performance metric,
e.g., signal-to-noise ratio (SNR) [4]–[6]. 1 The existing BTT
methods roughly fall into two categories. The first one is the
channel-environment-independent methodology, which boils
down to codebook design. In the past ten years, a variety of
algorithms have been proposed to design codebooks having
desired properties [6], [7], [10], [11]. The ostensible advantage
of the environment-independent BTT methodology is that it
can apply to different channel environments. However, since
the training overhead can be prohibitively high (especially for
large-scale antenna array systems), its application scope is
often limited, e.g., only slow-varying environments and small-
scale antenna array systems.

To reduce the overhead of BTT, the core is to reduce beam
search space for future sweeping by exploiting environment
priors, which constitutes the second category. Depending on
how the environment prior knowledge is extracted and ex-
ploited, the environment-dependent design methodology can
be further divided into three sub-categories. The first one is
model-driven BTT design, whose key is to first build a motion
or kinetic model and then invoke the classical Kalman filter
techniques [12]–[15]. The effectiveness of this methodology
critically relies on building the kinetic model, which can be
very difficult in most cases, because of the complexity and
randomness of practical environments. As a result, it is often
utilized in the scenarios, where there exists a fixed trajectory,
e.g., vehicle network or high-speed railway.

To circumvent the difficulty of manually building models,
data- and model- driven BTT design methodology (i.e., the
second sub-category) has been proposed, which leads to su-
pervised learning based BTT algorithms [16]–[20]. The cost of
the supervised learning based algorithms is that the number of
training samples required may be very large in order to achieve
satisfying performance, which brings about large burden and
latency in establishing the link. In contrast to other supervised
learning applications (e.g., computer vision), where a large
number of training samples are ready or available, the dynamic
nature of wireless communications imposes short training

1In view that the main difference between beam training and beam tracking
is that the size of beams used for tracking is smaller than that for training
(e.g., the size of beams used for tracking can be even one), we ignore this
difference in this paper.
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timescales and the necessity to train with limited numbers
of samples. It is therefore difficult and expensive to collect
sufficient training samples. Furthermore, the collected training
samples can be easily outdated, due to fast channel fading and
variations. These factors greatly limit the application scope of
the second sub-category of BTT solutions.

To avoid collecting training samples in advance or offline,
reinforcement learning has been proposed to design BTT
solutions, which constitute the third sub-category [21]–[24].
An appealing advantage of the reinforcement learning based
solutions is that they can collect the samples via interacting
with environments, which enables to implement learning-based
BTT algorithms online [25], [26]. However, since the funda-
mental of reinforcement learning is Markov decision process,
a shortcoming is that the convergence rate is slow, which fails
to achieve good performance on the short term. Moreover,
the feedback of Markov decision process is typically a real
number referred to as the reward, which is affected by many
factors. It is often difficult to design this feedback efficiently
and make optimal decisions. Note that most learning-based
BTT algorithms (designed based on either supervised learning
or reinforcement learning) only predict a point estimation
(i.e., a single beam). However, because of the complexity and
randomness of practical environments, it is generally difficult
to predict an accurate beam, which, as a result, inevitably leads
to a high probability of misalignment.

To tackle the aforementioned issues, in this paper we
propose to explicitly model beam direction trajectory (BDT)
via SP and address the problem of BTT from the view of SP
inference. Compared to the model-driven BTT methods, there
is no need to manually and explicitly build a kinetic model
for prediction. The randomness of channel environments can
also be naturally incorporated into SP models. To enable fast
inference, we choose GP as an example and formulate the
problem of BTT as GP prediction. In particular, environment
priors or patterns are encoded into the GP kernel to improve
prediction efficiency. To accommodate complex environments,
neural network techniques are exploited to enhance classical
GP kernels, which guarantees that sufficient kernels (in terms
of both types and amounts) are available. Compared to the
supervised learning or reinforcement learning based solutions,
the advantages of the GP based BTT algorithms are two-fold.
First, incorporating Bayesian learning, good performance (e.g.,
success probability) can be achieved for small sample setting.
Second, an optimizable beam interval, rather than a single
beam, is generated by our BTT algorithms, which makes the
algorithms more robust. They also provide a flexible tradeoff
between desired performance and training overhead. The main
contributions of this paper are summarized as follows:
• To identify and exploit useful priors/patterns which are

difficult to be utilized by existing methods, we propose
to model beam directions via SP and address the problem
of BTT via process inference. In particular, we propose
to distinguish two types of properties of a SP, i.e., sample
path property and statistical regularity property.

• To facilitate SP inference, we choose GP as an example
and formulate the problem of BTT as GP prediction. In
particular, meaningful patterns of environments and their

changes are encoded into the GP kernel parameterized
by neural networks to improve beam prediction efficiency
(e.g., high accuracy with low overhead).

• To effectively extract the priors/patterns of interest from
environments and improve beam training efficiency, we
propose a novel network structure and novel learning or
optimization methods, whose key is to distinguish the
sample path property and statistical regularity property.

• Based on Bayesian deep learning, we propose efficient
BTT algorithms. We further improve the proposed algo-
rithms via Bayesian posterior inference and optimization,
which can provide a flexible tradeoff between the beam
training overhead and desired performance.

• Comprehensive simulation results confirm the effective-
ness of our approach. In particular, they can dynamically
and adaptively amend prediction uncertainty level, which
thus predicts the most economical beam range while still
ensuring link reliability. Moreover, as more samples are
collected, the predicted beam range decreases.

• The simulation results also reveal many useful insights
in terms of modeling and multiple tradeoffs. In terms of
modeling, our GP methodology can construct a desired
probabilistic prediction model from given priors and data
automatically. It can also refine the constructed prediction
model based on collected online data.

• In terms of the sample complexity, the GP approach no-
tably shortens the data samples required, even compared
to the state-of-the-art beam index difference technique
[21]. Meanwhile, it inherently realizes multiple scalable
tradeoffs, e.g., effective achievable rate and beam training
overhead, sample complexity and scalable robustness, the
use between online data and historical data.

The remainder of this paper is organized as follows. System
model of BTT is described in Section II. In Section III, the
principle of BTT via SP modeling and inference is presented.
To efficiently extract and exploit the priors/patterns, novel net-
work structure and learning methods are proposed in Section
IV. To provide flexible tradeoffs, Bayesian posterior inference
and optimization are presented in Section V. Simulation results
and conclusion are provided in Section VI and Section VII,
respectively. Proofs are deferred to the appendix to improve
readability. The abbreviations used in this paper and their full
names are provided in the following table.

Notations: Bold uppercase A and bold lowercase a denote
matrices and column vectors, respectively. Without particular
specification, non-bold letters A, a denote scalars. Caligraphic
letters A stand for sets. E(·) and (·)H denote the mathematical
expectation and Hermitian operators, respectively. I{·} and
card(A) represent the indicator function and the cardinality
of A, respectively. (·)? represents an optimal quantity, e.g.,
an optimal solution of an optimization problem. CN (m,R)
stands for a complex Gaussian random vector with mean m
and covariance matrix R. I denotes an identity matrix.

II. SYSTEM MODEL

Consider the mmwave point-to-point communication sys-
tem, which consists of one base station (BS) equipped with N
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Abbr. Full Name Abbr. Full Name Abbr. Full Name
BTT Beam Training and Tracking HST High-Speed Train GP Stochastic Process

EEAR Expected Effective Achievable Rate SR Statistical Regularity SP Gaussian Process
AEAR Average Effective Achievable Rate BCI Beam Confidence Interval SBL Stochastic Bandit Learning
BDT Beam Direction Trajectory LML Log Marginal Likelihood GPL Gaussian Process Learning
KEN Kernel Encoding Network PTN Process Transform Network ML Machine Learning
PSA Probability of Successful Alignment EAR Effective Achievable Rate DS Direct Search

transmit antennas and a single-antenna user. To facilitate sys-
tem implementation, the codebook based analog beamforming
is considered in this paper, where each beam is chosen from
a codebook C of size M [27]. Without loss of generality, C is
constructed by uniformly sampling the beam space, i.e.,

C =
{
fi = a(−1 + 2i/M) | i = 0, 1, 2, · · · ,M − 1

}
,

where a(·) represents the array response vector. For a uniform
linear array, a(·) takes the form

a(x) =
1√
N

[
1, ej

2π
λ xd, ej

2π
λ 2xd, · · · , ej 2π

λ (N−1)xd
]
, (1)

where λ denotes the signal wave-length and d represents the
distance between any two adjacent antennas.

Due to the sparsity of mmwave channels, an extended Saleh-
Valenzuela geometric model is considered here [4]–[10]. The
channel vector between the BS and user is given by

h =
√
N/β

L∑
l=1

αla(φl), (2)

where β is the average path-loss, L is the number of paths,
and αl is the complex path gain of the l-th path. In (2), φl =
cos(θl), where θl is the physical angle of departure of the l-th
path. With the assumption that beam i (i.e., fi) is chosen by
the BS, the signal received at the user is given by

yi =
√
PhHfis+ ni, (3)

where P is the transmit power, s represents the pilot symbol,
and ni ∼ CN (0, 1) denotes the random noise.

Time-slot 1 Time-slot 2  Time-slot k Time-slot k+1

Beam 
Training

Data Transmission

TB
TS

Fig. 1. Typically, each time-slot consists of two phases, i.e., beam training
and data transmission.

As shown in Fig. 1, each time-slot consists of two phases,
i.e., beam training (including beam alignment and tracking)
and data transmission. The main task of beam training is to
find out the optimal beam for the subsequent phase of data
transmission. The effective achievable rate is often chosen as
the performance metric, which is defined as [9]

Reff = (1− TB/TS) log
(
1 + P |hHfi|2

)
, (4)

where TB and TS denote the duration of beam training within
a time-slot and the duration of a time-slot, respectively.

The key tradeoff can be observed from (4). On one hand,
to achieve a high throughput, the time allocated for TB should
be as little as possible, so as to reserve more time for data
transmission. On the other hand, a well-trained beam yields
high-gain link |hHfi|, therefore improving the effective rate.
The conflicting conditions impose a tradeoff in the resources
spent for BTT. This issue becomes more severe in mobile
scenarios, where the channels vary quickly and thus more
frequent beam training is needed. Next, we tackle this issue
by identifying and exploiting environment priors/patterns from
the perspective of SP modeling and inference.

III. PRINCIPLE OF STOCHASTIC PROCESS METHODOLOGY

In this section, we first analyze and illuminate that there
exist many useful priors and patterns, which, however, cannot
be exploited effectively by conventional BTT methods. Then,
we demonstrate how to tackle this issue from the perspective
of SP modeling and inference.

A. Useful Priors and Patterns for Beam Training and Tracking

In practice, there exist environment priors and patterns that
can assist BTT. For example, low-mobility may introduce
strong correlation between channel instantiations, vehicular
or railway scenarios may involve constrained or even fixed
trajectories, indoor or open-air scenarios may provide specific
geometry priors. If these priors/patterns can be well identified
and exploited, they can greatly improve BTT efficiency (e.g.,
lower training overhead). Nevertheless, the influence of these
nonparametric priors/patterns onto the communication link is
often difficult to model and exploit via conventional methods
from parametric statistics, which necessitates a learning-based
approach from nonparametric statistics. 2

Before proceeding, we take several typical communication
scenarios to reveal that these priors/patterns, in fact, exist
extensively in practice. Meanwhile, we analyze the charac-
teristics of these priors/patterns. It is assumed that the BS can
monitor multiple mobile users within its coverage and record
their optimal beams within a finite time-interval, which yields
multiple BDTs. Typically, these different BDTs are obtained
by letting key system parameters take different values. For
example, each key parameter is obtained by sampling a rea-
sonable probability distribution, which simulates and reflects

2The nonparametric priors and patterns describe a SP from the perspective
of sample functions, i.e., to exploit the probabilistic properties of sample
functions. Typical nonparametric priors and patterns, exploited in our paper,
include stochastic continuity, n-th order mean-square differentiability, mean-
square smoothness of the sample functions, and so on [28].
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(a) Typical Scenarios

(b) BS Deployment and Motion Trajectory

(2) Indoor Scenario(1) Specific Environment Geometry (3) Outdoor Scenario

Buildings

1648

16 48

Fig. 2. An illustration of typical communication scenarios - red lines with arrows in part (b) represent motion trajectories.

practical environments as much as possible. The details of
these parameters are intensively provided in Section VI.

1) Priors Induced by Environment Geometry: The priors or
patterns are mainly induced by environment geometry, while
the external environment may be static. This also applies to
large outdoor cases, where the LOS path is often dominated. A
typical example is high-speed train (HST) communication. As
shown in Fig. 2-(1), because the BSs are deployed along the
rails at regular distances, the trajectories of the trains are fixed,
and the velocities of trains are within a reasonable range [22],
[29], if multiple BDTs are observed across multiple BSs, these
BDTs are almost always continuous and present an inexact
periodicity, as shown in Fig. 3.
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Fig. 3. Beam direction trajectories of high-speed trains.

2) Indoor Scenario: As shown in Fig. 2-(2), the user moves
within a room randomly, but the geometry of the room may
be static and therefore introduces correlation from one time-
slot to the next. Although it is almost impossible to predict
the next beam accurately due to the randomness, the difference
between the beam directions at two adjacent time-slots is often
small (See Fig. 4-(a)).

3) Outdoor Scenario: The outdoor physical environment
can also introduce strong correlation between channel instan-
tiations. As an example, a user moves along a street and may
change to another street or occasionally stops for a moment

(See Fig. 2-(3)). As shown in Fig. 4-(b), the beam directions
are flat in some intervals, and may be discontinuous (typically,
due to the blockage 3).
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Fig. 4. Beam direction trajectories of indoor and outdoor environments.

To better analyze and characterize these priors/patterns, we
propose to identify them from two perspectives, i.e., sample
size and time-scale. From the perspective of sample size, we
can distinguish and investigate the sample path property and
statistical regularity property.
• Sample Path Property: It can be identified and reflected

from a single BDT. Two typical sample path properties
are beam-change continuity and bounded jump or varia-
tion. Since the environment changes continuously or the
movement speed is limited or varies slowly, the BDT is
a continuous function, although it may be fairly random.
This sample path property is referred to as beam-change
continuity. Similarly, due to a limited movement speed,
the jump or variation of the BDT is bounded, although

3In this paper, we model and tackle blockage in an indirect way. Specifical-
ly, from the perspective of continuous-time function, a blockage event leads
to a discontinuous (beam direction) function. An effective prediction model
or algorithm should be able to adapt to the discontinuity and still provides an
effective prediction (e.g., from the discontinuous location). Fortunately, when
deep neural networks are incorporated into the GP kernel, the resultant GP
model possesses the desired capability [30].
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it can be very complex (e.g., the BDT is discontinuous).
This property is referred to as bounded jump or variation.

• Statistical Regularity (SR) Property: The SR property is
referred to as an ensemble property of a SP, which can
be typically characterized via the mean function (i.e., the
ensemble average), correlation function, power spectral
density function, and so on. Since a single BDT is not
representative in most cases (e.g., without the ergodicity
assumption), we shall collect multiple realizations (i.e.,
multiple BDTs) of the SP, so as to investigate the SR
properties. The existence of the SR property comes from
the fact that a practical environment is relatively stable.

It is not difficult to understand that the BDTs of the above
scenarios have the aforementioned properties. For example, a
BDT of the HST communication has the property of beam-
change continuity, and a BDT of the indoor environment has
the property of bounded jump or variation. Moreover, if many
BDTs are available, we can investigate the SR properties.
The BS can obtain the BDTs required by randomly selecting
a number of users and continuously recording their optimal
beams for random durations. Our algorithm allows to collect
the BDTs online. They can also be collected via simulations,
if a simulation environment is available.

The second perspective is time-scale, namely, the two types
of properties can be observed from two different time-scales.
Specifically, since a SR property can only be identified from
multiple BDTs or long-term observations, it, in fact, belongs
to long-term information. In contrast, a sample path property
can be reflected via a single BDT or short-term observations.
As a result, it belongs to short-term information.

Unfortunately, although these priors/patterns are useful and
should be exploited to enhance BTT, it is often difficult to
incorporate them into existing BTT frameworks or algorithms.
The reason for this is two-fold. First, these priors/patterns
involve a considerable degree of randomness. Second, the
(function) space underlying the priors/patterns is of infinite
dimension. The root cause is that these priors/patterns are
nonparametric, which cannot be characterized by parametric
models. The two factors invalidate many deterministic and/or
parametric prediction models/methods (e.g., the Kalman filter
and even learning-based methods), and efficient solutions to
extract and exploit these priors/patterns are still unavailable.

B. Beam Training and Tracking via Stochastic Process Mod-
eling and Inference

To efficiently identify and exploit these priors/patterns, the
key is to appropriately model and represent the BDTs. To this
end, we choose the SP to model the BDTs. Let (Ω, E ,P) be
a probability space, where Ω, E and P are sample space, σ-
algebra on Ω and probability measure on E , respectively. By a
SP, one traditionally means a family of real random variables
{ξt | t ∈ T} (ξt = ξt(·)) on (Ω, E ,P), with T being a set
indexing ξt. It is assumed that each random variable ξt(ω) is
defined for all ω. Then, for a fixed ω the values ξt(ω) define
a function ξ((ξω)(t) = ξt(ω), t ∈ T ) in RT and the E/B-

measurability of each ξt(·) 4 implies the E/BT -measurability
of ξ, as will be shown in Theorem 1. Hence, the mapping
ξ is a random element of (RT ,BT ) and is termed a random
function. As will be seen in Theorem 1, the converse also holds
- if ξ is a measurable mapping from (Ω, E ,P) to (RT ,BT ),
the ω-functions ξt(ω) = (ξω)(t) are E/B-measurable for each
t, i.e., ξt are random variables. For a fixed ω, the function
(ξω)(t), (t ∈ T ), is referred to as a sample function (or the
sample path or realization) of the process.

Theorem 1. For each t ∈ T , let ξt = ξt(ω) be a real function
of ω ∈ Ω and let ξ be the mapping from Ω to RT defined as
ξω = {ξt(ω) | t ∈ T}. Then, ξt is E/B-measurable for each
t ∈ T if and only if ξ is E/BT -measurable.

Proof: See Appendix A.
Remark 3.1 In fact, Theorem 1 indicates that the notions

of SP (family of random variables) and random function are
entirely equivalent. In practice, random variables are often
used to describe a random phenomenon. Theorem 1 enables us
to model and characterize a random phenomenon of infinite
dimension from the view of random function. In particular,
since the underlying function space is of infinite dimension,
both the representation ability and model complexity of a SP
model scale with sample size, which thus can overcome the
shortcomings of parametric models.

For the considered BTT problem, beam directions within an
interval T are described by a SP B = {bt(ω) | t ∈ T, ω ∈ Ω}
(referred to as a beam process), and, in particular, each BDT
is denoted by b(ω). The properties of a BDT and the beam
process itself (e.g., its probability distribution) correspond to
the sample path property and SR property, respectively.
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Fig. 5. A visualization of process inference that incorporates nonparametric
priors and patterns (e.g., smoothness).

Having addressed the modeling issue via SP, we further
tackle the inference issue. To obtain an intuitive understand-
ing, we first use a simple inference example to qualitatively
demonstrate the essence of incorporating the (nonparametric)
priors/patterns into SP inference. As shown in Fig. 5, given
a prior dataset (containing three sample functions) in Fig. 5-
(a) and three data points (labeled by “+”) in Fig. 5-(b), the
nonparametric SP inference paradigm is based on the fact that

4The E/B-measurability of f means that f is a measurable mapping from
(Ω, E) to (R,B), where B is the σ-algebra of R.
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the prior sample functions are smooth and their variations are
also small while the three dotted curves are non-smooth, and
therefore infers that the three solid curves in Fig. 5-(b) have
a higher probability of being the real sample function than
the three dotted curves. Next, we elaborate on the quantitative
inference by incorporating these nonparametric priors.

C. Beam Training and Tracking via GP - Quantitative Infer-
ence

To avoid intractability of quantitative inference caused by
the SP modeling paradigm, GP is chosen in this paper. For
completeness, a brief introduction of GP and GP kernel is
provided in Appendix B. In general, temporal correlation or
variation is very important to SP, especially for BTT. Because
a GP is defined via the kernel (a second-order correlation
function), mathematically the GP-based method can effectively
characterize the temporal correlation or variation. A GP that
describes beam directions is still denoted by B = {bt(ω)}.

The key of the GP modeling is that the priors/patterns are
encoded into the GP kernel. For ease of understanding, the
HST communication is taken as an example to demonstrate
this procedure. In view that: 1) the HST communication has
the property of beam-change continuity; and 2) the squared
exponential kernel kSE and spectral mixture kernel kSM can
respectively encode continuity [28] and latent patterns [31],
the GP kernel for the HST communication scenario is chosen
as a linear combination of the two kernels, i.e.,

kB(t, t′) = c1kSM(t, t′) + c2kSE(t, t′) + σ2
wδt,t′ , (5)

where c1 > 0 and c2 > 0 are combination coefficients, δt,t′ is
the Kronecker delta (i.e., δt,t′ = 1 if and only if t = t′ and is
zero otherwise), and σ2

w characterizes model uncertainty (e.g.,
due to quantization and/or randomness).

Let the beam direction at time ti (i = 1, · · · , n) be bti ,
which is denoted by bi for convenience. The task is to predict
the beam at tn+1 based on observations {b1, b2, · · · , bn}. Let
D = {(t1, b1), · · · , (tn, bn)} and b = [b1, · · · , bn]T denote
the training dataset and discrete beam directions (i.e., beam
indexes), respectively. Given the prior (i.e., kernel in (5)) and
the training dataset D, the Bayesian posterior distribution can
be obtained immediately (from (29) - (31))

p(btn+1 | D, tn+1) ∼ N
(
µtn+1 , σ

2
tn+1

)
(6)

µtn+1
= kT

∗(K + σ2
wI)−1b (7)

σ2
tn+1

= k∗∗ − kT
∗(K + σ2

wI)−1k∗, (8)

where the i-th element of k∗ and the (i, j)-th element of K
are calculated as kB(ti, tn+1) and kB(ti, tj), respectively. k∗∗
is calculated as kB(tn+1, tn+1). Let c > 0 be a real number,
which will be further optimized later (in Section V). For the
moment, it is assumed to be a constant, e.g., c = 2 or 3
by following the convention of machine learning community.
Given (6) - (8) and c, we sweep the beams within the beam
confidence interval (BCI), i.e.,

Scσ = bµtn+1 − cσtn+1 , µtn+1 + cσtn+1e. (9)

The method to determine BCI is referred to as cσ criterion.

A remaining problem is to determine the hyper-parameters
in the GP kernel (e.g., c1 and c2 in (5)), which is related
to Bayesian model selection [28] and can be solved via the
marginal likelihood p(b | t = [t1, · · · , tn]) maximization. In
practice, we often equivalently maximize the log marginal
likelihood (LML) log p(b | t), which is calculated as

log p(b | t) =− 1

2
bT(K + σ2

wI)−1b

− 1

2
log det(K + σ2

wI)− n

2
log 2π. (10)

Based on the above discussion, we propose the first BTT
algorithm, which is summarized in Algorithm 1. The input of
the algorithm is the dataset up to time-slot tn0

. In step 3-(1),
we first maximize the LML in (10) to determine the hyper-
parameters. Then, we determine the BCI in steps 3-(2) and
3-(3). Next, we find out the optimal beam by sweeping all
beams within the BCI. With the optimal beam available, we
perform data transmission (in step 3-(5)). In step 3-(6), we
enlarge the dataset. The method to find out the optimal beam
for tn+2 is similar. As time t increases, more data points are
accumulated, and better performance can be achieved.

Algorithm 1: Beam Training and Tracking via GP
1 input: initial dataset D = {(t1, b1), · · · , (tn0

, bn0
)}

and cσ criterion
2 initialize: let counter of time-slot n = n0
3 loop (for each time-slot n)

(1) maximize LML in (10) to optimize hyper
parameters in GP kernel

(2) compute matrix/vector/scalar K, k∗ and k∗∗
(3) determine BCI according to (6) - (9)
(4) sweep all beams within BCI to find optimal

beam b?n+1

(5) perform data transmission with beam b?n+1

(6) update n and D as follows:
n← n+ 1 and D ← D ∪ {(tn, bn)}

end-loop

Remark 3.2 An appealing advantage of the SP-based al-
gorithm is that good performance can be achieved (e.g., low
beam training overhead and large effective achievable rate)
even with a small amount of training samples. Moreover, in
contrast to most BTT algorithms that predict a single beam,
the SP-based method can take environment priors/patterns and
uncertainties into account and outputs a confidence interval,
which thus greatly improves robustness to randomness.

In Algorithm 1, the GP kernel is chosen heuristically, which
may cause some performance loss. Moreover, as t increases,
D becomes larger and larger, which imposes a computational
burden. Next, we address the two issues by proposing novel
network structure and training or optimization methods.

IV. EFFICIENT NETWORK ARCHITECTURE AND TRAINING
APPROACH FOR GP LEARNING

In this section, we propose a novel network architecture and
efficient training methods, which enable to efficiently exploit
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complex patterns and facilitate practical implementation.

A. Network Architecture for Efficient GP Learning

Input 
Sequence

Process 
Transform Module

    

Process 
Prediction Module

Kernel Encoding
Network

Confidence 
Region

Process Transform
Network  

Extract/Exploit 
Orbit Properties

Extract/Exploit 
SR Properties

O
ther 

C
om

ponents

Fig. 6. Network architecture tailored for GP learning. It consists of two
modules implemented via (deep) neural networks. KEN extracts and exploits
SR properties or long-term information, while PTN extracts and exploits
sample path properties or short-term information.

To improve the previous design, we integrate (deep) neural
networks into GP. 5 Specifically, we introduce two modules
(i.e., PTN and KEN) which are mainly implemented by two
(deep) neural networks, as shown in Fig. 6. The individual
roles of the two modules are as follows:
• Kernel encoding network (KEN) is introduced to provide

required or desired kernel for the GP model, which can
be obtained by enhancing an existing simple kernel via
neural network. The key role of KEN is to encode the
underlying SR properties of a beam process.

• Process transform network (PTN) is designed to exploit
the sample path properties. Via the nonlinear transform
of PTN, the transformed feature sufficiently matches the
KEN-based prediction model. Moreover, PTN helps to
avoid dramatic performance degradation in unexpected
cases (e.g., without an accurate prior).

To bring the advantages of the network architecture into full
play, it is vital to tailor an efficient training method as per the
situation in which it will be utilized.

B. Efficient Training Methods

According to whether multiple sample functions are avail-
able and to what extent different BS environments share the
similarity, we consider three different training or optimization
methods, so as to efficiently extract and exploit the priors or
patterns and facilitate system implementation.

1) Semi-Offline Training: If an empirical dataset (denoted
by {b(ω1), b(ω2), · · · , b(ωn)} 6) is available and the different
environments share a large similarity (e.g., a BS records

5The reason why the neural network is chosen here is as follows. First,
thanks to the powerful ability in terms of generalization and fitting, it can
approximate an arbitrary meaningful function. Second, the bivariate function
constructed here is a valid GP kernel [28], [31]. Third, many efficient
optimizers (e.g., Adam) have been developed to train the learning model. In
particular, sophisticated deep learning libraries (e.g., Tensorflow and Tytorch)
are available, which facilitate fast validation and implementation. If other
models satisfy these conditions, they may also constitute an effective solution.

6In practice (e.g., in Section VI), we can only obtain and use a finite number
of discrete points of each sample function b(ωi).

(a) Offline Training Part
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Other 
Comp
onents

PPM
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Z
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KENPTN
Other 
Comp
onents

PPM

X y

Optimization ObjectNO USE

Training set:

 ,X y

X

COPY

(b) Online Training Part

Fig. 7. An illustration of the semi-offline training method.

historical data and optimizes the learning model to improve
future performance within its coverage area), an appropriate
method to optimize the model is semi-offline training.

As shown in Fig. 7, the semi-offline training method consists
of two phases (i.e., offline phase and online phase), which are
in charge of optimizing KEN and PTN, respectively. The key
of semi-offline method is as follows. First, KEN is optimized
offline, while PTN is optimized online or when the model
is put into use (e.g., PTN is optimized every K time-slots).
Second, when optimizing KEN, PTN is dropped out (i.e., the
training dataset used to optimize KEN is the input of PTN,
not its output), as shown in Fig. 7-(a). Finally, the parameters
of KEN keep fixed while optimizing PTN (See Fig. 7-(b)).

The motivation and rationality for the structure and training
method may be explained as follows. On the one hand, the
GP kernel, defined as k(x,x′), characterizes the statistical
property of the underlying process. Since the input of the GP
kernel is feature x, it is reasonable to drop or ignore PTN
when training KEN, so as to avoid possible interfering effect
from PTN. Beside, the method to train the KEN-based GP
model (without PTN) via maximizing LML can learn desired
properties from the training dataset which well represents the
beam process. On the other hand, each BDT is a random func-
tion, which may contain unexpected randomness, especially
in a non-stationary environment. Therefore, when the trained
KEN is put into use, the PTN (added before KEN) can tackle
unpredictable randomness and enhance model robustness.

2) Fully-Online Training: When the learning model is put
into an entirely new environment or the ambient environ-
ment changes frequently (and, as a result, different channel
conditions share few similarity), the beam direction function
at different time-blocks varies dramatically. In this case, the
fully-online training method is more appropriate. Specifically,
PTN and KEN are optimized simultaneously or synchronously,
e.g., they are optimized every K time-slots.

3) Semi-Online Training: If the learning model is still
put into an entirely new environment, but the ambient en-
vironments share relatively large similarity 7, and thus the
beam direction function at different time-blocks has significant

7For example, in the HST communication scenario, beam direction func-
tions at adjacent BSs often share large similarity (See Fig. 3).
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SR property. In this case, an efficient optimization method
should adequately account for both long-term and short-term
characteristics, which is, however, non-trivial. To tackle this
issue, we propose the semi-online learning method.

The key of semi-online training includes two points, i.e., to
differentiate training time-scales (i.e., the two networks are not
trained simultaneously) and method to use training samples.
• Training time-scales: For clarity, the time-scales of opti-

mizing the two modules are illustrated in Fig. 8. 1) KEN
training: The time-scale of optimizing KEN is relatively
large, so as to accumulate enough data samples to extract
the SR property. 2) PTN training: PTN is in charge of
processing short-term information (e.g., to exploit the
sample path property). Hence, less samples are required,
and the time-scale of optimizing PTN is small.

• Method of using training samples: It is assumed that
each training round consists of K time-slots. The training
scheme is as follows. 1) PTN training: At the end of
each training round, PTN is trained based on the most
recent L data samples. Note that similar to Fig. 7-(b),
the parameters of KEN remain fixed while optimizing
PTN. 2) KEN training: At the end of M training rounds,
KEN is optimized with MK samples collected within the
past M rounds. Similar to the semi-offline method, PTN
is dropped out when optimizing KEN.


Time-scale of Training KEN

TS 1 TS 2 TS K

Time-scale of 
Training PTN

TS 1 TS 2 TS K

Time-scale of 
Training PTN

TS 1 TS 2 TS K

Time-scale of 
Training PTN

Round 1 Round 2 Round M


Long-Term

Short-Term

Fig. 8. Time-scales of optimizing the two networks. TS is short for time-slot.

Remark 4.1 It is important to separately train PTN and
KEN. First, the decoupled training scheme greatly reduces
computational complexity of both learning and prediction.
Second, it ensures that each network/module can effectively
extract its required information. Particularly, both long-term
and short-term information can be separated out and processed
more efficiently. Third, the prior can be encoded into KEN
effectively. Finally, for all above training methods, both model
optimization and beam prediction are done in the phase of data
transmission, which do not occupy the precious communica-
tion or data transmission time.

C. Beam Training and Tracking Design - An Example for the
General Case

Without loss of generality, we choose the fully-connected
network and semi-online training method as an example to
present a detailed algorithm. The input and output of PTN are
(relative) time and transformed feature, respectively. Let θP
denote the parameters (e.g., weights and biases) of PTN. The
input-output relationship of PTN can be written as

z = h(t,θP). (11)

Similarly, the input-output relationship of KEN is denoted by
g(·,θK), with parameters θK. The input and output of the
neural network within KEN are the transformed feature of
PTN and transformed feature fed to the base kernel of the GP,
respectively. Let kB(·, · |θB) with parameters θB denote the
base kernel of the GP (e.g., squared exponential kernel). The
overall kernel is given by

kE(zi, zj) = kB(g(zi,θK), g(zj ,θK) |θB). (12)

Next, we detail the training of PTN and KEN. The loss
function for GP learning is negative LML, i.e., to minimize
− log p(b | t) (or equivalently maximize log p(b | t)). Specif-
ically, given a training dataset D = {(t1, b1), · · · , (tn, bn)},
KEN is optimized by maximizing

L(θK,θB)

=− 1

2
bT(KE + σ2

wI)−1b− 1

2
log det(KE + σ2

wI). (13)

Given D, the (i, j)-th element of KE is calculated as

kij = kB
(
g(ti,θK), g(tj ,θK) |θB

)
.

To optimize L(θK,θB), the back-propagation method can be
invoked. In fact, the derivatives of L(θK,θB) with respect to
θK and θB can be computed by using the chain rules.

Given a training dataset D′ = {(t′1, b′1), · · · , (t′m, b′m)},
PTN can be trained similarly, i.e., to maximize the following
LML

L(θP) = −1

2
bT(KP + σ2

wI)−1b− 1

2
log det(KP + σ2

wI),

where matrix KP is calculated as

kij = kB

(
g
(
h(ti,θP),θK

)
, g
(
h(tj ,θP),θK

) ∣∣∣θB

)
.

Note that the parameters of KEN (i.e., θB and θK) should be
fixed when computing KP and optimizing θP.

The designed BTT algorithm is summarized in Algorithm
2 for clarity. 8 K and M are provided in advance, which
depend on a specific scenario. Before running the algorithm,
the parameters of the two neural networks are initialized,
e.g., randomly. In each time-slot, we first compute the kernel
(matrix) and determine the hyper-parameters by maximizing
LML (in step 3-(1)). In steps 3-(2) - 3-(3), we perform GP
prediction and obtain a BCI. In step 3-(4), we find out the
optimal beam by sweeping all beams within the BCI. With
the optimal beam available, data can be transmitted within the
remaining time of the time-slot in step 3-(5). In step 3-(6),
we update the dataset. We check the condition and update the
parameters of the networks if the condition is satisfied.

8Although the concept of continuous beam direction is utilized previously,
when it comes to numerical computation in practice, we only need quantized
beam directions at discrete-time points. Since our algorithm can explicitly
model various uncertainties via GP kernel design (e.g., (5)) and can predict
an interval, it is robust to various uncertainties (e.g., quantization). Simu-
lation results show that the performance loss due to quantization and time
discretization can be safely ignored (e.g., when N ≥ 64).
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Algorithm 2: Beam Training and Tracking via GP
1 input: time-scales K (short-term) and M (long-term);

initial dataset D = {(t1, b1), · · · , (tn0 , bn0)}; and
cσ criterion

2 initialize: hyper-parameters and weights of KEN and
PTN; let time-slot counter n = n0

3 loop (for each time-slot n)
(1) maximize LML in (10) to optimize hyper

parameters in GP kernel
(2) compute matrix/vector/scalar K, k∗ and k∗∗
(3) determine BCI according to (6) - (9)
(4) sweep all beams within BCI to find optimal

beam b?n+1

(5) perform data transmission with beam b?n+1

(6) update n and D as follows:
n← n+ 1 and D ← D ∪ {(tn, bn)}

(7) update parameters of two neural networks
if nmodK = 0 =⇒ update PTN
if nmod (KM) = 0 =⇒ update KEN

end-loop

V. PERFORMANCE TRADEOFF VIA BAYESIAN POSTERIOR
INFERENCE

In the previous algorithms, we choose parameter c in the
cσ criterion heuristically. In fact, c balances probability of
successful alignment (PSA) and other performance metric of
interest. We take the performance metric “effective achievable
rate” (EAR) as an example to illustrate this point. In general,
as parameter c becomes large, PSA increases monotonously.
On the one hand, if c > 0 is too small, the BCI constructed
often fails to contain the real beam direction, i.e., PSA is very
small. In this case, P |hHfi|2 in (4) is also very small, which
thus leads to small EAR. On the other hand, if c is too large,
the resultant large beam training overhead will also reduce
EAR, although PSA is almost 1 in this case. In summary,
EAR first increases and then decreases, as c increases. Next,
we investigate how to achieve a desired tradeoff between the
two performance metrics, i.e., EAR and PSA.

Given a training dataset Dn = {(t1, b1), · · · , (tn, bn)}, we
can obtain the posterior distribution of btn+1

, i.e.,

p(btn+1 | Dn, tn+1) ∼ N (µn+1, σ
2
n+1), (14)

where µn+1 and σ2
n+1 are given in (7) - (8). From Bayesian

perspective, with the Bayesian posterior distribution available,
meaningful statistical inference can be made. In particular, the
(posterior) expected effective achievable rate (EEAR) can be
characterized explicitly. To simplify performance analysis and
reveal useful insights, we first consider the single-path case,
i.e., L = 1 in (2), and later discuss the more general multi-
path case. Note that the specific single-path case itself is also
very important, e.g., when the LOS link is dominated [32].
The (posterior) PSA performance is concluded below.

Lemma 1. Let I(c) = bµ − cσ, µ + cσe be the interval
consisting of swept beams. For the cσ criterion, PSA, denoted

by psucc(c), can be respectively upper bounded and lower
bounded by

psucc(c, α) ≤ p0(c) (15)

psucc(c, α) ≥ p0(c) max
{

0,
(
1− 0.5|I(c)|e− 1

4λ
?)}

, (16)

where p0(c) and λ? are respectively given by

p0(c) =

∫ c

−c

1√
2π

exp

(
−x

2

2

)
dx, (17)

λ? =2LpPN |α0|2β−1.

Proof: See Appendix C.
As λ? increases, exp(−λ?/4) tends to zero dramatically.

Hence, for a sufficiently large λ? (e.g., the transmit power P
is large), psucc(c) can be safely approximated by p0(c), i.e.,

psucc(c) ≈ p0(c).

We further proceed to characterize the (posterior) EEAR
performance. To accommodate various channel fadings (e.g.,
Rayleigh or Rician), the path gain α is assumed to follow the
Nakagami fading. Then, |α|2 follows a Gamma distribution
having probability density function

f|α|2(x) =
mmxm−1

Γ(m)
exp(−mx), x ≥ 0, (18)

with shape m and scale 1/m, where m denotes the Nakagami
fading parameter. The following theorem characterizes the
(posterior) EEAR performance.

Theorem 2. With the assumption that α follows the Nakagami
fading, the upper bound and lower bound of (posterior) EEAR
E(m, c) are provided in (19) and (20), respectively.

Proof: It can be verified that EEAR conditioned on the
path gain α can be calculated as

r(α) =
(
1− (|I(c)|+ 1)T0T

−1
S

)
log
(
1 + PN |α|2β−1

)
.

Then, the upper bound of EEAR is given by

E(m, c) ≤ p0(c)

∫ ∞
0

r(x)f|α|2(x)dx.

The lower bound can be obtained similarly.
For a sufficiently large λ?, psucc(c) ≈ p0(c) holds true. In

this case, the upper bound and lower bound of the (posterior)
EEAR approximately coincide, i.e.,

E(m, c) ≈ p0(c)
(
1− (|I(c)|+ 1)T0/TS

)
C(P, β). (21)

where C(P, β) is independent of P and β and is given by

C(P, β) =

∫ ∞
0

log

(
1 +

PNx

β

)
mmxm−1

Γ(m) exp(mx)
dx.

Moreover, for a sufficiently large m (e.g., the LOS channel),
E(m, c) asymptotically satisfies

E(c) = lim
m→∞

E(m, c)

≈ p0(c)
(
1− (|I(c)|+ 1)T0/TS

)
· log (1 + PN/β) .

In general, the widely used 3σ criterion is too conservative,
which may cause large beam training overhead and thus lower
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E(m, c) ≤p0(c)
(
1− (|I(c)|+ 1)T0/TS

)
·
∫ ∞
0

log

(
1 +

PNx

β

)
mmxm−1

Γ(m) exp(mx)
dx. (19)

E(m, c) ≥p0(c)
(
1− (|I(c)|+ 1)T0/TS

)
·
∫ ∞
0

log

(
1 +

PNx

β

)
mmxm−1

Γ(m) exp(mx)
·max

{
0,
(
1− 0.5|I(c)|e− 1

4λ
?)}

dx. (20)

EEAR. Based on the above discussion, we can derive an
“optimal” cσ criterion to maximize EEAR. To this end, we
shall solve the following problem

max
c

E(m, c)

s.t. c ≥ 0.
(22)

It is observed that problem (22) is equivalent to the following
optimization problem

max
c

(
1− (|I(c)|+ 1)T0

TS

)∫ c

0

exp

(
−x

2

2

)
dx

s.t. c ≥ 0.

(23)

An analytical solution of problem (23) is unavailable. For-
tunately, the objective function in (23) is unimodal and has
good properties, as concluded in the following theorem.

Theorem 3. Let

f(c) =

(
1− (2cσ + 1)T0

TS

)∫ c

0

exp

(
−x

2

2

)
dx. (24)

Then f(c) is a unimodal function and has a unique maximal
point within (0, 0.5TST

−1
0 σ−1 − 0.5σ−1).

Proof: See Appendix D.
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Fig. 9. The graph of function f(c) for different settings of T0/TS (σ = 1).

The graph of f(c) is demonstrated in Fig. 9, which clearly
illustrates the variation tendency of f(c). As shown in Fig. 9
and proved in Theorem 3, f(c) first increases monotonously
and then decreases monotonously, and thus contains only
one maximum. Based on Theorem 3, classical derivative-free
search methods (e.g., binary search or golden search [33]) can
be used to find the optimal value c?. Here, the golden search
is used to find c?, which is summarized in Algorithm 3 for
clarity. The golden ratio, i.e., r = (

√
5 − 1)/2, is chosen to

shorten the search interval in a constant ratio [33]. With c?

available, the beam search subspace is refined as

I(c) = bµ− c?σ, µ+ c?σe. (25)

Algorithm 3: Optimal Beam Subspace Search Algorithm
1 input: variance of posterior prediction distribution σ2;

duration of one time-slot TS; duration of transmitting
one beam TB; tolerance δ > 0; let r = (

√
5− 1)/2

2 initialize: a = 0, b = 0.5σ−1(TST
−1
0 − 1), yp = f(p)

p = a+ (1− r)(b− a), q = a+ r(b− a), yq = f(q)

3 loop
if yp < yq

b← q, q ← p, yq ← yp, p← a+ (1− r)(b− a)

yp = f(p)

else
a← p, p← q, yp ← f(q), q ← a+ r(b− a)

y ← f(q)

end
until |b− a| < δ and |yp − yq| < δ

4 output: optimal criterion c? = (a+ b)/2

beam search subspace bµ− c?σ, µ+ c?σe

Finally, we extend the analysis for the single-path case to
the multi-path case. The (posterior) probability psucc(c) can be
calculated as (See the proof of Lemma 1 for details)

psucc(c) = P
(
fi? is found | i? ∈ I(c)

)
P
(
i? ∈ I(c)

)
= P

(
fi? is found | i? ∈ I(c)

)
· p0(c),

where i? denotes the index of optimal beam. The key operation
of the cσ criterion is to sweep all beams within I(c). Under
normal conditions, P

(
fi? is found | i? ∈ I(c)

)
≈ 1 also holds

for the multi-path case. The practical meaning is that if the
optimal beam is known to be within an interval, it can be found
out via sweeping the interval, which is, in fact, the foundation
of sweeping-based beam alignment techniques.

Thanks to the approximation, the posterior EEAR, denoted
by R̄eff, can be approximated as

R̄eff ≈ p0(c) ·
(
1− (|I(c)|+ 1)T0/TS

)
·E(R({αl, φl})), (26)

where E(R({αl, φl})) denotes the achievable rate (conditioned
on multiple factors). It is observed from (26) that although
the analytic expression of E(R({αl, φl})) is unavailable, it
does not affect the optimization of R̄eff, as the optimization
variable is c. To maximize R̄eff, it is sufficient to maximize
p0(c)·

(
1−(|I(c)|+1)T0/TS

)
, which coincides with the single-

path case. Therefore, Algorithm 3 (derived for the single-path
case) is also applicable to the multi-path case.
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VI. NUMERICAL RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithms. We com-
pare our approach, i.e., GP learning (GPL) based algorithms,
to the classical and state-of-the-art benchmarks, including the
conventional direct search (DS) algorithm, two machine learn-
ing (ML) based algorithms, i.e., the direct upper confidence
bound (DUCB) based algorithm [34] and the stochastic bandit
learning (SBL) based algorithm [21]) and the oracle aided
algorithm. 9 For convenience, a uniform distribution taking
values in [a, b] is denoted by U(a, b).

A. Simulation Environment

The datasets used to train prediction models are generated
via software simulation or hardware device. For the software
simulation part, the uniform linear array is chosen here. The
size of the codebook C satisfies M = N , and two cases (i.e.,
N = 64 and N = 128) are considered. For all simulation
experiments, the channel model in (2) includes one LOS path
and three NLOS paths. The angles of departure of the NLOS
paths are distributed as U [0, 2π]. The average power ratio of
the LOS path gain αL and each NLOS path gain αN is 10dB.
The path gain of a NLOS path is distributed as CN (0, σ2

N).
The other system parameters are described below.

1) High-speed Train Communication: We refer to [22] to
set relevant system parameters, while [22] is further referred
to the 3GPP mmwave high-speed train scenario. In contrast to
[22], where the relevant parameters take fixed values, a more
practical setting is considered, so as to accommodate possible
errors. Specifically, the distance between two adjacent BSs is
distributed as U(480, 520) (m) and the distance between each
BS and the side track is distributed as U(4.5, 5.5) (m). The
velocity of the train is distributed as U(280, 380) (km/h). The
length of each time-slot is set to 10 ms.

2) Outdoor Environment: The coverage radius of the BS is
fixed to 400 (m), and the height of the BS is set to 20 (m).
The distance between the road and cell center is set to 10 (m).
A pedestrian walks along the road, with speed distributed as
U(3.6, 5.4) (km/h). The pedestrian may randomly stop for a
moment, and the stopping time is distributed as U(1.0, 11.0)
(s). The blockage phenomena randomly occur with probability
0.02, i.e., the probability that jumps or discontinuous points
occur is 0.02. The length of each time-slot is set to 50 ms.

3) Indoor Environment: Instead of software simulation, the
dataset used to optimize the prediction model is generated via
the hardware. Specifically, an indoor test room is considered,
whose size is about 6× 10 (m2). The transmit antenna array
(a planar array of size 8×8) is fixed on a shelf, whose height
is about 2.2 (m). The users in the room move randomly, with
speeds varying within about (0.2, 2.0) (m/s). The duration of
each time-slot is set to 100 ms. Two GP models are constructed
to predict the elevation angle and azimuth angle.

9The direct search (DS) algorithm searches the optimal beam within the
codebook exhaustively. Note that the oracle aided algorithm is only served as
a benchmark, which can always find out the optimal beam without causing
any beam training overhead, i.e., TB = 0.

For the GPL-based BTT algorithms, the neural network of
PTN consists of 3 layers (with 16, 4 and 1 neurons), while
the neural network of KEN consists of 4 layers (with 16, 8, 4
and 2 neurons). For both PTN and KEN, the ReLU function
is chosen as the activation function. All BDTs (including
the test BDTs) are obtained by first sampling the probability
distributions of key system parameters and then simulating
the beam trajectories based on the sampled parameters. The
Adam optimizer is chosen to train the model, with learning
rate 0.002. The number of training epochs is 32. The training
procedure is stopped if: 1) average training loss (calculated
over 64 samples) is less than -2.0; or 2) the difference between
average losses in two adjacent iterations is less than 0.02.

B. Performance of Beam Training and Tracking

Next, we evaluate the performance of the proposed BTT
algorithms. PSA and average effective achievable rate (AEAR)
are chosen as performance metrics to evaluate different algo-
rithms. Two settings of LOS paths are considered: (1) the LOS
path with a constant path gain, i.e., |αLOS| = 1; and (2) the
LOS path with a fading path gain, i.e., αLOS ∼ CN (m̄, 1)
with |m̄| = 1. If not explicitly stated, GPL is referred to as
Algorithm 2. It is known that the size of the training dataset
affects the performance of most ML algorithms. Hence, we
first evaluate the small sample performance of the three ML
based algorithms, i.e., DUCB, SBL and GPL. Fig. 10 and Fig.
11 demonstrate the PSA and AEAR performance vs. the size
of available training set T , respectively.
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Fig. 10. The PSA performance of different algorithms - semi-offline training,
SNR = 5dB and |αL| = 1 (Scenario 2).

It is observed from the two figures that DUCB achieves the
worst performance (in terms of both PSA and AEAR) among
the three BTT algorithms. The reason for this is that DUCB
is mainly applicable to quasi-static mmwave channels, while
the considered channels vary rapidly. We can also observe that
GPL achieves the best PSA and AEAR performance and its
AEAR performance approaches that of the ideal oracle aided
algorithm which can access the optimal beams without any
training overhead. More importantly, it can be observed that
good performance can be achieved even when the number of
available training samples is as low as 5. The small sample
performance of GPL is appealing in wireless communications,
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since they typically vary rapidly. Although SBL performs well
when T is large, its performance degenerates quickly as the
size of available training dataset decreases.
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Fig. 11. The AEAR performance of different algorithms - semi-offline
training, SNR = 5dB and |αL| = 1 (Scenario 2).

The reason why the proposed BTT algorithm achieves good
small sample performance is three-fold. First, in contrast to
most prediction models (e.g., the neural network prediction
model), the GP learning based model is a probabilistic model,
which equivalently fits an infinite number of regression models
and reasonably allocates the probabilities among these models
according to the observed samples. Second, the environment
priors and uncertainties are implicitly considered and encoded
into the GP kernel, which further improves the performance.
Finally, most of the existing prediction algorithms only output
a point estimation, while our algorithm generates an interval
estimation, which thus enhances the robustness.

It is observed that for the two cases N = 64 and N = 128,
although GPL achieves almost the same PSA performance, as
T increases, the AEAR metric corresponding to N = 64 is
first better than that of N = 128 and then worse than it. The
reason is as follows. For a BCI of same size, more beams are
needed to sweep the BCI for a codebook of narrower beams.
When T is small, the BCI is relatively large, which leads
to large beam training overhead and thus degenerates AEAR.
When T is sufficiently large, the BCI is narrow and thus the
difference in terms of sweeping overhead is small. But since
the array gain corresponding to N = 128 is larger than that
of N = 64, the former achieves better AEAR performance.

To better evaluate the GPL approach, the PSA and AEAR
performance of different algorithms for fading LOS paths is
provided in Fig. 12 and 13, respectively. It is not surprising that
DUCB achieves the worst performance in terms of both PSA
and AEAR. Thanks to the good small sample performance
and robustness, it is expected that GPL outperforms SBL, in
terms of both PSA and AEAR. Not surprisingly, all algorithms
perform better and better, as the SNR increases.

It is interesting to see that both GPL and SBL outperform
DS in terms of PSA. The reason for this is that DS is more
vulnerable to noise, especially for low SNR or low path gain.
We explain this phenomenon mathematically. Let the beams
used for sweeping be T , which is a subset of C. Let fi? be
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Fig. 12. The PSA performance of different algorithms - HST scenario, semi-
online training and αLOS ∼ CN (m̄, 1) with |m̄| = 1.
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Fig. 13. The AEAR performance of different algorithms - HST scenario,
semi-online training and αLOS ∼ CN (m̄, 1) with |m̄| = 1.

the optimal beam. Then, fi? can be identified if and only if

Yi? = |1Tyi? |2/Lp > Yi = |1Tyi|2/Lp, (∀ i 6= i?), (27)

where yi is the received signals of fi (fi ∈ T ). Intuitively, if
more variables {Yi} are involved in (27), the probability that
all events in (27) occur simultaneously becomes smaller. Note
that DS uses the entire codebook C, while GPL and SBL use
a small subset of C. Therefore, the impact of noise on DS is
much larger than that on the other two algorithms.

In contrast to most BTT algorithms, an important advantage
of GPL is that an optimizable interval estimation is provided,
which enables a flexible tradeoff between the PSA and AEAR
performance by adjusting the BCI width. The PSA and AEAR
performance achieved by GPL (for the indoor scenario) with
different BCI choices is demonstrated in Fig. 14 and Fig. 15,
respectively. The abbreviation “POST-OPT” denotes Bayesian
posterior optimization (i.e., Algorithm 3).

It is observed from Fig. 14 that the 3σ criterion achieves
the best PSA performance, which is as expected. However, the
3σ criterion is often too conservative. Although it avoids beam
misalignments, it consumes too much precious communication
time-resource, which, in turn, reduces the AEAR performance,
as shown in Fig. 15. Compared to the 3σ criterion, the 1σ
criterion is, however, too confident, which leads to frequent
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Fig. 14. The PSA performance of GPL with different BCI choices - fully-
online training.
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Fig. 15. The AEAR performance of GPL with different BCI choices - fully-
online training.

beam misalignments. As a result, its AEAR performance is
also far from satisfactory. In contrast to the previous two BCI
choices, the optimized BCI can automatically achieve an ideal
tradeoff between beam training and data transmission, which
helps to obtain the best AEAR performance.

VII. CONCLUSION

From the perspective of identifying and exploiting challeng-
ing priors and patterns, in this paper we proposed to model
BDTs via SP and addressed the problem of BTT via process
inference. We formulated the problem of BTT as GP prediction
by encoding environment priors/patterns and uncertainties into
the GP kernel, so as to achieve the small sample performance.
To improve prediction efficiency, novel network structure and
efficient learning methods were proposed. Bayesian posterior
inference and optimization were further proposed to enhance
the designed algorithms, which can achieve a flexible tradeoff
between desired performance and beam training overhead.

APPENDIX A
PROOF OF THEOREM 1

For any index u = (t1, t2, · · · , tk), the projection πu =
πt1,··· ,tk from RT to Rk is clearly BT /Bk-measurable, since
if C ∈ Bk, π−1u C is a cylinder and hence is in BT . Therefore,

if ξ is E/BT -measurable, ξt = πtξ is E/B-measurable for each
t.

Conversely, if each ξt is E/B-measurable, (ξt1 , ξt2 , · · · , ξtk)
is clearly E/Bk-measurable, i.e., πuξ is E/Bk-measurable
for u = (t1, t2, · · · , tk). Hence if C ∈ Bk, ξ−1π−1u C =
(πuξ)

−1C ∈ E or ξ−1E ∈ E for each cylinder E. Since these
cylinders generate BT , if follows that ξ is E/BT -measurable
as required.

APPENDIX B
GAUSSIAN PROCESS AND TYPICAL KERNELS

A. Gaussian Process Regression

A stochastic process f(x) is referred to as a GP if and only
if for any finite number of points x1, · · · ,xn (∀ i,xi ∈ RD),
the joint probability density function p(f(x1), · · · , f(xn)) is
Gaussian [28]. A GP is completely characterized by its mean
function m(x) and covariance function k(x,x′), which are, in
a sense, similar to the mean and variance of the multi-variate
Gaussian distribution. The mean function m(x) and covariance
function k(x,x′) are respectively defined as

m(x) =E[f(x)]

k(x,x′) =E[(f(x)−m(x))(f(x′)−m(x′))].
(28)

For simplicity, the mean function is usually taken to be zero
in practice, i.e., m(x) = 0.

GP can be used for regression [28], i.e., to predict or infer
f(x?) for an unseen x∗ based on a set of observations D =
{(xi, yi) | yi = f(xi) + wi, wi ∼ N (0, σ2

w), i = 1, · · · , n},
where x ∈ X ⊂ RD and y ∈ R represent input vector
and output scalar, respectively. In contrast to other regression
methods, GP regression is based on Bayesian inference, which
outputs a probability distribution, rather than a point estimate
for the quantity of interest. Given dataset D, the conditional
(or predictive) distribution of f∗ = f(x∗) at x∗ is given by

p(f∗|D,x∗) ∼ N
(
µ(x∗), σ

2(x∗)
)

(29)

µ(x∗) = kT
∗(K + σ2

wI)−1y (30)

σ2(x∗) = k∗∗ − kT
∗(K + σ2

wI)−1k∗, (31)

where the (i, j)-th element of K and the i-th element of k∗ are
calculated as k(xi,xj) and k(xi,x∗), respectively. The scalar
k∗∗ is calculated as k(x∗,x∗).

B. Typical Covariance Functions

A covariance function (also referred to as kernel in litera-
tures) is crucial for GP predictor, because it encodes the prior
about the function to be learned, i.e., the specification of the
kernel implies a distribution over functions. Next, we briefly
introduce two classical kernels [28], [31].

1) Squared Exponential Kernel: The squared exponential
kernel takes the form

kSE(x,x′) = σ2
f exp

(
− 1

2l2
‖x− x′‖2

)
, (32)

where σ2
f and l denote the signal variance and length-scale,

respectively. The physical meaning of parameter l is that if we
think that the GP varies rapidly, the length-scale l should be
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shorter [28]. Hence, the degree of variation of a GP is achieved
by simply adjusting the parameters of the kernel. Since kSE is
infinitely differentiable, a GP with this kernel is smooth.

2) Spectral Mixture Kernel: To provide more flexibility, the
spectral mixture kernel takes the form

kSM(x,x′) =

Q∑
q=1

aq
|Σq|0.5

(2π)D/2
exp

(
−1

2

∥∥Σ0.5
q (x− x′)

∥∥2) ·
cos〈x− x′, 2πµq〉, (33)

where {αq}, {Σq} and {µq} are mixture weights, bandwidths
(inverse length-scales) and frequencies, respectively. It is re-
ferred to [31] for more details about this kernel. Compared to
the squared exponential kernel, the spectral mixture kernel is
more expressive. To further enhance the flexibility, the neural
network is incorporated into the GP in this paper.

APPENDIX C
PROOF OF LEMMA 1

The key operation corresponding to the cσ criterion is to
sweep the interval I(c). The (posterior) probability psucc(c),
i.e., the probability that the true beam f? (with beam index
i?) can be found via beam sweeping, can be calculated as

psucc(c) = P
(
fi? is found | i? ∈ I(c)

)
P
(
i? ∈ I(c)

)
.

According to Algorithm 2 and (29) - (31), the probability
P
(
i? ∈ I(c)

)
can be calculated as

P
(
i? ∈ I(c)

)
=

∫ µ+cσ

µ−cσ

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx.

(34)

We consider the conditional probability P
(
fi? is found | i? ∈

I(c)
)
. For convenience, let p0 = P

(
fi? is found | i? ∈ I(c)

)
.

The event that fi? is found under the condition i? ∈ I(c)
occurs if and only if Y ? = |1Ty?|2/Lp > Yi = |1Tyi|2/Lp
for all i 6= i?, i ∈ I(c). According to the union bound formula,
p0 can be lower bounded by

P
(
fi? is found | i? ∈ I(c)

)
=P(Yi? > Yi | ∀ i 6= i?, i ∈ I(c))

≥max

{
0, 1−

∑
i 6=i?,i∈I(c)

P(Yi? ≤ Yi)
}
.

It can be verified that 2Yi = 2|1Tyi|2/Lp obeys a noncentral
chi-squared distribution with degrees of freedom 2, whose
probability density function is given by

fi(x) =
1

2
e−

1
2 (x+λi)

∞∑
n=0

λni x
n

4n(n!)2
, (x ≥ 0),

where λi = 2PNLpβ
−1
∣∣α0a

H(φ)fi
∣∣2 is the noncentrality

parameter. Since Yi? and Yi are independent, the probability
P(Yi? ≤ Yi) can be calculated as

P(Yi? ≤ Yi) =

∫∫
x≥0,y≥0,x≤y

fi?(x)fi(y)dxdy

=

∫ ∞
0

fi?(x)dx

∫ ∞
x

fi(y)dy.

For i 6= i?, Yi is degenerated into an exponential distribution
since λi = 0. Similar to the derivation in [7], P(Yi? ≤ Yi) is
calculated by 1

2 exp
(
− 1

4λi?
)
. Thus, p0 is lower bounded by

P(fi? = f?) ≥ max

{
0, 1− |I(c)|

2
exp

(
−1

4
λi?

)}
,

with λi? = λ? = 2PNLp|αC|2β−1. The remaining derivation
is straightforward, which is omitted.

APPENDIX D
PROOF OF THEOREM 3

To prove the unimodality of f(c), we shall investigate
the properties of the first-order and second-order derivative
functions of f in (0,∞), which are respectively calculated as

f ′(c) =− 2σT0/TS

∫ c

0

exp

(
−x

2

2

)
dx+(

1− (2cσ + 1)T0/TS
)

exp(−c2/2)

f ′′(c) = exp

(
−c

2

2

)(
2c2σT0
TS

− c
(

1− T0
TS

)
− 4σT0

TS

)
.

We first investigate the properties of f ′′(c), which is the
product of positive function exp(−c2/2) and quadratic func-
tion g(c) =

(
2c2σT0/TS−c(1−T0/TS)−4σT0/TS

)
. Because:

1) the coefficient of the quadratic term of g(c) is 2σT0/TS > 0;
2) the minimum point (or axis of symmetry) of g(c) satisfies
c? = (TS − T0)/(4σT0) > 0; and 3) g(0) = −4σT0/TS, there
must exist a point c0 > c? such that g(c) < 0 for c ∈ (0, c0)
and g(c) > 0 for c ∈ (c0,∞). Since exp(−c2/2) > 0, f ′′(c)
and g(c) keep the same positivity or negativity, i.e., f ′′(c) < 0
for c ∈ (0, c0) and f ′′(c) > 0 for c ∈ (c0,∞). Hence, f ′(c)
monotonously decreases in (0, c0) and increases in (c0,∞).

Because f ′(0) = 1 − T0/TS > 0 and limc→∞ f ′(c) =
−
√

2πσT0/TS < 0, the zero point theorem asserts that there
exists at least one point cz such that f ′(cz) = 0. Note also
that because: 1) f ′(0) = 1 − T0/TS > 0; and 2) f ′(c) first
monotonously decreases and then increases, f ′ has at most
two zero points within (0,∞). We next prove that f ′ has
only one zero point. Suppose that there are two zero points,
denoted by c1 and c2. The continuity of f ′ and positivity of
f ′′ in (c0,∞) asserts that f ′(c) > 0 for c ∈ (c2,∞), which,
however, contradicts with the fact that f ′(c) < 0 when c is
sufficiently large (as limc→∞ f ′(c) = −

√
2πσT0/TS < 0).

Hence, there exists one and only one zero point of f ′, which
is also the maximum point of f .
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