
High-throughput, high-precision colony

phenotyping with pyphe

Stephan Kamrad1,2,3,+, Jürg Bähler1 and Markus Ralser2,3,+

1. University College London, Institute of Healthy Ageing, Department of Genetics, Evolution

and Environment, London, United Kingdom

2. The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United

Kingdom

3. Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany

+ For correspondence: stephan.kamrad@gmail.com and markus.ralser@charite.de

Running title: Colony screens with pyphe

Keywords: Screen, Colony, Fitness, Functional genomics, Phenomics, Microbiology, Python

software, large-scale phenotyping, Cell viability, Growth curve

Abstract

Colony fitness screens are powerful approaches for functional genomics and genetics. This

protocol describes experimental and computational procedures for assaying the fitness of

thousands of microbial strains in numerous conditions in parallel. Data analysis is based on

pyphe, an all-in-one bioinformatics toolbox for scanning, image analysis, data normalisation and

interpretation. We describe a standard protocol where endpoint colony areas are used as fitness

proxy and two variations on this, one using colony growth curves and one using colony viability

staining with phloxine B. Different strategies for experimental design, normalisation techniques

and quality control are discussed. Using these approaches, it is possible to collect hundreds of

thousands of data points, with low technical noise levels around 5%, in an experiment typically

lasting two weeks or less.

1. Introduction

Measuring properties of densely arrayed microbial colonies is a powerful and efficient technique

for determining the fitness of large panels of microbial strains. Today, numerous knock-out or

over-expression mutant libraries, wild strain collections, segregant panels and synthetic genetic

array construction methods are available to underpin systematic, data-driven investigations.

Owing to specialised robotics, colony screens are largely automated and can be done at huge

scales, e.g. with millions of double knock-out mutants (1). Colony screens have been employed

to measure the fitness of large segregant libraries for the dissection of complex traits (2, 3) and

the characterisation of wild strain libraries (4–6). All such experiments require scalable

computational approaches for data acquisition, data management, batch correction and

statistical analysis. To this end, we have recently published a new toolbox named pyphe which

enables fast, reproducible and flexible pipelines for colony screen analysis (Figure 1) (7).

One key challenge of colony screens is that the observed colony phenotype is affected by

factors other than the strain’s fitness. Batch effects, e.g. originating from media preparation or

incubation time, make colony sizes not directly comparable between different plates. Even

within plates, nutrient, moisture and temperature gradients as well as differences in inoculation

mass due to uneven pinning can result in variation between colonies located in different areas

of the plate. A well-known example is the “edge effect”, where outermost colonies grow larger

due to a lower degree of nutrient competition. Normalisation is therefore key for obtaining

reliable fitness estimates. Edge effects, and other effects that affect rows and columns evenly,

can in some cases be rectified by dividing by the row/column median, and other, regional biases

can sometimes be rectified by comparing colonies to their neighbours (e.g. as implemented in

SGAtools (8)). Both these normalisation methods only work if the null effect can be reliably

estimated, i.e. if the majority of colonies show no growth effect. An alternative approach is to

https://paperpile.com/c/L4MYB5/VprT
https://paperpile.com/c/L4MYB5/hwko+Dxj9
https://paperpile.com/c/L4MYB5/zVxj+AjCz+jwMa
https://paperpile.com/c/L4MYB5/H9yu
https://paperpile.com/c/L4MYB5/uKX1

include a grid of control strains on every plate (Figure 2) (9). Each colony is then compared to

essentially a weighted average of the neighbouring controls, resulting in a relative fitness that is

standardized within and across plates (as long as the same control strain is used). Pyphe

implements row/column median normalisation as well as a grid normalisation, giving the user

full control over the normalisation strategy. Using grid normalisation, it is possible to achieve

technical noise levels of around 5%, enabling the detection of subtle differences in fitness.

Classically, plates are imaged once and colony footprint areas are used as fitness proxy.

Recent methods have expanded on this in two areas. ScanLag (10), Quantitative Fitness

Analysis (11), Colony-live (12) and Scan-o-matic (9) use repeated imaging of colonies and

extract parameters from the resulting growth curve. Additionally, Colony-live and Scan-o-matic

use transmission scanning where the grey-value of a pixel can be used as a proxy for colony

thickness. These methods achieve lower noise values than endpoint measurements but require

substantially higher investments in scanners (which need to be housed in a temperature-

controlled environment), data storage and analysis. We recently found that, at least within of the

parameters tested, the growth rate parameters extracted from timeseries correlate tightly with

endpoint sizes (7). This is compatible with a model where colonies grow until the media is

exhausted by the ensemble of colonies, giving each colony a fixed time-window for growth. This

is an important difference to screens conducted in multi-well plates with liquid media, where

each culture is given a fixed amount of resources. Pyphe supports the acquisition and analysis

of colony growth curves as well as traditional endpoint measurements, allowing the user to

choose the method most suitable for their experiment and laboratory setup.

Another variation on classical screens is the use of phloxine B as a dead cell stain (13). If this is

included in the media, the colour of a colony reflects the proportion of dead cells in it (7). This

provides an orthogonal readout that is often uncorrelated to colony sizes after both readouts are

https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/QGfe
https://paperpile.com/c/L4MYB5/Ze1B
https://paperpile.com/c/L4MYB5/eL4f
https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/H9yu
https://paperpile.com/c/L4MYB5/YuJ6
https://paperpile.com/c/L4MYB5/H9yu

standardised to the control strain. As phloxine B in the media generally does not affect cell

growth, it can be included in all plates, whereby a second fitness dimension is added to the

experiment at little extra cost and effort. Pyphe can acquire and analyse colour images and

extract quantitative redness scores which then integrate seamlessly into the rest of the analysis

pipeline.

We here present a detailed protocol for colony fitness screens, split into an experimental and

computational part. The basic protocol describes an endpoint experiment using colony areas as

fitness proxies. In our opinion, this should be the default for most investigations and the starting

point for new users. Two variations on this are described: How to record and analyse colony

growth curves and how to analyse colony viability by phloxine B staining. These, together with

the detailed accompanying notes, are meant as a starting point for users to implement their own

workflows. By providing a framework of data formats and analysis steps, much of it will be

applicable to researchers not using pyphe but looking to implement their own computational or

experimental procedures. Experimental details will vary between microbial species, assay

conditions and laboratory settings. Pyphe is set up as an open-source, collaborative software

project and we welcome user feedback and contributions for its continuous improvement.

2. Materials

2.1. Experimental

1. Sterile microbial growth media (liquid and with agar)

2. Rectangular agar plate dishes, e.g. Singer PlusPlates

3. Microwave (or autoclave) for melting agar media

4. 50ml serological pipettes and pipette pump

5. Conical flask (e.g. 250ml), shaking incubator

6. Pinning robot and consumables (e.g. Singer RoToR with 96 long RePads, 96 short

RePads and 1536 short RePads)

7. Cling film

8. Plate incubator

9. Strain library cryostocks in 96 or 384 format, ideally with unique footprints

10. Cryostock of a suitable control strain

Optional

11. Incubator to house scanners (for timecourse imaging)

12. Phloxine B (for colony viability measurements)

13. Reagents required for testing specific growth conditions of interest (e.g. drugs,

chemicals or nutrients)

2.2. Scanning and Data Processing

1. Scanner (Epson V800 or V850 recommended) with a fixture to hold plates into place on

the scanner surface (laser cutting guide available on https://github.com/Bahler-

Lab/pyphe/tree/master/Documentation/Scan). Please see Figure 3 for more information

on how to set up the scanner.

2. A computer with Ubuntu (or another Linux operating system) and Python3 (e.g.

Anaconda3) for scanning.

3. Any computer with any operating system with Python3 installed for the rest of the

analyses.

https://github.com/Bahler-Lab/pyphe/tree/master/Documentation/Scan
https://github.com/Bahler-Lab/pyphe/tree/master/Documentation/Scan

3. Methods

3.1. General Method: Endpoints

3.1.1. Experimental design and plating

1. Pick an appropriate control strain for your library. For knock-out, over-expression and

similarly constructed libraries this should usually be the library background strain (“wild

type”). For collections of wild isolates or segregant libraries, the choice of control strain is

more flexible, but it should not fall on either extreme side of the distribution of fitness

phenotypes.

2. Plan the arrangement of library and control strains on the final assay plates. Overall, five

different types of plates are required throughout the workflow: library plates, grid plates,

combined plates, source plates and assay plates (Figure 2). Consider how many

replicates are required to answer your biological question (see Note 1). Plan how to

rearrange the library plates around the control grid and prepare the layout file of your

assay plates (see Notes 2 and 3).

4. Prepare sterile growth media and pour agar plates for waking up the library and for the

preparation of the grid plate (see Note 4). We usually use rich media for waking up

strains and preparing the grid plate, even if the screen is in the end carried out on

minimal media.

5. Wake up the control strain and your library. This protocol is applicable to a wide range of

microbial organisms and growth media, so we cannot specify incubation times for plates.

The general advice for the preparatory phase is that plates should be incubated until

colonies are fully (or almost fully) grown as this makes pinning easier, however, not so

long that colonies get stressed due to starvation or desiccation.

6. Prepare grid plates by growing a 40ml liquid culture of the control strain overnight. Then,

pour the culture into an empty PlusPlate and, using 96 long RePads, pin from liquid to

solid to make the grid plates. Do not use target mixing. Prepare multiple grid plates as

required (plus some spares) as the number of times a grid plate can be pinned from is

limited to approximately 10.

7. Once grown, re-array grid and library plates as shown in Figure 2. Use 96 short RePads

for this. On the Singer RoToR, you can either use the inbuilt 16-to-1 array mode or make

your own pinning program in custom mode.

8. To make the source plates, copy the combined plates onto fresh agar plates, using 1536

short pins. This step is important because the combined plates are a patchwork and

should therefore be copied again to make consistent, evenly arrayed source plates.

Besides, this step can serve as an amplification step for larger screens with many assay

plates. Simply prepare several copies of each source plate, approximately one for every

10 assay plates.

9. Prepare your assay plates with drugs, inhibitors or particular nutrient composition as

required (Note 4). Make one or two spares per condition in case something goes wrong

during pinning.

10. Copy your source plates onto the assay plates using 1536 short pins. Consistent, small

inoculums are obtained with low pinning pressure (5-10%). Clearly label each plate with

a unique ID (see Note 5). Monitor the quality of pinned plates (see Note 6).

11. Wrap plates in cling film and place in an incubator. Plates should always rest upside-

down to prevent condensate dropping onto the colonies. Ideally, there should be no

strong air currents or temperature gradients in the incubator which can lead to plates

drying out and colonies growing unevenly.

12. Let the colonies grow until they stop or barely grow anymore (usually 2-3 days). Please

see (7) for detailed reasoning for this choice of time point.

https://paperpile.com/c/L4MYB5/H9yu

3.1.2. Acquisition

1. To install pyphe, run the following command in your terminal (see Note 7).

 $ pip install pyphe

ImageMagick needs to be installed, the scanner needs to be accessible with SANE

(Scanner Access Now Easy) and the TPU8x10 scanning mode must be available. This

is the case by default for recent versions of SANE, which is included in the standard

Ubuntu installation.

2. Image your plates once they have grown. Turn on the scanner and run

$ pyphe-scan --fixture som3 --postfix POSTFIX --nplates N

Where POSTFIX is the name of your experiment and N the total number of plates you

have to scan. The fixture argument specifies how to crop individual plate images from

the original scan. Parameters for our fixture model are pre-programmed (use

som3_edge and som3 for images containing or not containing the edge respectively),

but it is possible to configure your own fixtures in the pyphe-scan script. Plates are

always placed in the scanner with the agar on the bottom (i.e. not upside-down) and with

the A1 colony position in the back-right corner (see Figure 3). Remove the plate lids,

lower the scanner top and make sure it is even. Press ‘y’ when prompted to start

scanning. Swap plates as instructed. Pyphe-scan will create a folder with the current

date and the POSTFIX in the current directory in which images will be saved.

3. In parallel, prepare a table mapping the scan sequence to the plate ID. Later, expand

this to include information about the layout, experimental condition and any additional

meta-data (date, batch, comments etc.) you want to keep track of. This will be your

experimental design table (EDT, see Note 5).

3.1.3. Quantification

1. Extract colony sizes from images by running

$ pyphe-quantify batch --grid auto_1536 --pattern “images/*.jpg”

The batch parameter indicates the mode in which to run pyphe-quantify. In batch

mode images are analysed one at a time and colony areas are extracted. The --grid

option specifies how to assign identified colonies to grid positions. In automatic mode, as

used here, the grid is detected based on pixel row and column intensity peaks. There

are other ways to manually define grid positions when this is required, please see the

documentation. The --pattern argument can be used to specify which images should

be analysed, in this case, it is assumed that all your images are located in a folder

‘images’ in the current working directory and are in jpg format.

2. Carefully check whether the results are as expected. A QC image is produced for every

single analysed image. Investigate if colonies were identified correctly and that colonies

are assigned the correct row and column (see Note 8). Pyphe-quantify has numerous

parameters that can be adjusted, check the documentation for details.

3.1.4. Analysis

1. Edit your EDT table to include a column ‘Data_path’ which contains relative file paths to

each image’s data file (these are located in the ‘pyphe_quant’ directory by default). If you

have to exclude individual images for QC reasons, simply delete the corresponding lines

from the EDT table.

2. Aggregate data across plates and perform grid and subsequent row/column median

normalisation by running

$ pyphe-analyse --edt EDT.csv --format pyphe-quantify-batch --

gridnorm standard1536 --rcmedian --qc_plots analyse-qc

The --edt option specifies the relative path to your experimental design table and

should be adjusted if required. The --format option describes the type of input data, in

this case colony areas produced by pyphe-quantify. The --gridnorm argument

enables grid correction and the following parameter specifies where the grid colonies are

located on the plate. “standard1536” refers to the recommended position of two 96

grids in the top left and bottom right corners. In some cases, when your grid strain grows

differently than your library, it might not be appropriate to use row/column normalisation

(see Note 9) after grid correction. In those cases, simply leave out the --rcmedian

parameter. The --qc_plots option tells pyphe-analyse to produce a QC report for

each plate in the experiment, which will be saved in the specified folder. There are

additional options which are explained in the documentation.

3. Once the command has finished, join your layout table onto the produced colony report

(in R or python or the programming language of your choice). Alternatively, you can use

the --load-layouts option to load strain IDs directly into your colony report.

4. Perform quality control suited to your experiment (see Note 10). For each plate, check

that the footprints are empty and check the coefficient of variation of the additional grid

colonies. Discard plates from the analysis as required.

3.1.5. Interpretation

1. Compute summary statistics and p-values comparing each strain to the control strain

(repeated across all conditions).

$ pyphe-interpret --ld pyphe-analyse_data_report.csv --

circularity 0.85 --control CONTROL-STRAIN --grouping_column

Condition --axis_column Strain

The --ld option specifies the path to the colony report generated in the previous step.

The --circularity option triggers a filter that excludes all colonies with a circularity

below the specified value. This is useful in order to exclude image analysis artefacts

from further analysis. The --grouping_column argument specifies a column in the

colony report for subsetting your data. In each subset, i.e. for each unique entry in the

grouping column, a different set of t-tests will be performed. The --axis_column

argument specifies the explanatory variable of your t-test. The --control option

specifies your control strain and this needs to be the string identifier also found in the

axis column of your colony report.

2. Compute summary statistics and p-values comparing each condition to the control

condition (repeated across all strains). This tests for condition-specific differences in

fitness, correcting for basal growth of the strain.

$ pyphe-interpret --ld pyphe-analyse_data_report.csv --

circularity 0.85 --control CONTROL-CONDITION --grouping_column

Strain --axis_column Condition

For example, in a scenario where a slow-growing mutant (relative to the wild-type grid

strain) has been measured in a large number of conditions and shows a consistent

growth defect (e.g. a fitness of 0.8) in all conditions (including a control condition without

stress), the first command would result in a significant p-value for this strain in all

conditions as each time it is compared only to the wild type (which has a fitness of 1) in

the same condition. This second approach would show no significant difference in

fitness as the fitness in each condition is the same as in the control condition.

3. Proceed to analyse your data according to your question. For calling hits, it is usually

useful to define an effect size threshold additional to your p-value cut-off.

3.2. Variation 1: Time course analysis

Pyphe implements methods to analyse growth curves of colonies, obtained by automated,

regular imaging of plates. Characteristics of the growth curve, usually the maximum slope, are

extracted and corrected for plate position effects, similarly as endpoint colony sizes. This

method typically achieves lower noise values, but we nonetheless only recommend it for

specialised applications as the maximum slopes extracted from growth curves correlates tightly

with much more easily obtained endpoints (7). Please also see Note 11 for a list of other

software resources, some dedicated specifically to colony growth curve analysis.

To record and analyse growth curves, prepare your assay plates as described in the

Experimental section above. Then proceed as follows:

1. Immediately after pinning, place the assay plates into the scanner without lids. Take a

note of the plate ID corresponding to each position. Close the lid so that it rests

horizontally on the plates. If desired, place the scanner in an incubator or temperature-

controlled environment.

2. On the scanner computer, run pyphe-scan-timecourse.

$ pyphe-scan-timecourse --nscans NSCANS --interval INTERVAL --

postfix POSTFIX --fixture som3

NSCANS is the number of scans in the timecourse, INTERVAL is the time between the

end of a scan and the start of the next (we recommend 20 to 30 minutes). After the first

scan, check that everything is working as expected and that the first images look ok.

3. After scanning has finished, manually inspect the images. Often, it is necessary to

remove some images at the end of the timecourse, e.g. because colonies started

touching each other, contaminations or condensation appeared, or the plates dried out.

https://paperpile.com/c/L4MYB5/H9yu

4. For every plate separately, extract growth curves using pyphe-quantify in timecourse

mode.

$ pyphe-quantify timecourse --grid auto_1536

This will produce a table of growth curves, where individual colonies are the columns

and timepoints are the rows.

5. For every plate separately, extract growth curve parameters using pyphe-growthcurves.

$ pyphe-growthcurves --input INPUT --plots

Input is the path of the csv file produced by pyphe-quantify.

6. Proceed with analysis as above. Run pyphe-analyse using the --format pyphe-

growthcurves option. The Data_path column of your EDT table should contain paths

to the files produced by pyphe-growthcurves. Pyphe-analyse will perform corrections on

the maximum slope of the growth curves but will retain and include other growth curve

parameters in the colony report.

3.3. Variation 2: Colony viability analysis

Addition of the dead-cell stain phloxine B to the media results in colonies with varying redness

which is correlated to the fraction of dead cells in the colony. This can be performed in parallel

to the standard workflow, imaging each plate twice: once in greyscale transmission mode (for

colony sizes) and once in colour reflective mode (for viability analysis). In our hands, viability

analysis with phloxine B works better in 384 format and in conditions which are not too stressful,

which both results in larger colonies with a stronger signal. Note that phloxine B staining has

only been used in a quantitative screening context in S. pombe, so some initial validation will be

required when applied to other species.

1. Proceed to prepare your assay plates as above but include 5 mg/L phloxine B in the

media. A 1000x aqueous stock can be stored in the fridge protected from light for

several weeks.

2. Grow plates as usual, but protected from light (phloxine B is light sensitive)

3. Scan plates with the white background attached to the scanner lid.

$ pyphe-scan --mode Color --fixture som3-color --postfix POSTFIX

--nplates N

4. Analyse the images using pyphe-quantify in redness mode

$ pyphe-quantify redness --grid auto_1536 --pattern

“images/*.jpg”

5. Proceed with the analysis in pyphe-analyse. We recommend using only row/column

median correction if possible.

$ pyphe-analyse --edt EDT.csv --format pyphe-quantify-redness --

rcmedian --qc_plots analyse-qc

3. Notes

1. Power calculations. At the beginning of the planning phase of an experiment, consider

the resolving power required of it to answer your biological question. This will allow you to

design cost- and labour-efficient experiments. In the simplest case, you might only be interested

in the binary classification of growth/no growth, e.g. when testing the essentiality of genes in

specific contexts. In another setting, the goal might be to characterise growth differences down

to a couple of percentage points, e.g. when identifying genetic variants of wild strains which

have subtle effects on growth. The number of replicates required to address these two

questions differs drastically. You can design your experiment appropriately by calculating the

number of required replicates based on the minimal effect size you are trying to detect, the

noise of the method (5-10% is a good, conservative estimate in general) and the desired

statistical power (chance of correctly rejecting the null hypothesis). This can be done using the

stats.power module of the python statsmodels package or the power.t.test function in R, or other

online tools. For example, to have an 80% chance of detecting a 5% difference in growth at 5%

noise (standardised effect size = 1), with a p-value cutoff of 0.05, you would require 17 samples

in each group (two-sided Student's t-test). You also need to consider that correcting for multiple

testing will in the end decrease the statistical power of your test. This effect is of course stronger

the larger your strain library is. In the case of the Bonferroni correction (which is not

recommended), you can easily calculate this loss of power by dividing your alpha by the number

of tests. For preferred FDR methods, this is not straightforward and requires you to make an

educated guess.

2. Plate layouts. T-tests generally require the samples to be independent. What this

means in practice is often not entirely clear, and it will be up to you to decide the details of your

experiment design. In general, we would not consider replicates located next to each other on

the same plate as independent as they are subject to the same pinning errors as well as local

nutrient, moisture and temperature regimes. It is therefore not recommended to generate

replicates using 1-to-4 or 1-to-16 multiplexing pinning programmes where a single 96 plate is

replicated into 384 or 1536 respectively. Instead, replicates should be obtained by recombining

library plates in different combinations into the assay plate, mixing up the extract location and

neighbours.

Colonies grow in competition and lack of neighbours usually results in increased growth. This is

commonly observed as an edge effect where plates on the borders grow bigger. For the same

reason, colony screens are sensitive to empty areas of the plate, effectively creating internal

edges. If library plates are only partly filled, we recommend filling empty spots with control

strains or random strains. This is less important if empty positions are scattered and more so if

entire corners, areas, rows or columns are empty.

Despite generally discouraging empty positions, we strongly recommend leaving one individual,

unique position per library plate empty. Such footprints serve two important purposes. Firstly,

they are negative control positions which should always be empty, if they are not this indicates a

source of contamination. Secondly, they aid identification of specific plates in the case of

multiple assay plate layouts. Images will not contain the labelling information written on the side

of the plates, so in case of a mix-up, the footprints can provide crucial clues to the identity of the

plate.

3. Layout files. Preparing the layout of your assay plates is a key task that will require

some programming/data processing, at least for larger experiments. This is best done with

layouts in long format, i.e. using a table with at least three columns (Row, Column, Strain)

where every line of the table describes a single colony position. For every library plate in 96

format, take a note of the position into which it is pinned onto the combined plates. When

pinning from 96 to 1536 format, there are 16 of these positions (rows 1-4 and columns 1-4).

Let’s call the row position pr and the column position pc. The row and column position of a

colony on the assay plate (1≤ar≤32 and 1≤ac≤48) is then related to the position (1≤sr≤8 and

1≤sc≤12) on the source plate by:

 ar = 4*(sr-1) + pr

ac = 4*(sc-1) + pc

Using this formula, transform the row and column values for each 96 library plate depending on

their target position. Create a layout for the grid plate and include it too. Then, concatenate the

tables for all plates and sort by row and column.

4. Agar plate preparation. To achieve high data completeness and low technical noise, it

is crucial that assay plates are flat, without bubbles and of suitable dryness. For this, ensure the

following:

● Always let the media cool down to approximately 60°C before pouring plates. Otherwise,

the contraction of the agar during cooling will result in unwanted ripples on the surface.

When potentially temperature-sensitive drugs are to be included in the assay plates, add

these when the media has cooled down and right before pouring to minimise the

exposure to high temperatures.

● Always pour plates on a level and even surface. In our experience, this can be done on

a standard lab bench without a sterile environment, as long as the plate lid is

immediately replaced after pouring.

● Always add a consistent amount (we use 40ml) of agar medium to each plate. This will

result in plates with a consistent height and also avoid other artefacts. Thicker plates

mean more nutrients are available to each colony which will change the colony size. Use

a serological 50ml pipette and take up 5ml more than required. This will prevent bubbles.

If you spot any bubbles, suck them back up with the pipette.

● Plates should be dried for a consistent time (we use 45 minutes without lids) before use.

Alternatively, closed plates can be left unwrapped on the bench overnight which in our

experience results in plates with a suitable dryness for immediate use. Plates can be

stored in the fridge/cold room if not used immediately but will require extra drying before

use.

5. Preparation of the EDT table. Preparing a correct and complete experimental design

table (EDT) is a key requisite for obtaining results with pyphe-analyse. All plates in your

experiment should have a unique ID and this should be clearly written on the edge of the plate

(not on the bottom where it would show up in the scanned images). For example, plate IDs

could follow the format date_layout_condition_replicate. While scanning, take a note of which

plate ID corresponds to which image in the scan sequence in table format. This table can then

later easily be transformed into the EDT required by pyphe by adding extra columns with

additional meta-data. The final table must be in csv format and the first column must contain the

unique plate IDs. There must also be a column called ‘Data_path’ which points to the image

data file produced by pyphe-quantify. Any additional meta-data, such as date, condition, library

versions, comments, batch information, can be included and will be carried through to the

colony report. Please see the Documentation folder in the pyphe github repository for an

example file. Please note that there is no need for all the data files to be located in the same

folder, which is convenient if you have large experiments containing several batches. Generally,

file paths should not contain spaces or non-standard characters or those with special meanings

in the terminal (%,>,?,/,”,*,&, etc.). Use _ or . or - to separate words.

6. Quality control during pinning. Even with precise robots, the transfer of colonies by

pinning can be prone to errors which, if unspotted, will result in missing or wrong data. A

common problem that occurs when target plates are uneven is that entire areas or corners of

the plate have no colony inoculums. Such pinning errors are dangerous as they could result in

colonies which are absent for technical reasons to be interpreted as unviable phenotypes.

Pyphe helps spot these errors by detecting missing control colonies and setting all neighbouring

colonies to NA, but this only occurs after the damage is done. We therefore strongly advise to

check every plate for missing corners and correct pinning by eye. Have one or two spare plates

at hand to repeat transfers that have failed. If the problem persists, it can help to increase the

target plate pinning pressure. With the Singer RoToR, it helps to avoid pinning errors if plates

are consistently placed and pushed into the same corner in their holder.

7. Use of command line interface. To use pyphe, you need to be familiar with some

standard characteristics of command line programs, especially the concept of the working

directory and relative file paths. In the terminal, navigate to the base directory of your

experiment and run pyphe commands from there. File paths need to be defined in relation to

that directory. Commands in this protocol are marked with $, indicating that this is a line of code

to be run in the terminal (the $ is not part of the command). Help for each pyphe tool is available

by running the tool with the --help parameter (e.g. $ pyphe-analyse --help)

8. Quality control during image analysis. Pyphe-analyse produces a qc image for every

image analysed. It is crucial to look at the images, even for huge datasets, to make sure

colonies have been correctly identified and correctly matched to their grid positions. Issues with

colony detection can usually be remedied by adjusting the threshold parameter (using the --t

parameter), setting a hard threshold (using the --hardImageThreshold parameter) or using

local thresholding (activated with the --localThresh parameter). The last is especially

recommended for images with uneven brightness, e.g. those obtained with the Singer

Phenobox. By default, pyphe-analyse excludes very small objects. If your colonies are very

small, please adjust this exclusion parameter using the --s or --hardSizeThreshold

parameters. For gridding issues, it can be worth to switch from automatic grid placement to

manual one. Please see the pyphe-analyse documentation.

9. Normalisation strategies. Pyphe-analyse gives the user several options for

normalisation strategies. If neither the --rcmedian nor --gridnorm options are set, no

normalisation is performed and the raw data from the plates is simply aggregated and

summarised. For screens without a reference grid, pyphe can still be used (with row/column

normalisation only or no normalisation). However, lowest noise values are obtained if both

options are set. In that case, grid normalisation is performed followed by row/median column

normalisation. This second normalisation can correct an artefact of the grid normalisation

method which slightly over-corrects colonies next to the edge. This is essentially because

colonies just off the edge are compared to colonies on the edge and therefore appear relatively

smaller (see Figure 1—figure supplement 2B and Appendix 2 of (7)).

https://paperpile.com/c/L4MYB5/H9yu

However, row/column median normalisation can and should only be used if the majority of

strains in each row and column show no effect (i.e. the null effect can be reliably estimated by

taking the median). This is usually the case for library screens where most of the mutants

behave like wild-type and there are only a few outlying ‘hits’. For wild strain libraries, this case is

harder to argue but it could still work if your strains are arranged randomly. It certainly will not

work if your grid strain grows differently to the rest of your library (because only some

rows/columns have a lot of replicates of the grid strain). In those cases, performing row/column

normalisation after grid normalisation will do more damage than good. Pyphe-analyse produces

qc plots for every plate analysed and you should inspect these carefully to check that the

normalisation is working as expected.

10. Noise statistics for quality control. Biological noise, technical noise and experimental

errors (incorrect plate preparation, mis-labelling, pinning errors) will impact your data and can

result in wrong conclusions if they go undetected. We therefore highly recommend to perform

extensive quality control to quantify the unexplained variation and spot experimental errors. The

use of negative-control positions (footprints) is key and plates with contaminated footprints

should be discarded from the analysis. Furthermore, we include a number of control strains on

every assay plate. One easy way to achieve this is to include an additional 96 grid of control

strains on each assay plate. These colonies are not used during reference grid correction but

are expected to have fitness values of 1. Based on these internal controls, it is possible to

calculate two key noise indicators: First, the coefficient of variation (CV), the ratio of the

standard deviation of the corrected fitness of these control colonies to their mean is an excellent

indicator of the level of noise present in the assay. We usually exclude all plates which exceed a

certain CV threshold (e.g. 10%). Secondly, the fraction of unexplained variance (FUV) is the

ratio of the variance of the control strains and the variance of all strains. I.e. an FUV of 1

indicates that the spread of values is equally broad in the control as it is across the library,

which can indicate that the observed variation across the library strains is purely technical. A

suitable cut-off for exclusion of individual plates and conditions will depend strongly on your

library. Certainly, an FUV of greater than 1 would be highly unusual and deserved further

investigation. It can also be of value to exclude plate and conditions which show very small

uncorrected colony sizes. This would indicate that the stressor included was too strong or the

nutrients did not support any growth. In these cases, grid correction can introduce artefacts as

small colony sizes are extremely noisy. These QC steps differ greatly between experiments, so

they need to be performed manually on the pyphe-analyse long data report, removing spurious

lines or setting them to NA. Once completed, you should proceed with hit calling using pyphe-

interpret.

11. Alternative software solutions. Scan-o-matic (9) is a sophisticated platform for

scanning, image analysis and spatial normalisation. Scan-o-matic pioneered spatial correction

with reference grids and additionally supports calibrating pixel intensities to cell numbers,

enabling exact quantification of population sizes. Scan-o-matic uses timecourse imaging and

requires a specialised hardware set-up, including pixel calibration strips, modifications to

scanners and a local area network.

Gitter (14) is an R package for determining colony sizes from images. It can work with a range

of input image types and has robust algorithms for thresholding and grid assignment. Pyphe can

work with image quantification data from gitter. Unfortunately, gitter is currently archived by

CRAN as it requires outdated packages. For experts, it is possible to install it from the archive

but this requires manual installation of several dependencies.

SGAtools (8) provides tools for spatial normalisation (not including reference grid correction)

and statistical analysis of colony screen data. Available as a web service without installation.

Colonyzer (15) has been developed for the Quantitative Fitness analysis workflow (11).

Colonyzer has been designed to work on colonies which have been stamped on plates with

manual replicators, resulting in a spot (i.e. a spread-out inoculum).

https://paperpile.com/c/L4MYB5/EIlz
https://paperpile.com/c/L4MYB5/l6Ec
https://paperpile.com/c/L4MYB5/uKX1
https://paperpile.com/c/L4MYB5/ND7X
https://paperpile.com/c/L4MYB5/Ze1B

IRIS (16) is an advanced image analysis tool for single or timecourse images, specialising in

detecting additional colony morphology features such as bacterial biofilm formation. CellProfiler

(17) is a powerful, multi-purpose image analysis tool with which one can assemble analysis

pipelines to count and measure colony sizes as well as potentially other morphological

parameters.

Acknowledgements

We would like to thank Natalie Barthel for critical reading of the manuscript. The study was

supported by the Francis Crick Institute, which receives its core funding from Cancer Research

UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust

(FC001134), and received specific funding from the Wellcome Trust (200829/Z/16/Z) and the

ERANET COBIOTEC network “SyCoLim” under grant agreement BMBF-031B0931.

4. References

1. Costanzo M, VanderSluis B, Koch EN, et al (2016) A global genetic interaction network
maps a wiring diagram of cellular function. Science 353

2. Bloom JS, Ehrenreich IM, Loo WT, et al (2013), Finding the sources of missing heritability
in a yeast cross, http://dx.doi.org/10.1038/nature11867

3. Märtens K, Hallin J, Warringer J, et al (2016) Predicting quantitative traits from genome
and phenome with near perfect accuracy. Nat Commun 7:11512

4. Jeffares DC, Rallis C, Rieux A, et al (2015) The genomic and phenotypic diversity of
Schizosaccharomyces pombe. Nat Genet 47:235–241

5. Peter J, De Chiara M, Friedrich A, et al (2018) Genome evolution across 1,011
Saccharomyces cerevisiae isolates. Nature 556:339–344

https://paperpile.com/c/L4MYB5/d3XD
https://paperpile.com/c/L4MYB5/7VgE
http://paperpile.com/b/L4MYB5/VprT
http://paperpile.com/b/L4MYB5/VprT
http://paperpile.com/b/L4MYB5/hwko
http://paperpile.com/b/L4MYB5/hwko
http://dx.doi.org/10.1038/nature11867
http://paperpile.com/b/L4MYB5/Dxj9
http://paperpile.com/b/L4MYB5/Dxj9
http://paperpile.com/b/L4MYB5/zVxj
http://paperpile.com/b/L4MYB5/zVxj
http://paperpile.com/b/L4MYB5/AjCz
http://paperpile.com/b/L4MYB5/AjCz

6. Kamrad S, Grossbach J, Rodríguez-López M, et al (2020) Pyruvate kinase variant of
fission yeast tunes carbon metabolism, cell regulation, growth and stress resistance. Mol
Syst Biol 16:e9270

7. Kamrad S, Rodríguez-López M, Cotobal C, et al (2020), Pyphe, a python toolbox for
assessing microbial growth and cell viability in high-throughput colony screens,
http://dx.doi.org/10.7554/elife.55160

8. Wagih O, Usaj M, Baryshnikova A, et al (2013), SGAtools: one-stop analysis and
visualization of array-based genetic interaction screens,
http://dx.doi.org/10.1093/nar/gkt400

9. Zackrisson M, Hallin J, Ottosson L-G, et al (2016) Scan-o-matic: High-Resolution Microbial
Phenomics at a Massive Scale. G3 6:3003–3014

10. Levin-Reisman I, Fridman O, and Balaban NQ (2014) ScanLag: high-throughput
quantification of colony growth and lag time. J Vis Exp

11. Banks AP, Lawless C, and Lydall DA (2012) A quantitative fitness analysis workflow. J Vis
Exp

12. Takeuchi R, Tamura T, Nakayashiki T, et al (2014) Colony-live--a high-throughput method
for measuring microbial colony growth kinetics--reveals diverse growth effects of gene
knockouts in Escherichia coli. BMC Microbiol 14:171

13. Lie S, Banks P, Lawless C, et al (2018), The contribution of non-essential
Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and
target of rapamycin activity, http://dx.doi.org/10.1098/rsob.180015

14. Wagih O and Parts L (2014) gitter: a robust and accurate method for quantification of
colony sizes from plate images. G3 4:547–552

15. Lawless C, Wilkinson DJ, Young A, et al (2010) Colonyzer: automated quantification of
micro-organism growth characteristics on solid agar. BMC Bioinformatics 11:287

16. Kritikos G, Banzhaf M, Herrera-Dominguez L, et al (2017) A tool named Iris for versatile
high-throughput phenotyping in microorganisms. Nat Microbiol 2:17014

17. Lamprecht MR, Sabatini DM, and Carpenter AE (2007) CellProfiler: free, versatile software
for automated biological image analysis. Biotechniques 42:71–75

Figure legends

Figure 1: Overview of data analysis workflow.

Figure 2: Assembly of assay plates.

Figure 3: Physical setup of scanners. (A) Epson V800 scanner fitted with a fixture. Note that

http://paperpile.com/b/L4MYB5/jwMa
http://paperpile.com/b/L4MYB5/jwMa
http://paperpile.com/b/L4MYB5/jwMa
http://paperpile.com/b/L4MYB5/H9yu
http://paperpile.com/b/L4MYB5/H9yu
http://dx.doi.org/10.7554/elife.55160
http://paperpile.com/b/L4MYB5/uKX1
http://paperpile.com/b/L4MYB5/uKX1
http://dx.doi.org/10.1093/nar/gkt400
http://paperpile.com/b/L4MYB5/EIlz
http://paperpile.com/b/L4MYB5/EIlz
http://paperpile.com/b/L4MYB5/QGfe
http://paperpile.com/b/L4MYB5/QGfe
http://paperpile.com/b/L4MYB5/Ze1B
http://paperpile.com/b/L4MYB5/Ze1B
http://paperpile.com/b/L4MYB5/eL4f
http://paperpile.com/b/L4MYB5/eL4f
http://paperpile.com/b/L4MYB5/eL4f
http://paperpile.com/b/L4MYB5/YuJ6
http://paperpile.com/b/L4MYB5/YuJ6
http://paperpile.com/b/L4MYB5/YuJ6
http://dx.doi.org/10.1098/rsob.180015
http://paperpile.com/b/L4MYB5/l6Ec
http://paperpile.com/b/L4MYB5/l6Ec
http://paperpile.com/b/L4MYB5/ND7X
http://paperpile.com/b/L4MYB5/ND7X
http://paperpile.com/b/L4MYB5/d3XD
http://paperpile.com/b/L4MYB5/d3XD
http://paperpile.com/b/L4MYB5/7VgE
http://paperpile.com/b/L4MYB5/7VgE

the white background insert on the scanner lid has been removed in preparation for

transmission scanning (1), the plate positions are clearly numbered to avoid mixing up plates

(2), the uppermost area of the scanning bed is free and not covered by the fixture as this area is

used for sensor calibration (3), small ‘bumper pads’ of cardboard have been attached next to

the hinges to ensure an optimal and consistent distance between the lid and the scanner bed

once the lid is closed (4), the fixture contains small notches that fit into pockets of Singer

PlusPlates which ensure plates can only be inserted in the correct orientation (5), additional

tape has been applied to further stabilise the position of plates within the fixture (6) and that the

fixture has been securely attached to the scanner (7). For best results, place plates into the

scanners without their lids. (B) Scanners are positioned in an incubator for timecourse imaging.

Scanners are placed on a custom-built shelf for easy access and fully covered with black fabric.

The cover prevents light interference and air currents from the incubator fan hitting the plates

directly, which would lead to faster and uneven drying.

