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Abstract 

 

Colony fitness screens are powerful approaches for functional genomics and genetics. This 

protocol describes experimental and computational procedures for assaying the fitness of 

thousands of microbial strains in numerous conditions in parallel. Data analysis is based on 

pyphe, an all-in-one bioinformatics toolbox for scanning, image analysis, data normalisation and 

interpretation. We describe a standard protocol where endpoint colony areas are used as fitness 

proxy and two variations on this, one using colony growth curves and one using colony viability 

staining with phloxine B. Different strategies for experimental design, normalisation techniques 

and quality control are discussed. Using these approaches, it is possible to collect hundreds of 

thousands of data points, with low technical noise levels around 5%, in an experiment typically 

lasting two weeks or less.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Measuring properties of densely arrayed microbial colonies is a powerful and efficient technique 

for determining the fitness of large panels of microbial strains. Today, numerous knock-out or 

over-expression mutant libraries, wild strain collections, segregant panels and synthetic genetic 

array construction methods are available to underpin systematic, data-driven investigations. 

Owing to specialised robotics, colony screens are largely automated and can be done at huge 

scales, e.g. with millions of double knock-out mutants (1). Colony screens have been employed 

to measure the fitness of large segregant libraries for the dissection of complex traits (2, 3) and 

the characterisation of wild strain libraries (4–6). All such experiments require scalable 

computational approaches for data acquisition, data management, batch correction and 

statistical analysis. To this end, we have recently published a new toolbox named pyphe which 

enables fast, reproducible and flexible pipelines for colony screen analysis (Figure 1) (7). 

 

One key challenge of colony screens is that the observed colony phenotype is affected by 

factors other than the strain’s fitness. Batch effects, e.g. originating from media preparation or 

incubation time, make colony sizes not directly comparable between different plates. Even 

within plates, nutrient, moisture and temperature gradients as well as differences in inoculation 

mass due to uneven pinning can result in variation between colonies located in different areas 

of the plate. A well-known example is the “edge effect”, where outermost colonies grow larger 

due to a lower degree of nutrient competition. Normalisation is therefore key for obtaining 

reliable fitness estimates. Edge effects, and other effects that affect rows and columns evenly, 

can in some cases be rectified by dividing by the row/column median, and other, regional biases 

can sometimes be rectified by comparing colonies to their neighbours (e.g. as implemented in 

SGAtools (8)). Both these normalisation methods only work if the null effect can be reliably 

estimated, i.e. if the majority of colonies show no growth effect. An alternative approach is to 

https://paperpile.com/c/L4MYB5/VprT
https://paperpile.com/c/L4MYB5/hwko+Dxj9
https://paperpile.com/c/L4MYB5/zVxj+AjCz+jwMa
https://paperpile.com/c/L4MYB5/H9yu
https://paperpile.com/c/L4MYB5/uKX1


include a grid of control strains on every plate (Figure 2) (9). Each colony is then compared to 

essentially a weighted average of the neighbouring controls, resulting in a relative fitness that is 

standardized within and across plates (as long as the same control strain is used). Pyphe 

implements row/column median normalisation as well as a grid normalisation, giving the user 

full control over the normalisation strategy. Using grid normalisation, it is possible to achieve 

technical noise levels of around 5%, enabling the detection of subtle differences in fitness.  

 

Classically, plates are imaged once and colony footprint areas are used as fitness proxy. 

Recent methods have expanded on this in two areas. ScanLag (10), Quantitative Fitness 

Analysis (11), Colony-live (12) and Scan-o-matic (9) use repeated imaging of colonies and 

extract parameters from the resulting growth curve. Additionally, Colony-live and Scan-o-matic 

use transmission scanning where the grey-value of a pixel can be used as a proxy for colony 

thickness. These methods achieve lower noise values than endpoint measurements but require 

substantially higher investments in scanners (which need to be housed in a temperature-

controlled environment), data storage and analysis. We recently found that, at least within of the 

parameters tested, the growth rate parameters extracted from timeseries correlate tightly with 

endpoint sizes (7). This is compatible with a model where colonies grow until the media is 

exhausted by the ensemble of colonies, giving each colony a fixed time-window for growth. This 

is an important difference to screens conducted in multi-well plates with liquid media, where 

each culture is given a fixed amount of resources. Pyphe supports the acquisition and analysis 

of colony growth curves as well as traditional endpoint measurements, allowing the user to 

choose the method most suitable for their experiment and laboratory setup. 

 

Another variation on classical screens is the use of phloxine B as a dead cell stain (13). If this is 

included in the media, the colour of a colony reflects the proportion of dead cells in it (7). This 

provides an orthogonal readout that is often uncorrelated to colony sizes after both readouts are 

https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/QGfe
https://paperpile.com/c/L4MYB5/Ze1B
https://paperpile.com/c/L4MYB5/eL4f
https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/H9yu
https://paperpile.com/c/L4MYB5/YuJ6
https://paperpile.com/c/L4MYB5/H9yu


standardised to the control strain. As phloxine B in the media generally does not affect cell 

growth, it can be included in all plates, whereby a second fitness dimension is added to the 

experiment at little extra cost and effort. Pyphe can acquire and analyse colour images and 

extract quantitative redness scores which then integrate seamlessly into the rest of the analysis 

pipeline.  

 

We here present a detailed protocol for colony fitness screens, split into an experimental and 

computational part. The basic protocol describes an endpoint experiment using colony areas as 

fitness proxies. In our opinion, this should be the default for most investigations and the starting 

point for new users. Two variations on this are described: How to record and analyse colony 

growth curves and how to analyse colony viability by phloxine B staining. These, together with 

the detailed accompanying notes, are meant as a starting point for users to implement their own 

workflows. By providing a framework of data formats and analysis steps, much of it will be 

applicable to researchers not using pyphe but looking to implement their own computational or 

experimental procedures. Experimental details will vary between microbial species, assay 

conditions and laboratory settings. Pyphe is set up as an open-source, collaborative software 

project and we welcome user feedback and contributions for its continuous improvement. 

2. Materials 

2.1. Experimental 

1. Sterile microbial growth media (liquid and with agar) 

2. Rectangular agar plate dishes, e.g. Singer PlusPlates 

3. Microwave (or autoclave) for melting agar media 

4. 50ml serological pipettes and pipette pump 

5. Conical flask (e.g. 250ml), shaking incubator 



6. Pinning robot and consumables (e.g. Singer RoToR with 96 long RePads, 96 short 

RePads and 1536 short RePads) 

7. Cling film 

8. Plate incubator 

9. Strain library cryostocks in 96 or 384 format, ideally with unique footprints  

10. Cryostock of a suitable control strain  

Optional 

11. Incubator to house scanners (for timecourse imaging) 

12. Phloxine B (for colony viability measurements) 

13. Reagents required for testing specific growth conditions of interest (e.g. drugs, 

chemicals or nutrients) 

2.2. Scanning and Data Processing 

1. Scanner (Epson V800 or V850 recommended) with a fixture to hold plates into place on 

the scanner surface (laser cutting guide available on https://github.com/Bahler-

Lab/pyphe/tree/master/Documentation/Scan). Please see Figure 3 for more information 

on how to set up the scanner. 

2. A computer with Ubuntu (or another Linux operating system) and Python3 (e.g. 

Anaconda3) for scanning. 

3. Any computer with any operating system with Python3 installed for the rest of the 

analyses. 

 

 

https://github.com/Bahler-Lab/pyphe/tree/master/Documentation/Scan
https://github.com/Bahler-Lab/pyphe/tree/master/Documentation/Scan


3. Methods 

3.1. General Method: Endpoints 

3.1.1. Experimental design and plating 

 

1. Pick an appropriate control strain for your library. For knock-out, over-expression and 

similarly constructed libraries this should usually be the library background strain (“wild 

type”). For collections of wild isolates or segregant libraries, the choice of control strain is 

more flexible, but it should not fall on either extreme side of the distribution of fitness 

phenotypes. 

2. Plan the arrangement of library and control strains on the final assay plates. Overall, five 

different types of plates are required throughout the workflow: library plates, grid plates, 

combined plates, source plates and assay plates (Figure 2). Consider how many 

replicates are required to answer your biological question (see Note 1). Plan how to 

rearrange the library plates around the control grid and prepare the layout file of your 

assay plates (see Notes 2 and 3). 

4. Prepare sterile growth media and pour agar plates for waking up the library and for the 

preparation of the grid plate (see Note 4). We usually use rich media for waking up 

strains and preparing the grid plate, even if the screen is in the end carried out on 

minimal media. 

5. Wake up the control strain and your library. This protocol is applicable to a wide range of 

microbial organisms and growth media, so we cannot specify incubation times for plates. 

The general advice for the preparatory phase is that plates should be incubated until 

colonies are fully (or almost fully) grown as this makes pinning easier, however, not so 

long that colonies get stressed due to starvation or desiccation. 



6. Prepare grid plates by growing a 40ml liquid culture of the control strain overnight. Then, 

pour the culture into an empty PlusPlate and, using 96 long RePads, pin from liquid to 

solid to make the grid plates. Do not use target mixing. Prepare multiple grid plates as 

required (plus some spares) as the number of times a grid plate can be pinned from is 

limited to approximately 10. 

7. Once grown, re-array grid and library plates as shown in Figure 2. Use 96 short RePads 

for this. On the Singer RoToR, you can either use the inbuilt 16-to-1 array mode or make 

your own pinning program in custom mode. 

8. To make the source plates, copy the combined plates onto fresh agar plates, using 1536 

short pins. This step is important because the combined plates are a patchwork and 

should therefore be copied again to make consistent, evenly arrayed source plates. 

Besides, this step can serve as an amplification step for larger screens with many assay 

plates. Simply prepare several copies of each source plate, approximately one for every 

10 assay plates.  

9. Prepare your assay plates with drugs, inhibitors or particular nutrient composition as 

required (Note 4). Make one or two spares per condition in case something goes wrong 

during pinning.  

10. Copy your source plates onto the assay plates using 1536 short pins. Consistent, small 

inoculums are obtained with low pinning pressure (5-10%). Clearly label each plate with 

a unique ID (see Note 5). Monitor the quality of pinned plates (see Note 6). 

11. Wrap plates in cling film and place in an incubator. Plates should always rest upside-

down to prevent condensate dropping onto the colonies. Ideally, there should be no 

strong air currents or temperature gradients in the incubator which can lead to plates 

drying out and colonies growing unevenly. 

12. Let the colonies grow until they stop or barely grow anymore (usually 2-3 days). Please 

see (7) for detailed reasoning for this choice of time point.  

https://paperpile.com/c/L4MYB5/H9yu


 

3.1.2. Acquisition 

1. To install pyphe, run the following command in your terminal (see Note 7). 

 $ pip install pyphe  

ImageMagick needs to be installed, the scanner needs to be accessible with SANE 

(Scanner Access Now Easy) and the TPU8x10 scanning mode must be available. This 

is the case by default for recent versions of SANE, which is included in the standard 

Ubuntu installation. 

2. Image your plates once they have grown. Turn on the scanner and run 

$ pyphe-scan --fixture som3 --postfix POSTFIX --nplates N 

Where POSTFIX is the name of your experiment and N the total number of plates you 

have to scan. The fixture argument specifies how to crop individual plate images from 

the original scan. Parameters for our fixture model are pre-programmed (use 

som3_edge and som3 for images containing or not containing the edge respectively), 

but it is possible to configure your own fixtures in the pyphe-scan script. Plates are 

always placed in the scanner with the agar on the bottom (i.e. not upside-down) and with 

the A1 colony position in the back-right corner (see Figure 3). Remove the plate lids, 

lower the scanner top and make sure it is even. Press ‘y’ when prompted to start 

scanning. Swap plates as instructed. Pyphe-scan will create a folder with the current 

date and the POSTFIX in the current directory in which images will be saved.  

3. In parallel, prepare a table mapping the scan sequence to the plate ID. Later, expand 

this to include information about the layout, experimental condition and any additional 

meta-data (date, batch, comments etc.) you want to keep track of. This will be your 

experimental design table (EDT, see Note 5). 



3.1.3. Quantification 

1. Extract colony sizes from images by running 

$ pyphe-quantify batch --grid auto_1536 --pattern “images/*.jpg” 

The batch parameter indicates the mode in which to run pyphe-quantify. In batch 

mode images are analysed one at a time and colony areas are extracted. The --grid 

option specifies how to assign identified colonies to grid positions. In automatic mode, as 

used here, the grid is detected based on pixel row and column intensity peaks. There 

are other ways to manually define grid positions when this is required, please see the 

documentation. The --pattern argument can be used to specify which images should 

be analysed, in this case, it is assumed that all your images are located in a folder 

‘images’ in the current working directory and are in jpg format.  

2. Carefully check whether the results are as expected. A QC image is produced for every 

single analysed image. Investigate if colonies were identified correctly and that colonies 

are assigned the correct row and column (see Note 8). Pyphe-quantify has numerous 

parameters that can be adjusted, check the documentation for details.  

3.1.4. Analysis 

1. Edit your EDT table to include a column ‘Data_path’ which contains relative file paths to 

each image’s data file (these are located in the ‘pyphe_quant’ directory by default). If you 

have to exclude individual images for QC reasons, simply delete the corresponding lines 

from the EDT table. 

2. Aggregate data across plates and perform grid and subsequent row/column median 

normalisation by running 

$ pyphe-analyse --edt EDT.csv --format pyphe-quantify-batch --

gridnorm standard1536 --rcmedian --qc_plots analyse-qc 

The --edt option specifies the relative path to your experimental design table and 



should be adjusted if required. The --format option describes the type of input data, in 

this case colony areas produced by pyphe-quantify. The --gridnorm argument 

enables grid correction and the following parameter specifies where the grid colonies are 

located on the plate. “standard1536” refers to the recommended position of two 96 

grids in the top left and bottom right corners. In some cases, when your grid strain grows 

differently than your library, it might not be appropriate to use row/column normalisation 

(see Note 9) after grid correction. In those cases, simply leave out the --rcmedian 

parameter. The --qc_plots option tells pyphe-analyse to produce a QC report for 

each plate in the experiment, which will be saved in the specified folder. There are 

additional options which are explained in the documentation. 

3. Once the command has finished, join your layout table onto the produced colony report 

(in R or python or the programming language of your choice). Alternatively, you can use 

the --load-layouts option to load strain IDs directly into your colony report. 

4. Perform quality control suited to your experiment (see Note 10). For each plate, check 

that the footprints are empty and check the coefficient of variation of the additional grid 

colonies. Discard plates from the analysis as required.  

3.1.5. Interpretation 

1. Compute summary statistics and p-values comparing each strain to the control strain 

(repeated across all conditions).  

$ pyphe-interpret --ld pyphe-analyse_data_report.csv --

circularity 0.85 --control CONTROL-STRAIN --grouping_column 

Condition --axis_column Strain  

The --ld option specifies the path to the colony report generated in the previous step. 

The --circularity option triggers a filter that excludes all colonies with a circularity 

below the specified value. This is useful in order to exclude image analysis artefacts 



from further analysis. The --grouping_column argument specifies a column in the 

colony report for subsetting your data. In each subset, i.e. for each unique entry in the 

grouping column, a different set of t-tests will be performed. The --axis_column 

argument specifies the explanatory variable of your t-test. The --control option 

specifies your control strain and this needs to be the string identifier also found in the 

axis column of your colony report. 

2. Compute summary statistics and p-values comparing each condition to the control 

condition (repeated across all strains). This tests for condition-specific differences in 

fitness, correcting for basal growth of the strain.  

$ pyphe-interpret --ld pyphe-analyse_data_report.csv --

circularity 0.85 --control CONTROL-CONDITION --grouping_column 

Strain --axis_column Condition 

For example, in a scenario where a slow-growing mutant (relative to the wild-type grid 

strain) has been measured in a large number of conditions and shows a consistent 

growth defect (e.g. a fitness of 0.8) in all conditions (including a control condition without 

stress), the first command would result in a significant p-value for this strain in all 

conditions as each time it is compared only to the wild type (which has a fitness of 1) in 

the same condition. This second approach would show no significant difference in 

fitness as the fitness in each condition is the same as in the control condition.  

3. Proceed to analyse your data according to your question. For calling hits, it is usually 

useful to define an effect size threshold additional to your p-value cut-off.  

   

 



3.2. Variation 1: Time course analysis 

Pyphe implements methods to analyse growth curves of colonies, obtained by automated, 

regular imaging of plates. Characteristics of the growth curve, usually the maximum slope, are 

extracted and corrected for plate position effects, similarly as endpoint colony sizes. This 

method typically achieves lower noise values, but we nonetheless only recommend it for 

specialised applications as the maximum slopes extracted from growth curves correlates tightly 

with much more easily obtained endpoints (7). Please also see Note 11 for a list of other 

software resources, some dedicated specifically to colony growth curve analysis. 

 

To record and analyse growth curves, prepare your assay plates as described in the 

Experimental section above. Then proceed as follows: 

 

1. Immediately after pinning, place the assay plates into the scanner without lids. Take a 

note of the plate ID corresponding to each position. Close the lid so that it rests 

horizontally on the plates. If desired, place the scanner in an incubator or temperature-

controlled environment.  

2. On the scanner computer, run pyphe-scan-timecourse. 

$ pyphe-scan-timecourse --nscans NSCANS --interval INTERVAL --

postfix POSTFIX --fixture som3 

NSCANS is the number of scans in the timecourse, INTERVAL is the time between the 

end of a scan and the start of the next (we recommend 20 to 30 minutes). After the first 

scan, check that everything is working as expected and that the first images look ok. 

3. After scanning has finished, manually inspect the images. Often, it is necessary to 

remove some images at the end of the timecourse, e.g. because colonies started 

touching each other, contaminations or condensation appeared, or the plates dried out. 

https://paperpile.com/c/L4MYB5/H9yu


4. For every plate separately, extract growth curves using pyphe-quantify in timecourse 

mode.  

$ pyphe-quantify timecourse --grid auto_1536 

This will produce a table of growth curves, where individual colonies are the columns 

and timepoints are the rows. 

5. For every plate separately, extract growth curve parameters using pyphe-growthcurves.  

$ pyphe-growthcurves --input INPUT --plots 

Input is the path of the csv file produced by pyphe-quantify. 

6. Proceed with analysis as above. Run pyphe-analyse using the --format pyphe-

growthcurves option. The Data_path column of your EDT table should contain paths 

to the files produced by pyphe-growthcurves. Pyphe-analyse will perform corrections on 

the maximum slope of the growth curves but will retain and include other growth curve 

parameters in the colony report.  

 

3.3. Variation 2: Colony viability analysis 

Addition of the dead-cell stain phloxine B to the media results in colonies with varying redness 

which is correlated to the fraction of dead cells in the colony. This can be performed in parallel 

to the standard workflow, imaging each plate twice: once in greyscale transmission mode (for 

colony sizes) and once in colour reflective mode (for viability analysis). In our hands, viability 

analysis with phloxine B works better in 384 format and in conditions which are not too stressful, 

which both results in larger colonies with a stronger signal. Note that phloxine B staining has 

only been used in a quantitative screening context in S. pombe, so some initial validation will be 

required when applied to other species. 



1. Proceed to prepare your assay plates as above but include 5 mg/L phloxine B in the 

media. A 1000x aqueous stock can be stored in the fridge protected from light for 

several weeks.  

2. Grow plates as usual, but protected from light (phloxine B is light sensitive) 

3. Scan plates with the white background attached to the scanner lid. 

$ pyphe-scan --mode Color --fixture som3-color --postfix POSTFIX 

--nplates N 

4. Analyse the images using pyphe-quantify in redness mode 

$ pyphe-quantify redness --grid auto_1536 --pattern 

“images/*.jpg” 

5. Proceed with the analysis in pyphe-analyse. We recommend using only row/column 

median correction if possible. 

$ pyphe-analyse --edt EDT.csv --format pyphe-quantify-redness --

rcmedian --qc_plots analyse-qc 

 

 

3. Notes 

1. Power calculations. At the beginning of the planning phase of an experiment, consider 

the resolving power required of it to answer your biological question. This will allow you to 

design cost- and labour-efficient experiments. In the simplest case, you might only be interested 

in the binary classification of growth/no growth, e.g. when testing the essentiality of genes in 

specific contexts. In another setting, the goal might be to characterise growth differences down 

to a couple of percentage points, e.g. when identifying genetic variants of wild strains which 

have subtle effects on growth. The number of replicates required to address these two 



questions differs drastically. You can design your experiment appropriately by calculating the 

number of required replicates based on the minimal effect size you are trying to detect, the 

noise of the method (5-10% is a good, conservative estimate in general) and the desired 

statistical power (chance of correctly rejecting the null hypothesis). This can be done using the 

stats.power module of the python statsmodels package or the power.t.test function in R, or other 

online tools. For example, to have an 80% chance of detecting a 5% difference in growth at 5% 

noise (standardised effect size = 1), with a p-value cutoff of 0.05, you would require 17 samples 

in each group (two-sided Student's t-test). You also need to consider that correcting for multiple 

testing will in the end decrease the statistical power of your test. This effect is of course stronger 

the larger your strain library is. In the case of the Bonferroni correction (which is not 

recommended), you can easily calculate this loss of power by dividing your alpha by the number 

of tests. For preferred FDR methods, this is not straightforward and requires you to make an 

educated guess. 

2. Plate layouts. T-tests generally require the samples to be independent. What this 

means in practice is often not entirely clear, and it will be up to you to decide the details of your 

experiment design. In general, we would not consider replicates located next to each other on 

the same plate as independent as they are subject to the same pinning errors as well as local 

nutrient, moisture and temperature regimes. It is therefore not recommended to generate 

replicates using 1-to-4 or 1-to-16 multiplexing pinning programmes where a single 96 plate is 

replicated into 384 or 1536 respectively. Instead, replicates should be obtained by recombining 

library plates in different combinations into the assay plate, mixing up the extract location and 

neighbours. 

 

Colonies grow in competition and lack of neighbours usually results in increased growth. This is 

commonly observed as an edge effect where plates on the borders grow bigger. For the same 

reason, colony screens are sensitive to empty areas of the plate, effectively creating internal 



edges. If library plates are only partly filled, we recommend filling empty spots with control 

strains or random strains. This is less important if empty positions are scattered and more so if 

entire corners, areas, rows or columns are empty.  

 

Despite generally discouraging empty positions, we strongly recommend leaving one individual, 

unique position per library plate empty. Such footprints serve two important purposes. Firstly, 

they are negative control positions which should always be empty, if they are not this indicates a 

source of contamination. Secondly, they aid identification of specific plates in the case of 

multiple assay plate layouts. Images will not contain the labelling information written on the side 

of the plates, so in case of a mix-up, the footprints can provide crucial clues to the identity of the 

plate. 

 

3. Layout files. Preparing the layout of your assay plates is a key task that will require 

some programming/data processing, at least for larger experiments. This is best done with 

layouts in long format, i.e. using a table with at least three columns (Row, Column, Strain) 

where every line of the table describes a single colony position. For every library plate in 96 

format, take a note of the position into which it is pinned onto the combined plates. When 

pinning from 96 to 1536 format, there are 16 of these positions (rows 1-4 and columns 1-4). 

Let’s call the row position pr and the column position pc. The row and column position of a 

colony on the assay plate (1≤ar≤32 and 1≤ac≤48) is then related to the position (1≤sr≤8 and 

1≤sc≤12) on the source plate by:  

     ar  = 4*(sr-1) + pr 

ac  = 4*(sc-1) + pc 

Using this formula, transform the row and column values for each 96 library plate depending on 

their target position. Create a layout for the grid plate and include it too. Then, concatenate the 

tables for all plates and sort by row and column. 



4. Agar plate preparation. To achieve high data completeness and low technical noise, it 

is crucial that assay plates are flat, without bubbles and of suitable dryness. For this, ensure the 

following: 

● Always let the media cool down to approximately 60°C before pouring plates. Otherwise, 

the contraction of the agar during cooling will result in unwanted ripples on the surface. 

When potentially temperature-sensitive drugs are to be included in the assay plates, add 

these when the media has cooled down and right before pouring to minimise the 

exposure to high temperatures.  

● Always pour plates on a level and even surface. In our experience, this can be done on 

a standard lab bench without a sterile environment, as long as the plate lid is 

immediately replaced after pouring.  

● Always add a consistent amount (we use 40ml) of agar medium to each plate. This will 

result in plates with a consistent height and also avoid other artefacts. Thicker plates 

mean more nutrients are available to each colony which will change the colony size. Use 

a serological 50ml pipette and take up 5ml more than required. This will prevent bubbles. 

If you spot any bubbles, suck them back up with the pipette.  

● Plates should be dried for a consistent time (we use 45 minutes without lids) before use. 

Alternatively, closed plates can be left unwrapped on the bench overnight which in our 

experience results in plates with a suitable dryness for immediate use. Plates can be 

stored in the fridge/cold room if not used immediately but will require extra drying before 

use.  

5. Preparation of the EDT table. Preparing a correct and complete experimental design 

table (EDT) is a key requisite for obtaining results with pyphe-analyse. All plates in your 

experiment should have a unique ID and this should be clearly written on the edge of the plate 

(not on the bottom where it would show up in the scanned images). For example, plate IDs 

could follow the format date_layout_condition_replicate. While scanning, take a note of which 



plate ID corresponds to which image in the scan sequence in table format. This table can then 

later easily be transformed into the EDT required by pyphe by adding extra columns with 

additional meta-data. The final table must be in csv format and the first column must contain the 

unique plate IDs. There must also be a column called ‘Data_path’ which points to the image 

data file produced by pyphe-quantify. Any additional meta-data, such as date, condition, library 

versions, comments, batch information, can be included and will be carried through to the 

colony report. Please see the Documentation folder in the pyphe github repository for an 

example file. Please note that there is no need for all the data files to be located in the same 

folder, which is convenient if you have large experiments containing several batches. Generally, 

file paths should not contain spaces or non-standard characters or those with special meanings 

in the terminal (%,>,?,/,”,*,&, etc.). Use _ or . or - to separate words.  

6. Quality control during pinning. Even with precise robots, the transfer of colonies by 

pinning can be prone to errors which, if unspotted, will result in missing or wrong data. A 

common problem that occurs when target plates are uneven is that entire areas or corners of 

the plate have no colony inoculums. Such pinning errors are dangerous as they could result in 

colonies which are absent for technical reasons to be interpreted as unviable phenotypes. 

Pyphe helps spot these errors by detecting missing control colonies and setting all neighbouring 

colonies to NA, but this only occurs after the damage is done. We therefore strongly advise to 

check every plate for missing corners and correct pinning by eye. Have one or two spare plates 

at hand to repeat transfers that have failed. If the problem persists, it can help to increase the 

target plate pinning pressure. With the Singer RoToR, it helps to avoid pinning errors if plates 

are consistently placed and pushed into the same corner in their holder. 

7. Use of command line interface. To use pyphe, you need to be familiar with some 

standard characteristics of command line programs, especially the concept of the working 

directory and relative file paths. In the terminal, navigate to the base directory of your 

experiment and run pyphe commands from there. File paths need to be defined in relation to 



that directory. Commands in this protocol are marked with $, indicating that this is a line of code 

to be run in the terminal (the $ is not part of the command). Help for each pyphe tool is available 

by running the tool with the --help parameter (e.g. $ pyphe-analyse --help) 

8. Quality control during image analysis. Pyphe-analyse produces a qc image for every 

image analysed. It is crucial to look at the images, even for huge datasets, to make sure 

colonies have been correctly identified and correctly matched to their grid positions. Issues with 

colony detection can usually be remedied by adjusting the threshold parameter (using the --t 

parameter), setting a hard threshold (using the --hardImageThreshold parameter) or using 

local thresholding (activated with the --localThresh parameter). The last is especially 

recommended for images with uneven brightness, e.g. those obtained with the Singer 

Phenobox. By default, pyphe-analyse excludes very small objects. If your colonies are very 

small, please adjust this exclusion parameter using the --s or --hardSizeThreshold 

parameters. For gridding issues, it can be worth to switch from automatic grid placement to 

manual one. Please see the pyphe-analyse documentation.  

9. Normalisation strategies. Pyphe-analyse gives the user several options for 

normalisation strategies. If neither the --rcmedian nor --gridnorm options are set, no 

normalisation is performed and the raw data from the plates is simply aggregated and 

summarised. For screens without a reference grid, pyphe can still be used (with row/column 

normalisation only or no normalisation). However, lowest noise values are obtained if both 

options are set. In that case, grid normalisation is performed followed by row/median column 

normalisation. This second normalisation can correct an artefact of the grid normalisation 

method which slightly over-corrects colonies next to the edge. This is essentially because 

colonies just off the edge are compared to colonies on the edge and therefore appear relatively 

smaller (see Figure 1—figure supplement 2B and Appendix 2 of (7)).  

https://paperpile.com/c/L4MYB5/H9yu


However, row/column median normalisation can and should only be used if the majority of 

strains in each row and column show no effect (i.e. the null effect can be reliably estimated by 

taking the median). This is usually the case for library screens where most of the mutants 

behave like wild-type and there are only a few outlying ‘hits’. For wild strain libraries, this case is 

harder to argue but it could still work if your strains are arranged randomly. It certainly will not 

work if your grid strain grows differently to the rest of your library (because only some 

rows/columns have a lot of replicates of the grid strain). In those cases, performing row/column 

normalisation after grid normalisation will do more damage than good. Pyphe-analyse produces 

qc plots for every plate analysed and you should inspect these carefully to check that the 

normalisation is working as expected.  

10. Noise statistics for quality control. Biological noise, technical noise and experimental 

errors (incorrect plate preparation, mis-labelling, pinning errors) will impact your data and can 

result in wrong conclusions if they go undetected. We therefore highly recommend to perform 

extensive quality control to quantify the unexplained variation and spot experimental errors. The 

use of negative-control positions (footprints) is key and plates with contaminated footprints 

should be discarded from the analysis. Furthermore, we include a number of control strains on 

every assay plate. One easy way to achieve this is to include an additional 96 grid of control 

strains on each assay plate. These colonies are not used during reference grid correction but 

are expected to have fitness values of 1. Based on these internal controls, it is possible to 

calculate two key noise indicators: First, the coefficient of variation (CV), the ratio of the 

standard deviation of the corrected fitness of these control colonies to their mean is an excellent 

indicator of the level of noise present in the assay. We usually exclude all plates which exceed a 

certain CV threshold (e.g. 10%). Secondly, the fraction of unexplained variance (FUV) is the 

ratio of the variance of the control strains and the variance of all strains. I.e. an FUV of 1 

indicates that the spread of values is equally broad in the control as it is across the library, 

which can indicate that the observed variation across the library strains is purely technical. A 



suitable cut-off for exclusion of individual plates and conditions will depend strongly on your 

library. Certainly, an FUV of greater than 1 would be highly unusual and deserved further 

investigation. It can also be of value to exclude plate and conditions which show very small 

uncorrected colony sizes. This would indicate that the stressor included was too strong or the 

nutrients did not support any growth. In these cases, grid correction can introduce artefacts as 

small colony sizes are extremely noisy. These QC steps differ greatly between experiments, so 

they need to be performed manually on the pyphe-analyse long data report, removing spurious 

lines or setting them to NA. Once completed, you should proceed with hit calling using pyphe-

interpret. 

11. Alternative software solutions. Scan-o-matic (9) is a sophisticated platform for 

scanning, image analysis and spatial normalisation. Scan-o-matic pioneered spatial correction 

with reference grids and additionally supports calibrating pixel intensities to cell numbers, 

enabling exact quantification of population sizes. Scan-o-matic uses timecourse imaging and 

requires a specialised hardware set-up, including pixel calibration strips, modifications to 

scanners and a local area network.  

Gitter (14) is an R package for determining colony sizes from images. It can work with a range 

of input image types and has robust algorithms for thresholding and grid assignment. Pyphe can 

work with image quantification data from gitter. Unfortunately, gitter is currently archived by 

CRAN as it requires outdated packages. For experts, it is possible to install it from the archive 

but this requires manual installation of several dependencies. 

SGAtools (8) provides tools for spatial normalisation (not including reference grid correction) 

and statistical analysis of colony screen data. Available as a web service without installation. 

Colonyzer (15) has been developed for the Quantitative Fitness analysis workflow (11). 

Colonyzer has been designed to work on colonies which have been stamped on plates with 

manual replicators, resulting in a spot (i.e. a spread-out inoculum).  

https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/l6Ec
https://paperpile.com/c/L4MYB5/uKX1
https://paperpile.com/c/L4MYB5/ND7X
https://paperpile.com/c/L4MYB5/Ze1B


IRIS (16) is an advanced image analysis tool for single or timecourse images, specialising in 

detecting additional colony morphology features such as bacterial biofilm formation. CellProfiler 

(17) is a powerful, multi-purpose image analysis tool with which one can assemble analysis 

pipelines to count and measure colony sizes as well as potentially other morphological 

parameters. 
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Figure legends 

Figure 1: Overview of data analysis workflow. 
 
Figure 2: Assembly of assay plates.  
 
Figure 3: Physical setup of scanners. (A) Epson V800 scanner fitted with a fixture. Note that 
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the white background insert on the scanner lid has been removed in preparation for 

transmission scanning (1), the plate positions are clearly numbered to avoid mixing up plates 

(2), the uppermost area of the scanning bed is free and not covered by the fixture as this area is 

used for sensor calibration (3), small ‘bumper pads’ of cardboard have been attached next to 

the hinges to ensure an optimal and consistent distance between the lid and the scanner bed 

once the lid is closed (4), the fixture contains small notches that fit into pockets of Singer 

PlusPlates which ensure plates can only be inserted in the correct orientation (5), additional 

tape has been applied to further stabilise the position of plates within the fixture (6) and that the 

fixture has been securely attached to the scanner (7). For best results, place plates into the 

scanners without their lids. (B) Scanners are positioned in an incubator for timecourse imaging. 

Scanners are placed on a custom-built shelf for easy access and fully covered with black fabric. 

The cover prevents light interference and air currents from the incubator fan hitting the plates 

directly, which would lead to faster and uneven drying. 

 


