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A B S T R A C T 

We present an optimization method for the assignment of photometric galaxies to a chosen set of redshift bins. This is achieved 

by combining simulated annealing, an optimization algorithm inspired by solid-state physics, with an unsupervised machine 
learning method, a self-organizing map (SOM) of the observed colours of galaxies. Starting with a sample of galaxies that is 
divided into redshift bins based on a photometric redshift point estimate, the simulated annealing algorithm repeatedly reassigns 
SOM-selected subsamples of galaxies, which are close in colour, to alternative redshift bins. We optimize the clustering cross- 
correlation signal between photometric galaxies and a reference sample of galaxies with well-calibrated redshifts. Depending on 

the effect on the clustering signal, the reassignment is either accepted or rejected. By dynamically increasing the resolution of the 
SOM, the algorithm eventually converges to a solution that minimizes the number of mismatched galaxies in each tomographic 
redshift bin and thus impro v es the compactness of their corresponding redshift distribution. This method is demonstrated on the 
synthetic Le gac y Surv e y of Space and Time cosmoDC2 catalogue. We find a significant decrease in the fraction of catastrophic 
outliers in the redshift distribution in all tomographic bins, most notably in the highest redshift bin with a decrease in the outlier 
fraction from 57 per cent to 16 per cent. 

Key words: methods: data analysis – large-scale structure of Universe – observations. 
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 I N T RO D U C T I O N  

he calibration of the redshift distribution of cosmological sur-
 e ys plays a crucial role in current studies of cosmology. While
pectroscopic observations of galaxies allow for accurate redshift
easurements of the source redshift distribution, complete spectro-

copic measurements are often infeasible given the large number of
bserved objects in current and upcoming surveys, such as the Vera
. Rubin Observatory’s Le gac y Surv e y of Space and Time (LSST;

vezi ́c et al. 2019 ) and the European Space Agency’s Euclid surv e y
Laureijs et al. 2011 ). Therefore, surv e ys often rely on multiband
hotometry to determine the redshift of observed objects (see Salvato,
lbert & Hoyle 2019 , for a re vie w). Ho we ver, photometric methods
uffer from systematic biases and catastrophic outliers in the redshift
stimation and thus require a sophisticated calibration of the redshift
istribution in order to derive robust constraints on cosmology (see
or example Huterer et al. 2006 ; Ma, Hu & Huterer 2006 ; Bernstein &
uterer 2010 ; Cunha et al. 2014 ). 
Cosmological analyses, for example studies of weak gravitational

ensing by the large-scale structure of the Universe, are often
erformed tomographically, which allows for the utilization of
nformation about the evolution of the Universe. In tomographic
osmic shear analyses the galaxy sample is split into several redshift
 E-mail: stoelzner@astro.rub.de 
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ins using photometric redshift estimates of individual galaxies.
he cosmic shear signal is then estimated by measuring the cross-
orrelation between the shapes of galaxies in the tomographic bins,
hich impro v es constraints on cosmological parameters (Hu 1999 ). 
A tomographic analysis usually requires two steps. First, the

ample of galaxies needs to be divided into redshift bins. This is
sually done using galaxy photometry, which are used to estimate
he redshift of individual galaxies in the surv e y, for e xample via
pectral energy distribution (SED) template fitting codes. Ho we ver,
he true redshift distributions of tomographic bins e xtend be yond the
in boundaries because of noise, systematic biases, and catastrophic
utliers in the photometric redshift estimation. Therefore, the second
tep is the calibration of the actual redshift distribution of each
omographic bin, which is important when deriving theoretical
redictions for the observed weak lensing signal given the sensitivity
f the observed signal to the tails of the redshift distribution (Ma et al.
006 ). F or e xample, such calibration methods include angular cross-
orrelation clustering measurements with o v erlapping spectroscopic
eference samples (e.g. Newman 2008 ; Matthews & Newman 2010 ;

cQuinn & White 2013 ; M ́enard et al. 2013 ; McLeod, Balan &
bdalla 2017 ; van den Busch et al. 2020 ; Gatti et al. 2021 ) and
irect calibration methods with spectroscopic subsamples that are,
otentially after re-weighting, representative of the full sample (Lima
t al. 2008 ; Bonnett et al. 2016 ; Hildebrandt et al. 2017 ). Furthermore,
ierarchical Bayesian models that combine photometry measure-
ents of individual galaxies and clustering measurements with tracer
© 2022 The Author(s). 
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Figure 1. Sketch of the optimization algorithm that reassigns photometric galaxies to alternative redshift bins. We train an SOM with a high-resolution R original 

on the observed colours of galaxies in the photometric sample, from which we infer SOMs with arbitrary resolutions R < R original . Additionally, we infer point 
estimates of the photometric redshift to divide the sample into tomographic bins, so that each SOM node is assigned initially to the most common redshift bin 
of galaxies in this node. We initialize the simulated annealing algorithm with a starting temperature T max and a resolution R min , which is coupled linearly to the 
temperature. In each iteration of the annealing algorithm we select a node of an SOM with the current resolution, which we randomly reassign to a different 
redshift bin. Measuring the angular cross-correlation between the photometric sample and the reference sample, we calculate the energy of the system from 

equation ( 3 ). Comparing the change in energy and the current temperature, we determine whether to keep the redshift bin assignment or to restore the previous 
state using equation ( 8 ). We then decrease the system’s temperature and, depending on the temperature, we either keep the current SOM resolution or increase 
the resolution using the scheme outlined in Fig. 2 . We iterate through these steps until we reach the given final temperature T min and final resolution R max . 
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opulations in a robust way have been used for redshift calibration 
S ́anchez & Bernstein 2019 ; Alarcon et al. 2020 ). Additionally,
he clustering properties of photometric galaxies can be utilized to 
ncrease the precision of photometric redshifts (Jasche & Wandelt 
012 ). Moreo v er, self-organizing maps (SOMs) can be used to assign
alaxies to groups based on their photometry (Masters et al. 2015 ;
uchs et al. 2019 ; Wright et al. 2020 ; Myles et al. 2021 ), which allows
ne to derive subsamples of galaxies that are fully represented by 
pectroscopic reference samples. 

In this work, we develop a calibration method that impro v es
he first step by reducing the number of outliers in tomographic 
edshift bins. We develop a method that updates the assigned redshift
in of galaxies in a given photometric catalogue that otherwise 
ould be assigned to an incorrect redshift bins if point estimates 
f the photometric redshift are used to assign galaxies to bins. The
oal is to obtain a sample of galaxies that is divided into well-
ocalized redshift bins. This is achieved by combining an SOM, 
hich is used to group galaxies of a similar colour into cells,
ith measurements of clustering cross-correlations. We use point 

stimates of the photometric redshifts of galaxies to divide a galaxy 
atalogue into tomographic bins and apply a simulated annealing 
lgorithm to reassign (SOM-based) cells of galaxies to alternative 
edshift bins. The optimization algorithm utilizes measurements of 
he clustering cross-correlation between the photometric sample and 
 reference sample with well-calibrated redshift measurements and 
aximizes correlations between photometric and reference bins of 

he same redshift while minimizing correlations between bins that 
re disjoint in redshift. We demonstrate the method on the synthetic 
SST cosmoDC2 catalogue (Korytov et al. 2019 ). 
The paper is structured as follows: The methods that we use are

escribed in Section 2 . We show our results in Section 3 and finally

e discuss our main conclusions in Section 4 . 
 M E T H O D O L O G Y  

n this section, we summarize the optimization method, called 
HARPZ , that we use to assign photometric galaxies to tomographic
edshift bins, which is illustrated in Fig. 1 . We start from a catalogue
f galaxies that are observed in several photometric bands from which 
oint estimates of the photometric redshift of individual galaxies are 
stimated. These redshift estimates are used to divide the catalogue 
nto tomographic bins. We aim to minimize mismatches between the 
hotometric redshift and the true redshift of the catalogue that are
aused by imprecise redshift estimates in order to infer tomographic 
ins that are well-localized within the bin boundaries. We employ 
n o v erlapping sample of reference galaxies which is divided into
he same tomographic bins using accurate redshift measurements 
n order to quantify how well the true redshift distribution of the
hotometric sample resembles the redshift distribution of the well- 
alibrated reference sample. To do so, we measure the angular 
ross-correlation between the photometric sample and the reference 
ample. This measurement relies on the property that galaxies cluster 
patially, so that we expect a clustering signal between two o v er-
apping photometric and reference samples, whereas samples that 
re separated in redshift are expected to show no clustering signal.
urther details on the clustering measurements can be found in Sec-

ion 2.1 . We employ a simulated annealing algorithm, explained in
ection 2.2 , to randomly reassign photometric galaxies to a different
edshift bin in order to maximize the correlation between o v erlapping
hotometric and reference bins while minimizing the correlation of 
ins with no o v erlap in redshift. Ho we ver, a reassignment of single
alaxies only has a marginal impact on the correlation signal between
ifferent samples, since the cross-correlation is a statistical property 
f large samples of galaxies. Therefore, we additionally employ an 
OM, which is described in Section 2.3 , to derive sets of galaxies
MNRAS 519, 2438–2450 (2023) 
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f similar colour. By reassigning a set of galaxies in each step of
he simulated annealing algorithm, we achieve a measurable effect
n the clustering signal between photometric and reference samples,
hich allows us to employ the combined clustering signals as an
bjective function to be maximized by the algorithm. 

.1 Galaxy clustering 

n order to determine how well localized within bin boundaries the
rue redshift distribution of the tomographic bins is, we employ
n additional data set comprised of galaxies for which an accurate
edshift measurement is available. This can be obtained for example,
hrough spectroscopic observations of galaxies on the same area.
hus, we distinguish between two galaxy samples: 

(i) A photometric galaxy sample of galaxies, which is comprised
f objects that are observed through several optical filters. The
hotometric measurements of those objects are used to infer redshift
stimates via the template fitting code BPZ (Ben ́ıtez 2000 ). 

(ii) A reference sample, which is comprised of objects with
recise redshift measurements, for example through spectroscopic
bservations. 

ere, we assume for simplicity that the reference sample is fully
epresentative of the photometric sample. While the method can be
pplied with a reference sample that only partially o v erlaps with
he photometric sample, as discussed in Section 4 , the impact of an
nhomogeneous reference sample will be explored in forthcoming
ork. 
Both the photometric sample and the reference sample are divided

nto N bins redshift bins based on photometric redshift estimates
nd spectroscopic redshift measurements, respectively. We then
easure the two-point correlation function between photometric

ins and reference bins on fixed angular scales using the public
ode TREECORR (Jarvis, Bernstein & Jain 2004 ). Using the angular
ositions of galaxies, we compute the cross-correlation w 

phot−ref 
ij 

etween photometric bin i and reference bin j via the Landy–Szalay
stimator (Landy & Szalay 1993 ), which for each bin of angular
eparation � is defined as 

 

phot−ref 
ij = 

D 

phot 
i D 

ref 
j − D 

phot 
i R 

ref 
j − R 

phot 
i D 

ref 
j + R 

phot 
i R 

ref 
j 

R 

phot 
i R 

ref 
j 

, (1) 

here D 

phot 
i D 

ref 
j denotes the number of observed galaxy pairs of

he photometric and reference bins within a single angular bin with
ange θ ∈ [0.01 ◦, 0.1 ◦]. D 

phot 
i R 

ref 
j and R 

phot 
i D 

ref 
j denote the number

f observed galaxy pairs of a random sample with uniform density
hat follows the geometry of the surv e y and the photometric and
eference bins, respectively . Finally , R 

phot 
i R 

ref 
j denotes the number of

alaxy pairs of random samples. 
After calculating the cross-correlation between all combinations

f photometric and reference bins, we construct the cross-correlation
atrix whose elements are defined as 

ij = 

w 

phot−ref 
ij 

w 

ref 
j 

. (2) 

ere, w 

ref 
j denotes the autocorrelation of reference bin j , which serves

s a normalization factor and is calculated by replacing D 

phot 
i with

he reference sample D 

ref 
j in equation ( 1 ). 

The correlation matrix defined in equation ( 2 ) acts as a measure
f how well the galaxies in each bin of the photometric sample
atch the underlying true redshift bin. If the redshifts of photometric

alaxies were perfectly determined, the correlation matrix between
NRAS 519, 2438–2450 (2023) 
hotometric and reference bins would therefore resemble a diagonal
atrix. Ho we v er, we e xpect non-zero correlation signals between

eighbouring redshift bins that are induced by the large structure
t their common boundary. The relative magnitude of these off-
iagonal correlation signals is dependent on the width of the redshift
ins and therefore we expect these signals to be small given the
elatively broad redshift bins considered in this work. Additionally,
oise and catastrophic outliers in the redshift estimation lead to
ismatches between the photometric redshift estimates and the

nderlying truth and therefore reduce the correlation signal on the
iagonal elements. Consequently, they induce a correlation signal on
he off-diagonal elements of the cross-correlation matrix. Therefore,
e aim to optimize the correlation matrix with the goal to achieve

onvergence towards a diagonal matrix, which would indicate an
ptimal assignment of photometric galaxies to redshift bins. The
ptimization algorithm requires an objective function, which we
efine as the difference between the average elements on the diagonal
nd the off-diagonal elements of the covariance matrix: 

 ≡ 1 

N bins 

∑ 

i 

⎛ 

⎝ ρii − 1 

N bins − 1 

∑ 

i �= j 

ρij 

⎞ 

⎠ , (3) 

here N bins denotes the number of tomographic redshift bins. This
quation, which quantifies the diagonality of the matrix, defines
he so-called ‘energy’ of the system, which the simulated anneal-
ng algorithm maximizes in order to optimize the assignment of
hotometric galaxies into redshift bins. Furthermore, our choice of
ormalization ensures that the energy is independent of the total
umber of tomographic redshift bins. 
Future applications of this work include studies of a more realistic

et-up where the reference sample consists of a collection of spectro-
copically observed galaxies which are not necessarily representative
f the photometric sample. In this case, the correlation matrix is
ependent on the galaxy bias of the photometric and reference
amples. Assuming a linear bias model (Kaiser 1984 ), the mean
alaxy o v erdensity is related to the mean matter o v erdensity via 

g = b δm 

, (4) 

here the bias b can depend on the scale and on colour, redshift, and
orphology of galaxies (Fry 1996 ; Mann, Peacock & Heavens 1998 ;
egmark & Peebles 1998 ). For a representative reference sample the
ross-correlation between the photometric sample and the reference
ample is proportional to the product of the biases (see for example

oessner & Jain 1998 ), 

 

phot−ref 
ij ∝ b 

phot 
i b ref 

j , (5) 

hile for the autocorrelation of the reference sample we find 

 

ref 
i ∝ 

(
b ref 

i 

)2 
. (6) 

ere, we assumed a redshift-dependent galaxy bias, which, ho we ver,
s assumed to be constant within the boundaries of the photometric
edshift bins. The diagonal elements of equation ( 2 ) for a photometric
ample with perfect redshift estimates become 

ii = 

b 
phot 
i 

b ref 
i 

, (7) 

hich is equal to one since we assumed a representative reference
ample. 
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.2 Simulated annealing 

o optimize the assignment of photometric galaxies to tomographic 
edshift bins we employ a simulated annealing algorithm (Kirk- 
atrick, Gelatt & Vecchi 1983 ; Čern ́y 1985 ), which is a technique
nspired by the process of heating and cooling metals to reduce 
heir defects and thus maximizing the energy of the given system.
his method is applied in optimization problems in large discrete 
arameter spaces. In contrast to typical optimization methods, which 
sually aim to find the exact optimum, the simulated annealing 
lgorithm achieves an approximation of the global optimum (Mitra, 
omeo & Sangiovanni-Vincentelli 1986 ). In this work, the system is
haracterized by a set of labels that refer to the redshift bin of each
ndividual galaxy in the photometric sample and the energy of the 
ystem is defined in equation ( 3 ). Given the large number of observed
alaxies in photometric surv e ys, we deem e xact optimization meth-
ds computationally infeasible and thus we employ the simulated 
nnealing algorithm to optimize the sorting of galaxies into redshift 
ins. Additionally, the algorithm features a method of a v oiding local
xtrema which allows for finding an approximation of the global 
ptimum of the objective function. 
The simulated annealing algorithm works as follows: The system 

s characterized by a set of labels l k that denote the redshift bin
o which each photometric galaxy k is assigned. For a given set
f labels we use equation ( 3 ) to measure the current energy of the
ystem. Additionally, the system is assigned a temperature T which 
s a hyperparameter that decreases exponentially from an initial 
emperature T max to a temperature T min . At each iteration of the
lgorithm the state of the system is altered, i.e. a subset of galaxies
s assigned to a different redshift bin, resulting in a change in the
ystem’s energy. We then calculate the change in energy � E which
s used in conjunction with the temperature to determine whether the 
ltered state is accepted or rejected. A value � E > 0 indicates that the
ltered state provides a better solution to the optimization problem 

nd therefore the new state is accepted. If � E < 0, the altered state
rovides a worse solution to the optimization problem. Ho we ver, the
lgorithm allows for a temporary acceptance of a worse solution in 
rder to be capable of leaving local maxima of the objective function
nd finding the global solution to the optimization problem. This is
chiev ed by dra wing a random number α in the interval [0,1] and
omparing the change in energy to the current temperature of the 
ystem by e v aluating 

 = exp 

(
�E 

T 

)
. (8) 

f P > α, the altered state is accepted and otherwise it is rejected. This
llows the algorithm to temporarily explore regions of lower energy 
hat provide a worse solution to the optimization problem. Since the 
emperature decreases exponentially, the acceptance probability of a 
tate that worsens the optimization also decreases o v er time, so that
ventually the algorithm with a high probability only accepts states 
hat provide a better solution to the optimization problem. Therefore, 
t is important to determine the appropriate setting of the initial and
nal temperatures, T max and T min , so that the algorithm starts with a
easonable probability of accepting worse solutions and finishes at 
 temperature at which only states that provide a better solution are
ccepted. 

.3 Self-organizing maps 

he selection of galaxies that are reassigned to a different redshift bin
n each iteration is a crucial step in the simulated annealing algorithm. 
he energy defined in equation ( 3 ) is dependent on the angular cross-
orrelation between the photometric and reference sample which we 
ptimize by reassigning galaxies to alternative redshift bins. Thus, 
t is essential to select a set of galaxies that are reassigned together
n order to achieve a measurable effect on the objective function.
dditionally, we want to select groups of galaxies that are likely to
elong to the same tomographic bin, so that they can be reassigned
o a common redshift bin. As a tool to select groups of galaxies we
se an SOM that is trained on the colour measurements of individual
alaxies in the photometric sample. This allows for the selection of
alaxies of a similar colour, which we expect to also be close in
edshift. 

An SOM (Kohonen 1990 ) is a type of artificial neural network that
roduces a low-dimensional representation of high-dimensional data 
sing an unsupervised learning technique. In this work, we project a
ata set containing five colour measurements (u-g, g-r, r-i, i-z, and z-
) on to a two-dimensional space. The map space of the SOM consists
f nodes that are arranged on a two-dimensional grid that is usually
onnected via a rectangular or hexagonal geometry. Furthermore, the 
opology of the map can be chosen as either planar or toroidal, where
he top and bottom as well as the left and right edges are connected
o a v oid boundary effects. The total number of nodes determines
he so-called resolution of the SOM, which determines how well the
OM can separate features in the original data space. In this work,
e refer to a map consisting of a rectangular grid of (R x R) nodes

s a map of resolution R. For every SOM node there exists a weight
ector that links the node to a point in the original high-dimensional
ata space and thus consists of the corresponding colour values. The
raining process iteratively alters the randomly initialized weight 
ectors so that they provide a mapping between the SOM nodes and
he data set. In each step the Euclidean distance between the weight
ectors and a randomly selected data point is computed. The weight
ector of the node that is closest to the data point is called the best
atching unit (BMU). Additionally, the neighbourhood of the BMU 

s identified, which consists of all nodes within a given radius around
he BMU. All weight vectors inside the neighbourhood are shifted 
owards the data point by a fraction of their distance to the data point.
his fraction is dependent on the distance between weight vector and
ata point so that the closer a node is to the BMU, the more its weight
ector is shifted. This process is repeated for all data points in the
raining sample. Moreo v er, the radius of the neighbourhood around
he BMU shrinks o v er time, so that the number of altered weight
ectors in each training step also decreases. 

After training, the weight vectors provide a mapping of the galaxy
ample on to a two-dimensional space where galaxies of similar 
olour are mapped close together, while dissimilar galaxies are 
apped further apart. Galaxies that are mapped on to a specific node

hen form a set of galaxies which are close in the original colour
pace. The total number of SOM nodes then dictates how accurate
alaxy clusters in the original colour space can be separated. 

Since the SOM groups galaxies in cells that are similar in colour
pace, we expect that these galaxies are also close in redshift.
herefore, we use the SOM nodes to select sets of galaxies that
re assigned to a different redshift bin in each step of the simulated
nnealing algorithm. Thus, the resolution of the SOM determines 
he number of galaxies that are relabelled at a time, which imposes
 limit on the accuracy of the resulting final assignment of galaxies
o redshift bins. While a low-resolution SOM allows us to relabel

ore galaxies at a time and thus results in a shorter runtime of
he algorithm, a high-resolution SOM gives a more accurate result 
ince it allows for a finer separation of galaxies in colour space.
hus, it is advantageous to vary the resolution while running the
MNRAS 519, 2438–2450 (2023) 
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Figure 2. Sketch of the clustering method that is used to decrease the 
resolution of an SOM. We combine nodes of a high-resolution SOM, 
consisting of M nodes, using the number N of galaxies that are mapped on to 
each SOM node and the weight vectors x , that connect the two-dimensional 
SOM data space to the original high-dimensional data space. In each step, we 
merge the two SOM nodes with the minimum distance of their corresponding 
weight vectors and compute the weight vector of the combined node as the 
average of the two weight vectors, where the number of galaxies in each 
node act as weights. By iterating the merging process we build a hierarchy 
of clusters until all SOM nodes are merged into one single node after M − 1 
steps. From the hierarchy of nodes we can derive SOMs with any resolutions 
lower than the resolution of the original SOM. 
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lgorithm, starting with an SOM at a low resolution, denoted R min ,
nd increasing the resolution o v er time up to the maximum resolution
 max . The advantage of this method is that in the beginning, when
e expect the fraction of mislabelled galaxies to be highest, we

eassign a larger number of galaxies at a time. By increasing the
esolution o v er time we continuously split the SOM nodes into two,
hich allows for a finer separation of galaxies in colour space so

hat the accuracy of the final assignment improves. Finally, we stop
he algorithm at a resolution R max , at which the average number of
alaxies per node becomes so small that continuing the relabelling
ecomes computationally infeasible given the small impact on the
nergy of the system. 

In order to be able to dynamically scale the resolution of the SOM,
e train an SOM at a high resolution and apply clustering methods

o merge nodes that are close in the original data space. From the
ierarchy of merged SOM nodes we can then extract an SOM with a
ower number of nodes, which corresponds to a lower resolution. This
llows us generate SOMs with any arbitrary resolution lower than
he original resolution without training multiple SOMs. Standard
ierarchical clustering techniques (see for example M ̈ullner 2011 )
llow for building a hierarchy, where two objects that minimize a
iven agglomeration criterion are clustered in each step. Thus, this
ethod can be used to iteratively merge the two SOM nodes with

he minimum distance between their corresponding weight vectors.
o we ver, such clustering methods, applied to the weight vectors of

he SOM, do not use the information on the number of galaxies
n each node. Therefore, we perform the SOM clustering using a
eighted method, illustrated in Fig. 2 , that utilizes the additional

nformation on the number of galaxies per node. 
We construct clusters in a bottom-up approach by iteratively
erging nodes until only a single node is left. Initially, every node of

he high-resolution SOM forms its own cluster. We identify the two
odes with the smallest distance between their corresponding weight
ectors. Using the number of galaxies that are assigned to each node
s weights, we compute the weight vector of the combined node by
alculating the weighted average of the two weight vectors. Starting
ith an SOM consisting of M nodes, we are left with one single node

fter M − 1 clustering steps. After building the hierarchy of merged
OM nodes we can then infer SOMs at resolutions lower than the
esolution of the initial SOM. 

 RESULTS  

e apply the redshift calibration method to the cosmoDC2 catalogue
Korytov et al. 2019 ). This is a large synthetic catalogue designed
y the LSST Dark Energy Science Collaboration to support the
evelopment of analysis pipelines. In particular, we employ a subset
f the cosmoDC2 1.1.4 catalogue, co v ering about 58 deg 2 of
he sky with a magnitude limit of i < 25.3, which corresponds to
he LSST gold sample selection for weak lensing (LSST Science
ollaboration 2009 ). This catalogue provides colour measurements
f approximately 10 7 galaxies with redshifts 0 < z < 3 in the six
SST filter bands (u, g, r, i, z, and y). The photometric redshift

s estimated via the template fitting code BPZ (Ben ́ıtez 2000 ). In
ppendix A , we provide a comparison between the point estimate
f the photometric redshift and the true redshift of galaxies in the
atalogue. Based on the photometric redshift estimate we divide the
atalogue into 10 bins of equal redshift width in the range 0 < z < 2,
here the redshift range of the i-th bin is defined as [0.2( i − 1), 0.2 i ],

nd one additional bin with z > 2. To generate the reference sample
f galaxies with well-calibrated redshifts, we draw a random subset
f the catalogue that contains 10 per cent of the total galaxies. We
NRAS 519, 2438–2450 (2023) 
ssume that we are provided with precise redshift measurements
or the galaxies in this subsample and therefore we divide the
eference sample into the aforementioned redshift bins using the true
imulated redshift. Since in this case the reference sample is perfectly
epresentative of the photometric sample, equation ( 7 ) shows that for
n optimal assignment of photometric galaxies the correlation matrix
hould become close to an identity matrix with small contributions on
ff-diagonal elements between neighbouring bins, which are induced
y the large-scale structure at their common boundary. Ho we ver, the
esolution of the SOM determines the number of galaxies that are
ypically grouped into one node. Therefore, it imposes a limit on how
ell the SOM can separate galaxies by redshift, so that we do not

xpect the correlation matrix to converge to an exact identity matrix.
We train an SOM and 200x200 nodes on a rectangular grid on

he observed colours of galaxies in the photometric sample using the
ublic code SOMOCLU (Wittek et al. 2017 ) and choose a toroidal
eometry to a v oid boundary effects. The SOM is illustrated in
ig. 3 (a) with colours representing the mean of the true simulated

art/stac3630_f2.eps


Optimizing photometric redshift distributions 2443 

Figure 3. Illustration of the SOM used in the analysis. The SOM consists of 200x200 nodes on a rectangular grid in toroidal geometry and is trained on the 
observed colours of galaxies in the photometric galaxy sample. The coloured labels indicate the tomographic bin to which galaxies in each node are assigned, 
with SOM nodes which do not contain any galaxies labelled with ‘ −1’. 
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edshift of galaxies in each node. We note that the true redshift is used
olely for illustration purposes and is not used in the further analysis
f the photometric sample. In Appendix B , we provide comparisons 
etween SOMs at different resolutions that are inferred from the 
igh-resolution SOM using the method described in Section 2.3 . 
As can be observed in Fig. 3 (a), the SOM achieves a separation

f galaxies by redshift by relying purely on the colour information 
f individual galaxies. Furthermore, we find regions where high- 
edshift nodes are adjacent to low-redshift nodes, which we presume 
s where catastrophic errors in the photometric redshift estimate 
referentially occur (Masters et al. 2015 ). 
We assign each SOM node to a redshift bin, depending on the
ost common photometric redshift bin of galaxies in each node. 
his is illustrated in Fig. 3 (b) with colours indicating tomographic 

edshift bins. We note that a small number of SOM nodes do not
ontain any galaxies, so they cannot be assigned to a redshift bin,
hich is indicated by a label of ‘ −1’. Comparing Fig. 3 (b) to the true

edshifts, shown in Fig. 3 (a), we find that some SOM nodes show
 significant mismatch between the true redshift and photometric 
edshift bin, especially in the region of high-redshift galaxies. This 
s further emphasized by the left panel of Fig. 4 , which shows
he cross-correlation matrix between the photometric and reference 
amples. We find a rather low correlation signal on the diagonal
or high-redshift bins, indicating a mismatch of the redshifts of 
alaxies in these bins. Looking at the off-diagonal elements, we 
nd high non-zero cross-correlation signals between the photometric 
nd reference samples. This suggests that high-redshift bins are 
ontaminated with low-redshift galaxies and vice versa, caused by 
atastrophic failures in the photometric redshift estimation with 
PZ . 
MNRAS 519, 2438–2450 (2023) 
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Figure 4. Left: Initial cross-correlation matrix between bins of the photometric sample, inferred from photometric redshift estimates, and the reference sample. 
Right: Cross-correlation matrix after optimization of the bin assignment of the photometric sample. A perfect assignment with noise-free clustering measurements 
would yield the identity matrix. 
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We then proceed with re-sorting galaxies in the photometric
ample to different tomographic bins using the simulated annealing
lgorithm described in Section 2.2 . Here, the initial state of the
ystem is the set of redshift bin labels obtained from the photometric
edshift estimates illustrated in Fig. 3 (b). We start with an initial
OM resolution of R min = 30, obtained with the method outlined

n Section 2.3 . The SOM resolution is increased o v er time until
eaching the final resolution of R max = 80. This is achieved by
oupling the SOM resolution linearly to the temperature of the
ystem which decreases from T max = 1 to T min = 0.01. The range
f the SOM resolution is chosen so that in the initial phase a larger
ortion of galaxies is relabelled which then decreases with increasing
OM resolution. We determine the maximum temperature such that

nitially there is a chance of about 50 per cent to accept a worse
tate for a typical value of � E at a resolution of R min . The minimum
emperature on the other hand is chosen such that the chance of
ccepting a worse state at resolution R max approaches zero. The
imulated annealing algorithm returns a modified set of redshift bin
abels, where SOM nodes were relabelled to different redshifts bins
n order to diagonalize the cross-correlation matrix shown in the left
anel of Fig. 4 . The resulting optimized matrix is shown in the right
anel of Fig. 4 . We observe that the algorithms succeed in reducing
he cross-correlation signal between photometric and reference bins
n the off-diagonal elements while increasing the autocorrelation
ignal on the diagonal and thus increasing the energy of the system,
efined in equation ( 3 ), from 0.56 to 0.68. In Appendix C , we
iscuss the evolution of the energy during the simulated annealing
ptimization. 
The resulting redshift bins of each SOM node are illustrated in

ig. 3 (c), which is the equi v alent to Fig. 3 (b), but instead of the
nitial redshift bin labels we show the modified labels returned by the
lgorithm. A comparison of the two figures shows that the simulated
nnealing algorithm indeed succeeds in identifying those regions of
he SOM where the photometric redshift estimates do not match the
rue redshift of the galaxies and therefore shifts these nodes towards
igher redshift bins. This is further illustrated in Fig. 3 (d), where we
NRAS 519, 2438–2450 (2023) 
how the magnitude of the shift in the redshift label per SOM node
ith positive numbers indicating a shift towards higher redshift bins

nd ne gativ e numbers indicating a shift towards a lower redshift bin.
e find that the most significant changes occur in the aforementioned

igh-redshift nodes and at the boundaries between high- and low-
edshift nodes. 

The redshift distributions of the tomographic bins are illustrated in
ig. 5 with the dashed lines indicating the initial redshift distributions
nd the solid lines representing the distributions after relabelling
ia simulated annealing. We note that the redshift distributions are
nferred from the true underlying redshifts of galaxies assigned
o each bin, which are not available in a real observational data
et and need to be calibrated separately, e.g. via cross-correlation
easurements. We find that the algorithm significantly impro v es the

edshift distributions of high-redshift bins, which initially showed
ignificant deviations from the predefined redshift intervals in the
ails of the distribution. The correlation matrix shown in Fig. 4
ndicates a lo w-le vel anticorrelation between photometric bin 1 and
eference bins 4 and 5, which remains even after optimization.
o we ver, this feature is not observed in Fig. 5 which shows no

ignificant o v erlap between the redshift distribution of bin 1 with
ither bin 4 or bin 5. The origin of this feature is unclear. 

A possible source of the residual signals is magnification effects
ausing spurious cross-correlation signals between non-o v erlapping
edshift bins which can lead to biased constraints on cosmological
arameters in clustering analyses of upcoming surv e ys (Euclid
ollaboration 2022 ; Mahony et al. 2022 ). The contamination due

o magnification was shown to be maximal for bins with low signal-
o-noise ratio of galaxy clustering. Thus, the effects of magnification
an limit the performance of the optimization method. We test the
mpact of magnification on the correlation matrix by measuring
he clustering cross-correlation with unmagnified galaxy positions.

e find a change in the correlation signal which is smaller than
he typical measurement uncertainties. Therefore, we conclude that

agnification effects do not significantly limit the performance of
he optimization method employed in this work. 
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Figure 5. Comparison of the initial redshift distribution of each tomographic bin, obtained using the photometric redshift estimate of individual galaxies (dashed 
lines), and the redshift distribution after simulated annealing (solid lines). The dotted lines indicate the redshift bin edges. 
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We quantify the extent to which the redshift distributions lie 
ithin the boundaries of the redshift bins in the left panel of Fig. 6 ,

omparing the initial and final distribution. We find that the algorithm 

elps to shift the redshift distribution significantly to lie within the 
in boundaries, especially in the higher redshift bins, where we 
nd impro v ements of about 30 per cent. Additionally, in the right
anel of Fig. 6 we quantify how much of the redshift distribution
s located within the tails of distribution. Here, we define the tails
f the distribution as the region in redshift space that lies more than
ne bin width outside of the boundaries of a given tomographic bin.
e find a substantial decrease of the tails of the redshift distribution.
gain, the biggest impro v ements are found in the high-redshift bins
here initially a large percentage of the distribution is located in 

he tails, which decreases significantly after the simulated annealing. 
he biggest change is found in bin 11, which initially only contains
2 per cent of the probability mass within the bin boundaries and
 large fraction of about 57 per cent in the tails of the distribution.
hese quantities shift significantly in the final redshift distribution, 
ith about 64 per cent within the bin boundaries and 16 per cent in the

ails. Furthermore, we find significant impro v ements in bin 9, which
nitially contains about 22 per cent of galaxies within bin boundaries 
hich increases to 57 per cent. The fraction of galaxies in the tails
f this redshift bin also decreases significantly from 47 per cent to
1 per cent. 

 C O N C L U S I O N S  

n this paper, we presented a method, SHARPZ , to group a sample
f galaxies into tomographic redshift bins using estimates of the 
hotometric redshift with subsequent re-sorting using an algorithm 

hat optimizes the angular cross-correlation between the photometric 
alaxy sample and an o v erlapping sample of reference galaxies. We
tilized a simulated annealing algorithm that reassigns groups of 
alaxies to redshift bins and determines the effect on the cross-
orrelation matrix by calculating a measure of the diagonality of 
he matrix. This was combined with an SOM that was trained on
he colour information of photometric galaxies. The SOM allows 
hoosing sets of galaxies that are reassigned in each step of the
imulated annealing. Additionally, the resolution of the SOM was 
ncreased o v er time in order to achiev e a greater accurac y of the final
esulting photometric redshift bins. 

We applied this method to a synthetic catalogue, cosmoDC2, that 
ims to resemble measurements of the upcoming Vera C. Rubin 
bservatory’s LSST. Our results show that the method significantly 

educes the fraction of catastrophic outliers in the tails of the redshift
istribution in all tomographic bins, most notably in the highest 
edshift bins where we find impro v ements by up to 40 per cent. We
ound that it succeeds in shifting the redshift distributions towards 
eing within the boundaries of the tomographic bins. High-redshift 
ins show the greatest impro v ements, where the probability mass
ithin the bin boundaries increases up to about 30 per cent, while the

mpro v ement in the low-redshift bins, whose redshift distributions 
nitially are already quite compact, is smaller with the probability 

ass increasing by a few per cent. Additionally, we found that the
ethod also greatly reduces the amount of the redshift distribution 

hat is located in the tails of the distribution. Again, we find the biggest
mpro v ement in the high-redshift bins, where the initial performance
f the photometric redshift estimates is worst. 
The quality of the redshift distributions inferred with our optimiza- 

ion method depends on the choice of the SOM parameters. Initially,
e trained an SOM consisting of 200 x 200 nodes and scaled the

esolution from low to high during the optimization process. The 
esolution determines the number of galaxies that are reassigned 
ogether to an alternative redshift bin, which scales from large 
MNRAS 519, 2438–2450 (2023) 
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Figure 6. Left: Comparison of the percentage of probability mass of the redshift distributions, shown in Fig. 5 , within the respective bin range before and after 
simulated annealing. Right: Comparison of the percentage of the redshift distribution that is located within the tails of the distribution, where we define the tails 
of the distribution as the region in redshift space that lies more than one bin width outside of the boundaries of a given tomographic bin. 
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umbers of galaxies to smaller numbers. Thus, the resolution imposes
 limit on how well the SOM can separate features in colour space
hat can be associated with different redshift bins. By choosing a

aximum resolution we therefore implicitly put a limit on the quality
f the final redshift distribution that can be achieved. The quality of
he final redshift distributions can be impro v ed by increasing the

aximum resolution at the cost of a longer computation time since
 higher resolution implies a selection of fewer galaxies in each
tep, up to the limit where the algorithm selects individual galaxies.
o we ver, at a certain point noise in the clustering observable will

imit the observable effect on the objective function. Therefore, the
ethod is ultimately limited by both the noise limit of the clustering
easurement and the SOM resolution. Additionally, the choice of

eatures on which the SOM is trained influences how well the
OM can separate galaxies of different redshifts. In our analysis we

rained the SOM on five galaxy colours, which we found to perform
ell for the data set considered in this work. Future applications
ith alternative data sets should ho we v er e xplore alternativ e sets of

raining features, for example different colour combinations or the
ddition of magnitude information, which can help breaking colour-
edshift degeneracies. 

In our analysis, we made the assumption that the reference sample
o v ers the full area observed by the photometric surv e y, while in a
ealistic application the reference sample will only have a partial sky
 v erlap with the photometric surv e y. Ho we ver, as long as the surv e y is
patially homogeneous, we can optimize the assignment of galaxies
o tomographic bins in the area co v ered by both the photometric and
eference surv e y and then use the SOM to expand the redshift bin
ssignments to the full photometric surv e y. Therefore, a complete
 v erlap of the two samples is not a general requirement of the
ethod. Additionally, the SOM can be used to reproduce the results
ithout re-running the simulated annealing algorithm. Moreo v er,
e can further impro v e the calculation of the clustering signal by
easuring the cross-correlation signal between reference samples

nd cells of the highest-resolution SOM. For a given assignment
f SOM cells to tomographic bins we can then stack the cross-
orrelation signals of the individual cells using the hierarchical
tructure of the SOM. In this way, we obtain the correlation signal
etween photometric and reference bins without re-calculating the
ross-correlation in each step of the optimization algorithm, which
ill lead to a decrease in computational cost. This is left for future
NRAS 519, 2438–2450 (2023) 

ork. W
Additionally, we made the assumption that the reference sample is
ully representative of the photometric sample. Future applications
herefore require studies of how incomplete reference samples and
oise influence the cross-correlation measurements between the
hotometric and reference sample and how it impacts the quality
f the inferred tomographic bins. 
While finalizing this work, Zuntz et al. ( 2021 ) put forward a paper

n the optimization of the tomographic binning for the DESC 3x2pt
nalysis. In particular, the COMPLEXSOM method utilizes a matrix
f autopower and cross-power spectra, which is a statistic similar
o the one employed in this work. While in this work the redshift
in edges of the galaxy sample are fixed, the COMPLEXSOM method
nstead optimizes the parameters that determine the bin edges. 

Our work demonstrates that the optimization method provides a
ignificant impro v ement of the redshift distribution of a synthetic
urv e y compared to photometric estimates of the redshift. Therefore,
t provides a promising complement to existing redshift calibration
ethods in upcoming surv e ys. An application to observational data

s left for future work. 
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PPENDI X  A :  P H OTO M E T R I C  REDSHI FTS  

n this appendix, we compare the true redshifts of galaxies in the
ynthetic galaxy catalogue with the point estimate of the photometric 
edshift inferred via SED template fitting. The left panel of Fig. A1
hows a scatter plot of the true redshift and the photometric redshift.
he redshift distributions inferred from the true redshift and the 
hotometric redshift, respectively, are illustrated in the right panel of 
ig. A1 . 
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M

Figure A1. Left: Scatter plot of the true redshift of galaxies in the photometric sample and the point estimate of the photometric redshift inferred via SED 

template fitting. Right: Comparison between the true redshift distribution and the redshift distribution inferred from point estimates of the photometric redshift. 
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PPENDIX  B:  SOM  CLUSTERING  

n this appendix, we provide a comparison of SOMs with decreased
esolutions derived from a high-dimensional SOM using the hierar-
hical clustering method described in Section 2.3 . The original SOM,
rained on the observed colours of galaxies with a resolution of R =
00, is illustrated in the top-left panel of Fig. B1 . The remaining
anels show SOMs with lower resolutions, inferred from the original
OM via clustering of the weight vectors. The bottom-right panel
NRAS 519, 2438–2450 (2023) 
hows the SOM with a resolution of R = 30, which is the initial
esolution from which the simulated annealing algorithm selects
roups of galaxies. The top-right panel shows the SOM with the final
esolution R = 80, while an SOM with an intermediate resolution of
 = 55 is illustrated in the bottom-left panel. The colours in each
anel represent the mean of the true redshift of galaxies in each node.
e note that since the low-resolution SOMs are constructed from the

igh-resolution SOM with R = 200, the axes in each panel refer to
he index of the high-dimensional SOM. 
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Figure B1. Illustration of the SOM used in the analysis at different resolutions. The original SOM, trained on the observed colours of galaxies with a resolution 
of R = 200, is illustrated in the top-left panel. The remaining panels show the SOM with reduced resolution inferred with the clustering method described in 
Section 2.3 . The colours represent the mean of the true redshift of galaxies in each node. 
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PPENDIX  C :  E N E R G Y  IN  T H E  SIMULATED  

N N E A L I N G  OPTIMIZATION  

n this appendix, we show the evolution of the energy during the
imulated annealing optimization. In Fig. C1 , we illustrate the energy 
f the system after six iterations of the algorithm. Each iteration 
orresponds to a full run of the algorithm with an initial SOM
esolution of R min = 30 and a final resolution R max = 80 with
 steps = 2000. 1 We observe that in the first three iterations the
lgorithm achieves an approximately equal increase in the energy 
f the system, while the later iterations show smaller increases in the
nergy, indicating that the algorithm converges towards the maximum 

 The computing time for one step on a 16 core machine is approximately 10
. 
nergy. The method of consecutively running the algorithm multiple 
imes allows us to explore how many steps in total are needed for the
lgorithm to converge towards the maximum achievable energy for 
 given final resolution R max . We note that after obtaining the final
ssignment of galaxies to tomographic bins via simulated annealing, 
his result can potentially be further impro v ed by re-running the
lgorithm with an initial resolution of R min = 80 and an even higher
esolution R max which can be increased up to the initial resolution
f the SOM. Ho we ver, this comes at the cost of a longer runtime,
ince higher resolutions imply a selection of fewer galaxies in 
ach step, up to the limit where the algorithm selects individual
alaxies. Furthermore, at a certain point noise in the clustering 
bservable will limit the observable effect on the energy of the
ystem. 
MNRAS 519, 2438–2450 (2023) 
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Figure C1. Evolution of the energy of the simulated annealing algorithm. 
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