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Abstract 1 

Relating neural activity to behavior requires an understanding of how neural computations arise 2 

from the coordinated dynamics of distributed, recurrently connected neural populations. 3 

However, inferring the nature of recurrent dynamics from partial recordings of a neural circuit 4 

presents considerable challenges. Here we show that some of these challenges can be overcome 5 

by a fine-grained analysis of the dynamics of neural residuals-that is, trial-by-trial variability 6 

around the mean neural population trajectory for a given task condition. Residual dynamics in 7 

macaque pre-frontal cortex (PFC) in a saccade-based perceptual decision-making task reveals 8 

recurrent dynamics that is time-dependent, but consistently stable, and suggests that 9 

pronounced rotational structure in PFC trajectories during saccades is driven by inputs from 10 

upstream areas. The properties of residual dynamics restrict the possible contributions of PFC to 11 

decision-making and saccade generation, and suggest a path toward fully characterizing 12 

distributed neural computations with large-scale neural recordings and targeted causal 13 

perturbations. 14 

Introduction 

Perception, decisions, and the resulting actions reflect neural computations implemented by 15 

large, interacting neuronal populations acting in concert1,2. Inferring the nature of these 16 

interactions from recordings of neural activity is a key step toward uncovering the neural 17 

computations underlying behavior3ς9. One promising approach assumes that neural 18 

computations are instantiated by a dynamical system10,11, reflecting the combined effects of 19 
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feed-forward inputs into a neural population and dynamics implemented through its recurrent 20 

connectivity11ς16. The utility of this άŎƻƳǇǳǘŀǘƛƻƴ-through-ŘȅƴŀƳƛŎǎέ framework hinges on our 21 

ability to disentangle how inputs and recurrent dynamics contribute to the activity of a neural 22 

population7,17,18.  23 

Here, we show that the properties of inputs and recurrent dynamics can sometimes be revealed 24 

by analyzing the dynamical structure of neural population residuals- that is, the trial-to-trial 25 

variability in neural population responses19ς25. Our approach is based on the intuitive idea that 26 

the effect of recurrent computations can be revealed by observing how a perturbation of the 27 

state of the neural population evolves over time26ς29. Unlike experiments employing external, 28 

causal perturbations, we directly analyze response residuals, which we interpret as naturally 29 

occurring perturbations within the repertoire of activity patterns produced by a recurrent neural 30 

network30,31. We refer to ǘƘŜ ŘȅƴŀƳƛŎǎ ƻŦ ǊŜǎǇƻƴǎŜ ǊŜǎƛŘǳŀƭǎ ŀǎ άǊŜǎƛŘǳŀƭ ŘȅƴŀƳƛŎǎέΣ ŀƴŘ ǎƘƻǿ 31 

that it provides insights into the combined effects of the recurrent dynamics implemented locally 32 

in the recorded area and in upstream areas providing inputs to it. Obtaining a complete and 33 

quantitative description of residual dynamics is difficult, because the structured component of 34 

neural population residuals is typically dwarfed by unstructured noise that may reflect variability 35 

in single-neuron spiking19ς21. We obtain reliable, unbiased estimates of residual dynamics with 36 

novel statistical methods based on subspace identification32,33 and instrumental variable 37 

regression34. 38 

Our findings are organized in three sections. First, we illustrate the challenges in disentangling 39 

inputs and recurrent dynamics based on the simulations of simple dynamical system models (Fig. 40 

1-2). These models implement dynamics previously proposed to explain neural population 41 

responses during sensory evidence integration12,35 and movement generation13,36,37. We use the 42 

simulations to establish what insights into recurrent dynamics can be obtained from different 43 

components of the neural responses, in particular condition-averaged responses and response 44 

residuals. Second, we study neural population recordings from pre-frontal cortex (PFC) of 45 

macaque monkeys during decision-making and saccadic choices (Fig. 3-5). While condition-46 

averaged responses in PFC are consistent with a number of previously proposed models of 47 

evidence integration and movement generation, we rule out several candidate models based on 48 

the properties of the inferred residual dynamics. Third, we study simulations of multi-area, 49 

recurrent neural network (RNN) models of decision-making38 to illustrate how inferred residual 50 

dynamics could be used to deduce circuit-level implementations of distributed recurrent 51 

computations (Fig. 6-8).  52 
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Results 

In the framework of computation through dynamics, the temporal evolution of the state of a 53 

neural population (ὂ◄, ὸ indicates time) can be described through a differential equation: 54 

ὂ ἐὂ Ἵ ρ 55 

The momentary change in the population state (ὂ) on each trial reflects the combined effect of 56 

four distinct factors: the recurrent dynamics ἐὂ , the inputs Ἵ, the latent noise , and the 57 

initial conditions ὂ (state at time zero). The first three factors are assumed to combine additively, 58 

as is approximately the case in many RNN models12ς15. 59 

Mapping these factors directly onto individual brain areas (Fig. 1a, anatomical view) is typically 60 

not possible when using neural recordings from only one or few areas within a larger 61 

network18,39,40. Rather, here ὂ represents a low-dimensional dynamical state that is reflected in 62 

the collective activity of all recorded neurons31, whereby each factor contributing to it can be 63 

distributed across many areas41 (Fig. 1a, functional view). Nonetheless, the various factors in 64 

Equation 1 can be distinguished at a functional level, through their distinct contributions to 65 

variability in neural responsesτἐὂ  captures the functional consequences of distributed 66 

recurrent connectivity and induces variability over slow time-scales (i.e. long temporal 67 

autocorrelation);  captures fast variability (no autocorrelation); and Ἵ can capture fast or slow 68 

variability, depending on the complexity of processing in areas upstream of the recorded one 69 

(Fig. 1b).  70 

We illustrate the relation between the anatomical and functional interpretations by considering 71 

two simulated scenarios differing in the complexity of the inputs. Inputs are either άǎƛƳǇƭŜέ, 72 

reflecting purely feed-forward computations (Fig. 1b, top; Fig. 1c-d, 2) or άŎƻƳǇƭŜȄέ, resulting 73 

from recurrent processing occurring upstream of the recorded area (Fig. 1b, bottom; Fig. 6,7). 74 

These simulations illustrate the challenges in distinguishing the functional contributions of 75 

recurrent dynamics and inputs, but also that response residuals are well-suited for this challenge. 76 

Neural trajectories poorly constrain recurrent computations 

We simulated responses of several hand-designed models that approximate neural population 77 

dynamics previously proposed to underly the accumulation of sensory evidence toward a 78 

choice12,35 (Fig. 1c) or the generation of complex motor sequences13,37 (Fig. 1d). As in more 79 

complex RNN models12,3513,37, here the input consists of two components (Fig. 1b, functional 80 

view): a deterministic input drive Ἵ (repeatable across trials of the same condition) and latent 81 

input noise  (Fig. 1b, simple inputs). 82 

We simulated single-trial responses for two task-conditions and visualized them as trajectories 83 
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in a two-dimensional (2D) neural state-space (Fig. 1c,d, choice 1 & 2; dark-gray curves). The 84 

recurrent dynamics ἐὂ  describes the noiseless evolution of the instantaneous state (ὂ) from 85 

a given state-space location in the absence of inputs (Fig. 1c,d, black arrows and light-gray 86 

curves). The input drive (Ἵ) injects a particular pattern of activity into the neural population, 87 

thus pushing the state along a state-space direction that could vary across time and task 88 

conditions (Fig. 1c; red and blue arrows, and Fig. 1e).  89 

Figure 1. Disentangling contributions of inputs and recurrent dynamics to neural responses. 

a, Computation through dynamics. Anatomical view (left): recurrent dynamics and inputs respectively capture how the recorded 

neural responses are shaped by recurrent connectivity within the recorded area (orange) and by responses in additional areas 

(green). Functional view (right): recurrent dynamics and inputs reflect processes distributed across several areas (color gradient) 

and are defined based on their functional contributions to neural responses (graphical model, bottom). b, Relation of functional 

and anatomical viewpoints in two example scenarios (top & bottom row: simple vs. complex inputs). c-d, Models of decision-

making (c) and movement generation (d) based on simple inputs as in b (top). Each panel shows simulated single trials (dark-gray 

trajectories) and condition-averaged trajectories (blue and red trajectories) for two task conditions (choice 1 and 2). Black arrows 

show the effect of recurrent dynamics on the response at any state-space location. The effect of an input drive is constant across 

state-space, but can change over time and across task conditions (middle panel in c, example input directions at bottom). c, Models 

of decision-making. The three models implement unstable (left), perfect (middle), and leaky integration (right) of an appropriately 

chosen input. d, Models of movement-generation. Left: purely rotational dynamics. Perturbations along both state-space 

dimensions are persistent; Middle: dynamic attractor. Perturbations along the radial dimension decay, but persist along the 

ŎƛǊŎǳƭŀǊ άŎƘŀƴƴŜƭέΦ wƛƎƘǘΥ Ǉƻƛƴǘ ŀǘǘǊŀŎǘƻǊΦ wŜǎǇƻƴǎŜǎ ŀǊŜ ŘǊƛǾŜƴ ōȅ ǎǘǊƻƴƎ ƛƴǇǳǘǎΦ L/Υ ŀǇǇǊƻȄƛƳŀǘŜ ŜȄǘŜƴǘ ƻŦ ǘƘŜ ƛƴƛǘƛŀƭ ŎƻƴŘitions, 

shown for the dynamic attractor model. e, Input drive (see b) for the models in c and d. Curves indicate the components of the 

input drive along the two state-space dimensions (solid vs dashed) over time (horizontal axis) and conditions (red vs blue). Input 

drives are chosen to produce identical condition-averaged trajectories across models in c, and in d. Boxes in c and d (left sub-

panels): regions of state-space analyzed in Fig. 2. 
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Very different combinations of recurrent dynamics and inputs resulted in very similar 90 

trajectories. The three models of decision-making instantiate different behavioral ΨstrategiesΩ for 91 

perceptual decision-making42, from unstable, impulsive decisions (Fig. 1c, saddle point), to 92 

optimal accumulation of evidence (Fig. 1c, line attractor), and leaky, forgetful accumulation (Fig. 93 

1c, point attractor). Yet, for the chosen input drive, which can be constant (Fig. 1e saddle point) 94 

or transient (Fig. 1e, line and point attractor), all three models produce similar single-trial 95 

trajectories (Fig. 1c, gray curves) and indistinguishable condition-averaged trajectories (Fig. 1c, 96 

blue and red curves). Analogous observations hold for the models of movement generation (Fig. 97 

1d). The condition-averages do not distinguish between two models in which responses were 98 

driven solely by recurrent dynamics (Fig. 1e) ς a model implementing rotational dynamics13,36, in 99 

which variability in the initial condition is reflected throughout the entire trajectory (Fig. 1d 100 

rotations; gray curves), ŀƴŘ ŀ άŘȅƴŀƳƛŎ ŀǘǘǊŀŎǘƻǊέ37 model, in which activity is pushed towards 101 

and through a narrow channel in state space (Fig. 1d, dynamic attractor). The resulting condition-102 

averages are also identical to those from a model that implements point-attractor recurrent 103 

dynamics and is strongly input driven18 (Fig. 1d, point attractor).  104 

Condition-averaged trajectories, which are often used to compare simulated neural responses to 105 

measured population activity12,13,43, thus cannot disentangle the functional effects of recurrent 106 

dynamics and inputs in these simple models. 107 

Residual dynamics can resolve recurrent contributions 

Neural residuals are defined as the difference between a single-trial trajectory and the 108 

corresponding condition-averaged trajectory20,44 (Extended Data Fig. 1). We interpret residuals 109 

as perturbations away from the condition-averaged trajectory, and capture how these 110 

ǇŜǊǘǳǊōŀǘƛƻƴǎ ŜǾƻƭǾŜ ƻǾŜǊ ǘƛƳŜ ǘƘǊƻǳƎƘ ǘƘŜ άǊŜǎƛŘǳŀƭ ŘȅƴŀƳƛŎǎέ ό9ȄǘŜƴŘŜŘ 5ŀǘŀ CƛƎΦ мύ.  111 

For the simulated models, the dynamics of residuals can be derived analytically, in two steps (Fig. 112 

2a, Extended Data Fig. 1). We define the effective dynamics by summing the contribution of 113 

recurrent dynamics and input drive, thus capturing the noiseless evolution of the population 114 

response from any given state-space location. We then obtain the residual dynamics by 115 

subtracting, from the effective dynamics, a component corresponding to the instantaneous 116 

direction of change along the condition-averaged trajectory (Fig. 2a, see labels over each panel).  117 

The residual dynamics describes how a perturbation of a neural state along the condition-118 

averaged trajectory evolves over the course of one time-step (Fig. 2c,d, blue dot: unperturbed 119 

άǊŜŦŜǊŜƴŎŜέ ƴŜǳǊŀƭ ǎǘŀǘŜΤ ŀǊǊƻǿs: evolution from the perturbed states). For the saddle point 120 

model (Fig. 2c, saddle point), perturbations along the horizontal direction expand over time 121 

(arrows point away from the reference state), whereas perturbations along the vertical direction 122 
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decay back to the trajectory (arrows point towards the reference state). These dynamics correctly 123 

Figure 2. Residual dynamics reveals population-level computations. 

a, Different factors contributing to the dynamics of the saddle point model, shown in the state-space region marked in Fig. 1c for 

an early time in choice 1 trials (box). Same conventions as in Fig. 1c. Recurrent dynamics and input drive sum to generate the 

effective dynamics, determining the evolution of the response in the absence of noise. The residual dynamics is the component of 

the effective dynamics that explains the evolution of perturbations away from the condition-averaged trajectory (blue line; blue 

dot: reference time). b, Effective and residual dynamics estimated directly from simulated single-trial residuals match the ground-

truth in a. c, Ground-truth residual dynamics for the models of decisions, same state-space region and reference time as in a. The 

residual dynamics reflects the key properties of the recurrent dynamics at the corresponding state-space region in Fig. 1c. The 

arrows in each flow field were scaled by a fixed factor that differed across models and with a (numbers close to arrows at the 

bottom). d, Analogous to c, but for the models of movement at an early time in choice 1 trials (box in Fig. 1d). e-g, Properties of 

the estimated residual dynamics for the models in Fig. 1c-d. Only residual dynamics for choice 1 is shown. The residual dynamics 

is described by a time and condition-dependent, autonomous, linear dynamical system. The corresponding time-varying dynamics 

matrices describe the residual dynamics at particular locations along one of the condition-averaged trajectories (Extended Data 

Fig. 1). e, Magnitude of the eigenvalues (EV, y-axis) of the 2D dynamics matrix as a function of time (x-axis). f, Singular values (SV) 

of the dynamics matrix as a function of time for the models of decisions. The difference between EV and SV in the line-attractor 

model is a consequence of non-normal dynamics. g, Angular phase associated with complex-valued EV for models of movement. 

Larger angular phase implies faster rotational dynamics. EVs, SVs, and angular phase together distinguish between the different 

models. 
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reflect the influence of a saddle point in the vicinity of the reference state (Fig. 1c, box). Likewise, 124 

the residual dynamics correctly reveals line attractor and point attractor dynamics in the other 125 

two models of decisions (Fig. 2c) and key properties of the recurrent dynamics in the models of 126 

movement, i.e. rotational dynamics, decay towards the dynamic attractor, and point attractor 127 

dynamics (Fig. 2d). These differences in the underlying recurrent dynamics are less apparent in 128 

the effective dynamics, particularly for strong input drives (Extended Data Fig. 1).  129 

For measured neural responses, we approximate residual dynamics with a condition and time-130 

dependent, locally linear system, whereby time parameterizes location in state-space along the 131 

condition-averaged trajectory (Extended Data Fig. 1). Such linear dynamics is well-suited to 132 

describe residuals because, by definition, residual dynamics always has a fixed point at the 133 

location of the reference neural state (Fig. 2c,d, blue dot). We estimate the linear approximations 134 

by combining methods from subspace identification33,45 and instrumental variable regression34 135 

(Extended Data Fig. 2). These methods, unlike simpler linear regression approaches, can produce 136 

robust and unbiased estimates of residual dynamics in biologically realistic settings (Extended 137 

Data Fig. 3). 138 

We summarize the residual dynamics through three properties of the linear approximations, 139 

specifically the magnitude of the eigenvalues (EV), the singular values (SV), and the rotation 140 

frequency associated with the EV (Fig. 2e-g). Together, these properties distinguish the models 141 

in Fig. 1c-d. For locations close to the saddle point in the model of decision-making, one EV is 142 

larger than 1, implying that perturbations along the associated eigenvector (the horizontal 143 

direction in Fig. 1c, left) expand over time; the other EV is smaller than one, corresponding to 144 

decay along the vertical direction (Fig. 1c, left; center of flow field; Fig. 2e, left-most panel; early 145 

times). For the line attractor, the largest EV is 1 (Fig. 2e, second from left) as horizontal 146 

perturbations are persistent - that is, neither expand nor decay. For a point attractor, all EV 147 

smaller than 1 (Fig. 2e, third from left; all directions decay). Rotational dynamics results in 148 

complex-valued EV associated with a non-zero rotation frequency (Fig. 2g). Differences between 149 

the magnitude of SV and EV reflect non-normal dynamics, a feature of many models of neural 150 

computation46ς48. The SV larger than 1 in the line attractor model implies that small perturbations 151 

along the corresponding right singular vector transiently expand, even though they are persistent 152 

(EV=1) or decay (EV<1) over longer time-scales (Fig. 2e,f).  153 

Residuals dynamics reflects local and upstream recurrence 154 

The above simulations illustrate one setting in which residual dynamics, unlike the condition-155 

averaged trajectories, can reveal the properties of the recurrent dynamicsτwhen input 156 

variability is temporally uncorrelated, any slow correlations in the residuals are entirely due to 157 
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(and can be used to infer) the recurrent dynamics (Fig. 1b, top; simple inputs). This constraint, 158 

however, is likely violated for single areas in biological networks, where the input into an area 159 

could result from recurrent processing in upstream areas38,41. In Equation 1, the input Ἵ  would 160 

then include a component of variability with slow temporal correlations, reflecting the upstream 161 

recurrent dynamics (  in Fig. 1b, bottom; complex input).  162 

In such settings, residual dynamics reflects ƴƻǘ Ƨǳǎǘ ǘƘŜ άƭƻŎŀƭέ ǊŜŎǳǊǊŜƴǘ ŘȅƴŀƳƛŎǎ (ἐlocal , Fig. 1b), 163 

but rather the combined effects of the recurrent dynamics in the recorded area and in any 164 

upstream areas contributing an input to the recorded area44 (ἐupstream, Fig. 1b). For example, 165 

residual dynamics with large EV or large rotation frequencies need not imply that the recurrent 166 

dynamics in the recorded area is unstable or rotational, as such dynamics may be implemented 167 

also, or exclusively, in areas upstream of the recorded one (Extended Data Figs. 4-5).  168 

Notably, direct or indirect connections from unrecorded to recorded neurons within the local, 169 

ǊŜŎǳǊǊŜƴǘƭȅ ŎƻƴƴŜŎǘŜŘ ǇƻǇǳƭŀǘƛƻƴ ƴŜŜŘ ƴƻǘ ǊŜǎǳƭǘ ƛƴ ŀ ŦǳƴŎǘƛƻƴŀƭ άƛƴǇǳǘέ ƛƴ ǘƘŜ ǎŜƴǎŜ ƻŦ 9ǉuation 170 

1. If neural activity evolves within a low-dimensional manifold, recordings from a large enough 171 

subset of neurons within a network can be sufficient to estimate the population state ὂ◄ of the 172 

entire network30,31. The effect of unrecorded neurons in the local network is then fully captured 173 

by the recurrent dynamics ἐ 49 (Fig. 1b, ἐ ἐlocal). 174 

Neural trajectories of decisions and movements in PFC 

We developed an analysis pipeline to estimate residual dynamics from recorded neural responses 175 

(Extended Data Fig. 2) and applied it to recordings from pre-frontal cortex (PFC; area 8Ar) in two 176 

macaque monkeys performing a saccade-based perceptual decision-making task50 (Fig. 3a-b). We 177 

increased the statistical power of our analyses by άŀƭƛƎƴƛƴƎέ ŀƴŘ ŎƻƳōƛƴƛƴƎ neural activity from 178 

different experiments with a similar task-configuration (Extended Data Fig. 2, Step 1; 14-61 179 

experiments per configuration; 150-200 units per experiment). The alignment yielded a 20-180 

dimensional (20D) activity subspace explaining >90% of task-related variance in the average 181 

neural responses31 (Extended Data Fig. 6). We performed subsequent analyses within this aligned 182 

subspace, although the main results can be reproduced from sufficiently long single experiments 183 

(Extended Data Fig. 7).  184 

We visualized the aligned population trajectories through projections onto several two-185 

dimensional activity subspacŜǎΥ ŀ άŎƘƻƛŎŜέ ǇƭŀƴŜΣ ŜƳǇƘŀǎƛȊƛƴƎ ŎƘƻƛŎŜ-ǊŜƭŀǘŜŘ ŀŎǘƛǾƛǘȅΤ ŀ άǘƛƳŜέ 186 

plane, emphasizing time-varying activity common to all ŎƻƴŘƛǘƛƻƴǎΤ ŀƴŘ ǘǿƻ άƧt/έ ǇƭŀƴŜǎ36, 187 

emphasizing rotational dynamics (Fig. 3c,d; left to right). Only the two jPC planes were 188 

orthogonalized with respect to each other, meaning that some planes captured shared 189 

components of the activity (e.g. Fig. 3c, time and jPC12 planes). We estimated the planes 190 
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separately during a decision epoch (Fig. 3c; random-dots presentation) and a movement-epoch 191 

(Fig. 3d; saccade-execution).  192 

The PFC trajectories shared several features with the model trajectories in Fig. 1c-d. As in the 193 

decision models (Fig. 1c), PFC responses started in an undifferentiated state prior to stimulus 194 

onset (Fig. 3c; choice plane; filled dots mark stimulus onset) and gradually diverged based on the 195 

upcoming choice (Fig. 3c, red vs. blue). Prior to saccade-onset, PFC responses fell into largely 196 

stationary, choice-dependent states and then transitioned into rotational dynamics following the 197 

presentation of the go cue (Fig. 3d, jPC planes), similar to the movement models (Fig. 1d).  198 

Several features of the PFC trajectories were not reproduced by the models, including strong 199 

Figure 3. Average dynamics in prefrontal cortex during perceptual decisions and saccades. 

a, Behavioral task. Monkeys fixating at the center of a screen (fixation point, black cross) viewed a random dot stimulus for 800ms. 

After a delay period of random duration, they reported the perceived direction of motion with a saccade to one of two targets 

(red and blue circles; blue: choice 1; red: choice 2). Following the saccade, the monkeys had to fixate on the chosen target during 

a hold period of random duration. b, Position of the 10 x 10 electrode array in pre-arcuate cortex of the two monkeys. Black circles 

indicate the cortical locations of the 96 electrodes used for recordings. c-d, Neural trajectories in monkey T, averaged over trials 

of the same choice. Trajectories are obtained after aligning neural responses (see Extended Data Fig. 6) from experimental sessions 

with a similar configuration of saccade targets (config-3, Extended Data Fig. 6). Aligned responses are projected into four activity-

subspaces: the choice, time, jPC12, and jPC34 planes, capturing variance due to choice, time, and rotations, respectively (R2: fraction 

of variance explained; f: rotation frequency associated with the jPC plane). c, Trajectories in the decision-epoch (-0.2 to 1s relative 

to stimulus onset, filled circle). d, Trajectories in the movement-epoch (-0.7 to 0.5s relative to saccade onset, filled circle). 
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condition-independent components26,28,43,51 (e.g. Fig. 3c,d, time plane), choice-related activity 200 

along multiple state-space directions (Fig. 3c, choice plane), rotational dynamics within multiple 201 

subspaces (Fig. 3c,d; jPC planes) and rotational dynamics during the decision epoch (Fig. 3c, jPC 202 

planes). These shortcomings, however, are common to all models and do not provide a basis to 203 

favor one model as an explanation of PFC responses.  204 

Residual dynamics in PFC 

To better resolve the contributions of recurrent dynamics to the recorded responses, we 205 

characterized residual dynamics in PFC. We first estimated a άŘȅƴŀƳƛŎǎ ǎǳōǎǇŀŎŜέΣ ŎƻƴǘŀƛƴŜŘ 206 

within the previously defined aligned subspace (Fig. 4a, Extended Data Figs. 2,6-8). The 207 

dimensions of the dynamics subspace were chosen for their ability to predict άŦǳǘǳǊŜέ residual 208 

states from άǇŀǎǘέ ones, but are well aligned with dimensions explaining task-related variance 209 

(Fig. 4a, largest dot products at small values along y-axis; Extended Data Figs. 6, 7). We estimated 210 

residual dynamics within the 8-dimensional dynamics subspace with the same approach as for 211 

the simulated models (Fig. 2e-g, Extended Data Fig. 2,8,9). Dimensions orthogonal to the 212 

dynamics subspace were associated with an EV of zeroτperturbations along these directions are 213 

predicted to completely decay within one time step.  214 

EV magnitudes were strongly time-dependent (Fig. 4b, all EV), but consistently smaller than 1 215 

(Fig. 4e, largest EV; monkey T: p<0.005 for all time points; monkey V: p < 0.01 for 43 of 44, and 216 

p<0.005 for 41 of 44 time points; one-sample, single-tailed t-test , n = 8, 2 choices x 4 217 

configurations) implying stable, decaying dynamics. The largest EV were associated with decay 218 

time-constants in the range 187-745ms during the decision period (0s to +0.8s following stimulus 219 

onset) and 110-913ms during the delay period (-0.5s to +0.3s relative to saccade onset) for 220 

monkey T (95th percentile CIs, medians = 352ms and 293ms, n =144, 2 choices x 4 configurations 221 

x 9 times; Fig. 4e, top), and 309-1064ms and 192-3586ms for monkey V (95% CI, medians = 489ms 222 

and 491ms, n = 144; Fig. 4e, bottom). Concurrently with the saccade onset, the largest EV 223 

consistently underwent a strong contraction (Fig. 4e; p<3·10-5 and p<3·10-7 in monkeys T and V; 224 

H0: largest EV equal at -275ms vs. -5ms relative to saccade onset; two-sample, single-tailed t-test, 225 

n = 8). The largest measured time constants at saccade onset fell to median values of 159ms in 226 

monkey T and 310ms in monkey V, implying that perturbations away from the average trajectory 227 

fall back to the trajectory more rapidly during movement.  228 

The residual dynamics had rotational components in both monkeys. In monkey T, the largest 229 

rotation frequencies in the residuals (Fig. 4g top; 0.5-1 Hz) lay in the approximate range of 230 

frequencies for rotations in the condition-averages (Fig. 3c,d; values for f). In monkey V, even the 231 

largest rotation frequencies in the residuals (Fig. 4g bottom, 0.25-0.5 Hz) were smaller than 232 

those in the condition-averages (0.71-0.84Hz, decision epoch; 1.16-1.34Hz, movement epoch; 233 
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range across all task configurations). The largest SV of the residual dynamics exceeded the 234 

magnitude of the largest EV in both monkeys (Fig. 4e,f; p<0.05 for 43 of 44 and 33 of 44 235 

timepoints in monkeys T and V; two sample, single-tailed t-test, n = 8) implying that dynamics 236 

Figure 4. Residual dynamics in prefrontal cortex during perceptual decisions and saccades. 

a-d, Estimated residual dynamics in prefrontal cortex in monkey T, same task configuration as in Fig. 3c,d. The residual dynamics 

was 8-dimensional for this example dataset. a, Relative alignment between the modes spanning the 8d-dynamics subspace and 

the modes spanning the 20d-aligned subspace (see Extended Data Figs. 6,7), measured as the absolute value of the corresponding 

dot-product. The dynamics modes project strongly onto the first few aligned modes, which capture most of the task-relevant 

variance in the responses. b-d, Properties of the residual dynamics (circles) for a single choice condition (choice 1). Error bars: 95% 

bootstrap confidence intervals (shown at selected times) obtained by fitting residual dynamics to randomly resampled trials (n = 

1000). b, Eigenvalues (EV) of the dynamics (left axis), and associated time-constants of decay (right axis) as a function of time (x-

axis). c, Singular values (SV) of the dynamics. The eigenvectors and singular vectors associated with the shown EV and SV can vary 

over time. d, Angular phase of the EV (left axis; angular phase = 0: real-valued EV) and associated rotation frequencies (right axis). 

Line colors reflect the magnitude of the EV or SV at the onset of the decision epoch. At later times, colors match those associated 

with the closest eigenvector or right singular vector at the preceding time. e-h, Properties of the residual dynamics across all 

animals (monkey T, top; monkey V, bottom), choices (blue: choice 1; red: choice 2), and task configurations (markers; see legend 

of Extended Data Fig. 6). Black curves: averages across all choices and configurations. e, Magnitude of the largest EV (left axis) 

and the associated decay time-constants (right axis). f, Largest singular value. g, Largest angular phase of the EV and the 

corresponding frequency of rotation. h, Time course of the index of non-normality. 
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was weakly non-normal (Fig. 4h). The largest SV were mostly smaller than 1 in both monkeys (Fig. 237 

4f; p<0.05 for 41 of 44 time points in both monkeys T and V; one-sample, one-tailed t-test, n = 238 

8). The non-normality is thus not sufficiently pronounced to amplify perturbations, but rather 239 

ƻƴƭȅ ǘǊŀƴǎƛŜƴǘƭȅ ǎƭƻǿǎ ǘƘŜƛǊ ŘŜŎŀȅ όCƛƎΦ пŎΣ άǘǊŀƴǎƛŜƴǘ ǇŜǊǎƛǎǘŜƴŎŜέύΦ 240 

These findings rule out several models of recurrent dynamics. In the decision epoch, the EVs are 241 

inconsistent with unstable dynamics (EV>1, Figs. 1c,2e; saddle point) and mostly smaller than 242 

expected for persistent dynamics (EV1, Figs. 1c,2e; line attractor). In the movement-period, the 243 

small EV around saccade onset are inconsistent with purely rotational dynamics or a dynamic 244 

attractor, which would both result in directions with slower decay (EV1, Figs. 1d,2e; rotations 245 

and dynamic attractor). Around saccade onset (-200 to +200ms from onset), the largest EV 246 

magnitude (0.80 and 0.88 in monkeys T and V; mean, n = 8) and the largest rotation frequency 247 

(0.74 and 0.33 Hz in monkeys T and V; mean, n = 8) imply that perturbations decay by at least 248 

50% within every 1/10th (monkey T) and 1/12th (monkey V) of a rotational cycle. During the same 249 

time window, the condition-averaged trajectories undergo about 1/4th of a rotational cycle 250 

without obvious decay. The quickly decaying residual dynamics, and the mismatch between its 251 

properties and those of the condition-averaged trajectories, are consistent with a strong input 252 

drive (Figs. 1d, 2e; point attractor). 253 

Alignment of residual dynamics and neural trajectories 

Additional insights into how recurrent dynamics and inputs contribute to the observed activity 254 

can be gained by analyzing the inferred eigenvectors of the residual dynamics. When inputs are 255 

weak, the trajectories mostly reflect the properties of the recurrent dynamics, which in turn 256 

results in distinct relations between trajectories and eigenvectors.  257 

We illustrate such relations in two models, obtained by augmenting the line-attractor and 258 

rotation models (Fig. 1c-d) with two new dimensions, along which recurrent dynamics was 259 

quickly decaying and input drive was strong and condition-independent. We defined activity 260 

subspaces as in Fig. 3 (Fig. 5a,c) and analyzed how they align with the eigenvectors of the residual 261 

dynamics. For the augmented line-attractor model, the choice plane is preferentially aligned 262 

(angle close to 0) with eigenvectors associated with large EV magnitudes (Fig. 5b top), as slow 263 

dynamics along these eigenvectors underlies the observed choice-related activity. For the 264 

augmented rotations model, the jPC34 plane is preferentially aligned with the eigenvectors 265 

associated with large rotational frequencies (Fig. 5d top), as these eigenvectors underlie the 266 

rotational activity in the jPC34 plane. Critically, the augmented subspaces are not preferentially 267 

aligned with the slow or rotational eigenvectors, as activity within them is mostly input driven. 268 

We summarize these relations with a linear regression analysis, whereby negative regression 269 




