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Abstract—This paper considers a Gaussian multi-input multi-
output (MIMO) multiple access wiretap (MAC-WT) channel,
where an eavesdropper (Eve) wants to extract the confidential
information of all users. Assuming that both the legitimate
receiver and Eve jointly decode their interested messages, we
aim to maximize the sum secrecy rate of the system by precoder
design. Although this problem could be solved by first using the
iterative majorization minimization (MM) based algorithm to get
a sequence of convex log-determinant optimization subproblems
and then using some general tools, e.g., the interior point
method, to deal with each subproblem, this strategy involves
quite high computational complexity. Therefore, we propose
a simultaneous diagonalization based low-complexity (SDLC)
method to maximize the secrecy rate of a simple one-user wiretap
channel, and then use this method to iteratively optimize the
covariance matrix of each user. Simulation results show that in
contrast to the existing approaches, the SDLC scheme achieves
similar secrecy performance but requires much lower complexity.

I. INTRODUCTION

To meet the tremendous demand for wireless communi-
cations, the future mobile systems will incorporate many
different network topologies and large numbers of devices
which may access and leave at any time, making it diffi-
cult to generate and manage cryptographic keys. In addition,
the unprecedented growth of computational ability makes it
possible for eavesdroppers (Eves) extracting the confidential
information of authorized users without secret keys. Hence, the
conventional cryptographic encryption methods, which rely on
secret keys and assumptions of limited computational ability
at Eves, are no longer sufficient to guarantee secrecy in the
future mobile networks. Starting from some early seminal
works [1]–[3], the study of information theoretic secrecy in
communications has triggered considerable research interests
recently [4]–[6].

Different from the cryptographic encryption methods em-
ployed in the application layer, physical layer security tech-
niques exploit the random propagation properties of radio
channels and advanced signal processing techniques to prevent
Eves from wiretapping. Over the past decades, the multiple
access wiretap (MAC-WT) channels have drawn great research
interests [7]–[12]. Although the secrecy capacity regions of
MAC-WT channels are still unknown, the outbounds and
achievable regions have been widely studied for different
MAC-WT cases, e.g., the case with a weaker Eve which has
access to a degraded version of the main channel [7], [8], the

non-degraded case with different wiretapping scenarios [9], the
non-degraded case where each user has both confidential and
opens message intended for the legitimate receiver [10]–[12],
etc.

Based on the information theoretic results, a lot of work
further studied the resource allocation problems in MAC-WT
channels [11]–[13]. The sum secrecy rate of a Gaussian single-
input single-output (SISO) MAC-WT channel was maximized
by power control in [11]. Reference [13] maximized the sum
secrecy rate of a Gaussian multi-input multi-output (MIMO)
MAC-WT system, but considered a special power constraint,
making the secrecy performance limited. The same problem
as in [13] but with a general power constraint was considered
in [12] (see [12, Problem (23)]) and the iterative majorization
minimization (MM) based scheme was applied to solve this
problem, which is a difference of convex (DC) programming.
As shown in [12, Fig. 6], the system secrecy performance can
be greatly improved in contrast to [13]. However, as analyzed
in [12, Subsection IV-C], the MM-based scheme involves quite
high computational complexity and it becomes prohibitive to
perform this scheme when the network size is large.

In this paper, we consider a Gaussian MIMO MAC-WT
system and aim to maximize the sum secrecy rate, i.e., again
solve [12, Problem (23)]. Notice that Gaussian coding with
specific spatial covariance matrix (in the antenna dimension)
can be obtained by ‘coloring’ an independent and identically
distributed (i.i.d.) Gaussian signal by linear spatial precoding.
This problem is also referred to as precoder design. To
reduce the computational complexity in solving this problem,
motivated by the iterative water-filling method [14, Subsec-
tion 9.2], we iteratively optimize the signal covariance matrix
of each user. It is shown that when all the other users’
covariance matrices are fixed, the original problem can be
equivalently transformed to the secrecy rate maximization
problem of a simple one-user wiretap channel. Hence, we first
consider a single-user MIMO wiretap channel and propose a
simultaneous diagonalization based low-complexity (SDLC)
scheme, and then solve the original problem by iteratively
applying this scheme. Note that as a general method, besides
the sum secrecy rate maximization problem considered in this
paper, the SDLC scheme proposed here can be applied to
deal with a variety of problems whose intermediate steps can
be formulated as the maximization of a difference of log-
determinants.
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We have to point out that the secrecy rate maximization
problem of a one-user wiretap channel has been widely
studied and the analytical capacity-achieving solution exists
for some special cases, e.g., single-transmit-antenna case [15],
single-receive-antenna case [16], two-transmit-antenna case
[17], [18], high SNR case [19], etc. However, the analytical
solution for the general MIMO wiretap channel is still an open
problem. In [20], the generalized singular value decomposition
(GSVD) was applied to decompose the MIMO wiretap channel
into a set of parallel sub-channels and a sub-optimal solution
was obtained. In contrast to [20], we provide more insightful
analysis, show that the proposed SDLC scheme is determined
by the channel state, and give the uniqueness condition. If
this condition is satisfied, the SDLC scheme is unique and
is equivalent to the GSVD scheme in terms of the secrecy
rate. Otherwise, we can get many different SDLC schemes.
Moreover, we show by simulation that compared with the
MM-based scheme provided in [12] and the GSVD method
given in [20], the proposed SDLC method achieves similar
secrecy performance but involves much lower computational
complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a Gaussian MIMO MAC-WT channel with K
users, a legitimate receiver (or Bob for brevity), and an Eve.
Each user k, Bob, and Eve are respectively equipped with
Tk, B, and E antennas. Let xk ∈ CTk×1 denote the signal
vector of user k and assume Gaussian channel input, i.e.,
xk ∼ CN (0,Fk), where the covariance matrix Fk has power
constraint tr(Fk) ≤ Pk. The received signals at Bob and Eve
are given by

y =

K∑
k=1

Hkxk + nB,

z =

K∑
k=1

Gkxk + nE, (1)

where Hk ∈ CB×Tk and Gk ∈ CE×Tk are constant channel
gain matrices from user k to Bob and Eve, and nB ∈ CB×1
and nE ∈ CB×1 are additive Gaussian noise vectors at Bob
and Eve with nB ∼ CN (0, σ2

BIB) and nE ∼ CN (0, σ2
EIE).

Assume that both Bob and Eve jointly decode their interested
messages. The achievable regions for such a MIMO MAC-WT
channel has be studied in [12] and the maximum achievable
sum secrecy rate of the system is [12, (20)]

R(FK) = [I(xK;y)− I(xK; z)]+

=

[
log

∣∣∣∣∣
K∑
k=1

1

σ2
B

HkFkH
H
k +IB

∣∣∣∣∣−log
∣∣∣∣∣
K∑
k=1

1

σ2
E

GkFkG
H
k+IE

∣∣∣∣∣
]+
.

(2)

Note that in this paper we use calligraphic subscript to denote
the set of elements whose indexes take values from the
subscript set, e.g., FK = {F1, · · · ,FK} and xK = {xk,∀k ∈

K} in (2). We aim to maximize R(FK) by designing the
covariance matrices. The problem can be formulated as

max
FK

R(FK) (3a)

s.t. tr(Fk) ≤ Pk, ∀ k ∈ K, (3b)
Fk � 0, ∀ k ∈ K. (3c)

We have studied problem (3) in [12]. Since it is a DC
programming, we obtain a sub-optimal solution in [12] by
using [12, Algorithm 1], which is an iterative MM-based
algorithm and solves a sequence of convex log-determinant
optimization subproblems using some general tools, e.g., in-
terior point method, the CVX tools provided by Matlab, etc.
However, as analyzed in [12, Subsection IV-C] and shown
by the simulation results in this paper, [12, Algorithm 1]
involves quite a high complexity. It is very time-consuming to
execute [12, Algorithm 1] and will become even impractical
when the network size grows large. Hence, we aim to find an
efficient and low-complexity method to solve (3). Motivated
by the iterative water-filling method [14, Subsection 9.2], we
iteratively optimize the covariance matrices of all users, i.e.,
Fk,∀k ∈ K, and hope that we could solve the corresponding
problem in each step with a low complexity.

III. SINGLE-USER GAUSSIAN MIMO WIRETAP CHANNEL

Before solving (3), we first consider a single-user Gaussian
MIMO wiretap channel and give the SDLC scheme for this
simple case. With one transmitter, problem (3) reduces to

max
F

log
∣∣HFHHΩ−11 +IB

∣∣−log∣∣GFGHΩ−12 +IE
∣∣ (4a)

s.t. F � 0, (4b)
tr(F ) ≤ P, (4c)

where we omit the user index and [·]+ in (4a) for brevity.
Note that to solve (3) using the SDLC scheme proposed in
this section, we replace σ2

BIB and σ2
EIE with the general

noise covariance matrices Ω1 and Ω2, which are assumed
to be positive definite. As explained in the introduction part,
problem (4) has been widely studied but its analytical solution
is still an open problem. In the following we provide a SDLC
scheme, with which the MIMO wiretap channel can be decom-
posed into a set of parallel sub-channels and the confidential
information can be transmitted over sub-channels where Bob
experiences better channel state than Eve. In contrast to the
GSVD scheme given in [20], which also decomposes the
channel, we show that the SDLC scheme is determined by
the channel state and give the uniqueness condition. If this
condition is satisfied, the SDLC scheme is unique and is
equivalent to the GSVD scheme in terms of the secrecy rate.
Though, in this case, equivalent in secrecy performance, we
show by simulation that compared with the GSVD scheme,
the computational complexity can be greatly decreased by the
SDLC scheme. If the uniqueness condition is not satisfied,
we can get many different SDLC schemes and each one may
provide a different solution to (4).



Before introducing the SDLC scheme, we first simplify the
objective function (4a). Denote the eigendecomposition of Ω1

and Ω2 by Ω1 = Γ1Λ1Γ
H
1 and Ω2 = Γ2Λ2Γ

H
2 , respectively.

Then, using the fact that |O1O2 + I| = |O2O1 + I|, the first
term of (4a) can be rewritten as

log
∣∣HFHHΩ−11 +IB

∣∣= log
∣∣∣Λ− 1

2
1 ΓH1 HFH

HΓ1Λ
− 1

2
1 +IB

∣∣∣
=

1

ln 2
ln
∣∣∣ĤFĤH + IB

∣∣∣ , (5)

where Ĥ = Λ
− 1

2
1 ΓH1 H . Similarly, the second term of (4a)

can be rewritten as

log
∣∣GFGHΩ−12 + IE

∣∣ = 1

ln 2
ln
∣∣∣ĜF ĜH + IE

∣∣∣ , (6)

where Ĝ = Λ
− 1

2
2 ΓH2 G. Problem (4) can then be equivalently

transformed to

min
F

− ln
∣∣∣ĤFĤH + IB

∣∣∣+ ln
∣∣∣ĜF ĜH + IE

∣∣∣ (7a)

s.t. (4b), (4c). (7b)

We focus on solving problem (7) in the following.
Since ĤHĤ and ĜHĜ are both positive semi-definite

matrices, for any vector d ∈ CT×1, if dH(ĤHĤ+ĜHĜ)d =
0, there must be dHĤHĤd = 0. It is thus known from
[21, Lemma 2] that ĤHĤ + ĜHĜ and ĤHĤ can be
simultaneously diagonalized. In particular, there exists a non-
singular matrix U1 such that

UH
1 (ĤHĤ + ĜHĜ)U1 =

[
IT0 0
0 0

]
,

UH
1 Ĥ

HĤU1 =

[
W 0
0 0

]
, (8)

where T0 = rank(ĤHĤ+ĜHĜ) and W ∈ CT0×T0 . To con-
struct U1, denote the eigendecomposition of ĤHĤ + ĜHĜ
by

ĤHĤ + ĜHĜ = Ψ1

[
Υ 0
0 0

]
ΨH1 , (9)

where Ψ1 ∈ CT×T is a unitary matrix and Υ ∈ RT0×T0 is a
diagonal matrix with positive diagonal entries. Let

U1 = Ψ1

[
Υ−

1
2 0

0 Π1

]
, (10)

where Π1 can be any square matrix of dimension T −T0. It is
obvious that the U1 resulted from (10) guarantees (8). Since
UH

1 Ĥ
HĤU1 � 0 and

UH
1 Ĝ

HĜU1 =

[
IT0
−W 0
0 0

]
� 0, (11)

it is known that
IT0
�W � 0. (12)

Denote the eigendecomposition of W by

W = Ψ2diag{ρ1, · · · , ρT0}ΨH2 , (13)

where Ψ2 ∈ CT0×T0 is a unitary matrix and 0 ≤ ρt ≤ 1, ∀ 1 ≤
t ≤ T0. Let

U2 =

[
Ψ2 0
0 Π2

]
, (14)

and
U = U1U2, (15)

where Π2 can be any square matrix of dimension T − T0.
ĤHĤ and ĜHĜ can then be simultaneously diagonalized
as follows

UHĤHĤU = diag{ρ1, · · · , ρT0
, 0, · · · , 0},

UHĜHĜU = diag{1− ρ1, · · · , 1− ρT0
, 0, · · · , 0}, (16)

where the last T − T0 diagonal entries of UHĤHĤU and
UHĜHĜU are 0. Let

F = UAUH , (17)

where A , diag{a1, · · · , aT } is a diagonal matrix with non-
negative real diagonal entries. The objective function (7a) and
tr(F ) in constraint (4c) can thus be transformed to

− ln
∣∣∣ĤFĤH + IB

∣∣∣+ ln
∣∣∣ĜF ĜH + IE

∣∣∣
=− ln

∣∣∣UHĤHĤUA+ IB

∣∣∣+ ln
∣∣∣UHĜHĜUA+ IE

∣∣∣
=

T0∑
t=1

[− ln(ρtat + 1) + ln((1− ρt)at + 1)] , (18)

and

tr(F ) = tr(UAUH) = tr(UHUA) =

T∑
t=1

‖ut‖2 at, (19)

where ut is the tth column of matrix U . Accordingly, instead
of directly solving problem (7), we consider the following
problem and then obtain F from (17)

min
A

T0∑
t=1

[− ln(ρtat + 1) + ln((1− ρt)at + 1)] (20a)

s.t. at ≥ 0, ∀ t ∈ T , (20b)
T0∑
t=1

‖ut‖2 at ≤ P. (20c)

By simultaneously diagonalizing ĤHĤ and ĜHĜ in (16),
the MIMO wiretap channel is decomposed into T0 parallel
sub-channels with ρt and 1 − ρt,∀t ∈ T0, respectively, being
the channel gains experienced by Bob and Eve. at can be
seen as the power allocated to the tth sub-channel. Since
− ln(ρtat+1) and ln((1− ρt)at+1) are respectively convex
and concave functions of at, problem (20) is non-convex.
However, we show in the following theorem and Appendix A
that at is non-zero only when Bob observes a better channel
state than Eve, i.e., 1

2 < ρt ≤ 1, and the optimal solution can
be efficiently obtained.



Theorem 1. The optimal solution of problem (20) is

a∗t =


0, if T0 ≤ t ≤ T or t ∈ T0 \ J ,[

1
β∗‖ut‖2

− 1
]+

, if t∈J and ρt = 1,[
−1+

√
1−4ρt(1−ρt)

(
1+

1−2ρt
β∗‖ut‖2

)]+
2ρt(1−ρt) , if t∈J and 1

2<ρt<1,
(21)

where T0 = {1, · · · , T0}, J = {t|1 ≤ t ≤ T0,
1
2 < ρt ≤ 1},

and β∗ can be found using the bisection searching method
such that the constraint (20c) holds with equality.

Proof: See Appendix A. �
Based on Theorem 1, a solution of problem (7) can be

obtained by using (17) and (21).

Remark 1. Note that though problem (20) can be optimally
solved, the corresponding solution of (7) obtained from Theo-
rem 1 and (17) is not necessarily optimal since the formation
of F is limited by (17).

As shown above, for a given channel state, the SDLC
scheme is determined by the values of ρt,∀t ∈ T0, which are
the eigenvalues of UH

1 Ĥ
HĤU1, and U , which is determined

by the choices of Ψ1, Π1 in (10), and Ψ2, Π2 in (14). Due
to the fact that the eigendecomposition of a matrix is unique
if and only if all its eigenvalues are different, Ψ1 and Ψ2 may
not be unique. In addition, if T0 < T , the matrices Π1 and
Π2 can be chosen in arbitrarily many ways, yielding many
non-equivalent SDLC schemes. In the following lemma, we
give the condition under which the SDLC scheme is unique.

Lemma 1. If both ĤHĤ + ĜHĜ and UH
1 Ĥ

HĤU1 are
full-rank and have distinct positive eigenvalues, the matrix U
generated from (15) is unique. The proposed SDLC scheme is
then unique. Otherwise, we can obtain as many U ’s as we
want, each corresponding to a different SDLC scheme.

Proof: See Appendix B. �

Remark 2. As shown in (8), we start the simultaneous
diagonalization procedure from ĤHĤ + ĜHĜ and ĤHĤ .
Instead, we can also start from ĤHĤ + ĜHĜ and ĜHĜ,
and solve (7) by following similar steps. It can be easily proven
by symmetry that the two strategies are equivalent.

Remark 3. Analogous to the proposed SDLC scheme, though
declared to be optimal, the GSVD-based algorithm provided in
[20] can only get the optimal solution of [20, (10)] rather than
that of the original problem [20, (4)] (similar to (21) being the
optimal solution of (20) rather than (7)). In addition, based on
the definition of GSVD (see [19, Definition 1]), it can be easily
proven that if both ĤHĤ+ĜHĜ and UH

1 Ĥ
HĤU1 are full-

rank and have distinct positive eigenvalues, i.e., they satisfy the
uniqueness condition stated in Lemma 1, the proposed SDLC
scheme is equivalent to the GSVD-based scheme in terms of
the secrecy rate. However, as shown by the simulation results,
the SDLC scheme involves a much lower computational com-
plexity since it avoids computing GSVD.

IV. GENERAL GAUSSIAN MIMO MAC-WT CHANNEL

Now we consider the general Gaussian MIMO MAC-
WT Channel with multiple users. The channel model and
formulated problem have been provided in Section II. Here we
solve problem (3) by iteratively applying the SDLC scheme
proposed in the previous section. For convenience, denote

Ω1,k =
∑
i∈K\k

HiFiH
H
i + σ2

BIB ,

Ω2,k =
∑
i∈K\k

GiFiG
H
i + σ2

EIE . (22)

R(FK) in (2) can be rewritten as

R(FK) =
[
log
∣∣∣HkFkH

H
k Ω

−1
1,k+IB

∣∣∣+log |Ω1,k|−B log σ2
B

−log
∣∣∣GkFkG

H
k Ω

−1
2,k+IE

∣∣∣−log |Ω2,k|+E log σ2
E

]+
. (23)

Then, if Fi,∀i ∈ K \ k are fixed, problem (3) becomes

max
Fk

log
∣∣∣HkFkH

H
k Ω

−1
1,k+IB

∣∣∣−log ∣∣∣GkFkG
H
k Ω

−1
2,k+IE

∣∣∣
(24a)

s.t. tr(Fk) ≤ Pk, (24b)
Fk � 0, (24c)

where we omit the [·]+ operation in the objective function
for convenience. It is obvious from (22) that Ω1,k � 0 and
Ω2,k � 0. Hence, (24) can be solved by employing the SDLC
scheme proposed in the previous section. Problem (3) can
then be solved by iteratively considering (24) for different
users. The detailed steps are summarized in Algorithm 1.
Note that as stated in Remark 1, the SDLC scheme does not
necessarily output the optimal solution of (24). To guarantee
the convergence of Algorithm 1, we calculate the new R(FK)
in each iteration and update Fk only if R(FK) increases.

Algorithm 1 SDLC algorithm for solving problem (3)
1: Initialize FK.
2: repeat
3: for k = 1 : K do
4: Solve problem (24) by the SD-based scheme.
5: Calculate R(FK) and update Fk if R(FK) in-

creases.
6: end for
7: until FK converges

We now analyze the complexity of Algorithm 1. For con-
ciseness, we assume equal number of antennas for all users,
i.e., Tk = T, ∀k ∈ K. People can also use max{Tk,∀k ∈ K}
instead to evaluate the complexity. In each iteration, as shown
in the previous section, the optimization of Fk involves
matrix multiplications and eigendecompositions, which yield
a complexity of O

(
T 3
)
. In addition, the bisection search

used in (21) requires a complexity of O
(
T log

(
1
ε

))
, where

ε is the convergence tolerance of the bisection searching
method. Let L denote the number of outer iterations of
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Fig. 1. Convergence behaviors of the SDLC scheme with T = 4, B = E =
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Algorithm 1. Then, the overall complexity of of Algorithm 1
is O

(
L
(
K
(
T 3 + T log

(
1
ε

))))
.

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of the proposed algorithms. We consider an
isolated circular-cell network with a radius of 500 meters. The
base station or Bob is located at the center and an Eve is
evenly distributed in the cell. All mobile users are distributed
uniformly in the cell and it is assumed that no user is closer to
Bob than 20 meters. For convenience, equal maximum power
constraint, number of antennas at all users, and noise power
at Bob and Eve, are assumed, i.e., Pk = P , Tk = T, ∀k ∈ K,
and σ2

B = σ2
E = σ2. The pathloss exponent and the standard

deviation of log-normal shadowing fading are respectively set
to be 3.7 and 8 dB [22]. The noise power is σ2 = −100 dBm.
All simulation results are obtained by averaging over 1000
independent channel realizations, and each channel realization
is obtained by generating a random user distribution as well
as a random set of fading coefficients.

Fig. 1 illustrates the convergence behaviors of the proposed
SDLC scheme. It can be seen that the average sum secrecy rate
increases greatly during the iterative process and converges
rapidly for different configurations of K, which shows the
significant advantages of the scheme. When implementing the
SDLC scheme in the following, we perform 10 outer iterations.

In Fig. 2 and Fig. 3, we compare the SDLC scheme with
[12, Algorithm 1] in terms of the secrecy performance and
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Fig. 4. Average sum secrecy rate versus the number of antennas at Bob with
K = 5, T = 4, and E = 8.

computational complexity. The results obtained by iteratively
applying the GSVD scheme proposed in [20] to solve (3) are
also depicted as a metric. We start from the same random
initial point when executing different methods and run 10
outer iterations for the GSVD scheme. As shown by [12,
Fig. 2], using [12, Algorithm 1], the average sum secrecy rate
increases greatly at the beginning, but then converges quite
slowly. Considering its high complexity, we perform 20 outer
iterations when implementing [12, Algorithm 1]. In these two
figures we vary K and T since they have a significant influence
on the computational complexity.

As expected, it can be seen from Fig. 2 and Fig. 3 that
both the sum secrecy rate and time cost increase with K
and T . Fig. 2 shows that the SDLC scheme has a similar
secrecy performance in contrast to [12, Algorithm 1] and the
curves obtained by the SDLC and GSVD methods coincide
completely, i.e., they have exactly the same secrecy perfor-
mance. This is because here both B and E are no smaller
than T . ĤHĤ+ĜHĜ and UH

1 Ĥ
HĤU1 then in general are

full-rank and have distinct positive eigenvalues. As explained
in Remark 3, the proposed SDLC scheme in this case is
equivalent to the GSVD method in terms of the secrecy rate.
Nevertheless, as shown by Fig. 3, using eigendecomposition
instead of the GSVD decomposition, the proposed SDLC
scheme reduces the computational time by at least 20%
compared with the GSVD method. As for [12, Algorithm 1], it
requires over 300 times of the runtime in contrast to the SDLC
scheme, making it impractical to implement this method when
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K or T is large.
In Fig.4 and Fig. 5, we investigate the effect of parameters

B, P , and E. As expected, the average sum secrecy rate
increases with B as well as P , and reduces with E.

VI. CONCLUSIONS

This paper has studied the sum secrecy rate maximization
problem for a Gaussian MIMO MAC-WT channel. Due to its
high complexity, we did not want to use the conventional MM-
based scheme. Hence, we first proposed a SDLC scheme to
maximize the secrecy rate of a single-user wiretap channel and
then iteratively optimized the covariance matrices of all users.
Simulation results have confirmed the efficiency and shown
that in contrast to the MM-based and GSVD approaches, the
proposed SDLC scheme achieves similar secrecy performance
but requires much lower computational complexity.
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APPENDIX A
PROOF OF THEOREM 1

As shown in (16), the last T − T0 diagonal entries of
UHĤHĤU and UHĜHĜU are 0. Hence, in the optimal
case, we have

a∗t = 0, ∀ T0 + 1 ≤ t ≤ T. (25)

Denote T0 = {1, · · · , T0} and the objective function (20a) by

r(aT0) =

T0∑
t=1

[− ln(ρtat + 1) + ln((1− ρt)at + 1)] . (26)

Its first-order partial derivation over at is

∂r

∂at
=

1− 2ρt
(ρtat + 1) [(1− ρt)at + 1]

, (27)

which shows that if 0 ≤ ρt ≤ 1
2 , r(aT0) is non-decreasing with

respect to (w.r.t.) at. Since at is non-negative, its optimal value
is thus

a∗t = 0, if 0 ≤ ρt ≤
1

2
. (28)

Denote set J = {t|1 ≤ t ≤ T0,
1
2 < ρt ≤ 1}. Then, in the

optimal case, r(aT0) can be simplified as

r(aJ ) =
∑
t∈J

[− ln(ρtat + 1) + ln((1− ρt)at + 1)] , (29)

and problem (20) becomes

min
aJ

r(aJ ) (30a)

s.t. at ≥ 0, ∀ t ∈ J , (30b)∑
t∈J
‖ut‖2 at ≤ P. (30c)

Since 1
2 < ρt ≤ 1,∀ t ∈ J , the second-order partial derivation

of r(aJ ) over at satisfies

∂2r

∂a2t
=

(2ρt − 1) [(1− ρt)(2ρtat + 1) + ρt]

(ρtat + 1)2 [(1− ρt)at + 1]
2

> 0, ∀ t ∈ J . (31)

(30) is thus a convex problem. Due to the affine constraints, the
strong duality holds for this problem and its optimal solution
could be obtained by checking the KKT condition of its dual
problem. Attaching a Lagrange multiplier β to the constraint
(30c), we get the following Lagrange function

L(aJ , β)=
∑
t∈J

[
−ln(ρtat+1)+ln((1−ρt)at+1)+β ‖ut‖2at

]
− βP. (32)

By checking the first-order optimality condition, we know that
for any t ∈ J ,

a∗t =


[

1
β∗‖ut‖2

− 1
]+
, if ρt = 1,[

−1+
√

1−4ρt(1−ρt)
(
1+

1−2ρt
β∗‖ut‖2

)]+
2ρt(1−ρt) , if 1

2<ρt<1.
(33)

It can be easily verified that at in (33) monotonically decreases
with β. Hence, the optimal β∗ can be found using the bisection
searching method such that the constraint (30c) holds with
equality. Combining (25), (28), and (33), we get (21). This
completes the proof.

APPENDIX B
PROOF OF LEMMA 1

As is well known, if a matrix has distinct eigenvalues, its
eigendecomposition is unique (under the convention that if
the eigenvalues are sorted in descending order). Otherwise,
if any two or more eigenvectors share the same eigenvalue,
then any set of orthogonal vectors lying in their span are also
eigenvectors with that eigenvalue, and we could equivalently
choose a unitary matrix using those eigenvectors. Therefore, if
both ĤHĤ+ĜHĜ and UH

1 Ĥ
HĤU1 are full-rank and have

distinct eigenvalues, Ψ1 and Ψ2 are unique and there is no need
to add Π1 and Π2. U1, U2, and U , which are respectively
generated from (10), (14), and (15), are thus unique. The
proposed SDLC scheme is then unique.



If ĤHĤ + ĜHĜ or UH
1 Ĥ

HĤU1 is full-rank but has
two or more identical eigenvalues, as stated above, we can get
many choices of Ψ1 or Ψ2. On the other hand, if ĤHĤ +
ĜHĜ or UH

1 Ĥ
HĤU1 is a defective matrix, since Π1 and

Π2 can be any square matrix of dimension T − T0, we could
construct as many U1 and U2 as we want from (10) and (14).
Note that the SDLC scheme is determined by U . In these
cases, we can get many different SDLC schemes. Lemma 1 is
then proven.
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