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Abstract 14 

Autonomous surface ships (ASSs) have attracted attention owing to their ability to perform various 15 

tasks in complex and challenging aquatic environments without relying on a crew. However, they 16 

require reliable sensors to ensure navigational safety. In this study, a robust and intelligent fault 17 

detection algorithm was designed for the integrated navigation system of an ASS. First, a residual 18 

observer-based fault detection algorithm using Hi/H∞ optimization is proposed to deal with process 19 

disturbances and measurement noise. Such noise can be modeled under the condition of a bounded l2-20 

norm to account for the sensitivity and robustness of the residual observer against random noise with 21 

unknown properties. However, this fault detection algorithm is insensitive to soft faults, which manifest 22 

as noise characterized by a small amplitude and slow variation. Conventional strategies for evaluating 23 

the fault detection threshold rely on human experience, which is insufficiently sophisticated for fault 24 

detection. Therefore, a cascaded neural network is proposed for optimizing the fault detection algorithm 25 

when the amount of training data is limited. The cascaded neural network consists of a multi-feature 26 

time domain network, a frequency-domain fault detection network as well as a decision-level fusion 27 

network. The proposed algorithm was verified in simulations as well as on historical data collected from 28 

real ship sensors. The results demonstrated that the proposed algorithm offers intelligent fault detection, 29 

including soft faults, with a low false alarm rate for integrated navigation systems. 30 

 31 

Key words: integrated navigation system, robust fault detection, Hi/H∞ optimization, cascaded neural 32 

network 33 

 34 

1. Introduction 35 

According to Fan et al. (2020), an autonomous surface ship (ASS) can function independently of human 36 

input to varying degrees. An ASS comprises three primary systems: control, navigation, and propulsion. 37 

The navigation system feeds information on the motion state to the control system, which is critical for 38 

ensuring safe and reliable navigation. The integrated navigation system of an ASS includes the ship’s 39 

inertial navigation system (SINS), a global navigation satellite system (GNSS), such as the Global 40 

Positioning System (GPS), the Doppler velocity log (DVL), and the navigation radar, each of which 41 

offers advantages and disadvantages. At present, improving the performance of a single navigation 42 

technology is inconvenient. A more common approach is to combine the information from multiple 43 

sensors to improve navigational accuracy. However, previous studies (Liu et al. 2016; Thombre et al. 44 

2022) have shown that introducing additional sensors to increase the estimation robustness and accuracy 45 

of the integrated navigation system also considerably increases its complexity. If a fault occurs in the 46 

subsystems of the integrated navigation system, this could generate catastrophic effects through 47 

feedback control (Chen et al. 2020). Considering the complex operating environments of ASSs, robust 48 

state estimation algorithms have been proposed to account for unknown input noise. Accurately 49 

detecting sensor failures in the presence of uncertain inputs is an important research subject (Wang et 50 

al. 2022) with some studies already applied fault detection technology to ASS communication systems 51 

(Thombre et al. 2022). Consequently, this field has attracted considerable research attention and many 52 

fault detection methods have been proposed, which can be broadly classified as model-based or model-53 

free (Gao et al. 2015; Gao, Cecati, & Ding 2015). 54 
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Model-based fault detection methods can be further divided into those based on a residual observer 55 

(Miao et al. 2014) and those based on a state observer (Yu et al. 2021). These methods use a Kalman 56 

filter to create state or information residual statistics and determine if an integrated navigation system 57 

has a fault based on the probability distribution it follows. However, this algorithm is highly dependent 58 

on the system and measurement noises satisfying the constraint of noncorrelated zero-mean white 59 

Gaussian noise (Li et al. 2020), and it cannot guarantee that the evaluation function of the observer is 60 

robust against uncertain noise and sensitive to faults. To solve this limitation, several researchers (Chen 61 

et al. 2000; Liu et al. 2018; Khan et al. 2014) have applied Hi/H∞ optimization to discrete-time nonlinear 62 

systems. Zhong et al. (2016) proposed a fault detection algorithm for optimizing the SINS/GNSS 63 

integrated navigation system in the presence of normally distributed disturbances. Liu et al. (2019) 64 

proposed a new residual evaluation function for the Hi/H∞ optimization of discrete-time nonlinear 65 

systems. However, this residual observer-based extended Hi/H∞ algorithm is restricted by the 66 

linearization accuracy of the dynamic model for Taylor expansion in the extended Kalman filter 67 

framework, which could result in a large state estimation error and high false alarm rate. Residual 68 

observer-based methods are often limited by their dependence on known model parameters, and the 69 

detection threshold is difficult to define, so they are often not sensitive enough to detect soft faults, 70 

which are characterized by a slow change or small amplitude (Sun et al. 2021). 71 

 72 

To address this limitation, data-driven fault detection algorithms have been extensively studied (Gao, 73 

Cecati & Ding et al. 2015). Xi et al. (2018) showed that the fundamental principles of fault detection 74 

algorithm based on signal processing include the following steps: (1) extracting the time or frequency 75 

domain features from the output information of the system under various operating conditions, and (2) 76 

using the extracted statistical eigenvalues for fault detection. Zhu et al. (2016) proposed a fault detection 77 

function that comprises the predicted and actual innovations of the Kalman filter in addition to their 78 

variance. Zhong et al. (2017) proposed a soft fault detection method that incorporates the least-squares 79 

support vector machine (LS-SVM) regression theory into the autonomous integrity monitored 80 

extrapolation framework. Yang et al. (2020) proposed a fault detection algorithm based on the 81 

similarities between support vector machine (SVM) and principal component analysis. Zanoli et al. 82 

(2012) proposed a method for the real-time detection of soft and hard faults in an integrated navigation 83 

system. Several researchers have considered combining data-driven fault detection with a neural 84 

network. Guo et al. (2018) proposed a convolutional neural network (CNN)-based algorithm for 85 

detecting frequency-domain signal faults in unmanned aerial vehicle sensors. However, extracting 86 

features from the original sensor signal depends on the data volume, and different models are needed 87 

for different sensors. Thus, such methods lack generality and are difficult to be applied to the integrated 88 

navigation systems of ASSs operating in a complex environment. 89 

 90 

It can be summarized that the current research on fault detection of integrated navigation systems has 91 

the following deficiencies. First, model-based fault detection is not sufficiently robust against unknown 92 

system noises and statistical characteristics. Second, residual observer-based fault detection normally 93 

relies on human experience to determine the threshold settings and is not sensitive to soft faults. Finally, 94 

many researchers have proposed using deep learning to solve the above problems, but most built a 95 

neural network for a single sensor, and training such networks requires a large amount of data. 96 

Extracting a large number of fault samples from the integrated navigation systems of an ASS is 97 

unrealistic. 98 

 99 

Thus, accurate fault detection for the integrated navigation system of an ASS that does not rely on model 100 

constraints, or a large amount of data is an important research challenge. In this study, a new fault 101 

detection algorithm was developed using Hi/H∞ optimization and multiple neural networks to have an 102 

improved sensitivity to faults and robustness against unknown inputs. The main contributions of the 103 

proposed algorithm are as follows: 104 

 105 

1. The algorithm was designed according to the cubature Kalman filter (CKF) framework so that it is 106 

theoretically unaffected by linearization of kinetic model in contrast to the extended Hi/H∞ fault 107 

detection algorithm. 108 

 109 
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2. The optimization by a cascaded neural network does not rely on empirical parameters such as the 110 

threshold of the evaluation function making the proposed detection algorithm have an improved 111 

sensitivity to soft faults.  112 

 113 

3. The proposed algorithm was verified through extensive simulations as well as real ship data. The 114 

fault detection process functions perform well in all cases where limited sample data are available. 115 

 116 

The rest of the paper is organized as follows. Section 2 introduces the commonly used error state and 117 

measurement equations for the integrated navigation systems of an ASS. Section 3 presents the 118 

proposed fault detection algorithm and the optimization using a cascaded neural network. Section 4 119 

presents the verification of the algorithm through simulations and historical ship data. Section 5 120 

concludes the paper. 121 

 122 

2. Integrated navigation system and its error model 123 

The most commonly used sensors to measure the motion state of an ASS are SINS, GNSS, DVL, and 124 

the BeiDou Navigation Satellite System (COMPASS). The error models associated with these sensors 125 

have significant impact on the accuracy and performance of the entire integrated navigation system. 126 

 127 

2.1 Error state equation 128 

MEMS-SINS comprises three microelectromechanical system (MEMS) gyroscopes and three 129 

accelerometers. The navigation coordinate system (n-frame) is defined according to the east–north–up 130 

system. The origin of the body frame (b-frame) is located at the centroid of the vessel. The Earth-131 

centered Earth-fixed frame (ECEF, e-frame) and the inertial frame (ECI, i-frame) originate at the center 132 

of Earth. However, the i-frame does not rotate in lockstep with the fixed stars. Figure 1 shows the 133 

relationships between different frames. 134 

 135 

 136 
Figure 1. Reference frames and notation of variables for a vessel. 137 

 138 

The nonlinear SINS error model can be expressed as follows: 139 

 140 
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 142 

where 
n , nV , and nP  are the attitude, velocity, and position error vectors, respectively, in the n-143 
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frame. n   and n   are the vectors of the gyroscope and accelerometer noises, respectively. 144 

 ( , , , , )c

ab a b c i e n =  is the local Earth rotation rate in the b-frame with respect to the a-frame expressed in 145 

the c-frame (Wang et al. 2017).
T[ ,  cos ,  sin ]L L L  = − −  , where L  ,   , and h   are the latitude, 146 

longitude, and height, respectively. 
n

bC  is the attitude transformation matrix between the b-frame and n-147 

frame (Wei et al. 2018). Thus, the continuous-time nonlinear state equation for an integrated navigation 148 

system can be expressed as follows: 149 

 150 

( )t c t c tx f x B = +  (2) 151 

 152 

where [ , , , , ]n n n n n

tx P V   =    and [ ,  ]n n

t =   . 
cf   and 

cB   denote the nonlinear coupling system 153 

equations for transferring the state variables 
tx  and unknown noise 

t  in Equation (1). 154 

 155 

2.2 Measurement equations 156 

The following discrete-time equation is usually used to express the measurement function: 157 

 158 

t t t tz H x v= +  (3) 159 

 160 

where 
tz   is the measurement vector, 

tH   is the observation matrix, and 
tv   is the vector of the 161 

measurement noise. SINS can be used as the reference navigation system to ensure high precision. Thus, 162 

SINS/GNSS and SINS/DVL/COMPASS integrated navigation systems are often adopted to realize 163 

autonomy and accuracy. 164 

 165 

For the SINS/GNSS integrated navigation system, the measurement vector 
sg

tz  comprises the difference 166 

between the position and velocity obtained using SINS and GNSS (Shen et al. 2019). sg

tv   is the 167 

measurement noise of the SINS/GNSS integrated navigation system: 168 
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 171 

The measurement equation for the SINS/GNSS integrated navigation system is as follows: 172 

 173 
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 175 

For the SINS/DVL/COMPASS integrated navigation system, the measurement information comprises 176 

the difference between the east–north velocities and headings obtained using SINS, DVL, and 177 

COMPASS: 178 

 179 
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 181 

Thus, the measurement equation for the SINS/DVL/COMPASS integrated navigation system is as 182 
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follows: 183 

 184 

1*2 1*3 1*3 1*3

3*2 3*1 3*3 3*3 3*3

0 1 0 0 0

0 0 0 0

sdc sdc

t t tz x v
I

 
= + 
 

 (7) 185 

 186 
sdc

tv  is the measurement noise of the SINS/DVL/COMPASS integrated navigation system. 187 

 188 

2.3 Integrated navigation system based on the cubature Kalman filter 189 

For an integrated navigation system comprising the error state system of Equation (2) and measurement 190 

system of Equation (3), Fig. 2 shows the estimation error of the motion state and process of correcting 191 

the SINS output. The system noise is ~ (0, )k kN Q , and the random measurement noise is ~ (0, )k kv N R . 192 

Therefore, a Gaussian filter with a Kalman filter structure can be used to process the nonlinear discrete 193 

integrated system at step k   in the state estimation task while the time and measurement are being 194 

updated. The details of the CKF algorithm for the integrated navigation system is given in Appendix I. 195 

 196 

 197 

 198 

SINS

 199 
Figure 2. CKF-based integrated navigation system. 200 

 201 

When an ASS is cruising at sea, k  and kv  are affected by the complex environment, such as thermal 202 

changes and electromagnetic interference. The properties of random errors may be uncertain and 203 

variable, which contradicts the requirement of the Kalman filter for zero-mean Gaussian white noise. 204 

This random error will lead to significant measurement error or even failure of the angular velocity and 205 

acceleration, which will affect one-step state prediction ( | 1
ˆ

k kx − ) and prediction variance ( , | 1xx k kP − ) in the 206 

time update. Furthermore, GNSS and DVL frequently encounter measurement outliers, which will lead 207 

to errors in measurement matrix (
kz ) at k  step and affect the filter gain. This in turn reduces the state 208 

estimation accuracy. The above faults eventually affect state prediction covariance matrix ( |k kP ) and 209 

will contaminate the output of the integrated navigation system in step 1k + . 210 
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3. Proposed fault detection algorithm 211 

In addition to accurate motion state estimation, the increased demand for reliability has increased the 212 

importance of fault detection for the integrated navigation system of an ASS. Therefore a new fault 213 

detection algorithm has been proposed with the details described below. 214 

 215 

3.1 Residual observer-based fault detection using CKF and Hi/H∞ optimization 216 

To account for the sensitivity to faults and robustness against unknown random noise of the residual 217 

observer, a fault detection algorithm is proposed for a time-varying nonlinear integrated navigation 218 

system using Hi/H∞ optimization. Much of the theory behind the proposed algorithm is based on the 219 

research of Zhong et al. (2015). The fault case for a nonlinear state-space model of integrated navigation 220 

system can be expressed as 221 

 222 

, 1,

, 2,

( )t c t c t cf t t

t t t t cf t t

x f x B B f

z H x v D f

= + +


= + +
 (8) 223 

 224 

where 
1,tf  and 

2,tf  are the SINS and measurement faults, respectively. Unlike Zhong et al. (2015, 2016), 225 

the proposed algorithm adopts CKF to satisfy the accuracy and robustness requirements for motion state 226 

estimation of a strongly nonlinear integrated navigation system. The first step of designing a residual 227 

observer-based fault detection filter is the discrete linearization of 
cf as: 228 

 229 

2

1
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1ˆ{ } arg min
2

c t k k k

n
T

k k k

k

f x A x

A
n



 
=

+

= 
 (9) 230 

 231 

where 
k k k kA  = −   and 

k   are the 2n   sampling result of a one-step state prediction. Then, 232 

T 1 T( ) ( )k k k k kA    −=   can be obtained using culture point sampling. 
kA   is the result from the 233 

linearization of 
cf . 

kd  and 
kf  are assumed to be 

2[0, ]l N -norm bounded uncertain disturbances and 234 

measurement noise in step k . 235 

 236 

Thus, the nonlinear discrete-time dynamic system of Equation (8) can be rewritten as follows: 237 

 238 

1

1

k k k c k f k k

k k k c k f k

x A x B d B f

z H x D d D f

+

+

= + + +


= + +
 (10) 239 

 240 

where 
T T T

1, 2,[ , ]k t tf f f=  , ,[ ,0]f cf tB B=  , and ,[0, ]f cf tD D=  . The following observer-based fault detection 241 

function is then used to generate residuals: 242 

 243 

1
ˆ ˆ

ˆ

k k k k k t

k k k k

k k k

x A x K y

y z H x

r W y

+ = + +


= −
 =

 (11) 244 

 245 

where 
kr   is the residual, 

kK   is the gain matrix, and 
kW   is the postfilter. Note that ˆ

kx   is the state 246 

estimation. If dk k k kA A K H= −  , 
dk c k cB B K D= −  , fk f k fB B K D= −  , and 

dk cD D=  , then the state 247 

estimation error ˆ
k k kx x x= −  can be obtained as follows: 248 

 249 

1k dk k dk k f k

k k k dk k f k

k k k
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y H x D d D f

r W y

+ = + +


= + +


=

 (12) 250 
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The following is defined: 251 
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 254 

where 
2

[0, ]rd N
G


 is the robustness to unknown inputs and 

2

[0, ]rf N
G


, 

2

[0, ]rf N
G

−
 are the best and worst-255 

case sensitivities, respectively, of the residual to faults. 256 

 257 

If , 1...k j dk dk djA A A −= , ,j j I =  as per Zhong et al. (2010), then Equation (12) can be rewritten as follows: 258 

 259 

0 0N d N f Nr x d f=  + +  (14) 260 

 261 

where 262 

 263 

0 0
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  =    264 
 265 

If k j , then ( , )d k k k dkW D =  and ( , ) 0d k j = . If k j , then ( , ) 1,d k j k k k j jdW H B − = . Similarly, f  can be 266 

used to replace fD  and fB  in Equation (12). Then, Equation (13) can be rewritten as follows: 267 

 268 

,[0, ] ,[0, ]

,[0, ] ,[0, ]

max ,max
rf rfN N

rd rdN N

G G

G G

 −

 

 (15) 269 

 270 

To satisfy Equation (15), both postfilter (
kW ) and gain (

kK ) can be approximated as follows: 271 

 272 
T T 1

T T

T T 1
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1

( )k k k k c c yk
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−

 = +


= +


= + −


=

 (16) 273 

 274 

The following equation is commonly used to evaluate residual observer-based fault detection filters: 275 

 276 
T1/

k

N k kk N
J N r r

−
=   (17) 277 

 278 

where N   is the sliding window width. A fault alarm is triggered when 
NJ   exceeds a predefined 279 

threshold. Algorithm 1 summarizes the proposed fault detection algorithm based on CKF and Hi/H∞ 280 

optimization for an integrated navigation system subject to energy-bounded random errors and 281 
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measurement noises. 282 

 283 

 284 

Algorithm 1 Proposed fault detection algorithm 

Step 1: Set step 0k = , 0 1*15
ˆ 0x = ; 

Step 2: Obtain the linearized system matrix 
kA  and 

k  with (9); 

Step 3: Calculate kL  and kW  using (16); 

Step 4: Calculate 1
ˆ

kx +  and 1kr +  using (11); 

Step 5: Calculate NJ  with (17); 

Step 6: Choose a threshold and comparing with (17) to detect faults; 

Output: Boolean value of whether the fault exists 

 285 

3.2 Optimization of the fault detection algorithm using a cascaded neural network 286 

The proposed algorithm offers the advantages of sensitivity to faults and robustness against unknown 287 

inputs. Consequently, it can obtain reliable fault detection results. However, it is based on a residual 288 

observer, which is insensitive to soft faults. This affects the one-step state prediction of the Kalman 289 

filter and makes the state estimation track the fault values. Thus, the residual error changes are not 290 

evident. Moreover, the limitations of the sliding window width and the difficulty in determining the 
NJ  291 

threshold in Equation (17) need to be considered. Thus, Fig. 3 shows a framework of using a cascaded 292 

neural network to optimize the proposed fault detection algorithm. 293 

 294 

 295 
 296 

 297 

Figure 3. Framework for optimizing the proposed fault detection algorithm using a cascaded neural 298 

network. 299 

 300 

 301 

 302 

 303 

 304 

 305 
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Table 1. Features extracted from the residual 
NJ  signal 306 

Features Description 

Mean 1/
n N

nn
N x

+
= 

 
Max Max( )nx  
Min Min( )nx  

Variance 2 21/ ( )
n N

nn
N x 

+
= −

 
Skewness 3 31/ ( )

n N

nn
N x 

+
−

 
Rate of change 

1max( ( ))
n N

n nn
x x

+

+ −
 

kurtosis 4 41/ ( )
n N

nn
N x 

+
−

 
 307 

 308 

To address this limitation, time-domain features can be extracted for the state estimation error 309 

covariance 
kP  , which is more severely affected by faults in the state estimation of the integrated 310 

navigation system. This is particularly helpful for the attitude, which has weak observability. Slow 311 

feature analysis (SFA) was used to extract the time-domain features of the covariance 
kP  owing to its 312 

ability to extract slowly changing fault signal features in a high-dimensional input. The following set 313 

of equations ()jf  is used to identify slowly varying components ( )jy k  from 
kP : 314 

 315 

( ) ( )j j ky k f P=  (18) 316 

 317 

where 1 2( ) [ ( ), ( ),..., ( )]j k k k m kf P f P f P f P=  is a set of proper functions. The primary objective function of 318 

SFA is given by 319 

 320 
2min ( ) min ( )j jy k y k =  (19) 321 

 322 

under the constraints of 323 

 324 

2

( ) 0                      (zero mean)

( ) 1                       (unit variance)

, ( ) ( ) 0   (decorrelation)

j

j

j j

y k

y k

i j y k y k

=

=

  =

 (20) 325 

 326 

where ( )jy k  is the first derivative of ( )jy k  at transient step k  and .  is the mean value of the signal. 327 

However, obtaining the nonlinear mapping ()jf  directly is difficult. To address this limitation, a kernel 328 

transformation ( ( ), ( ))ij k kS s P i P j=   is used on the inputs 
kP   to determine the kernel characteristics, 329 

where , 1.....i j n=  denote the n th-dimensional input signals (Du et al. 2019). The kernel transformation 330 

vector can be determined as follows: 331 

 332 

m S =  (21) 333 

 334 

The slowest- and second-slowest features correspond to the smallest and second-smallest values, 335 

respectively, of  . m  is the number of samples, and the new principal component features of the kernel 336 

can be acquired by 337 

 338 
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1

( , ( ))
d

j

kj i k k

i

v S P P i
=

 =  (22) 339 

 340 

where 
kv  is zero-mean uncorrelated vector. To satisfy the constraints of Equation (20), an additional 341 

transformation should be applied to 
kv  that does not change the mean, variance: 342 

 343 
T

k ky G v=  (23) 344 

 345 

The objective of Equation (19) can be realized by transforming it into a problem of solving eigenvalues 346 

to obtainG  (Zhang et al. 2021). Then, the optimal solution is given by ,0 ,1 1[ , ,..., ]T

dG g g g −= , where the 347 

order of eigenvalues is from small to big. 348 

 349 

In addition to the time-domain fault features extracted from LSTM and prior knowledge, the frequency-350 

domain characteristics of the original signal are important for determining the signal quality. Thus, a 351 

sub-CNN network was adopted for frequency-domain fault detection based on short-time Fourier 352 

transform (STFT). The mathematical expression of the STFT is as follows: 353 

 354 
*( , ) ( ) ( ) j tST f t g t e dt   −= −  (24) 355 

 356 

where *  is a conjugate symbol and ( )g t  is the Hamming window function (Tao et al. 2019). To avoid 357 

the influence of extreme values on the learning efficiency of the neural network, the wavelet transform 358 

is used to extract the envelope of the signal change trend before the frequency-domain feature extraction.  359 

Because the noise of an integrated navigation system is relatively stable under normal operating 360 

conditions, the quality of the integrated navigation system can be measured using the fundamental and 361 

harmonic waves of 
NJ  . The content of the fundamental wave can accurately reflect the noise 362 

distribution of SINS and external measurement sensors, i.e., ideal periodic noise. The harmonic wave 363 

reflects the fault and additional noise based on an ideal periodic signal because the solution period of 364 

an integrated navigation system is a fixed and nonstationary signal. Then, multidimensional frequency-365 

domain characteristics extracted by STFT are substituted into the CNN for training (Guo et al. 2018). 366 

Finally, the training results of the LSTM-based fault detection subnetwork, multi-feature time-domain 367 

fault detection subnetwork, and frequency-domain fault detection subnetwork are used as inputs to the 368 

backpropagation (BP)-based decision-level fusion network to achieve online fault detection. 369 

 370 

As shown in Fig. 3, the normalized 
NJ  is substituted into the LSTM-based fault detection subnetwork 371 

comprising ten LSTM neuron units as training data. The BP-ANN in the multi feature time-domain 372 

fault detection subnetwork has a structure of 30 hidden layers and 10 output layers. The 2D-CNN in the 373 

frequency-domain fault detection subnetwork has the following structure: one input layer connected to 374 

eight 7 × 7 convolutional layers, a 2 × 2 max pooling layer, four 3 × 3 convolutional layers, another 2 375 

× 2 maximum pooling layer, and final output to two full connection layers. The detection results of the 376 

three networks are integrated in the decision-level fusion network. 377 

 378 

4. Verification 379 

4.1 Simulation 380 

Simulations were performed using the XSENS Mti-710 inertial measurement unit (IMU). The 381 

gyroscope and accelerometer have in-run bias stabilities of 10°/h and 15 µg, respectively, and noise 382 

densities of 0.01°/s/sqrt (Hz) and 60 µg/sqrt (Hz), respectively. As the external measurement unit, the 383 

GNSS of the integrated navigation system had a positioning error of 5 m and velocity error of 0.4 m/s. 384 

The simulation error data of Mti-g-710 were taken from the instruction manual, and the simulation 385 

errors of GNSS and DVL were within reasonable ranges (Jin et al. 2022). 386 

 387 

The propeller of the ASS was assumed to rotate at a constant speed in the face of a 3 m/s west wind and 388 

1 m/s crosscurrent with an initial speed of 15.5 knots and heading of 000°. The heading was fine-tuned 389 
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during 0–800 s. Then, the rudder angle was adjusted to 10° and −10° at 1000–1400 s and 1400–2000 s, 390 

respectively, and to 25° and −25° at 2000–2500 s and 2500–3000 s, respectively. Figure 4 shows the 391 

simulated motion trajectory. 392 

 393 

 394 
Figure 4. Diagram of the ship motion trajectory and simulation system interface. 395 

 396 

Various simulation cases were input with different 
NJ  and 

kP  under normal and fault conditions. The 397 

different subnetworks were pretrained 10,000 times, and the decision-level fusion network was trained 398 

22,000 times. The batch size was set to 50 based on the loss values and accuracy from the cross-399 

experiments. The learning rate was set to be 0.0001. The training goal (i.e., minimum mean square error, 400 

MMSE) was set as 10−4 for all subnetworks except the multi-feature time-domain fault detection 401 

subnetwork. This subnetwork was set to a learning rate of 0.001 and an MMSE of 10−6. For the 402 

frequency-domain fault detection subnetwork, the packet loss rate was set as 0.5 to avoid overfitting. 403 

For the decision-level fusion network, the training rate and MMSE were set the same as for the multi-404 

feature time-domain fault detection subnetwork.  405 

 406 

The training results are shown in Fig. 5. For the LSTM-based fault detection subnetwork [Fig. 5(a)] and 407 

CNN-based frequency-domain fault detection subnetwork [Fig. 5(c)], the error of the loss function 408 

gradually converged and the classification accuracy gradually improved, which indicates that the 409 

network performances tended to be stable. For the multi-feature time-domain fault detection 410 

subnetwork [Fig. 5(b)] and BP-based decision-level fusion network [Fig. 5(d)], the gradient and RMSE 411 

gradually decreased, which indicates that the trained networks tended to be stable. After all iterations, 412 

the three subnetworks had accuracy rates of 90.21%, 95.24%, and 99.32%, and the decision-level fusion 413 

network had an accuracy rate of 99.6%. 414 

 415 
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(a) LSTM-based fault detection subnetwork. 

 
(b) Multi-feature time-domain fault detection subnetwork. 

 
(c) Frequency-domain fault detection subnetwork. 
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(d) Decision-level fusion network. 

Figure 5. Training results of the subnetworks. 

 416 

Various faults that may occur in ship sensors were simulated to confirm the effectiveness of the proposed 417 

algorithm. The SINS/GNSS integrated navigation system was considered as a research object to verify 418 

the effectiveness of the SINS/DVL/COMPASS integrated navigation system. External measurement 419 

faults primarily manifest as signal interruptions caused by interference or shielding as well as hard faults 420 

with increased errors in a short time period. Temperature, violent motion, and electromagnetic 421 

interference all affect the IMU primarily through soft faults that cause errors to accumulate over time. 422 

Table 2 summarizes the simulated hard and soft faults added to the SINS/GNSS integrated navigation 423 

system, where 
GNSSP  and 

GNSSV  are the position and velocity errors of GNSS, and
k  is the gyroscope 424 

error of the IMU. It is worth noting that the faults simulated in this paper mainly include the hard faults, 425 

which can be denoted as a step-function type commonly seen in GNSS and DVL output data. The 426 

additive noise failure caused by noise drift and the additive Gaussian measurement noise can be 427 

regarded as soft failure, which comes with increasing error variance and often occur in SINS and GNSS. 428 

 429 

Table 2. Simulated hard and soft faults added to the SINS/GNSS integrated navigation system 430 

 Time Faults Types 

1 110 s < t < 120 s 

1110 s < t< 1120 s 

2110 s < t< 2120 s 

1.5*GNSS GNSSP P =  

Soft faults 

2*  GNSS GNSSP P =  

2 210 s < t < 220 s 

1210 s < t< 1220 s 

2210 s < t < 2220 s 

1.5*GNSS GNSSV V =  

2*GNSS GNSSV V =  

3 310 s < t < 320 s 

1310 s < t < 1320 s 

2310 s < t < 2320 s 

1.5*  

1.5*

GNSS GNSS

GNSS GNSS

V V

P P

 

 

=

=
 

2*  

2*

GNSS GNSS

GNSS GNSS

V V

P P

 

 

=

=
 

4 410 s < t < 420 s 

1410 s < t < 1420 s 

2410 s < t < 2420 s 

1 (m/s) GNSS GNSSV V = +  

Hard faults 

2(m/s)GNSS GNSSV V = +  

5 510 s < t < 520 s 

1510 s < t < 1520 s 

2510 s < t < 2520 s 

3(m)GNSS GNSSP P = +  

6 (m)GNSS GNSSP P = +  

6 610 s < t < 620 s 

1610 s < t < 1620 s 

2610 s < t < 2620 s 

3(m)

1(m/s)

GNSS GNSS

GNSS GNSS

P P

V V

 

 

= +

= +
 

6(m)

2(m/s)

GNSS GNSS

GNSS GNSS

P P

V V

 

 

= +

= +
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7 700 s < t < 800 s 

1700 s < t < 1800 s 

2700 s < t < 2800 s 

(0.036 /h)*k k t = +
 

Soft faults 
(0.36 /h)*  k k t = +

 
8 800 s < t < 900s 

1800 s < t < 1900 s 

2800 s < t < 2900 s 

(0.18 /h)*k k t = +
 

(1.8 /h)*  k k t = +
 

 431 

Figure 6 shows the detection results for the minor faults in Table 2 when the detection threshold and 432 

sliding window width were disregarded. Figure 6(a) shows that neither GNSS nor SINS faults were 433 

detected by the LSTM-based fault detection subnetwork. This demonstrates that a neural network alone 434 

is not ideal for detecting the original residual time-domain signal of an integrated navigation system 435 

and that the fault detection capability seems weak. Figure 6(b) shows that the multi-feature time-domain 436 

fault detection subnetwork did not detect some faults when the fluctuation of 
NJ  was unclear. Some 437 

SINS soft faults were detected in the steady state but were not obvious during the turning phase. This 438 

is because ship maneuvers are conducive to the convergence of state errors in the integrated navigation 439 

system, which results in small residuals and unclear covariance characteristics. Figure 6(c) shows the 440 

features extracted by STFT, and Fig. 6(d) shows the results of the frequency-domain fault detection 441 

subnetwork. Although additional faults, including SINS soft faults, were detected, there were several 442 

false alarms, particularly during large changes in course. As shown in Fig. 6(e), the decision-level fusion 443 

network combined the advantages of the time-domain statistical characteristics with frequency-domain 444 

networks, which not only increased the fault detection accuracy but also decreased the false alarm rate. 445 

 446 

 
(a) LSTM-based fault detection subnetwork. 

 
(b) Multi feature time-domain fault detection subnetwork. 
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(c) STFT extraction of residual frequency-domain features. 

 
(d) Frequency-domain fault detection subnetwork. 

 
(e) Decision-level fusion network. 

Figure 6. Minor fault detection results of the proposed algorithm with neural network optimization. 

 447 

Figure 7 shows the detection results for the major fault cases in Table 2. In contrast to the results for the 448 

minor fault cases, Fig. 7(a) shows that the LSTM-based fault detection subnetwork detected a small 449 

number of GNSS velocity and position faults. However, the effectiveness was not ideal. Figure 7(b) 450 

shows that the multi-feature time-domain fault detection subnetwork detected additional faults during 451 
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the course alteration stage, but there were some false alarms. Figure 7(c) shows the STFT extraction of 452 

the frequency-domain signal 
NJ  , and Fig. 7(d) shows the results of the frequency-domain fault 453 

detection subnetwork. There were fewer false alarms and a higher degree of accuracy when compared 454 

to the multi feature time-domain fault detection subnetwork. Figure 7(e) shows the results of the 455 

decision-level fusion network, which were similar to the results shown in Fig. 7(d). 456 

 457 

 
(a) LSTM-based fault detection subnetwork. 

 
(b) Multi feature time-domain fault detection subnetwork. 

 
(c) STFT extraction of residual frequency-domain features. 
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(d) Frequency-domain fault detection subnetwork. 

 
(e) Decision-level fusion network. 

Figure 7. Major fault detection results of the proposed algorithm with neural network optimization. 

 

In summary, the proposed fault detection algorithm optimized using a cascaded neural network was 458 

capable of detecting faults regardless of the various motion states of the ASS without replying on an 459 

empirical threshold and designed sliding window width. The LSTM-based fault detection subnetwork 460 

had a low degree of generality, a low detection rate, and a negligible effect on the results of the decision-461 

level fusion network. The multi-feature time-domain fault detection subnetwork missed minor faults 462 

but had a minimal false alarm rate. The frequency-domain fault detection subnetwork detected most 463 

faults, including SINS soft faults, but had a high false alarm rate. The decision-level fusion network 464 

combined the advantages of the three subnetworks by detecting most faults, including soft faults, but 465 

also realizing a low false alarm rate. Thus, the optimization of the proposed algorithm was verified. It 466 

is worth noting that it is difficult to determine which period the failure occurred based on the values of 467 

the vertical axis of the blue residual lines based on the traditional residual observer-based fault detection 468 

algorithms. According to previous studies (Fei et al. 2021, Liang et al, 2021, Oh et al. 2022, Zammali 469 

et al. 2021) limited by the algorithm principle, the fault detection algorithms based on residual observer 470 

are generally insensitive to gradual soft faults. Simply optimizing the residual parameters cannot make 471 

it sensitive to soft faults. In this paper, due to a lack of a large number of real ship data, the cascaded 472 

network is used to optimize it, and the result of soft fault detection is better than the traditional algorithm. 473 

 474 

 475 

 476 



18 

 

4.2 Experimental result and discussion 477 

To confirm the effectiveness of the proposed algorithm in practical applications, real historical ship data 478 

were applied to the simulation-trained model. Faults were introduced into the historical sensor data to 479 

determine whether they could be detected using the proposed algorithm with various integrated 480 

navigation systems. The historical data were obtained from an experiment conducted using ASS 320 at 481 

Lingshui Port in Dalian, China. The experimental historical track included straight lines and turns. The 482 

experimental site is 170 m in length and 70 m in width. The bay is not considerably affected by tidal 483 

waves, and the current is slow. An Mti-G-710, a Lidar, cameras, a 4G communication antenna, and a 484 

5.8G WIFI antenna were installed on top of ASS 320. Moreover, ASS 320 was equipped with 485 

COMPASS and DVL, as shown in Fig. 8. To accurately simulate interference during actual navigation, 486 

the speed measured using DVL was subjected to sinusoidal function interference with an amplitude of 487 

0.5 m/s. The experimental data covered a period of 437 s. Then, 0.18°/h SINS soft faults were added at 488 

101–150 s, and 1 m/s of GNSS velocity faults and 1 m/s of DVL faults were added at 201–230 s and 489 

301–330 s, respectively. The proposed algorithm was then applied to fault detection for verification. 490 

 491 

 492 
Figure 8. Field test of ASS 320 and the experimental route. 493 

 494 

Figure 9 shows that the results of the SINS/GNSS integrated navigation system were comparable to the 495 

simulation results. Figure 9(a) shows that the LSTM-based fault detection subnetwork continued to 496 

perform poorly in terms of fault detection. Figure 9(b) shows that the multi-feature time-domain fault 497 

detection subnetwork detected most SINS soft faults between 100 and 150 s but had some false alarms 498 

after 250 s. Figure 9(c) shows the STFT extraction results, and Fig. 9(d) shows that the frequency-499 

domain fault detection subnetwork had a large number of false alarms between 150 and 200 s. Figure 500 

9(e) shows that the decision-level fusion network not only achieved a lower false alarm rate than the 501 

frequency-domain fault detection subnetwork did but also successfully detected most faults, including 502 

SINS soft faults. 503 

 504 

 
(a) LSTM-based fault detection subnetwork. 
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(b) Multi feature time-domain fault detection subnetwork. 

 
(c) STFT extraction of residual frequency-domain features. 

 
(d) Frequency-domain fault detection subnetwork. 
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(e) Decision-level fusion network. 

Figure 9. Fault detection results of the proposed algorithm with neural network optimization for the 

SINS/GNSS integrated navigation system of ASS 320. 

 505 

The proposed algorithm was adopted for the SINS/DVL/COMPASS integrated navigation system. 506 

Figure 10 shows that similar results were obtained as in the previous cases. Figure 10(b) shows that the 507 

multi-feature time-domain fault detection subnetwork had a higher number of false alarms. Figures 10(d) 508 

and (e) show that the decision-level fusion network and frequency-domain fault detection subnetwork 509 

had similar results and successfully detected SINS soft faults without obvious fluctuations in 
NJ  and 510 

with a low number of false alarms. 511 

 512 

 
(a) LSTM-based fault detection subnetwork. 
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(b) Multi feature time-domain fault detection subnetwork. 

 
(c) STFT extraction of residual frequency-domain features. 

 
(d) Frequency-domain fault detection subnetwork. 
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(e) Decision-level fusion network. 

Figure 10. Fault detection results of the proposed algorithm with neural network optimization for 

the SINS/DVL/COMPASS integrated navigation system of ASS 320. 

 513 

The experimental results verified that the proposed algorithm could detect faults in the integrated 514 

navigation system of an ASS. The proposed algorithm was capable of detecting slowly changing SINS 515 

soft faults while retaining a low false alarm rate for SINS/GNSS and SINS/DVL/COMPASS integrated 516 

navigation systems. The LSTM-based fault detection subnetwork was not sensitive to such faults, but 517 

the frequency-domain fault detection subnetwork and multi feature time-domain fault detection 518 

subnetwork had significant impacts on the overall results. The multi feature time-domain fault detection 519 

subnetwork had a high false alarm rate for both integrated navigation systems. 520 

 521 

5. Conclusion 522 

Previous studies on the fault detection of integrated navigation systems for ASSs have shown that 523 

setting the fault detection threshold is highly dependent on experience, the sliding window width is 524 

difficult to design, SINS gradient soft faults are difficult to detect, and previous algorithms cannot be 525 

learned online. In this study, a fault detection algorithm was proposed to address the above issues. The 526 

proposed algorithm was optimized using a cascaded neural network comprising an LSTM-based fault 527 

detection subnetwork, multi feature time-domain fault detection subnetwork, and frequency-domain 528 

fault detection subnetwork. The algorithm uses residual and covariance information during the filtering 529 

process to eliminate the dependence of traditional model-based fault detection algorithms on empirical 530 

parameter settings. This solved the problem of the residual observer being insensitive to soft faults. The 531 

proposed algorithm was verified through simulations and historical data from a real ship. The LSTM-532 

based fault detection subnetwork had limited effectiveness at detection of time-domain soft faults. 533 

Although the multi feature time-domain fault detection subnetwork was capable of detecting SINS soft 534 

faults, it had a high rate of missed detection. In contrast, the frequency-domain fault detection 535 

subnetwork had a high detection rate but also had a large number of false alarms. The results of the 536 

three subnetworks were output to the decision-level fusion network to obtain the optimal results. The 537 

results showed that the proposed algorithm is capable of not only detecting soft faults without relying 538 

on an empirical threshold but also reducing the rate of missed detections and false alarm for two 539 

integrated navigation systems (i.e., SINS/GNSS and SINS/DVL/COMPASS). The detection 540 

performance with the decision-level fusion network was better than that of a single subnetwork. This 541 

confirmed the effectiveness of the proposed algorithm and neural network optimization. 542 

  543 
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Appendix I CKF algorithm for an integrated navigation system 544 

For the time update, the mean and variance of the posterior probability of the system under the 545 

measurement conditions are approximated by transforming 2n  cubature points with equal weights 
1

2n
 546 

using the nonlinear system equation (.)cf . The propagated i -th sampling points cubature points at step 547 

k  can be computed as 548 
( )

1 1 1
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The one-step state prediction 
| 1

ˆ
k kx −

 and prediction variance 
, | 1xx k kP −

 are computed as 550 
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 (26) 551 

For the measurement update, the volume point is calculated according to the estimation 
| 1

ˆ
k kx −

  and 552 

variance 
, | 1xx k kP −

 at time k . kQ  denotes the system noise covariance. 553 
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| 1 | 1 | 1
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The measurement prediction 
| 1

ˆ
k kz −

 , measurement prediction error variance (innovation variance) 555 

, | 1zz k kP − , and state measurement cross covariance . | 1xz k kP −  can be obtained as follows: 556 

2
( )

| 1 | 1

1

2
( ) ( ) T T

, | 1 | 1 | 1 | 1 | 1

1

2
( ) ( ) T T

. | 1 | 1 | 1 | 1 | 1

1

1
ˆ

2

1
ˆ ˆ( ) ( )

2

1
ˆ ˆ( ) ( )

2

n
i

k k k k

i

n
i i

zz k k k k k k k k k k k

i

n
i i

xz k k k k k k k k k k

i

z z
n

P z z z z R
n

P z x z
n



− −

=

− − − − −

=

− − − − −

=

=

= − +

= −







 (28) 557 

The measurement update of the gain kK , state prediction vector |
ˆ

k kx , and state prediction covariance 558 

matrix |k kP can be performed as follows: 559 

, | 1 , | 1

| | 1 | 1

T

| | 1 , | 1
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Appendix II List of notation 562 

Most of the symbols are introduced in detail in the main text. Some symbols with subscripts are further 563 

explained below. 564 
SINS

tL : Latitude measured by SINS at time t . 565 
SINS

t : Longitude measured by SINS at time t . 566 
SINS

th : Height measured by SINS at time t . 567 
GNSS

tL : Latitude measured by GNSS at time t . 568 
GNSS

t : Longitude measured by GNSS at time t . 569 
GNSS

th : Height measured by GNSS at time t . 570 

,

SINS

E tV : Eastern velocity measured by SINS at time t . 571 

,

SINS

N tV : Northern velocity measured by SINS at time t . 572 

,

SINS

H tV : Vertical velocity measured by SINS at time t . 573 

,

GNSS

E tV : Eastern velocity measured by GNSS at time t . 574 

,

GNSS

N tV : Northern velocity measured by GNSS at time t . 575 

,

GNSS

H tV : Vertical velocity measured by GNSS at time t . 576 

,

DVL

E tV : Eastern velocity measured by DVL at time t . 577 

,

DVL

N tV : Northern velocity measured by DVL at time t . 578 

SINS

t : Heading measured by SINS at time t . 579 
COMPASS

t : Heading measured by compass at time t . 580 

cB : System noise transfer matrix. 581 

,cf tB : SINS fault transition matrix. 582 

,cf tD : Measurement fault transition matrix. 583 

(.)S : Function of the covariance inner product after whitening. 584 
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