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ABSTRACT

We present an optimization method for the assignment of photometric galaxies to a chosen set of redshift bins. This is achieved
by combining simulated annealing, an optimization algorithm inspired by solid-state physics, with an unsupervised machine
learning method, a self-organizing map (SOM) of the observed colours of galaxies. Starting with a sample of galaxies that is
divided into redshift bins based on a photometric redshift point estimate, the simulated annealing algorithm repeatedly reassigns
SOM-selected subsamples of galaxies, which are close in colour, to alternative redshift bins. We optimize the clustering cross-
correlation signal between photometric galaxies and a reference sample of galaxies with well-calibrated redshifts. Depending on
the effect on the clustering signal, the reassignment is either accepted or rejected. By dynamically increasing the resolution of the
SOM, the algorithm eventually converges to a solution that minimizes the number of mismatched galaxies in each tomographic
redshift bin and thus improves the compactness of their corresponding redshift distribution. This method is demonstrated on the
synthetic Legacy Survey of Space and Time cosmoDC?2 catalogue. We find a significant decrease in the fraction of catastrophic
outliers in the redshift distribution in all tomographic bins, most notably in the highest redshift bin with a decrease in the outlier

fraction from 57 per cent to 16 per cent.
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1 INTRODUCTION

The calibration of the redshift distribution of cosmological sur-
veys plays a crucial role in current studies of cosmology. While
spectroscopic observations of galaxies allow for accurate redshift
measurements of the source redshift distribution, complete spectro-
scopic measurements are often infeasible given the large number of
observed objects in current and upcoming surveys, such as the Vera
C. Rubin Observatory’s Legacy Survey of Space and Time (LSST;
Ivezi¢ et al. 2019) and the European Space Agency’s Euclid survey
(Laureijs et al. 2011). Therefore, surveys often rely on multiband
photometry to determine the redshift of observed objects (see Salvato,
Ilbert & Hoyle 2019, for a review). However, photometric methods
suffer from systematic biases and catastrophic outliers in the redshift
estimation and thus require a sophisticated calibration of the redshift
distribution in order to derive robust constraints on cosmology (see
for example Huterer et al. 2006; Ma, Hu & Huterer 2006; Bernstein &
Huterer 2010; Cunha et al. 2014).

Cosmological analyses, for example studies of weak gravitational
lensing by the large-scale structure of the Universe, are often
performed tomographically, which allows for the utilization of
information about the evolution of the Universe. In tomographic
cosmic shear analyses the galaxy sample is split into several redshift
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bins using photometric redshift estimates of individual galaxies.
The cosmic shear signal is then estimated by measuring the cross-
correlation between the shapes of galaxies in the tomographic bins,
which improves constraints on cosmological parameters (Hu 1999).

A tomographic analysis usually requires two steps. First, the
sample of galaxies needs to be divided into redshift bins. This is
usually done using galaxy photometry, which are used to estimate
the redshift of individual galaxies in the survey, for example via
spectral energy distribution (SED) template fitting codes. However,
the true redshift distributions of tomographic bins extend beyond the
bin boundaries because of noise, systematic biases, and catastrophic
outliers in the photometric redshift estimation. Therefore, the second
step is the calibration of the actual redshift distribution of each
tomographic bin, which is important when deriving theoretical
predictions for the observed weak lensing signal given the sensitivity
of the observed signal to the tails of the redshift distribution (Ma et al.
2006). For example, such calibration methods include angular cross-
correlation clustering measurements with overlapping spectroscopic
reference samples (e.g. Newman 2008; Matthews & Newman 2010;
McQuinn & White 2013; Ménard et al. 2013; McLeod, Balan &
Abdalla 2017; van den Busch et al. 2020; Gatti et al. 2021) and
direct calibration methods with spectroscopic subsamples that are,
potentially after re-weighting, representative of the full sample (Lima
etal. 2008; Bonnett et al. 2016; Hildebrandt et al. 2017). Furthermore,
hierarchical Bayesian models that combine photometry measure-
ments of individual galaxies and clustering measurements with tracer
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Figure 1. Sketch of the optimization algorithm that reassigns photometric galaxies to alternative redshift bins. We train an SOM with a high-resolution Roriginal
on the observed colours of galaxies in the photometric sample, from which we infer SOMs with arbitrary resolutions R < Roriginal- Additionally, we infer point
estimates of the photometric redshift to divide the sample into tomographic bins, so that each SOM node is assigned initially to the most common redshift bin
of galaxies in this node. We initialize the simulated annealing algorithm with a starting temperature Tax and a resolution Rpin, Which is coupled linearly to the
temperature. In each iteration of the annealing algorithm we select a node of an SOM with the current resolution, which we randomly reassign to a different
redshift bin. Measuring the angular cross-correlation between the photometric sample and the reference sample, we calculate the energy of the system from
equation (3). Comparing the change in energy and the current temperature, we determine whether to keep the redshift bin assignment or to restore the previous
state using equation (8). We then decrease the system’s temperature and, depending on the temperature, we either keep the current SOM resolution or increase
the resolution using the scheme outlined in Fig. 2. We iterate through these steps until we reach the given final temperature T, and final resolution Ryax.
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populations in a robust way have been used for redshift calibration
(Sanchez & Bernstein 2019; Alarcon et al. 2020). Additionally,
the clustering properties of photometric galaxies can be utilized to
increase the precision of photometric redshifts (Jasche & Wandelt
2012). Moreover, self-organizing maps (SOMs) can be used to assign
galaxies to groups based on their photometry (Masters et al. 2015;
Buchsetal. 2019; Wright et al. 2020; Myles et al. 2021), which allows
one to derive subsamples of galaxies that are fully represented by
spectroscopic reference samples.

In this work, we develop a calibration method that improves
the first step by reducing the number of outliers in tomographic
redshift bins. We develop a method that updates the assigned redshift
bin of galaxies in a given photometric catalogue that otherwise
would be assigned to an incorrect redshift bins if point estimates
of the photometric redshift are used to assign galaxies to bins. The
goal is to obtain a sample of galaxies that is divided into well-
localized redshift bins. This is achieved by combining an SOM,
which is used to group galaxies of a similar colour into cells,
with measurements of clustering cross-correlations. We use point
estimates of the photometric redshifts of galaxies to divide a galaxy
catalogue into tomographic bins and apply a simulated annealing
algorithm to reassign (SOM-based) cells of galaxies to alternative
redshift bins. The optimization algorithm utilizes measurements of
the clustering cross-correlation between the photometric sample and
a reference sample with well-calibrated redshift measurements and
maximizes correlations between photometric and reference bins of
the same redshift while minimizing correlations between bins that
are disjoint in redshift. We demonstrate the method on the synthetic
LSST cosmoDC?2 catalogue (Korytov et al. 2019).

The paper is structured as follows: The methods that we use are
described in Section 2. We show our results in Section 3 and finally
we discuss our main conclusions in Section 4.

2 METHODOLOGY

In this section, we summarize the optimization method, called
SHARPZ, that we use to assign photometric galaxies to tomographic
redshift bins, which is illustrated in Fig. 1. We start from a catalogue
of galaxies that are observed in several photometric bands from which
point estimates of the photometric redshift of individual galaxies are
estimated. These redshift estimates are used to divide the catalogue
into tomographic bins. We aim to minimize mismatches between the
photometric redshift and the true redshift of the catalogue that are
caused by imprecise redshift estimates in order to infer tomographic
bins that are well-localized within the bin boundaries. We employ
an overlapping sample of reference galaxies which is divided into
the same tomographic bins using accurate redshift measurements
in order to quantify how well the true redshift distribution of the
photometric sample resembles the redshift distribution of the well-
calibrated reference sample. To do so, we measure the angular
cross-correlation between the photometric sample and the reference
sample. This measurement relies on the property that galaxies cluster
spatially, so that we expect a clustering signal between two over-
lapping photometric and reference samples, whereas samples that
are separated in redshift are expected to show no clustering signal.
Further details on the clustering measurements can be found in Sec-
tion 2.1. We employ a simulated annealing algorithm, explained in
Section 2.2, to randomly reassign photometric galaxies to a different
redshift bin in order to maximize the correlation between overlapping
photometric and reference bins while minimizing the correlation of
bins with no overlap in redshift. However, a reassignment of single
galaxies only has a marginal impact on the correlation signal between
different samples, since the cross-correlation is a statistical property
of large samples of galaxies. Therefore, we additionally employ an
SOM, which is described in Section 2.3, to derive sets of galaxies
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of similar colour. By reassigning a set of galaxies in each step of
the simulated annealing algorithm, we achieve a measurable effect
on the clustering signal between photometric and reference samples,
which allows us to employ the combined clustering signals as an
objective function to be maximized by the algorithm.

2.1 Galaxy clustering

In order to determine how well localized within bin boundaries the
true redshift distribution of the tomographic bins is, we employ
an additional data set comprised of galaxies for which an accurate
redshift measurement is available. This can be obtained for example,
through spectroscopic observations of galaxies on the same area.
Thus, we distinguish between two galaxy samples:

(i) A photometric galaxy sample of galaxies, which is comprised
of objects that are observed through several optical filters. The
photometric measurements of those objects are used to infer redshift
estimates via the template fitting code BPZ (Benitez 2000).

(ii) A reference sample, which is comprised of objects with
precise redshift measurements, for example through spectroscopic
observations.

Here, we assume for simplicity that the reference sample is fully
representative of the photometric sample. While the method can be
applied with a reference sample that only partially overlaps with
the photometric sample, as discussed in Section 4, the impact of an
inhomogeneous reference sample will be explored in forthcoming
work.

Both the photometric sample and the reference sample are divided
into Npips redshift bins based on photometric redshift estimates
and spectroscopic redshift measurements, respectively. We then
measure the two-point correlation function between photometric
bins and reference bins on fixed angular scales using the public
code TREECORR (Jarvis, Bernstein & Jain 2004). Using the angular
positions of galaxies, we compute the cross-correlation w}’}wt_mf
between photometric bin i and reference bin j via the Landy—Szalay
estimator (Landy & Szalay 1993), which for each bin of angular
separation © is defined as

phot yref phot > ref phot ryref phot pref
phol—ref_Di Dj _Dl R] _Rz D/ +Rt Rj

ij hot
R R

, ey

where D" D' denotes the number of observed galaxy pairs of
the photometric and reference bins within a single angular bin with
range 6 € [0.01°, 0.1°]. D" R and RI" D'" denote the number
of observed galaxy pairs of a random sample with uniform density
that follows the geometry of the survey and the photometric and
reference bins, respectively. Finally, R} h‘"Rr,-ef denotes the number of
galaxy pairs of random samples. ‘

After calculating the cross-correlation between all combinations
of photometric and reference bins, we construct the cross-correlation
matrix whose elements are defined as

phot—ref

—_ i
Pij = Tf‘ (2)

Here, wff denotes the autocorrelation of reference bin j, which serves

as a normalization factor and is calculated by replacing D,th with
the reference sample Dj-ef in equation (1).

The correlation matrix defined in equation (2) acts as a measure
of how well the galaxies in each bin of the photometric sample
match the underlying true redshift bin. If the redshifts of photometric
galaxies were perfectly determined, the correlation matrix between
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photometric and reference bins would therefore resemble a diagonal
matrix. However, we expect non-zero correlation signals between
neighbouring redshift bins that are induced by the large structure
at their common boundary. The relative magnitude of these off-
diagonal correlation signals is dependent on the width of the redshift
bins and therefore we expect these signals to be small given the
relatively broad redshift bins considered in this work. Additionally,
noise and catastrophic outliers in the redshift estimation lead to
mismatches between the photometric redshift estimates and the
underlying truth and therefore reduce the correlation signal on the
diagonal elements. Consequently, they induce a correlation signal on
the off-diagonal elements of the cross-correlation matrix. Therefore,
we aim to optimize the correlation matrix with the goal to achieve
convergence towards a diagonal matrix, which would indicate an
optimal assignment of photometric galaxies to redshift bins. The
optimization algorithm requires an objective function, which we
define as the difference between the average elements on the diagonal
and the off-diagonal elements of the covariance matrix:

1 1
E= Pii — o Pij | » 3)
Nbins IZ Nbins -1 ; !

where Npins denotes the number of tomographic redshift bins. This
equation, which quantifies the diagonality of the matrix, defines
the so-called ‘energy’ of the system, which the simulated anneal-
ing algorithm maximizes in order to optimize the assignment of
photometric galaxies into redshift bins. Furthermore, our choice of
normalization ensures that the energy is independent of the total
number of tomographic redshift bins.

Future applications of this work include studies of a more realistic
set-up where the reference sample consists of a collection of spectro-
scopically observed galaxies which are not necessarily representative
of the photometric sample. In this case, the correlation matrix is
dependent on the galaxy bias of the photometric and reference
samples. Assuming a linear bias model (Kaiser 1984), the mean
galaxy overdensity is related to the mean matter overdensity via

8¢ = b dm, @

where the bias b can depend on the scale and on colour, redshift, and
morphology of galaxies (Fry 1996; Mann, Peacock & Heavens 1998;
Tegmark & Peebles 1998). For a representative reference sample the
cross-correlation between the photometric sample and the reference
sample is proportional to the product of the biases (see for example
Moessner & Jain 1998),

phot—ref
ij

phot ; ref
oc b)Y (%)
while for the autocorrelation of the reference sample we find

w o (bF)’. (6)
Here, we assumed a redshift-dependent galaxy bias, which, however,
is assumed to be constant within the boundaries of the photometric
redshift bins. The diagonal elements of equation (2) for a photometric
sample with perfect redshift estimates become

phot
— bi

Pii = pet @)
i
which is equal to one since we assumed a representative reference

sample.

€20z Aieniga4 /0 uo Jasn uopuoT 8bs|j0) Alsiaaiun Aq ££56889/8512/2/6 | G/e|oNIB/SBIUW/WOD dNooIWwapeoe//:sdny Wolj papeojumoq



2.2 Simulated annealing

To optimize the assignment of photometric galaxies to tomographic
redshift bins we employ a simulated annealing algorithm (Kirk-
patrick, Gelatt & Vecchi 1983; Cern)’/ 1985), which is a technique
inspired by the process of heating and cooling metals to reduce
their defects and thus maximizing the energy of the given system.
This method is applied in optimization problems in large discrete
parameter spaces. In contrast to typical optimization methods, which
usually aim to find the exact optimum, the simulated annealing
algorithm achieves an approximation of the global optimum (Mitra,
Romeo & Sangiovanni-Vincentelli 1986). In this work, the system is
characterized by a set of labels that refer to the redshift bin of each
individual galaxy in the photometric sample and the energy of the
system is defined in equation (3). Given the large number of observed
galaxies in photometric surveys, we deem exact optimization meth-
ods computationally infeasible and thus we employ the simulated
annealing algorithm to optimize the sorting of galaxies into redshift
bins. Additionally, the algorithm features a method of avoiding local
extrema which allows for finding an approximation of the global
optimum of the objective function.

The simulated annealing algorithm works as follows: The system
is characterized by a set of labels /; that denote the redshift bin
to which each photometric galaxy k is assigned. For a given set
of labels we use equation (3) to measure the current energy of the
system. Additionally, the system is assigned a temperature 7" which
is a hyperparameter that decreases exponentially from an initial
temperature Ty, to a temperature Tp,,. At each iteration of the
algorithm the state of the system is altered, i.e. a subset of galaxies
is assigned to a different redshift bin, resulting in a change in the
system’s energy. We then calculate the change in energy AE which
is used in conjunction with the temperature to determine whether the
altered state is accepted or rejected. A value AE > 0 indicates that the
altered state provides a better solution to the optimization problem
and therefore the new state is accepted. If AE < 0, the altered state
provides a worse solution to the optimization problem. However, the
algorithm allows for a temporary acceptance of a worse solution in
order to be capable of leaving local maxima of the objective function
and finding the global solution to the optimization problem. This is
achieved by drawing a random number « in the interval [0,1] and
comparing the change in energy to the current temperature of the
system by evaluating

AE
P =exp (T) . 8)

If P > «, the altered state is accepted and otherwise it is rejected. This
allows the algorithm to temporarily explore regions of lower energy
that provide a worse solution to the optimization problem. Since the
temperature decreases exponentially, the acceptance probability of a
state that worsens the optimization also decreases over time, so that
eventually the algorithm with a high probability only accepts states
that provide a better solution to the optimization problem. Therefore,
it is important to determine the appropriate setting of the initial and
final temperatures, Tp,x and Tryp, so that the algorithm starts with a
reasonable probability of accepting worse solutions and finishes at
a temperature at which only states that provide a better solution are
accepted.

2.3 Self-organizing maps

The selection of galaxies that are reassigned to a different redshift bin
in each iteration is a crucial step in the simulated annealing algorithm.

Optimizing photometric redshift distributions

2441

The energy defined in equation (3) is dependent on the angular cross-
correlation between the photometric and reference sample which we
optimize by reassigning galaxies to alternative redshift bins. Thus,
it is essential to select a set of galaxies that are reassigned together
in order to achieve a measurable effect on the objective function.
Additionally, we want to select groups of galaxies that are likely to
belong to the same tomographic bin, so that they can be reassigned
to a common redshift bin. As a tool to select groups of galaxies we
use an SOM that is trained on the colour measurements of individual
galaxies in the photometric sample. This allows for the selection of
galaxies of a similar colour, which we expect to also be close in
redshift.

An SOM (Kohonen 1990) is a type of artificial neural network that
produces a low-dimensional representation of high-dimensional data
using an unsupervised learning technique. In this work, we project a
data set containing five colour measurements (u-g, g-1, 1-i, i-z, and z-
y) on to a two-dimensional space. The map space of the SOM consists
of nodes that are arranged on a two-dimensional grid that is usually
connected via a rectangular or hexagonal geometry. Furthermore, the
topology of the map can be chosen as either planar or toroidal, where
the top and bottom as well as the left and right edges are connected
to avoid boundary effects. The total number of nodes determines
the so-called resolution of the SOM, which determines how well the
SOM can separate features in the original data space. In this work,
we refer to a map consisting of a rectangular grid of (R x R) nodes
as a map of resolution R. For every SOM node there exists a weight
vector that links the node to a point in the original high-dimensional
data space and thus consists of the corresponding colour values. The
training process iteratively alters the randomly initialized weight
vectors so that they provide a mapping between the SOM nodes and
the data set. In each step the Euclidean distance between the weight
vectors and a randomly selected data point is computed. The weight
vector of the node that is closest to the data point is called the best
matching unit (BMU). Additionally, the neighbourhood of the BMU
is identified, which consists of all nodes within a given radius around
the BMU. All weight vectors inside the neighbourhood are shifted
towards the data point by a fraction of their distance to the data point.
This fraction is dependent on the distance between weight vector and
data point so that the closer a node is to the BMU, the more its weight
vector is shifted. This process is repeated for all data points in the
training sample. Moreover, the radius of the neighbourhood around
the BMU shrinks over time, so that the number of altered weight
vectors in each training step also decreases.

After training, the weight vectors provide a mapping of the galaxy
sample on to a two-dimensional space where galaxies of similar
colour are mapped close together, while dissimilar galaxies are
mapped further apart. Galaxies that are mapped on to a specific node
then form a set of galaxies which are close in the original colour
space. The total number of SOM nodes then dictates how accurate
galaxy clusters in the original colour space can be separated.

Since the SOM groups galaxies in cells that are similar in colour
space, we expect that these galaxies are also close in redshift.
Therefore, we use the SOM nodes to select sets of galaxies that
are assigned to a different redshift bin in each step of the simulated
annealing algorithm. Thus, the resolution of the SOM determines
the number of galaxies that are relabelled at a time, which imposes
a limit on the accuracy of the resulting final assignment of galaxies
to redshift bins. While a low-resolution SOM allows us to relabel
more galaxies at a time and thus results in a shorter runtime of
the algorithm, a high-resolution SOM gives a more accurate result
since it allows for a finer separation of galaxies in colour space.
Thus, it is advantageous to vary the resolution while running the
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algorithm, starting with an SOM at a low resolution, denoted Ry,
and increasing the resolution over time up to the maximum resolution
Riax- The advantage of this method is that in the beginning, when
we expect the fraction of mislabelled galaxies to be highest, we
reassign a larger number of galaxies at a time. By increasing the
resolution over time we continuously split the SOM nodes into two,
which allows for a finer separation of galaxies in colour space so
that the accuracy of the final assignment improves. Finally, we stop
the algorithm at a resolution Ry, at which the average number of
galaxies per node becomes so small that continuing the relabelling
becomes computationally infeasible given the small impact on the
energy of the system.

In order to be able to dynamically scale the resolution of the SOM,
we train an SOM at a high resolution and apply clustering methods
to merge nodes that are close in the original data space. From the
hierarchy of merged SOM nodes we can then extract an SOM with a
lower number of nodes, which corresponds to a lower resolution. This
allows us generate SOMs with any arbitrary resolution lower than
the original resolution without training multiple SOMs. Standard
hierarchical clustering techniques (see for example Miillner 2011)
allow for building a hierarchy, where two objects that minimize a
given agglomeration criterion are clustered in each step. Thus, this
method can be used to iteratively merge the two SOM nodes with
the minimum distance between their corresponding weight vectors.
However, such clustering methods, applied to the weight vectors of
the SOM, do not use the information on the number of galaxies
in each node. Therefore, we perform the SOM clustering using a
weighted method, illustrated in Fig. 2, that utilizes the additional
information on the number of galaxies per node.

We construct clusters in a bottom-up approach by iteratively
merging nodes until only a single node is left. Initially, every node of
the high-resolution SOM forms its own cluster. We identify the two
nodes with the smallest distance between their corresponding weight
vectors. Using the number of galaxies that are assigned to each node
as weights, we compute the weight vector of the combined node by
calculating the weighted average of the two weight vectors. Starting
with an SOM consisting of M nodes, we are left with one single node
after M — 1 clustering steps. After building the hierarchy of merged
SOM nodes we can then infer SOMs at resolutions lower than the
resolution of the initial SOM.

3 RESULTS

We apply the redshift calibration method to the cosmoDC2 catalogue
(Korytov et al. 2019). This is a large synthetic catalogue designed
by the LSST Dark Energy Science Collaboration to support the
development of analysis pipelines. In particular, we employ a subset
of the cosmoDC2_1.1.4 catalogue, covering about 58 deg? of
the sky with a magnitude limit of i < 25.3, which corresponds to
the LSST gold sample selection for weak lensing (LSST Science
Collaboration 2009). This catalogue provides colour measurements
of approximately 107 galaxies with redshifts 0 < z < 3 in the six
LSST filter bands (u, g, r, i, z, and y). The photometric redshift
is estimated via the template fitting code BPZ (Benitez 2000). In
Appendix A, we provide a comparison between the point estimate
of the photometric redshift and the true redshift of galaxies in the
catalogue. Based on the photometric redshift estimate we divide the
catalogue into 10 bins of equal redshift width in the range 0 < z < 2,
where the redshift range of the i-th bin is defined as [0.2(i — 1), 0.2{],
and one additional bin with z > 2. To generate the reference sample
of galaxies with well-calibrated redshifts, we draw a random subset
of the catalogue that contains 10 percent of the total galaxies. We
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Figure 2. Sketch of the clustering method that is used to decrease the
resolution of an SOM. We combine nodes of a high-resolution SOM,
consisting of M nodes, using the number N of galaxies that are mapped on to
each SOM node and the weight vectors x, that connect the two-dimensional
SOM data space to the original high-dimensional data space. In each step, we
merge the two SOM nodes with the minimum distance of their corresponding
weight vectors and compute the weight vector of the combined node as the
average of the two weight vectors, where the number of galaxies in each
node act as weights. By iterating the merging process we build a hierarchy
of clusters until all SOM nodes are merged into one single node after M — 1
steps. From the hierarchy of nodes we can derive SOMs with any resolutions
lower than the resolution of the original SOM.

assume that we are provided with precise redshift measurements
for the galaxies in this subsample and therefore we divide the
reference sample into the aforementioned redshift bins using the true
simulated redshift. Since in this case the reference sample is perfectly
representative of the photometric sample, equation (7) shows that for
an optimal assignment of photometric galaxies the correlation matrix
should become close to an identity matrix with small contributions on
off-diagonal elements between neighbouring bins, which are induced
by the large-scale structure at their common boundary. However, the
resolution of the SOM determines the number of galaxies that are
typically grouped into one node. Therefore, it imposes a limit on how
well the SOM can separate galaxies by redshift, so that we do not
expect the correlation matrix to converge to an exact identity matrix.

We train an SOM and 200x200 nodes on a rectangular grid on
the observed colours of galaxies in the photometric sample using the
public code SoMmocLU (Wittek et al. 2017) and choose a toroidal
geometry to avoid boundary effects. The SOM is illustrated in
Fig. 3(a) with colours representing the mean of the true simulated
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(a) Colours indicate the photometric redshift bin of each SOM node, based on
the true redshift of individual galaxies, which does not enter the optimisation
process and is used for illustration purpose of the ideal bin assignment only.
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(c) Colours represent the final redshift bin of each SOM node after running the
simulated annealing algorithm.
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(b) Colours indicate the initial photometric redshift bins of each SOM node,
based on the estimate of the photometric redshift of individual galaxies inferred
with BPZ.
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(d) Colours represent the shift of the redshift bin of each node between panels
bandc.

Figure 3. Illustration of the SOM used in the analysis. The SOM consists of 200x200 nodes on a rectangular grid in toroidal geometry and is trained on the
observed colours of galaxies in the photometric galaxy sample. The coloured labels indicate the tomographic bin to which galaxies in each node are assigned,

with SOM nodes which do not contain any galaxies labelled with ‘—1°.

redshift of galaxies in each node. We note that the true redshift is used
solely for illustration purposes and is not used in the further analysis
of the photometric sample. In Appendix B, we provide comparisons
between SOMs at different resolutions that are inferred from the
high-resolution SOM using the method described in Section 2.3.

As can be observed in Fig. 3(a), the SOM achieves a separation
of galaxies by redshift by relying purely on the colour information
of individual galaxies. Furthermore, we find regions where high-
redshift nodes are adjacent to low-redshift nodes, which we presume
is where catastrophic errors in the photometric redshift estimate
preferentially occur (Masters et al. 2015).

We assign each SOM node to a redshift bin, depending on the
most common photometric redshift bin of galaxies in each node.
This is illustrated in Fig. 3(b) with colours indicating tomographic
redshift bins. We note that a small number of SOM nodes do not

contain any galaxies, so they cannot be assigned to a redshift bin,
which is indicated by a label of ‘—1°. Comparing Fig. 3(b) to the true
redshifts, shown in Fig. 3(a), we find that some SOM nodes show
a significant mismatch between the true redshift and photometric
redshift bin, especially in the region of high-redshift galaxies. This
is further emphasized by the left panel of Fig. 4, which shows
the cross-correlation matrix between the photometric and reference
samples. We find a rather low correlation signal on the diagonal
for high-redshift bins, indicating a mismatch of the redshifts of
galaxies in these bins. Looking at the off-diagonal elements, we
find high non-zero cross-correlation signals between the photometric
and reference samples. This suggests that high-redshift bins are
contaminated with low-redshift galaxies and vice versa, caused by
catastrophic failures in the photometric redshift estimation with
BPZ.
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Figure 4. Left: Initial cross-correlation matrix between bins of the photometric sample, inferred from photometric redshift estimates, and the reference sample.
Right: Cross-correlation matrix after optimization of the bin assignment of the photometric sample. A perfect assignment with noise-free clustering measurements

would yield the identity matrix.

We then proceed with re-sorting galaxies in the photometric
sample to different tomographic bins using the simulated annealing
algorithm described in Section 2.2. Here, the initial state of the
system is the set of redshift bin labels obtained from the photometric
redshift estimates illustrated in Fig. 3(b). We start with an initial
SOM resolution of R,;, = 30, obtained with the method outlined
in Section 2.3. The SOM resolution is increased over time until
reaching the final resolution of R,.x = 80. This is achieved by
coupling the SOM resolution linearly to the temperature of the
system which decreases from T,,x = 1 to Ty, = 0.01. The range
of the SOM resolution is chosen so that in the initial phase a larger
portion of galaxies is relabelled which then decreases with increasing
SOM resolution. We determine the maximum temperature such that
initially there is a chance of about 50 percent to accept a worse
state for a typical value of AE at a resolution of Ry,;, . The minimum
temperature on the other hand is chosen such that the chance of
accepting a worse state at resolution Ry.x approaches zero. The
simulated annealing algorithm returns a modified set of redshift bin
labels, where SOM nodes were relabelled to different redshifts bins
in order to diagonalize the cross-correlation matrix shown in the left
panel of Fig. 4. The resulting optimized matrix is shown in the right
panel of Fig. 4. We observe that the algorithms succeed in reducing
the cross-correlation signal between photometric and reference bins
on the off-diagonal elements while increasing the autocorrelation
signal on the diagonal and thus increasing the energy of the system,
defined in equation (3), from 0.56 to 0.68. In Appendix C, we
discuss the evolution of the energy during the simulated annealing
optimization.

The resulting redshift bins of each SOM node are illustrated in
Fig. 3(c), which is the equivalent to Fig. 3(b), but instead of the
initial redshift bin labels we show the modified labels returned by the
algorithm. A comparison of the two figures shows that the simulated
annealing algorithm indeed succeeds in identifying those regions of
the SOM where the photometric redshift estimates do not match the
true redshift of the galaxies and therefore shifts these nodes towards
higher redshift bins. This is further illustrated in Fig. 3(d), where we
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show the magnitude of the shift in the redshift label per SOM node
with positive numbers indicating a shift towards higher redshift bins
and negative numbers indicating a shift towards a lower redshift bin.
We find that the most significant changes occur in the aforementioned
high-redshift nodes and at the boundaries between high- and low-
redshift nodes.

The redshift distributions of the tomographic bins are illustrated in
Fig. 5 with the dashed lines indicating the initial redshift distributions
and the solid lines representing the distributions after relabelling
via simulated annealing. We note that the redshift distributions are
inferred from the true underlying redshifts of galaxies assigned
to each bin, which are not available in a real observational data
set and need to be calibrated separately, e.g. via cross-correlation
measurements. We find that the algorithm significantly improves the
redshift distributions of high-redshift bins, which initially showed
significant deviations from the predefined redshift intervals in the
tails of the distribution. The correlation matrix shown in Fig. 4
indicates a low-level anticorrelation between photometric bin 1 and
reference bins 4 and 5, which remains even after optimization.
However, this feature is not observed in Fig. 5 which shows no
significant overlap between the redshift distribution of bin 1 with
either bin 4 or bin 5. The origin of this feature is unclear.

A possible source of the residual signals is magnification effects
causing spurious cross-correlation signals between non-overlapping
redshift bins which can lead to biased constraints on cosmological
parameters in clustering analyses of upcoming surveys (Euclid
Collaboration 2022; Mahony et al. 2022). The contamination due
to magnification was shown to be maximal for bins with low signal-
to-noise ratio of galaxy clustering. Thus, the effects of magnification
can limit the performance of the optimization method. We test the
impact of magnification on the correlation matrix by measuring
the clustering cross-correlation with unmagnified galaxy positions.
We find a change in the correlation signal which is smaller than
the typical measurement uncertainties. Therefore, we conclude that
magnification effects do not significantly limit the performance of
the optimization method employed in this work.
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Figure 5. Comparison of the initial redshift distribution of each tomographic bin, obtained using the photometric redshift estimate of individual galaxies (dashed
lines), and the redshift distribution after simulated annealing (solid lines). The dotted lines indicate the redshift bin edges.

We quantify the extent to which the redshift distributions lie
within the boundaries of the redshift bins in the left panel of Fig. 6,
comparing the initial and final distribution. We find that the algorithm
helps to shift the redshift distribution significantly to lie within the
bin boundaries, especially in the higher redshift bins, where we
find improvements of about 30 per cent. Additionally, in the right
panel of Fig. 6 we quantify how much of the redshift distribution
is located within the tails of distribution. Here, we define the tails
of the distribution as the region in redshift space that lies more than
one bin width outside of the boundaries of a given tomographic bin.
We find a substantial decrease of the tails of the redshift distribution.
Again, the biggest improvements are found in the high-redshift bins
where initially a large percentage of the distribution is located in
the tails, which decreases significantly after the simulated annealing.
The biggest change is found in bin 11, which initially only contains
32 percent of the probability mass within the bin boundaries and
a large fraction of about 57 percent in the tails of the distribution.
These quantities shift significantly in the final redshift distribution,
with about 64 per cent within the bin boundaries and 16 per cent in the
tails. Furthermore, we find significant improvements in bin 9, which
initially contains about 22 per cent of galaxies within bin boundaries
which increases to 57 per cent. The fraction of galaxies in the tails
of this redshift bin also decreases significantly from 47 per cent to
11 per cent.

4 CONCLUSIONS

In this paper, we presented a method, SHARPZ, to group a sample
of galaxies into tomographic redshift bins using estimates of the
photometric redshift with subsequent re-sorting using an algorithm
that optimizes the angular cross-correlation between the photometric
galaxy sample and an overlapping sample of reference galaxies. We

utilized a simulated annealing algorithm that reassigns groups of
galaxies to redshift bins and determines the effect on the cross-
correlation matrix by calculating a measure of the diagonality of
the matrix. This was combined with an SOM that was trained on
the colour information of photometric galaxies. The SOM allows
choosing sets of galaxies that are reassigned in each step of the
simulated annealing. Additionally, the resolution of the SOM was
increased over time in order to achieve a greater accuracy of the final
resulting photometric redshift bins.

We applied this method to a synthetic catalogue, cosmoDC2, that
aims to resemble measurements of the upcoming Vera C. Rubin
Observatory’s LSST. Our results show that the method significantly
reduces the fraction of catastrophic outliers in the tails of the redshift
distribution in all tomographic bins, most notably in the highest
redshift bins where we find improvements by up to 40 per cent. We
found that it succeeds in shifting the redshift distributions towards
being within the boundaries of the tomographic bins. High-redshift
bins show the greatest improvements, where the probability mass
within the bin boundaries increases up to about 30 per cent, while the
improvement in the low-redshift bins, whose redshift distributions
initially are already quite compact, is smaller with the probability
mass increasing by a few per cent. Additionally, we found that the
method also greatly reduces the amount of the redshift distribution
thatis located in the tails of the distribution. Again, we find the biggest
improvement in the high-redshift bins, where the initial performance
of the photometric redshift estimates is worst.

The quality of the redshift distributions inferred with our optimiza-
tion method depends on the choice of the SOM parameters. Initially,
we trained an SOM consisting of 200 x 200 nodes and scaled the
resolution from low to high during the optimization process. The
resolution determines the number of galaxies that are reassigned
together to an alternative redshift bin, which scales from large
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Figure 6. Left: Comparison of the percentage of probability mass of the redshift distributions, shown in Fig. 5, within the respective bin range before and after
simulated annealing. Right: Comparison of the percentage of the redshift distribution that is located within the tails of the distribution, where we define the tails
of the distribution as the region in redshift space that lies more than one bin width outside of the boundaries of a given tomographic bin.

numbers of galaxies to smaller numbers. Thus, the resolution imposes
a limit on how well the SOM can separate features in colour space
that can be associated with different redshift bins. By choosing a
maximum resolution we therefore implicitly put a limit on the quality
of the final redshift distribution that can be achieved. The quality of
the final redshift distributions can be improved by increasing the
maximum resolution at the cost of a longer computation time since
a higher resolution implies a selection of fewer galaxies in each
step, up to the limit where the algorithm selects individual galaxies.
However, at a certain point noise in the clustering observable will
limit the observable effect on the objective function. Therefore, the
method is ultimately limited by both the noise limit of the clustering
measurement and the SOM resolution. Additionally, the choice of
features on which the SOM is trained influences how well the
SOM can separate galaxies of different redshifts. In our analysis we
trained the SOM on five galaxy colours, which we found to perform
well for the data set considered in this work. Future applications
with alternative data sets should however explore alternative sets of
training features, for example different colour combinations or the
addition of magnitude information, which can help breaking colour-
redshift degeneracies.

In our analysis, we made the assumption that the reference sample
covers the full area observed by the photometric survey, while in a
realistic application the reference sample will only have a partial sky
overlap with the photometric survey. However, as long as the survey is
spatially homogeneous, we can optimize the assignment of galaxies
to tomographic bins in the area covered by both the photometric and
reference survey and then use the SOM to expand the redshift bin
assignments to the full photometric survey. Therefore, a complete
overlap of the two samples is not a general requirement of the
method. Additionally, the SOM can be used to reproduce the results
without re-running the simulated annealing algorithm. Moreover,
we can further improve the calculation of the clustering signal by
measuring the cross-correlation signal between reference samples
and cells of the highest-resolution SOM. For a given assignment
of SOM cells to tomographic bins we can then stack the cross-
correlation signals of the individual cells using the hierarchical
structure of the SOM. In this way, we obtain the correlation signal
between photometric and reference bins without re-calculating the
cross-correlation in each step of the optimization algorithm, which
will lead to a decrease in computational cost. This is left for future
work.
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Additionally, we made the assumption that the reference sample is
fully representative of the photometric sample. Future applications
therefore require studies of how incomplete reference samples and
noise influence the cross-correlation measurements between the
photometric and reference sample and how it impacts the quality
of the inferred tomographic bins.

While finalizing this work, Zuntz et al. (2021) put forward a paper
on the optimization of the tomographic binning for the DESC 3x2pt
analysis. In particular, the COMPLEXSOM method utilizes a matrix
of autopower and cross-power spectra, which is a statistic similar
to the one employed in this work. While in this work the redshift
bin edges of the galaxy sample are fixed, the COMPLEXSOM method
instead optimizes the parameters that determine the bin edges.

Our work demonstrates that the optimization method provides a
significant improvement of the redshift distribution of a synthetic
survey compared to photometric estimates of the redshift. Therefore,
it provides a promising complement to existing redshift calibration
methods in upcoming surveys. An application to observational data
is left for future work.
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APPENDIX A: PHOTOMETRIC REDSHIFTS

In this appendix, we compare the true redshifts of galaxies in the
synthetic galaxy catalogue with the point estimate of the photometric
redshift inferred via SED template fitting. The left panel of Fig. Al
shows a scatter plot of the true redshift and the photometric redshift.
The redshift distributions inferred from the true redshift and the
photometric redshift, respectively, are illustrated in the right panel of
Fig. Al.
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Figure Al. Left: Scatter plot of the true redshift of galaxies in the photometric sample and the point estimate of the photometric redshift inferred via SED
template fitting. Right: Comparison between the true redshift distribution and the redshift distribution inferred from point estimates of the photometric redshift.

APPENDIX B: SOM CLUSTERING

In this appendix, we provide a comparison of SOMs with decreased
resolutions derived from a high-dimensional SOM using the hierar-
chical clustering method described in Section 2.3. The original SOM,
trained on the observed colours of galaxies with a resolution of R =
200, is illustrated in the top-left panel of Fig. B1. The remaining
panels show SOMs with lower resolutions, inferred from the original
SOM via clustering of the weight vectors. The bottom-right panel
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shows the SOM with a resolution of R = 30, which is the initial
resolution from which the simulated annealing algorithm selects
groups of galaxies. The top-right panel shows the SOM with the final
resolution R = 80, while an SOM with an intermediate resolution of
R = 55 is illustrated in the bottom-left panel. The colours in each
panel represent the mean of the true redshift of galaxies in each node.
We note that since the low-resolution SOMs are constructed from the
high-resolution SOM with R = 200, the axes in each panel refer to
the index of the high-dimensional SOM.
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Figure B1. Illustration of the SOM used in the analysis at different resolutions. The original SOM, trained on the observed colours of galaxies with a resolution
of R = 200, is illustrated in the top-left panel. The remaining panels show the SOM with reduced resolution inferred with the clustering method described in
Section 2.3. The colours represent the mean of the true redshift of galaxies in each node.

APPENDIX C: ENERGY IN THE SIMULATED
ANNEALING OPTIMIZATION

In this appendix, we show the evolution of the energy during the
simulated annealing optimization. In Fig. C1, we illustrate the energy
of the system after six iterations of the algorithm. Each iteration
corresponds to a full run of the algorithm with an initial SOM
resolution of R.;, = 30 and a final resolution R.,x = 80 with
Nyieps = 2000.! We observe that in the first three iterations the
algorithm achieves an approximately equal increase in the energy
of the system, while the later iterations show smaller increases in the
energy, indicating that the algorithm converges towards the maximum

The computing time for one step on a 16 core machine is approximately 10
s.

energy. The method of consecutively running the algorithm multiple
times allows us to explore how many steps in total are needed for the
algorithm to converge towards the maximum achievable energy for
a given final resolution R;,x. We note that after obtaining the final
assignment of galaxies to tomographic bins via simulated annealing,
this result can potentially be further improved by re-running the
algorithm with an initial resolution of R,,;, = 80 and an even higher
resolution Ry,,, which can be increased up to the initial resolution
of the SOM. However, this comes at the cost of a longer runtime,
since higher resolutions imply a selection of fewer galaxies in
each step, up to the limit where the algorithm selects individual
galaxies. Furthermore, at a certain point noise in the clustering
observable will limit the observable effect on the energy of the
system.
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Figure C1. Evolution of the energy of the simulated annealing algorithm.
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