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Abstract

Relating neural activity to behavior requires an understanding of how neural computations arise
from the coordinated dynamicsof distributed, recurrently connected neural populations.
However, inferring the nature of recurrent dynamics from partial reaogdiof a neural circuit
presentsconsiderablechallenges. Here we show that some of these challenges can be overcome
by a finegrained analysis of the dynamics of neural residtiadd is, trial-by-trial variability
around the mean neural population trajeey for a given task condition. Residual dynamics in
macaque prerontal cortex (PFC) in a saccaoesed perceptual decisiemaking task reveals
recurrent dynamics that is timdependent, but consistently stable, and suggests that
pronounced rotational sucture in PFC trajectories during saccades is driven by inputs from
upstream areas. The properties of residual dynamics restrict the possible contributions of PFC to
decisionmaking and saccade generation, and suggest a path toward fully characterizing
distributed neural computations with larggcale neural recordings and targeted causal
perturbations.

Introduction

Perception, decisions, and the resulting actions reflect neural computations implemented by
large, interacting neuronal populations acting ioncert-?. Inferring the nature of these
interactions from recordings of neural activity is a key step toward uncovering the neural
computations underlying behavisf. One promising approachassumes that neural
computationsare instantiated bya dynamical systetft'! reflecting the combined effects of
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feed-forward inputs into a neural population and dynamiesplementedthroughits recurrent
connectiity!’<16, The utility ofthis @ O 2 Y LJdzihdougkRayy | Yiar@edvérk hinges on our
ability to disentangléenow inputs and recurrent dynamiasontribute to the activity of a neural
populatiory:17:18

Here, we show thathe properties of inputs and recurrent dynamics can sometifesgevealed

by analymmg the dynamical structure of neural population residudlsat is, the trial-to-trial
variability in neural population responsé€®®. Our approach is based on the intuitiviea that

the effect of recurrent computations can be revealed by observing how a perturbation of the
state of the neural population evolves over tiff@°. Unlike experimentemploying external,
causal perturbationswe directly analyze response residuals, which we interpret as naturally
occurring perturbations within the repertoire afctivity patterns produced by a recurrent neural
network3031, Werefertol KS Re@yl YAO0O&a 2F NBaLRyaS NBaARdz f a
that it provides insights into the combined effects of the recurrent dynamics implementedfocall
in the recorded area and in upstream areas providing inputs to it. Obtaining a complete and
guantitative description of residual dynamics is difficult, because the structured component of
neural population residuals is typically dwarfed by unstructuresgethat mayreflectvariability

in singleneuron spiking®2%. We obtain reliable unbiased estimates of residual dynamigih

novel statistical methods based on subspace identificdti&h and instrumental variable
regressiof.

Our findings are organized in threections. First, we illustrate the challenges in disentangling
inputs and recurrent dynamics based on the simulations of simple dynamical sysidets(Fig.

1-2). Thesemodels implement dynamicspreviously proposedo explain neural population
responses dring sensory evidence integratiéh*®>and movement generatioi3¢:37 We use the
simulations to establish what insights into recurrent dynamics can be obtained from different
components of the neural responses, in particular conditereraged responses amdsponse
residuals Second, we study neural population recordings from-fpoatal cortex (PFC) of
macaque monkeys during decistamaking and saccadic choices (Figh)3While condition
averaged responsem PFC are consistent with a number of previously proposed models of
evidence integration and movement generation, we rule out several candidate models based on
the properties of the inferred residual dynamics. Thive study simulations of multiarea
recurrent neural networkRNN models of decisioirmaking?® to illustrate how inferred residual
dynamics could be esl to deduce circuitevel implementations of distributed recurrent
computations(Fig. 68).
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Results

In the framework of computation through dynamicthe temporal evolution of the state of a
neural population § ( 0indicates timé can be described tlough a differential equation:

0 €0 | p
The momentary change in the population stéte) on each triareflectsthe combined effect of
four distinct factors the recurrent dynamicg 0 , the inputs”l , the latent noise , and the

initial conditionsd (state at time zerp The first three factors are assumed to combine additively,
asis approximately the case in mafRNNmodels%15,

Mappingthese factorsdirectly onto individual brain area@~ig 1a, anatomical viewis typically
not possible whenusing neural recordings from only one dew areas within a larger
network!®3940 Rather,here 6 representsa low-dimensionaldynamical state that is reflected in
the collectiveactivity of allrecorded neuron¥, wherebyeachfactor contributing to itcan be
distributed across mangreas! (Fig 1a, functional view)Nonethelessthe variousfactorsin
Equation 1can be distinguisheat a functional levelthrough their distinct contributions to
variability in neural responsesé 0 captures the functional consequences oflistributed
recurrent connectivity and induaes variability over slow timescales (i.e. longemporal
autocorrelatior); capturesfast variability (no autocorrelationand’l cancapturefast or slow
variability, dependingn the complexity of processinigp areas upstream of the recorded one
(Fig.1b).

Weillustrate the relation between theanatomical and functionahterpretationsby considering
two simulatedscenariosdiffering in the complexity of the inputs Inputs are eitherd & A Y;LJ S ¢
reflecting purely feedforward computations(Fig 1b, top; Fig. 1ed, 2 or & O 2 Y LJesbiltng
from recurrent processing@ccurringupstreamof the recorded aredFig 1b, bottom; Fig 6,7).
These simulations lilstrate the challenges in distinguishiriige functional contributions of
recurrent dynamics and inputbut alsothat response residuals ameell-suitedfor this challenge

Neural trajectories poorly constrain recurrent computations

We simulated responsesf several handlesignedmodels thatapproximateneural population
dynamicspreviously proposed to underly thaccumulation ofsensory evidence toward a
choicé?35 (Fig. 1c) othe generation ofcomplex motor sequencé%s’ (Fig. 1d).Asin more
complexRNNmodelg2:3513.37 here theinput consists oftwo components (Fig. 1dunctional
view): a deterministicinput drive’l (repeatable across trials of the same conditiand latent
input noise (Fig. b, simple inputs)

We simulatedsingletrial responses for two taskonditionsand visualized themas trajectories
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Figurel. Disentangling contibutions of inputs and recurrent dynamics to neural responses.

a, Computation through dynamics. Anatomical view (left): recurrent dynamics and inputs respectively capture how the
neural responses are shaped by recurrent connectivity within tleeded area (orange) and by responses in additional
(green). Functional view (right): recurrent dynamics and inputs reflect processes distributed across several areaslieot]
and are defined based on their functional contributions to newsponses (graphical model, bottorh).Relation of function
and anatomical viewpoints in two example scenarios (top & bottom row: simple vs. complex inplit)odels of decisio
making €) and movement generationlY based on simple inputs as in bf}. Each panel shows simulated single trials (dgal
trajectories) and conditioiaveraged trajectories (blue and red trajectories) for two task conditions (choice 1 and 2). Blac
show the effect of recurrent dynamics on the response at any-sfsee location. The effect of an input drive is constant a
state-space, but can change over time and across task conditions (middle pgreddample input directions at bottont).Model:
of decisioamaking. The three models implement unstablé&)|@erfect (middle), and leaky integration (right) of an appropric
chosen input.d, Models of movemergeneration. Left: purely rotational dynamics. Perturbations along both -stpde
dimensions are persistent; Middle: dynamic attractor. Pertudetialong the radial dimension decay, but persist alony
OANDdzf  NJ 60Kl yyStéad waaKEGY LRAYG FAGdNF Old2N®D wSalLkR yites
shown for the dynamic attractor moded, Input drive (se®) for the models irc and d. Curves indicate the components of
input drive along the two statepace dimensions (solid vs dashed) over time (horizontal axis) and conditions (red vs bl
drives are chosen to produce identical condidmeraged trgectories across models @ and ind. Boxes irc and d (left sub
panels): regions of statspace analyzed in Fig. 2

in atwo-dimensional(2D) neural statespace (Fig.dd, choice 1 & 2; dargray curves)The
recurrentdynamicst 0 describes the noiseless evolution dhe instantaneous stated() from
a given statespacelocation in the absence of input$Fig. 1c,d, black arrows and ligintay
curves) The input drive“( ) injectsa particular pattern of activity ito the neural population,
thus pushing thestate along a statespace directionthat could vary across timeand task
conditions (Fig. & red and blue arrowsandFig. ).
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Very different combinations ofrecurrent dynamics and inputsesulted in very similar
trajectories.The three nodels of decisiormakinginstantiatedifferent behavioral$trateges(ior
perceptual decisiomrmaking?, from unstable, impulsive decisions (Fig., 4addle point), to
optimal accumulation of evidence (Fig, line attractor), and leaky, forgetful accumulation (Fig.
1c, point attractor). Yet, for the chosen inpdtive, whichcanbe constant (Fig. & saddle point)

or transient (Fig. &, line and pointattractor), all three modelgproduce similar singlérial
trajectories (Fig. 4, gray curves) and indistinguishable conditenreraged trajectories (Figc,1
blue and red curves). Analogous observations hold for the models of movement generation (Fig.
1d). The conditioraveragesdo not distinguish between two models which responses were
drivensolelyby recurrent dynamics (Fig. 1ea model implementing rotational dynami&s3s, in
which variability in the initial condition is reflected thrdugut the entire trajectory (Fig. 1d
rotations; gray curves) Y R I & R@& y | 3¥mo@el ih whiciNactVifi® pughed toward
and through a narrowhannel in state space (Fig. 1d, dynamic attracfiing resulting condition
averages are also identical to those from a model that implements fatirdactor recurrent
dynamics and is strongipput driveri8 (Fig. 1d, point attractor)

Conditionraveraged trajectories, which are often used to compare simulated neural responses to
measured population activity:1343 thuscannotdisentangle thefunctional effects of recurent
dynamics and inputs in these simple models

Residual dynamicsan resolverecurrent contributions

Neural esidualsare defined asthe difference between a singkeial trajectory and the
corresponding conditioraveraged trajectorif44 (Extended Data Fig..MWVe interpret residuals

as perturbations away from the conditieaveraged trajectory, and capture how these
LISNI dzZNB F GA2ya S@2t 3S 20SNOA4 YEI HKPRAKR 5 IKE!
For the simulated models, the dynamics of residuals can be derived analytically, in two steps (Fig.
2a, Extended Data Fig. 1). We define #féective dynamicdy summing the contribution of
recurrent dynamics and input drivéhus capturing the noiseless evolution of the population
response from any given stagpace location.We then obtain he residual dynamicdy
subtracting, from the effective dynamics, a component corresponding to the instantaneous
direction of change alapthe conditioraveraged trajectory (Fig. 2a, see labels over each panel).

The residual dynamics describes how a perturbation of a neural state along the condition
averaged trajectory evolsover the course of one timstep (Fig. 2c,d, blue dottnperturbed
GNBFTSNBYy OS¢ vy S dnltion frani thep&tilirbed P &For the saddle point
model (Fig. 2c, saddle point), perturbations along the horizontal direction expand over time
(arrows point away from the reference state), whereas pdvations along the vertical direction

& @l
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Figure2. Residual dynamics reveals populatidevel computations.

a, Different factors contributing to the dynamics of the saddle point model, shown in thesg@te region marked in Fific fo
an early time in choice 1 trials (box). Same conventions as in Fig. 1c. Recurrent dynamics and input drive sum to g
effective dynamics, determining the evolution of the response in the absence of noise. The residual dynamics iertbatan
the effective dynamics that explains the evolution of perturbations away from the conditemaged trajectory (blue line; bl
dot: reference time), Effective and residual dynamics estimated directly from simulated giagleesiduals math the groune
truth in a. ¢, Grounadtruth residual dynamics for the models of decisions, same-spatee region and reference time agirhe
residual dynamics reflects the key properties of the recurrent dynamics at the correspondirgpataeegionn Fig. 1c. Tt
arrows in each flow field were scaled by a fixed factor that differed across models ara (witmbers close to arrows at t
bottom). d, Analogous ta, but for the models of movement at an early time in choice 1 trials (box in Fig-d,dProperties ¢
the estimated residual dynamics for the models in Figl. X@nly residual dynamics for choice 1 is shown. The residual dy
is described by a time and conditidependent, autonomous, linear dynamical system. The correspondingiryiag dynamic
matrices describe the residual dynamics at particular locations along one of the cordiéicayed trajectories (Extended D
Fig. 1)e, Magnitude of the eigenvalues (EVaxis) of the 2D dynamics matrix as a function of timaxgs).f, Singular values (£
of the dynamics matrix as a function of time for the models of decisions. The difference between EV and SV-attthetér
model is a consequence of aparmal dynamicsg, Angular phase associated witlomplexvalued EV fomodels of movemer
Larger angular phase implies faster rotational dynamics. EVs, SVs, and angular phase together distinguish betweemt
models

123 decay back to the trajectory (arrows point towards the reference state). These dynamics correctly
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reflect the influence of a saddle point in the vicinitytoé reference statgFig. 1c, box). Likewise,

the residual dynamics correctly reveals line attractor and point attractor dynamics in the other
two models of decisions (Fig. Zmdkey properties ofthe recurrent dynamics in the models of
movement, i.e. rotational dynamics, decay towards the dynamic attractor, and point attractor
dynamics (Fig. 2d). These differences in the underlying recurrent dynamics are less apparent in
the effective dynamicgarticularly for strong input driveéExtended Data Fig. 1).

For measured neural responses, we approximate residual dynamics with a condition and time
dependent, locally linear system, whereby time parameterizes location in-sfaee along the
conditionaveraged trajectory (Extended Data Fig. $uch linear dynamics is wsllited to
describe residuals becausky definition, residual dynamics always has a fixed point at the
location of the reference neural state (Fig. 2c,d, blue d&® estimate thdinear approximations

by combining methods from subspace identificafid#? and instrumental variable regressitn
(Extended Data Fig. 2). These methods, unlike simpler linear regression approaches, can produce
robust and unbiased estimates of residual dynamics in biologically realistic settings (Extended
Data Fig. 3).

We summarize the residuaynamics througtthree properties of the lineamapproximations
specifically the magnitude of theigervalues (EV), the singular values (SV), and the rotation
frequency associated with the EV (Fig-ggeTogether, these properties distinguish the models
in Fig. -d. For Iaations close to the saddle point in the model of decisiwaking, one EV is
larger than 1, implying that perturbations along the associatemervector (the horizontal
direction in Fig. & left) expandover time; the other EV is smalléhan one, corresponding to
decayalong the vertical direction (Figclleft; center of flow field; Fig. 2e, lefhost panel; early
times). For the line attractor, the largestEVis 1 (Fig. 2e, second from left) as horizontal
perturbations arepersistent- that is, neither expand nor decayFor a point attractorall EV
smaller than 1 (Fig. 2e, third from left; all directions decay). Rotational dynamics rasults
complexvaluedEV associated with a nexero rotation frequency (Fig. 2differences betwen

the magnitude of SV and EV reflect roormal dynamics, a feature ofiany models of neural
computatiorf®48, The S\arger than 1 in the line attractor model implies that small pertuitias
along the correspondindght singular vector transientlgxpand even though they are persistent
(EV=1) or decay (EV<1) over lontme-scales (Fig. 2e,f).

Residuas dynamics reflects local and upstream recurres

The above simulations illustrateone settingin whichresidual dynamics, unlike the condition
averaged trajectories, can reveal the properties of the recurrent dynamiadsen input
variability istemporallyuncorrelated, any slow correlations in the residuaits entirely due to
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(and can ke used to infer) the recurrent dynamics (Fig, tdp; simple input3. This constraint,
however,is likely violatedfor single areas in biological networks, whehe input into an area
couldresultfrom recurrentprocessingn upstream aresf®4%, In Equation 1,leinput “I would
thenincludea component oariabilitywith slow temporal correlationsreflectingthe upstream
recurrent dynamicg in Fig. 1hbottom; complex inpu}.

In such settinggesidual dynamicsreflesy 2 G 2dza i (0 KS Gt 2 Odeaf Fg1ME O dzNNB
but rather the combinecdeffects of the recurrent dynamics in the recorded area and in any
upstream areas contributing an input to the recorded &fe@ upsteam Fig 1b). For example,

residual dynamics with large EV or large rotation frequencies need not imply that the recurrent
dynamics in the recorded ares unstable or rotational, as such dynammsay be implemented

also, or exclusively, in areapstreamof the recordedone (Extended Data Figs:5).

Notably,direct or indirectconnections from unrecorded to recorded neurons witltlire local,
NEOddZNNByiGfe O02yySOGSR LRLMzZ FGA2y ySSRiatge & NB &
1. If neuralactivity evolves vithin a low-dimensionalmanifold, recordings from darge enough

subset of neuronsvithin a networkcanbe sufficient to estimate thepopulationstate 0 of the

entire network®3% Theeffect of unrecorded neuronim the local networkis then fullycaptured

by the recurrent dynamics #° (Fig. 1bg  £ioca).

Neuraltrajectories of decisions and movemnts in PFC

We developed a analysis pipeliné estimate residual dynamics from recorded neural responses
(Extended Data Fi@) and applied it tarecordingsfrom pre-frontal cortex (PFC; area 8Am)two

macaque monkeys performingsaccadebased perceptual decisiemaking task® (Fig 3a-b). We
increasedhe statistical power of our analyseéya I £ A Ay Ay 3 € newaRacti@ig fromA y A y 3
different experiments with a similar tastonfiguration Extended Datdig. 2, Step 1;14-61
experiments per configuration; 15800 units per experiment)The alignment yielded &0
dimensional(20D) activity subspacexplaining >90% of taglelated variance in the average

neural responses (Extended Data Fig). We performed sbsequent analysesithin this aligned
subspace, although the main resutisn bereproduced from sufficiently long single experiments
(Extended Data Fig).

We visualized thealigned population trajectories through projections ontseveral two-

dimensional activity subsp&ca Y I aOK2A 0S¢ LA-NFESEGISKRLKOAADAYE
plane, emphasizing timearying activity common t@ll O2 Y RAGA 2y aT | yR (g2 0
emphasizing rotational dynamics (Figc,d3 left to right). Only the two jPC planesere
orthogonalized with respect to each other, meaning that some planes captiirshared
components of the activity (e.g. Figc,3ime and jP&G planes). We estimated the planes
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Figure3. Average dynamics in prefrontal cortex during perceptual decisions and saccades.

a, Behavioral task. Monkeys fixating at the camf a screen (fixation point, black cross) viewed a random dot stimulus for
After a delay period of random duration, they reported the perceived direction of motion with a saccade to one of tw
(red and blue circles; blue: choice 1; rdubice 2). Following the saccade, the monkeys had to fixate on the chosen targe
a hold period of random duratiob, Position of the 10 x 10 electrode array in-greuate cortex of the two monkeys. Black cit
indicate the cortical locations ofi¢ 96 electrodes used for recordingsl, Neural trajectories in monkey T, averaged over -
of the same choice. Trajectories are obtained after aligning neural responses (see Extended Data Fig. 6) from expessinal
with a similar configuratia of saccade targets (confl®y Extended Data Fig. 6). Aligned responses are projected into four ¢
subspaces: the choice, time, jR@nd jP& planes, capturing variance due to choice, time, and rotations, respectigefya@ior
of variance explained; f: rotation frequency associated with the jPC ptafeajectories in the decisiepoch {0.2 to 1s relativ
to stimulus onset, filled circle), Trajectories in the movemenpoch {0.7 to 0.5s relative to saccadesst, filled circle).

separately during a decisi@poch(Fig 3c; randomdots presentatiof and a movemengpoch
(Fig. 8; saccade=xecutior).

The PFC trajectories sharsdveralfeatures with the model trajectories in Fig.-@cAs inthe
decisionmodels (Fig. d, PFC responses started in an undifferentiated state prior to stimulus
onset (Fig3c; choice plane; filled dots mark stimulus onset) and gradually diverged based on the
upcoming choice (Fig.c3red vs. blue)Prior to saccad®nset, PFC responses fell into largely
stationary, choicedependent states and then transitioned into rotational dynamics following the
presentation of the go cue (Figd3PC planeskimilar tothe movement models (Fig. 1d)

Severalfeatures of thePFCirajectorieswere not reproduced by the models, includisgong
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conditionrindependent componen§284351(e.g. Fig. &d, time plane) choicerelated activity
alongmultiple state-space direction(Fig. &, choice plang)otational dynamis within multiple
subspacegFig. 3c,d; JPC planemsihd rotational dynamicduring the decisiorpoch (Fig. § jPC
planes). These shortcomings, howeyvare common to all models and do not provide a basis to
favor one model aan explanationof PFGesponses.

Residual dynamics in PFC

To better resolve the contributions of recurrent dynamics to the recorded responses, we
characterized residual dynamias PFCWe first estimated ad R& y I YA O& &dzoalJd OS¢
within the previously defined aligned subspace (Fig. 4a, Extended Data FEg¢). Zhe
dimensions of the dynamics subspagere chosen fortheir ability to predictd ¥ dzi rdghiiag
statesfrom & LJI énésébut are well aligned with dimensiorexplainingtaskrelated variance

(Fig. 4a, largest dot products at small values alcagiy;Extended Data Figs. 6, We estimated

residual dynamics within th8-dimensionaldynamics subspaceith the same approach as for

the simulated models(Fig. 2eg, Extended Data Fig. 28 Dimensionsorthogonal to the

dynamics subspacogere associated with an EM zeror perturbationsalong these directionare

predicted tocompletely agcay withinonetime step.

EV magnitudes were strongly tinteependent(Fig. 4b, all EYput consistently smaller than 1
(Fig. 4e, largest EV; monkey T: p<0.005 for all time pamaskey V: p < 0.01 for 43 of 44, and
p<0.0® for 41 of 44 time points; ogsample, singld¢ailed ttest , n = 8 2 choices x 4
configuration$ implying stable, decaying dynamics. The largest EV were associated with decay
time-constants in the range 18745ms during the decision period (0s to +0.8s following stimulus
onset) and110913ms during the delaperiod ¢0.5s to +0.3s relative to saccade onset) for
monkey T (9% percentileCk, medians = 352ms and 293nms=144 2 choices x 4onfigurations

x 9 times Fig. 4e, top), and 368064msand 1923586msfor monkey V (95% CI, mi@ns = 489ms

and 491msn = 144;Fig. 4e, bottom). Concurrently with the saccade onset, ldrgestEV
consistently underwent a strong contractig¢Rig. 4e p<310° and p<3-10-7 in monkeys T and;V

Ho: largest EV equal a275ms vs-5ms relative tasaccade onset; twsample, singldailed t-test,

n =8). The largest measured time constants at saccade onset fell to median values of 159ms in
monkey Tand 310msn monkey V, implying that perturbations away from the average trajectory
fall back to the tajectorymore rapidlyduring movement.

The residual dynamics had rotational components in both monkeymonkey T, the largest
rotation frequencies in the residuals (Figg #hp; 0.51 Hz) lay in the approximate range of
frequencies for rotations in & conditionaverages (Fig.c3l; values for f). In monkey V, even the
largest rotation frequencies in the residuals (Fig.béttom, 0.250.5 Hz) were smaller than
those in the conditioraverageq0.71-0.84Hz, decision epoch; 1-1634Hz, movement epoch;
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Figure4. Residual dynamics in prefrontal cortex during perceptual decisions and saccades.

a-d, Estimated residual dynamics in prefrontal cortex in monkey T, same task configuration as in FHige3esidual dynami
was 8dimensional for this example dataset. Relative alignment between the modes spanning thelBtamics subspace a
the modes spanning the 2@igned subspace (see Extended Data Figs. 6,7), measured as the absolute valgernéspondir
dot-product. The dynamics modes project strongly onto the first few aligned modes, which capture most ofrtflevias
variance in the responsdsd, Properties of the residual dynamics (circles) for a single choice condition (¢h&igerlbars: 95
bootstrap confidence intervals (shown at selected times) obtained by fitting residual dynamics to randomly resampled
1000).b, Eigenvalues (EV) of the dynamics (left axis), and associateddimsénts of decay (right axia$ a function of time ¢
axis).c, Singular values (SV) of the dynamics. The eigenvectors and singular vectors associated with the shown EV anc
over time.d, Angular phase of the EV (left axis; angular phase = Ovadaéd EV) and associatetation frequencies (right axi
Line colors reflect the magnitude of the EV or SV at the onset of the decision epoch. At later times, colors matchdlatse
with the closest eigenvector or right singular vector at the preceding nhe.Properies of the residual dynamics acros:
animals (monkey T, top; monkey V, bottom), choices (blue: choice 1; red: choice 2), and task configurations (markerg
of Extended Data Fig. 6). Black curves: averages across all choices and configerddagsitude of the largest EV (left a
and the associated decay tiroenstants (right axis)f, Largest singular valug, Largest angular phase of the EV and

corresponding frequency of rotatioh, Time course of the index of ranrmality.

234 range across all task configurationsThe largest SV of the residual dynamics exceeded the
235 magnitude of the largest EW iboth monkeys (Fig. 4e,p<0.05 for 43 of 44 and 33 of 44
236 timepoints in monkeys T and V; two sampéingletailed t-test, n =8) implyingthat dynamics
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237 was weakly nomormal (Fig. 4h). The largest SV were mostly smaller than 1 in both monkeys (Fig.
238 4f; p<0.05 for 41 of 44 time points in both monkeys T and V:samaple, ondailed t-test, n =

239 8). The nomormality is thus not sufficientlyrpnounced to amplify perturbations, but rather

20 2yt @ OONYyaASyidfe atz2¢a GKSANI RSOFe o0CA3ad nOx

241  Thesefindings rule out several models of recurrent dynamics. In the decegoch, the E¥are

242  inconsistent with unstable dynamics (EV¥lgs. &,2e; saddle pointand mostly smaller than
243 expected fopersistent dynamics (EM, Figs. & 2e; line attractor). In the movemesgeriod, the

244  small EV aroundaccade onsedéire inconsistent with purely rotational dynamics or a dynamic
245  attractor, which would both result in directions with slewdecay (EV1, Figs. d,2e; rotations
246 and dynamic attractor). Around saccade ons&X0Q to +200ms from onset}he largest EV
247 magnitude (0.80 and 0.88 in monkeys T andné&an, n =8) and the largest rotation frequency
248  (0.74 and 0.33 Hz in monkeys T andréan, n =8) imply that perturbations decay by at least
249 50% within every 1/10 (monkey T) and 1/12(monkey V) of a rotational cke During the same
250 time window, the conditioraveraged trajectories undergo about 174of a rotational cycle
251 without obvious decay. The quickly decaying residual dynamics, and the mismatch between its
252 properties and tlose of theconditionraveraged trajetories, are consistent witha strong input
253 drive (Figs. i, 2e; point attractor)

Alignment of residual dynamics andgeuraltrajectories

254  Additional insights into how recurrent dynamics and inputs contribute to the observed activity
255 can be gained by analyzj the inferred eigenvectors of the residual dynamics. When inputs are
256  weak, the trajectories mostly reflect the properties of the recurrent dynamics, which in turn
257  results in distinct relations between trajectories aeigenvectors

258  We Iillustrate such rations in two modelspobtained by augmentinghe line-attractor and

259  rotation models (Fig. &d) with two new dimensionsalong which recurrent dynamics was
260 quickly decayingnd input drive was strong and conditiomdependent. We defined activity
261 subspaces as in Fig. 3 (Fig. 5a,c)aaradlyzechowthey align with the eigenvectors of the residual
262 dynamics. For the augmented lhagtractor model, the choice plane is preferentially aligned
263  (angle close to 0) with eigenvectors associated with largenByhitudes (Fig. 5b top), as slow
264 dynamics along these eigenvectors underlies the observed chelated activity. For the

265 augmented rotations model, the jRCplane is preferentially aligned with the eigenvectors
266 associated with large rotational frequels (Fig. 5d top), as these eigenvectors underlie the
267  rotational activity in the jP£& plane. Critically the augmented subspaces are not preferentially
268  aligned with the slow or rotational eigenvectors, as activity within themostly input driven.

269 We summarize these relations with a linear regression analysis, whereby negative regression
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