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Abstract 1 

Relating neural activity to behavior requires an understanding of how neural computations arise 2 

from the coordinated dynamics of distributed, recurrently connected neural populations. 3 

However, inferring the nature of recurrent dynamics from partial recordings of a neural circuit 4 

presents considerable challenges. Here we show that some of these challenges can be overcome 5 

by a fine-grained analysis of the dynamics of neural residuals-that is, trial-by-trial variability 6 

around the mean neural population trajectory for a given task condition. Residual dynamics in 7 

macaque pre-frontal cortex (PFC) in a saccade-based perceptual decision-making task reveals 8 

recurrent dynamics that is time-dependent, but consistently stable, and suggests that 9 

pronounced rotational structure in PFC trajectories during saccades is driven by inputs from 10 

upstream areas. The properties of residual dynamics restrict the possible contributions of PFC to 11 

decision-making and saccade generation, and suggest a path toward fully characterizing 12 

distributed neural computations with large-scale neural recordings and targeted causal 13 

perturbations. 14 

Introduction 

Perception, decisions, and the resulting actions reflect neural computations implemented by 15 

large, interacting neuronal populations acting in concert1,2. Inferring the nature of these 16 

interactions from recordings of neural activity is a key step toward uncovering the neural 17 

computations underlying behavior3–9. One promising approach assumes that neural 18 

computations are instantiated by a dynamical system10,11, reflecting the combined effects of 19 
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feed-forward inputs into a neural population and dynamics implemented through its recurrent 20 

connectivity11–16. The utility of this “computation-through-dynamics” framework hinges on our 21 

ability to disentangle how inputs and recurrent dynamics contribute to the activity of a neural 22 

population7,17,18.  23 

Here, we show that the properties of inputs and recurrent dynamics can sometimes be revealed 24 

by analyzing the dynamical structure of neural population residuals- that is, the trial-to-trial 25 

variability in neural population responses19–25. Our approach is based on the intuitive idea that 26 

the effect of recurrent computations can be revealed by observing how a perturbation of the 27 

state of the neural population evolves over time26–29. Unlike experiments employing external, 28 

causal perturbations, we directly analyze response residuals, which we interpret as naturally 29 

occurring perturbations within the repertoire of activity patterns produced by a recurrent neural 30 

network30,31. We refer to the dynamics of response residuals as “residual dynamics”, and show 31 

that it provides insights into the combined effects of the recurrent dynamics implemented locally 32 

in the recorded area and in upstream areas providing inputs to it. Obtaining a complete and 33 

quantitative description of residual dynamics is difficult, because the structured component of 34 

neural population residuals is typically dwarfed by unstructured noise that may reflect variability 35 

in single-neuron spiking19–21. We obtain reliable, unbiased estimates of residual dynamics with 36 

novel statistical methods based on subspace identification32,33 and instrumental variable 37 

regression34. 38 

Our findings are organized in three sections. First, we illustrate the challenges in disentangling 39 

inputs and recurrent dynamics based on the simulations of simple dynamical system models (Fig. 40 

1-2). These models implement dynamics previously proposed to explain neural population 41 

responses during sensory evidence integration12,35 and movement generation13,36,37. We use the 42 

simulations to establish what insights into recurrent dynamics can be obtained from different 43 

components of the neural responses, in particular condition-averaged responses and response 44 

residuals. Second, we study neural population recordings from pre-frontal cortex (PFC) of 45 

macaque monkeys during decision-making and saccadic choices (Fig. 3-5). While condition-46 

averaged responses in PFC are consistent with a number of previously proposed models of 47 

evidence integration and movement generation, we rule out several candidate models based on 48 

the properties of the inferred residual dynamics. Third, we study simulations of multi-area, 49 

recurrent neural network (RNN) models of decision-making38 to illustrate how inferred residual 50 

dynamics could be used to deduce circuit-level implementations of distributed recurrent 51 

computations (Fig. 6-8).  52 
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Results 

In the framework of computation through dynamics, the temporal evolution of the state of a 53 

neural population (𝐳𝒕, 𝑡 indicates time) can be described through a differential equation: 54 

�̇�𝑡 = 𝐅(𝐳𝑡) + 𝐮𝑡 + 𝛜𝑡 (1) 55 

The momentary change in the population state (�̇�𝑡) on each trial reflects the combined effect of 56 

four distinct factors: the recurrent dynamics 𝐅(𝐳𝑡), the inputs 𝐮𝑡, the latent noise 𝛜𝑡, and the 57 

initial conditions 𝐳0 (state at time zero). The first three factors are assumed to combine additively, 58 

as is approximately the case in many RNN models12–15. 59 

Mapping these factors directly onto individual brain areas (Fig. 1a, anatomical view) is typically 60 

not possible when using neural recordings from only one or few areas within a larger 61 

network18,39,40. Rather, here 𝐳𝑡 represents a low-dimensional dynamical state that is reflected in 62 

the collective activity of all recorded neurons31, whereby each factor contributing to it can be 63 

distributed across many areas41 (Fig. 1a, functional view). Nonetheless, the various factors in 64 

Equation 1 can be distinguished at a functional level, through their distinct contributions to 65 

variability in neural responses—𝐅(𝐳𝑡) captures the functional consequences of distributed 66 

recurrent connectivity and induces variability over slow time-scales (i.e. long temporal 67 

autocorrelation); 𝛜𝑡 captures fast variability (no autocorrelation); and 𝐮𝑡 can capture fast or slow 68 

variability, depending on the complexity of processing in areas upstream of the recorded one 69 

(Fig. 1b).  70 

We illustrate the relation between the anatomical and functional interpretations by considering 71 

two simulated scenarios differing in the complexity of the inputs. Inputs are either “simple”, 72 

reflecting purely feed-forward computations (Fig. 1b, top; Fig. 1c-d, 2) or “complex”, resulting 73 

from recurrent processing occurring upstream of the recorded area (Fig. 1b, bottom; Fig. 6,7). 74 

These simulations illustrate the challenges in distinguishing the functional contributions of 75 

recurrent dynamics and inputs, but also that response residuals are well-suited for this challenge. 76 

Neural trajectories poorly constrain recurrent computations 

We simulated responses of several hand-designed models that approximate neural population 77 

dynamics previously proposed to underly the accumulation of sensory evidence toward a 78 

choice12,35 (Fig. 1c) or the generation of complex motor sequences13,37 (Fig. 1d). As in more 79 

complex RNN models12,3513,37, here the input consists of two components (Fig. 1b, functional 80 

view): a deterministic input drive �̅�𝑡 (repeatable across trials of the same condition) and latent 81 

input noise �̃�𝑡 (Fig. 1b, simple inputs). 82 

We simulated single-trial responses for two task-conditions and visualized them as trajectories 83 
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in a two-dimensional (2D) neural state-space (Fig. 1c,d, choice 1 & 2; dark-gray curves). The 84 

recurrent dynamics 𝐅(𝐳𝑡) describes the noiseless evolution of the instantaneous state (𝐳𝑡) from 85 

a given state-space location in the absence of inputs (Fig. 1c,d, black arrows and light-gray 86 

curves). The input drive (�̅�𝑡) injects a particular pattern of activity into the neural population, 87 

thus pushing the state along a state-space direction that could vary across time and task 88 

conditions (Fig. 1c; red and blue arrows, and Fig. 1e).  89 

Figure 1. Disentangling contributions of inputs and recurrent dynamics to neural responses. 

a, Computation through dynamics. Anatomical view (left): recurrent dynamics and inputs respectively capture how the recorded 

neural responses are shaped by recurrent connectivity within the recorded area (orange) and by responses in additional areas 

(green). Functional view (right): recurrent dynamics and inputs reflect processes distributed across several areas (color gradient) 

and are defined based on their functional contributions to neural responses (graphical model, bottom). b, Relation of functional 

and anatomical viewpoints in two example scenarios (top & bottom row: simple vs. complex inputs). c-d, Models of decision-

making (c) and movement generation (d) based on simple inputs as in b (top). Each panel shows simulated single trials (dark-gray 

trajectories) and condition-averaged trajectories (blue and red trajectories) for two task conditions (choice 1 and 2). Black arrows 

show the effect of recurrent dynamics on the response at any state-space location. The effect of an input drive is constant across 

state-space, but can change over time and across task conditions (middle panel in c, example input directions at bottom). c, Models 

of decision-making. The three models implement unstable (left), perfect (middle), and leaky integration (right) of an appropriately 

chosen input. d, Models of movement-generation. Left: purely rotational dynamics. Perturbations along both state-space 

dimensions are persistent; Middle: dynamic attractor. Perturbations along the radial dimension decay, but persist along the 

circular “channel”. Right: point attractor. Responses are driven by strong inputs. IC: approximate extent of the initial cond itions, 

shown for the dynamic attractor model. e, Input drive (see b) for the models in c and d. Curves indicate the components of the 

input drive along the two state-space dimensions (solid vs dashed) over time (horizontal axis) and conditions (red vs blue). Input 

drives are chosen to produce identical condition-averaged trajectories across models in c, and in d. Boxes in c and d (left sub-

panels): regions of state-space analyzed in Fig. 2. 
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Very different combinations of recurrent dynamics and inputs resulted in very similar 90 

trajectories. The three models of decision-making instantiate different behavioral ‘strategies’ for 91 

perceptual decision-making42, from unstable, impulsive decisions (Fig. 1c, saddle point), to 92 

optimal accumulation of evidence (Fig. 1c, line attractor), and leaky, forgetful accumulation (Fig. 93 

1c, point attractor). Yet, for the chosen input drive, which can be constant (Fig. 1e saddle point) 94 

or transient (Fig. 1e, line and point attractor), all three models produce similar single-trial 95 

trajectories (Fig. 1c, gray curves) and indistinguishable condition-averaged trajectories (Fig. 1c, 96 

blue and red curves). Analogous observations hold for the models of movement generation (Fig. 97 

1d). The condition-averages do not distinguish between two models in which responses were 98 

driven solely by recurrent dynamics (Fig. 1e) – a model implementing rotational dynamics13,36, in 99 

which variability in the initial condition is reflected throughout the entire trajectory (Fig. 1d 100 

rotations; gray curves), and a “dynamic attractor”37 model, in which activity is pushed towards 101 

and through a narrow channel in state space (Fig. 1d, dynamic attractor). The resulting condition-102 

averages are also identical to those from a model that implements point-attractor recurrent 103 

dynamics and is strongly input driven18 (Fig. 1d, point attractor).  104 

Condition-averaged trajectories, which are often used to compare simulated neural responses to 105 

measured population activity12,13,43, thus cannot disentangle the functional effects of recurrent 106 

dynamics and inputs in these simple models. 107 

Residual dynamics can resolve recurrent contributions 

Neural residuals are defined as the difference between a single-trial trajectory and the 108 

corresponding condition-averaged trajectory20,44 (Extended Data Fig. 1). We interpret residuals 109 

as perturbations away from the condition-averaged trajectory, and capture how these 110 

perturbations evolve over time through the “residual dynamics” (Extended Data Fig. 1).  111 

For the simulated models, the dynamics of residuals can be derived analytically, in two steps (Fig. 112 

2a, Extended Data Fig. 1). We define the effective dynamics by summing the contribution of 113 

recurrent dynamics and input drive, thus capturing the noiseless evolution of the population 114 

response from any given state-space location. We then obtain the residual dynamics by 115 

subtracting, from the effective dynamics, a component corresponding to the instantaneous 116 

direction of change along the condition-averaged trajectory (Fig. 2a, see labels over each panel).  117 

The residual dynamics describes how a perturbation of a neural state along the condition-118 

averaged trajectory evolves over the course of one time-step (Fig. 2c,d, blue dot: unperturbed 119 

“reference” neural state; arrows: evolution from the perturbed states). For the saddle point 120 

model (Fig. 2c, saddle point), perturbations along the horizontal direction expand over time 121 

(arrows point away from the reference state), whereas perturbations along the vertical direction 122 
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decay back to the trajectory (arrows point towards the reference state). These dynamics correctly 123 

Figure 2. Residual dynamics reveals population-level computations. 

a, Different factors contributing to the dynamics of the saddle point model, shown in the state-space region marked in Fig. 1c for 

an early time in choice 1 trials (box). Same conventions as in Fig. 1c. Recurrent dynamics and input drive sum to generate the 

effective dynamics, determining the evolution of the response in the absence of noise. The residual dynamics is the component of 

the effective dynamics that explains the evolution of perturbations away from the condition-averaged trajectory (blue line; blue 

dot: reference time). b, Effective and residual dynamics estimated directly from simulated single-trial residuals match the ground-

truth in a. c, Ground-truth residual dynamics for the models of decisions, same state-space region and reference time as in a. The 

residual dynamics reflects the key properties of the recurrent dynamics at the corresponding state-space region in Fig. 1c. The 

arrows in each flow field were scaled by a fixed factor that differed across models and with a (numbers close to arrows at the 

bottom). d, Analogous to c, but for the models of movement at an early time in choice 1 trials (box in Fig. 1d). e-g, Properties of 

the estimated residual dynamics for the models in Fig. 1c-d. Only residual dynamics for choice 1 is shown. The residual dynamics 

is described by a time and condition-dependent, autonomous, linear dynamical system. The corresponding time-varying dynamics 

matrices describe the residual dynamics at particular locations along one of the condition-averaged trajectories (Extended Data 

Fig. 1). e, Magnitude of the eigenvalues (EV, y-axis) of the 2D dynamics matrix as a function of time (x-axis). f, Singular values (SV) 

of the dynamics matrix as a function of time for the models of decisions. The difference between EV and SV in the line-attractor 

model is a consequence of non-normal dynamics. g, Angular phase associated with complex-valued EV for models of movement. 

Larger angular phase implies faster rotational dynamics. EVs, SVs, and angular phase together distinguish between the different 

models. 
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reflect the influence of a saddle point in the vicinity of the reference state (Fig. 1c, box). Likewise, 124 

the residual dynamics correctly reveals line attractor and point attractor dynamics in the other 125 

two models of decisions (Fig. 2c) and key properties of the recurrent dynamics in the models of 126 

movement, i.e. rotational dynamics, decay towards the dynamic attractor, and point attractor 127 

dynamics (Fig. 2d). These differences in the underlying recurrent dynamics are less apparent in 128 

the effective dynamics, particularly for strong input drives (Extended Data Fig. 1).  129 

For measured neural responses, we approximate residual dynamics with a condition and time-130 

dependent, locally linear system, whereby time parameterizes location in state-space along the 131 

condition-averaged trajectory (Extended Data Fig. 1). Such linear dynamics is well-suited to 132 

describe residuals because, by definition, residual dynamics always has a fixed point at the 133 

location of the reference neural state (Fig. 2c,d, blue dot). We estimate the linear approximations 134 

by combining methods from subspace identification33,45 and instrumental variable regression34 135 

(Extended Data Fig. 2). These methods, unlike simpler linear regression approaches, can produce 136 

robust and unbiased estimates of residual dynamics in biologically realistic settings (Extended 137 

Data Fig. 3). 138 

We summarize the residual dynamics through three properties of the linear approximations, 139 

specifically the magnitude of the eigenvalues (EV), the singular values (SV), and the rotation 140 

frequency associated with the EV (Fig. 2e-g). Together, these properties distinguish the models 141 

in Fig. 1c-d. For locations close to the saddle point in the model of decision-making, one EV is 142 

larger than 1, implying that perturbations along the associated eigenvector (the horizontal 143 

direction in Fig. 1c, left) expand over time; the other EV is smaller than one, corresponding to 144 

decay along the vertical direction (Fig. 1c, left; center of flow field; Fig. 2e, left-most panel; early 145 

times). For the line attractor, the largest EV is 1 (Fig. 2e, second from left) as horizontal 146 

perturbations are persistent - that is, neither expand nor decay. For a point attractor, all EV 147 

smaller than 1 (Fig. 2e, third from left; all directions decay). Rotational dynamics results in 148 

complex-valued EV associated with a non-zero rotation frequency (Fig. 2g). Differences between 149 

the magnitude of SV and EV reflect non-normal dynamics, a feature of many models of neural 150 

computation46–48. The SV larger than 1 in the line attractor model implies that small perturbations 151 

along the corresponding right singular vector transiently expand, even though they are persistent 152 

(EV=1) or decay (EV<1) over longer time-scales (Fig. 2e,f).  153 

Residuals dynamics reflects local and upstream recurrence 154 

The above simulations illustrate one setting in which residual dynamics, unlike the condition-155 

averaged trajectories, can reveal the properties of the recurrent dynamics—when input 156 

variability is temporally uncorrelated, any slow correlations in the residuals are entirely due to 157 
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(and can be used to infer) the recurrent dynamics (Fig. 1b, top; simple inputs). This constraint, 158 

however, is likely violated for single areas in biological networks, where the input into an area 159 

could result from recurrent processing in upstream areas38,41. In Equation 1, the input (𝐮𝑡) would 160 

then include a component of variability with slow temporal correlations, reflecting the upstream 161 

recurrent dynamics (𝛏𝑡 in Fig. 1b, bottom; complex input).  162 

In such settings, residual dynamics reflects not just the “local” recurrent dynamics (𝐅local , Fig. 1b), 163 

but rather the combined effects of the recurrent dynamics in the recorded area and in any 164 

upstream areas contributing an input to the recorded area44 (𝐅upstream, Fig. 1b). For example, 165 

residual dynamics with large EV or large rotation frequencies need not imply that the recurrent 166 

dynamics in the recorded area is unstable or rotational, as such dynamics may be implemented 167 

also, or exclusively, in areas upstream of the recorded one (Extended Data Figs. 4-5).  168 

Notably, direct or indirect connections from unrecorded to recorded neurons within the local, 169 

recurrently connected population need not result in a functional “input” in the sense of Equation 170 

1. If neural activity evolves within a low-dimensional manifold, recordings from a large enough 171 

subset of neurons within a network can be sufficient to estimate the population state 𝐳𝒕 of the 172 

entire network30,31. The effect of unrecorded neurons in the local network is then fully captured 173 

by the recurrent dynamics 𝐅 49 (Fig. 1b, 𝐅 ≈ 𝐅local). 174 

Neural trajectories of decisions and movements in PFC 

We developed an analysis pipeline to estimate residual dynamics from recorded neural responses 175 

(Extended Data Fig. 2) and applied it to recordings from pre-frontal cortex (PFC; area 8Ar) in two 176 

macaque monkeys performing a saccade-based perceptual decision-making task50 (Fig. 3a-b). We 177 

increased the statistical power of our analyses by “aligning” and combining neural activity from 178 

different experiments with a similar task-configuration (Extended Data Fig. 2, Step 1; 14-61 179 

experiments per configuration; 150-200 units per experiment). The alignment yielded a 20-180 

dimensional (20D) activity subspace explaining >90% of task-related variance in the average 181 

neural responses31 (Extended Data Fig. 6). We performed subsequent analyses within this aligned 182 

subspace, although the main results can be reproduced from sufficiently long single experiments 183 

(Extended Data Fig. 7).  184 

We visualized the aligned population trajectories through projections onto several two-185 

dimensional activity subspaces: a “choice” plane, emphasizing choice-related activity; a “time” 186 

plane, emphasizing time-varying activity common to all conditions; and two “jPC” planes36, 187 

emphasizing rotational dynamics (Fig. 3c,d; left to right). Only the two jPC planes were 188 

orthogonalized with respect to each other, meaning that some planes captured shared 189 

components of the activity (e.g. Fig. 3c, time and jPC12 planes). We estimated the planes 190 
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separately during a decision epoch (Fig. 3c; random-dots presentation) and a movement-epoch 191 

(Fig. 3d; saccade-execution).  192 

The PFC trajectories shared several features with the model trajectories in Fig. 1c-d. As in the 193 

decision models (Fig. 1c), PFC responses started in an undifferentiated state prior to stimulus 194 

onset (Fig. 3c; choice plane; filled dots mark stimulus onset) and gradually diverged based on the 195 

upcoming choice (Fig. 3c, red vs. blue). Prior to saccade-onset, PFC responses fell into largely 196 

stationary, choice-dependent states and then transitioned into rotational dynamics following the 197 

presentation of the go cue (Fig. 3d, jPC planes), similar to the movement models (Fig. 1d).  198 

Several features of the PFC trajectories were not reproduced by the models, including strong 199 

Figure 3. Average dynamics in prefrontal cortex during perceptual decisions and saccades. 

a, Behavioral task. Monkeys fixating at the center of a screen (fixation point, black cross) viewed a random dot stimulus for 800ms. 

After a delay period of random duration, they reported the perceived direction of motion with a saccade to one of two targets 

(red and blue circles; blue: choice 1; red: choice 2). Following the saccade, the monkeys had to fixate on the chosen target during 

a hold period of random duration. b, Position of the 10 x 10 electrode array in pre-arcuate cortex of the two monkeys. Black circles 

indicate the cortical locations of the 96 electrodes used for recordings. c-d, Neural trajectories in monkey T, averaged over trials 

of the same choice. Trajectories are obtained after aligning neural responses (see Extended Data Fig. 6) from experimental sessions 

with a similar configuration of saccade targets (config-3, Extended Data Fig. 6). Aligned responses are projected into four activity-

subspaces: the choice, time, jPC12, and jPC34 planes, capturing variance due to choice, time, and rotations, respectively (R2: fraction 

of variance explained; f: rotation frequency associated with the jPC plane). c, Trajectories in the decision-epoch (-0.2 to 1s relative 

to stimulus onset, filled circle). d, Trajectories in the movement-epoch (-0.7 to 0.5s relative to saccade onset, filled circle). 
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condition-independent components26,28,43,51 (e.g. Fig. 3c,d, time plane), choice-related activity 200 

along multiple state-space directions (Fig. 3c, choice plane), rotational dynamics within multiple 201 

subspaces (Fig. 3c,d; jPC planes) and rotational dynamics during the decision epoch (Fig. 3c, jPC 202 

planes). These shortcomings, however, are common to all models and do not provide a basis to 203 

favor one model as an explanation of PFC responses.  204 

Residual dynamics in PFC 

To better resolve the contributions of recurrent dynamics to the recorded responses, we 205 

characterized residual dynamics in PFC. We first estimated a “dynamics subspace”, contained 206 

within the previously defined aligned subspace (Fig. 4a, Extended Data Figs. 2,6-8). The 207 

dimensions of the dynamics subspace were chosen for their ability to predict “future” residual 208 

states from “past” ones, but are well aligned with dimensions explaining task-related variance 209 

(Fig. 4a, largest dot products at small values along y-axis; Extended Data Figs. 6, 7). We estimated 210 

residual dynamics within the 8-dimensional dynamics subspace with the same approach as for 211 

the simulated models (Fig. 2e-g, Extended Data Fig. 2,8,9). Dimensions orthogonal to the 212 

dynamics subspace were associated with an EV of zero—perturbations along these directions are 213 

predicted to completely decay within one time step.  214 

EV magnitudes were strongly time-dependent (Fig. 4b, all EV), but consistently smaller than 1 215 

(Fig. 4e, largest EV; monkey T: p<0.005 for all time points; monkey V: p < 0.01 for 43 of 44, and 216 

p<0.005 for 41 of 44 time points; one-sample, single-tailed t-test , n = 8, 2 choices x 4 217 

configurations) implying stable, decaying dynamics. The largest EV were associated with decay 218 

time-constants in the range 187-745ms during the decision period (0s to +0.8s following stimulus 219 

onset) and 110-913ms during the delay period (-0.5s to +0.3s relative to saccade onset) for 220 

monkey T (95th percentile CIs, medians = 352ms and 293ms, n =144, 2 choices x 4 configurations 221 

x 9 times; Fig. 4e, top), and 309-1064ms and 192-3586ms for monkey V (95% CI, medians = 489ms 222 

and 491ms, n = 144; Fig. 4e, bottom). Concurrently with the saccade onset, the largest EV 223 

consistently underwent a strong contraction (Fig. 4e; p<3·10-5 and p<3·10-7 in monkeys T and V; 224 

H0: largest EV equal at -275ms vs. -5ms relative to saccade onset; two-sample, single-tailed t-test, 225 

n = 8). The largest measured time constants at saccade onset fell to median values of 159ms in 226 

monkey T and 310ms in monkey V, implying that perturbations away from the average trajectory 227 

fall back to the trajectory more rapidly during movement.  228 

The residual dynamics had rotational components in both monkeys. In monkey T, the largest 229 

rotation frequencies in the residuals (Fig. 4g top; ≈0.5-1 Hz) lay in the approximate range of 230 

frequencies for rotations in the condition-averages (Fig. 3c,d; values for f). In monkey V, even the 231 

largest rotation frequencies in the residuals (Fig. 4g bottom, ≈0.25-0.5 Hz) were smaller than 232 

those in the condition-averages (0.71-0.84Hz, decision epoch; 1.16-1.34Hz, movement epoch; 233 
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range across all task configurations). The largest SV of the residual dynamics exceeded the 234 

magnitude of the largest EV in both monkeys (Fig. 4e,f; p<0.05 for 43 of 44 and 33 of 44 235 

timepoints in monkeys T and V; two sample, single-tailed t-test, n = 8) implying that dynamics 236 

Figure 4. Residual dynamics in prefrontal cortex during perceptual decisions and saccades. 

a-d, Estimated residual dynamics in prefrontal cortex in monkey T, same task configuration as in Fig. 3c,d. The residual dynamics 

was 8-dimensional for this example dataset. a, Relative alignment between the modes spanning the 8d-dynamics subspace and 

the modes spanning the 20d-aligned subspace (see Extended Data Figs. 6,7), measured as the absolute value of the corresponding 

dot-product. The dynamics modes project strongly onto the first few aligned modes, which capture most of the task-relevant 

variance in the responses. b-d, Properties of the residual dynamics (circles) for a single choice condition (choice 1). Error bars: 95% 

bootstrap confidence intervals (shown at selected times) obtained by fitting residual dynamics to randomly resampled trials (n = 

1000). b, Eigenvalues (EV) of the dynamics (left axis), and associated time-constants of decay (right axis) as a function of time (x-

axis). c, Singular values (SV) of the dynamics. The eigenvectors and singular vectors associated with the shown EV and SV can vary 

over time. d, Angular phase of the EV (left axis; angular phase = 0: real-valued EV) and associated rotation frequencies (right axis). 

Line colors reflect the magnitude of the EV or SV at the onset of the decision epoch. At later times, colors match those associated 

with the closest eigenvector or right singular vector at the preceding time. e-h, Properties of the residual dynamics across all 

animals (monkey T, top; monkey V, bottom), choices (blue: choice 1; red: choice 2), and task configurations (markers; see legend 

of Extended Data Fig. 6). Black curves: averages across all choices and configurations. e, Magnitude of the largest EV (left axis) 

and the associated decay time-constants (right axis). f, Largest singular value. g, Largest angular phase of the EV and the 

corresponding frequency of rotation. h, Time course of the index of non-normality. 
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was weakly non-normal (Fig. 4h). The largest SV were mostly smaller than 1 in both monkeys (Fig. 237 

4f; p<0.05 for 41 of 44 time points in both monkeys T and V; one-sample, one-tailed t-test, n = 238 

8). The non-normality is thus not sufficiently pronounced to amplify perturbations, but rather 239 

only transiently slows their decay (Fig. 4c, “transient persistence”). 240 

These findings rule out several models of recurrent dynamics. In the decision epoch, the EVs are 241 

inconsistent with unstable dynamics (EV>1, Figs. 1c,2e; saddle point) and mostly smaller than 242 

expected for persistent dynamics (EV≈1, Figs. 1c,2e; line attractor). In the movement-period, the 243 

small EV around saccade onset are inconsistent with purely rotational dynamics or a dynamic 244 

attractor, which would both result in directions with slower decay (EV≈1, Figs. 1d,2e; rotations 245 

and dynamic attractor). Around saccade onset (-200 to +200ms from onset), the largest EV 246 

magnitude (0.80 and 0.88 in monkeys T and V; mean, n = 8) and the largest rotation frequency 247 

(0.74 and 0.33 Hz in monkeys T and V; mean, n = 8) imply that perturbations decay by at least 248 

50% within every 1/10th (monkey T) and 1/12th (monkey V) of a rotational cycle. During the same 249 

time window, the condition-averaged trajectories undergo about 1/4th of a rotational cycle 250 

without obvious decay. The quickly decaying residual dynamics, and the mismatch between its 251 

properties and those of the condition-averaged trajectories, are consistent with a strong input 252 

drive (Figs. 1d, 2e; point attractor). 253 

Alignment of residual dynamics and neural trajectories 

Additional insights into how recurrent dynamics and inputs contribute to the observed activity 254 

can be gained by analyzing the inferred eigenvectors of the residual dynamics. When inputs are 255 

weak, the trajectories mostly reflect the properties of the recurrent dynamics, which in turn 256 

results in distinct relations between trajectories and eigenvectors.  257 

We illustrate such relations in two models, obtained by augmenting the line-attractor and 258 

rotation models (Fig. 1c-d) with two new dimensions, along which recurrent dynamics was 259 

quickly decaying and input drive was strong and condition-independent. We defined activity 260 

subspaces as in Fig. 3 (Fig. 5a,c) and analyzed how they align with the eigenvectors of the residual 261 

dynamics. For the augmented line-attractor model, the choice plane is preferentially aligned 262 

(angle close to 0) with eigenvectors associated with large EV magnitudes (Fig. 5b top), as slow 263 

dynamics along these eigenvectors underlies the observed choice-related activity. For the 264 

augmented rotations model, the jPC34 plane is preferentially aligned with the eigenvectors 265 

associated with large rotational frequencies (Fig. 5d top), as these eigenvectors underlie the 266 

rotational activity in the jPC34 plane. Critically, the augmented subspaces are not preferentially 267 

aligned with the slow or rotational eigenvectors, as activity within them is mostly input driven. 268 

We summarize these relations with a linear regression analysis, whereby negative regression 269 
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coefficients identify planes where slow or rotational recurrent dynamics may contribute to the 270 

observed trajectories (Fig. 5b,d bottom; regression with EV magnitude or rotational frequency). 271 

The augmented, input driven subspaces in the models are, instead, aligned with fast or weakly 272 

rotational eigenvectors, resulting in positive regression coefficients (Fig. 5b,d bottom). Such 273 

positive coefficients are a trivial consequence of the low dimensionality of these models (e.g. 274 

mis-alignment with the choice plane necessarily implies alignment with the time plane) and need 275 

not occur in PFC dynamics. 276 

We applied this analysis to PFC responses and found significant, negative coefficients primarily 277 

in the decision epoch, whereby planes containing choice-related activity were aligned with slow 278 

residual dynamics in monkeys T and V (Fig. 5f; choice and jPC34 planes; Fig. 5e top) and rotational 279 

residual dynamics was aligned with planes containing condition-independent activity in monkey 280 

Figure 5. Alignment of residual dynamics and condition-averaged trajectories. 

a, Condition-averaged trajectories for the line attractor model (top; and Fig. 1c) augmented with an additional two-dimensional 

subspace with decaying dynamics and strong input drive (bottom, time plane; red and blue trajectories are overlayed). b, 

Alignment between the eigenvectors of the residual dynamics and the task-related subspaces, for the model in a. Top: Angle 

between the choice plane and the eigenvectors (gray points). Eigenvectors are indexed by EV magnitude. Bottom: regression 

coefficients, for linear regression as on top (line; angle vs. EV magnitude). Large negative coefficients identify task-subspaces 

aligned with slow residual dynamics. Task-subspaces are redundant (e.g. choice and jPC34) as residual dynamics is only 4-

dimensional. c, Trajectories for the rotation model (top; and Fig. 1d) augmented as in a (bottom, jPC12 plane). d, like b, for the 

model in c. Eigenvectors are indexed by the associated rotation frequency. Large negative coefficients identify task-subspaces 

aligned with rotational residual dynamics. e, Example alignments for PFC activity in monkey T. Angles (gray points) are pooled 

across times within an epoch (titles), task configurations, and choices. Linear regression (dashed line) includes coefficients (𝛽1 and 

𝛽2) for EV magnitude (|ev|) and rotation frequency (freq). f, Regression coefficients for PFC activity (as in e), for all epochs, task-

subspaces, and monkeys (circles: coefficient estimate; error bars : 1.96 standard error). Filled circles indicate non-significant 

regression coefficients (p>0.05; t-statistic, dof = 1405, two-sided; H0 : coefficient estimate = 0). 
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T (Fig. 5f top, time and jPC12 planes; Fig. 5e bottom). Coefficients in the movement epoch were 281 

mostly very small or not significant (Fig. 5f). These relations suggest that recurrent dynamics 282 

contributes to observed choice-related activity (in both monkeys) and condition-independent 283 

activity (in monkey T), but only during the decision period. Activity at the time of the saccade 284 

appears more consistent with the influence of a strong input drive18, as we also concluded based 285 

on the quickly decaying residual dynamics in this epoch (Fig. 4e). 286 

Resolving local and long-range recurrence 

Residual dynamics within an area can reveal key functional properties of the recurrent dynamics 287 

contributing to measured population activity, but cannot distinguish local and upstream 288 

recurrent contributions (Fig. 1b, Extended Data Fig. 4). Below, we show in simulations how such 289 

contributions could be distinguished with “global” recordings from multiple areas or by 290 

combining local recordings and causal perturbations (Fig. 7).  291 

We simulated activity in RNNs composed of two areas (PPC and PFC, Fig. 6), characterized by 292 

local recurrence within areas and long-range connections between areas38. In the RNNs, PPC is 293 

upstream of PFC, as it alone receives an input with temporally uncorrelated variability (Fig. 1b, 294 

simple input) that directly encodes the external stimulus. Local recurrence is equally strong in 295 

both areas. When present, feedback connections from PFC to PPC have equal strength as the 296 

feedforward connections.  297 

Simulated model responses in a perceptual decision-making task have choice-dependent and 298 

condition-independent components in both areas (Fig. 6a,d; choice and time modes). The EV of 299 

the residual dynamics, estimated locally in PPC or PFC, are typically time-dependent (Fig. 6b,e), 300 

as the RNNs are nonlinear. In particular, dynamics can change from stable (EV<1) to unstable 301 

(EV>1) after onset of the external input to PPC. We summarize the residual dynamics in each area 302 

with the peak magnitude of the EV along the corresponding choice modes (Fig. 6c,f). The choice 303 

modes define the “communication subspace” between PPC and PFC in these networks38,44. 304 

The simulations show that very different combinations of local and long-range connectivity can 305 

result in responses that are virtually indistinguishable based on condition-averages (Fig. 6a,d) and 306 

residual dynamics (Fig. 6b,e) computed locally. In networks with a weak feedforward connection 307 

from PPC to PFC, and no feedback from PFC, the local residual dynamics depends only (PPC) or 308 

mostly (PFC) on the strength of the local recurrence, whereby the largest EV gradually increases 309 

with stronger local recurrent connectivity (Fig. 6c). In networks with strong feedback from PFC, 310 

the local residual dynamics in both areas instead reflects the combined effects of local recurrence 311 

and long-range connectivity (Fig. 6f).  312 
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The simulations also reiterate the finding that residual dynamics can reflect recurrent 313 

computations occurring in an upstream area (Fig. 1b). In the example network with feedforward 314 

connectivity, we simulated PFC responses after “shuffling” the output of PPC to remove any 315 

temporal correlations (𝛏𝑡= 0 in Fig. 1b), while retaining its time-varying mean. In this setting, the 316 

EV estimated in PFC fall below 1 (Fig. 6b, PFC; dashed), indicating that local recurrent dynamics 317 

in PFC (𝐅local, Fig. 1b) is actually decaying in these networks. We refer to this effect as an “inflation” 318 

of the EV in PFC, due to the correlated input from PPC (Extended Data Fig. 4,5). 319 

Local and long-range recurrent contributions can, however, be resolved by the global residual 320 

dynamics, estimated from the concurrent, pooled responses from PPC and PFC. We compared 321 

global residual dynamics for the two example networks in Fig. 6a,d at the level of the inferred EV 322 

(Fig. 7a) and the corresponding eigenvectors (Fig. 7b). The EV magnitudes cannot distinguish 323 

between the two networks, with one EV unstable (EV>1), one persistent (EV≈1), and the others 324 

Figure 6. Local residual dynamics in multi-area networks of perceptual decision making. 

Each network consists of two interconnected modules (PPC and PFC), whereby a module mimics an RNN with a given strength of 

local recurrence. PPC is driven by an external input, and feedback connections from PFC to PPC are either absent (a-c) or present 

(d-f). a, Connectivity (top) and average trajectories (bottom) for an example network with weak feedforward connectivity between 

areas (top, thin arrow) and strong local recurrence (thick arrows). Condition-averaged trajectories are shown separately for each 

area for two choices (blue: choice 1, red: choice 2). Trajectories are visualized in a subspace spanned by the choice mode, explaining 

variance due to choice, and a time mode, explaining condition-independent variance. b, Time-varying EV magnitude of the local 

residual dynamics estimated from residuals in PPC (left) or PFC (right) for choice 1, in the example network in a. The external input 

is turned on 400ms after the start of the trial (gray dashed line). EV magnitudes in PFC are strongly reduced upon shuffling the 

feedforward output of PPC across trials (blue dashed curves). c, Maximum EV magnitude (circle) measured across time for 

residuals projected onto the choice modes in PPC (left) or PFC (right), as a function of the strengths of local recurrence (black to 

gray: small to large recurrence) and between-area connections (x-axis). Errorbars indicate 95 percentile bootstrap confidence 

intervals obtained by fitting residual dynamics to randomly resampled trials (n = 1000). The dashed circle marks the example 

network shown in a-b. d-f, Same conventions as in a-c, but for networks with between-area feedback. 
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decaying (EV<1; Fig. 7a) in both networks. The number of global EV does not robustly distinguish 325 

between networks, as it reflects a somewhat arbitrary cutoff in the dimensions to include in the 326 

dynamics subspace (excluded dimensions effectively have EV=0). The eigenvectors of the global 327 

residual dynamics, instead, distinguish the two networks. Eigenvectors can be qualitatively 328 

categorized as being “shared” across areas, or “private” to an area, depending on whether they 329 

have substantial projections (i.e. angle<90) onto choice and times modes (Fig. 7b) in both areas 330 

(shared) or only a single area (private). Both networks result in two eigenvectors that are at least 331 

partially shared with the choice modes in the two areas, but the relative projections onto each 332 

area varies across networks—the two eigenvectors are only “weakly” shared across areas in the 333 

feedforward network, whereas they are more “strongly” shared in the feedback network (Fig. 334 

7b; top vs bottom). Notably, these differences are not reflected in the eigenvectors of the local 335 

residual dynamics (Fig. 7c, top vs bottom). 336 

Validating residual dynamics with causal perturbations 

Figure 7. Global residual dynamics resolves local and long-range recurrent contributions. 

a, Time-varying EV magnitudes of the global residual dynamics for the example networks in Fig. 6a (top) and Fig. 6d (bottom). 

Global residuals are obtained by pooling observations from both areas for a single choice condition (here choice 1). The EV 

magnitudes do not reliably distinguish between the two example networks. b, Alignment (i.e. angle) between the eigenvectors of 

the global residual dynamics and the choice and time modes in PPC and PFC for the feedforward (top) and feedback (bottom) 

networks (see legend). Eigenvectors are estimated 0.7s after stimulus onset (dashed line in a). Shared eigenvectors span an angle 

< 90deg with at least one mode in each area. Private eigenvectors are strongly aligned with modes that all lie in a single area. The 

eigenvector alignments distinguish between the two example networks (top vs. bottom). In particular, the eigenvector aligned 

with the largest EV (EV1) has a large projection (small angle) onto both the PPC and PFC choice mode in the feedback model 

(bottom), but only onto the PPC choice mode in the feedforward model (top). c, Analogous to b, but for the eigenvectors of the 

local residual dynamics (see Fig. 6b,e) estimated separately based on PPC or PFC responses. The alignment of local eigenvectors 

does not distinguish between the example networks (top vs. bottom).  
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Estimates of residual dynamics, which describe the evolution of “natural” perturbations 337 

(Extended Data Fig. 1a), provide predictions of the consequences of “causal” perturbations of the 338 

recorded neural population18,26–29. We illustrate such predictions for local perturbations applied 339 

to PPC or PFC in the example two-area networks (Fig. 8). We simulated perturbations by 340 

“injecting” an activity pattern corresponding to the choice mode or the time mode in one area. 341 

We applied a brief perturbation at one of six different times after stimulus onset and let the 342 

activity evolve under the influence of the recurrent dynamics and the input. The effect of a given 343 

perturbation is summarized as the time-varying norm of the population activity in PPC and PFC 344 

Figure 8. Residual dynamics explains the effects of targeted causal perturbations. 

Simulated responses to brief perturbations for the two example networks in Fig. 6,7 (small circles) are compared to predictions 

based on residual dynamics (a-c and d-f: network without and with feedback between areas). Perturbations are applied locally in 

each area, along the choice or time mode (green and purple circles) at one of six times in the trial (the first point of each curve in 

b-c and e-f). Predictions are based either on the local residual dynamics in the simulated area (gray curves; b,e: PPC; c,f: PFC) or 

on the global residual dynamics (black curves). a, Schematic of the location and type of perturbations shown in b and c for the 

network without feedback. b, Simulated responses in PPC for perturbations in PPC (top) or PFC (bottom) along the respective 

choice (left) and time modes (right) compared to the corresponding predictions based on local PPC residual dynamics (gray) or 

global residual dynamics (black). The norm of the population response (y-axis) is shown against time in the trial (x-axis). The last 

two points on each curve correspond to responses for the two time-steps following the offset of each perturbation. c, Analogous 

to b, but for responses in PFC. d-f, Analogous to a-c, but for the network with feedback. Predictions based on the global, but not 

the local, residual dynamics capture the qualitative features of the simulated responses to perturbations- that is, decay (c, bottom 

left), expansion (c, top left), and dip (decay followed by expansion; e, top-left). 
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for a brief time-window following the onset of the perturbation, averaged over many trials (Fig. 345 

8b-c,e-f; a group of three connected points). We compared these simulated perturbations (Fig. 346 

8, dots) to predictions based on the inferred global and local residual dynamics (Fig. 8, black and 347 

gray curves).  348 

The effects of perturbations depend on the area where they are applied (Fig. 8, top vs. bottom 349 

row in each panel), the perturbed mode (Fig. 8; green: choice, purple: time), and the time within 350 

the trial (Fig. 8b-c, e-f, x-axis), and vary across the two example networks (Fig. 8, a-c vs. d-f). 351 

Depending on these factors, activity after a perturbation can be expanding, decaying, or show a 352 

brief dip (Fig. 8, see labeled examples). This simulated activity is mostly captured, at least 353 

qualitatively, by the global predictions (Fig. 8, dots vs. black curves). Qualitative mistakes in the 354 

global predictions occur primarily for components of the activity that are very small, like activity 355 

in PPC in the feedforward network after a PFC perturbation (Fig. 8b, bottom). Overall, the local 356 

predictions fare worse (Fig. 8b-c,e-f; global: black, R2 = 0.97; local: gray, R2 = 0.93). For example, 357 

the decay following perturbations of the PFC choice mode in the feedforward network are 358 

captured by the global prediction, but not the local prediction (Fig. 8c, bottom-left). The 359 

erroneous local prediction is expanding at late trial times, a reflection of the inflation of local EV 360 

in PFC in this network (Fig. 6b, PFC; dots vs. dashed). In the feedback network, PPC and PFC 361 

perturbations along the choice mode lead to a dip in activity in the perturbed area (Fig. 8e, top-362 

left and Fig. 8f, bottom-left) and to expanding activity in the non-perturbed area (Fig. 8f, top-left 363 

and Fig. 8e, bottom-left). These dependencies are qualitatively captured by the global 364 

predictions, but not the local predictions. The observed dips reflect the existence of a global, 365 

shared unstable direction, which local residual dynamics cannot adequately capture (Extended 366 

Data Fig. 10). 367 

Discussion 

The properties of residual responses provide insights into the nature of recurrent computations 368 

underlying neural population dynamics. Our analysis of residual dynamics extends previous work 369 

that leveraged trial-by-trial variability to understand neural computations20,21,23,24,44, by providing 370 

a full, quantitative description of the time-varying dynamics of population-level trial-by-trial 371 

variability. Our approach can capture dynamics that are globally non-linear9, through a series of 372 

local approximations capable of resolving differences in dynamics across state-space locations 373 

and time.  374 

Response residuals are computed by discounting the component of neural responses that is 375 

repeatable across trials of a given task condition, and can therefore be explained with more easily 376 

interpretable models than previous descriptions of the full single-trial neural response5–7. 377 



 

 19 

Discounting this component does not necessarily remove all sources of external inputs into the 378 

recorded area (Fig. 1a), implying that residual dynamics in a single area may not reflect only the 379 

local recurrence in the recorded area. Instead, residual dynamics reflects the combined effects 380 

of local recurrence and recurrent dynamics unfolding within the output space of upstream areas 381 

that provide an input to the recorded area (Fig. 1b, Fig. 6, Extended Data Fig. 4).  382 

The contributions from local and long-range recurrence to neural responses can be distinguished 383 

by inferring the global residual dynamics, based on recordings from the entire network of inter-384 

connected areas (Fig. 7). The resulting description of dynamics in terms of modes (i.e., 385 

eigenvectors) that are shared across areas41, or private to a single area, relates to previously 386 

identified communication- and null-subspaces between areas25,44,52,53. Global residual dynamics 387 

goes beyond a static description of such subspaces, as it captures also the dynamics of responses 388 

resulting from unidirectional or bidirectional communication between areas. In particular, global 389 

residual dynamics leads to fine-grained predictions of the consequences of small causal 390 

perturbations that probe the intrinsic manifold explored by the neural variability29,30 (Fig. 8). 391 

Our local estimates of PFC residual dynamics provide constraints on the properties of recurrent 392 

dynamics implemented by the recorded PFC population and its contributions to decision-making 393 

and movement generation. The largest estimated time constants provide an upper bound on the 394 

time-constants of the local recurrent dynamics in PFC (Fig. 4e; 322ms and 503ms in monkeys T 395 

and V; medians, n = 352: 2 choices x 4 configurations x 44 times in trial), as any upstream 396 

contribution to PFC responses would typically inflate these estimates (Fig. 6b; Extended Data Fig. 397 

4,5). Recurrent dynamics in PFC is thus slow54,55, but stable throughout the decision and 398 

movement epochs. This finding does not rule out that the decision process leading to the 399 

monkeys’ choices involves unstable or line-attractor dynamics (Fig. 1c), but those dynamics 400 

would have to unfold in areas upstream of PFC56, and at least partly outside their communication 401 

subspace with PFC.  402 

The estimated time-constants would reflect the dynamics of the decision process if that process 403 

unfolded either in PFC alone, or within its communication subspace with other areas (as for all 404 

networks in Fig. 6). In such scenarios, our estimates imply leaky evidence accumulation (Fig. 1c, 405 

point attractor), whereby late evidence affects choice more strongly than early evidence. In 406 

practice though, monkeys often terminate evidence accumulation early in the trial, when a 407 

decision threshold is reached57, which would reduce the behavioral effects of leaks in the 408 

accumulation. Notably, a recent study hypothesized that the termination of evidence 409 

accumulation coincides with the onset of rotational dynamics in PFC58. In our study, condition-410 

independent, rotational dynamics during the decision epoch also stands out, as in monkey T it is 411 

the component of the recorded activity that can be best explained as resulting from recurrent 412 
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computations (Fig. 5). Irrespective of the possible contributions of PFC to the process underlying 413 

the monkeys’ choices, this finding may be indicative of a broader role for PFC in governing 414 

transitions between cognitive states58,59, e.g. the transition from an uncommitted to a committed 415 

state. 416 

Around the time of the saccade, PFC residual dynamics is quickly decaying, largely non-rotational, 417 

and only weakly non-normal, implying that PFC does not implement rotational dynamics13,36, 418 

dynamic attractors37, or strongly non-normal60 recurrent dynamics of the kind previously 419 

proposed to explain movement activity in motor cortex. Rotational dynamics and dynamic 420 

attractors are also unlikely to be implemented in an upstream area driving PFC movement 421 

responses through a communication subspace, since the signatures of those dynamics would 422 

then also appear in PFC residuals (Fig. 6, Extended Data Fig. 4). Strong non-normal dynamics in 423 

an upstream area, however, could possibly explain the observed PFC responses. Non-normal 424 

systems can generate large activity transients that project only weakly onto the activity subspace 425 

containing the slowest dynamics. If the output from such an upstream area was partially aligned 426 

with the activity transients, but orthogonal to the slow dynamics, it could possibly drive strong 427 

“input-driven" movement-related activity in PFC without revealing the signatures of the strongly 428 

non-normal dynamics that created it. Alternatively, the mismatch between average trajectories 429 

and residuals in the movement epoch could reflect a failure in our estimation procedure. For one, 430 

estimates of residual dynamics become biased when trial-by-trial variability is too small, which 431 

however does not seem to be the case in our data (Extended Data Fig. 9). For another, dynamics 432 

during movement may be strongly non-linear, and thus not well approximated by our local linear 433 

description (Extended Data Fig. 1). In both scenarios, our estimated dynamics would not provide 434 

a good description of the true dynamics. 435 

Finally, residual dynamics may provide insights into more general biological constraints at play in 436 

the underlying neural circuits. The inferred EV are smaller than but close to 1 during the decision 437 

epoch, consistent with circuits operating near a critical regime, resulting in large variability and 438 

sensitivity to inputs40,61–63. Single-neuron variability is transiently reduced at the time of stimulus 439 

and movement onset (Extended Data Fig. 7), potentially reflecting the widespread quenching of 440 

variability in response to task events21,64. Near-critical dynamics, non-normality, and variability 441 

quenching emerge naturally in balanced excitation-inhibition (E-I) networks65,66. A disruption of 442 

E-I balance by the onset of an input could lead to contracting dynamics and reduced variability. 443 

In our PFC recordings, reduced variability coincides with contracting dynamics at movement 444 

onset, but not at stimulus onset (Extended Data Fig. 7). This finding suggests that current models 445 

of E-I networks65,66 may have to be adapted to fully capture the interactions of internal dynamics, 446 

inputs, and variability we observed in PFC. 447 
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Extended Data Figures 

 

Extended Data Fig. 1: Residual and effective dynamics in models of decisions and movement 

a, Variability in responses across trials from the same task condition are interpreted as perturbations away from the condition-
averaged trajectory. The evolution of these perturbations reflects the properties of the underlying recurrent dynamics (flow field, 
same conventions as in Fig. 1c). Inset on right shows a magnified view of the condition-averaged trajectory (red, choice 2) and 
corresponding single trials (dark gray) simulated from the saddle point model. Residual vectors at each time (shown in purple for 
a single trial and time) are computed by subtracting the condition-averaged response at that time from the corresponding single-
trial response (purple equation). Time-varying dynamics matrices (At) of a linear time-varying, autonomous state-space model 
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(black equations, top-right) are fit to the residuals. These matrices approximate the dynamics in distinct ’local’ regions of state 
space (e.g. dashed boxes) and are indexed according to time and condition. b-c, Components of the dynamics for the models of 
decisions (b) and movement (c) for an example reference time (blue dot) along the condition-averaged trajectory for choice 1. 
Same conventions as in Fig. 2a. Dynamics are shown for a local state-space region close to the corresponding initial condition 
(boxes in Fig. 1c, d; left). For all models, the estimated effective and residual dynamics (columns 5 and 6) closely match the true 
effective and residual dynamics (columns 3 and 4). In these models, the residual dynamics (column 4) reflects only the recurrent 
dynamics (column 1), but is not identical to it. For one, the fixed point of the residual dynamics by definition is located at the 
location of the reference state (the blue dot), which in general does not match the position of fixed points of the recurrent dynamics 
(e.g. the red circle in the first row and first column, corresponding to the position of the unstable fixed point in the saddle point 
model). The position of fixed points of the recurrent dynamics can only be inferred if the inputs are known, a requirement that is 
not fulfilled in many experimental settings. For another, consistent drifts resulting from the recurrent dynamics (e.g. the drift along 
the channel in the dynamic attractor model) are not reflected in the residual dynamics. Such drifts are “subtracted” from the  
variability in the computation of residuals. Differences in the underlying recurrent dynamics are more apparent in the residual 
compared to the effective dynamics in cases where the input drive is strong. For example, the average cosine similarity between 
flow fields is 0.27/0.99 (saddle vs. line-attractor), 0.02/0.94 (saddle vs point-attractor) and 0.58/0.95 (line-attractor vs point-
attractor) for the residual/effective dynamics. 
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Extended Data Fig. 2: Schematic of analysis pipeline 
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Schematic depicting the complete data analysis pipeline for inferring residual dynamics from noisy neural population recordings 
(see Methods). The pipeline involves four sequential steps. Step 1: session alignment; involves pooling single trials from different 
recording sessions to increase the statistical power of the analyses. Step 2: dynamics subspace estimation; involves using ‘aligned’ 
single-trial neural residuals to obtain estimates of a dynamics subspace (Udyn) that effectively contains the residual dynamics. Step 
3: residual latent state estimation; involves using the first stage of a two stage least squares (2SLS) approach to estimate a 
‘denoised’ latent residual state. Step 4: time-varying dynamics estimation; uses the denoised residual latent states (obtained in 
step 3) for the second stage of the 2SLS, to estimate the time-varying residual dynamics matrices (At).  
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Extended Data Fig. 3: Residual dynamics of simulated, time-varying, linear dynamical systems. 

a-c, Validation of the estimation procedure on simulations of time-varying, linear dynamical systems with temporally uncorrelated 
latent noise (see Methods; Supplementary Methods). Simulations are based on a latent variable dynamical system with 3 latent 
dimensions and 20 observed dimensions. Residual responses are generated using a gaussian (circle markers: fixed latent noise 
variance; square markers: latent noise variance switches mid-way through the trial) or poisson (triangle markers) observation 
process. In all simulations, the properties of the dynamics switch midway through the simulated time window, from slowly 
decaying to quickly decaying (a); from normal to non-normal (b); or from non-rotational to rotational (c). As in Fig. 4b-d, we 
characterize dynamics with the magnitude of the eigenvalues (left), the rotational frequency (middle), and the singular values 
(right). Markers correspond to the estimated residual dynamics, black curves to the ground-truth values. The estimated residual 
dynamics accurately matches the ground-truth for all types of dynamics and observation models, before and after the switch, and 
also reveals the time of the switch. We observed this match even when the latent noise variance of gaussian observations was 
switched at the same time as the eigenvalues/eigenvectors of the dynamics (square markers), demonstrating that estimates of 
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residual dynamics are robust to changes in latent noise variance (see also Extended Data Fig. 5a-b vs e-f). d, Analogous to c, but 
for residual dynamics (circles) estimated using ordinary least squares (OLS) instead of two-stage least squares (2SLS) as in c. Results 
are only shown for data simulated using a gaussian observation process. Unlike the 2SLS estimates, the OLS estimates are strongly 
biased, i.e. the magnitude of the eigenvalues and the singular values are consistently underestimated. These biases are expected—
they arise because both the regressors and the dependent variables are corrupted by observation noise (see Methods). The 2SLS 
instead produces unbiased estimates, as the first stage of 2SLS results in a denoising of the regressors (Methods; see also Extended 
Data Fig. 9). e, Parameters of the latent noise and observation noise for the simulations in a-d were chosen to approximately 
match the variability in the measured PFC responses. The variability in the measured responses were quantified in terms of four 
statistics (l0, l1, l1/l0 and pvar, x-axis; see Supplementary Methods). Histograms indicate the respective values of these statistics 
in the neural data (one data point per task configuration, choice condition and monkey; see legend in Extended Data Fig. 6a). The 
open markers (top, same conventions as a-c) indicate the values of the statistics in the simulations for each of the three models.  
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 Extended Data Fig. 4: Inflation of local residual dynamics in a linear two-area dynamical system 

We systematically explored the effect of correlated input variability on estimates of residual dynamics in a two-area, linear 
dynamical system (see Methods & Supplementary Methods). The input area implements 2D isotropic recurrent dynamics 
characterized by parameters 𝝀𝟏, 𝝉𝟏, and 𝝎𝟏 (eigenvalue, time-constant, rotation frequency). Activity in the input area is externally 
driven by uncorrelated noise. Values of 𝝀𝟏 closer to 1 result in longer auto-correlation times in the variability of activity in the input 
area. This activity provides the input into the recorded area, which implements 2d isotropic recurrent dynamics with parameters 
𝝀𝟐, 𝝉𝟐, 𝝎𝟐. Residual dynamics at steady-state is estimated from activity of the recorded area. At steady state, estimates can be 
derived analytically (see Supplementary Math Note B). Because of temporally correlated input variability, the properties of the 
residual dynamics (𝝀𝒓𝒆𝒔, 𝝉𝒓𝒆𝒔, 𝝎𝒓𝒆𝒔) in general do not match those of the recurrent dynamics in the recorded area. a-b, Inflation 
of eigenvalues. a, Schematic of the model (top) and recurrent dynamics in each area (bottom, flow fields). Recurrent dynamics is 
stable and non-rotational in both areas. b, Residual dynamics (𝝀𝒓𝒆𝒔) in the recorded area as a function of recurrent dynamics in 
the recorded area (𝝀𝟐, x-axis) and in the input area (𝝀𝟏, gray lines). The eigenvalues of the residual dynamics are inflated, i.e. 𝝀𝒓𝒆𝒔 
is larger than 𝝀𝟐 (all gray lines above the green line). Larger 𝝀𝟏 (longer input auto-correlations) lead to stronger inflation. For 𝝀𝟐 
= 0 (no recurrent dynamics in the recorded area) 𝝀𝒓𝒆𝒔 = 𝝀𝟏 (gray circles). c-d, Inflation of rotation frequency. c, Recurrent dynamics 
is rotational in the input area, but stable and non-rotational in the recorded area. d, Residual dynamics in the recorded area, 
expressed as the magnitude of the eigenvalue (𝝀𝒓𝒆𝒔, top) and the rotation frequency (𝝎𝒓𝒆𝒔, bottom). The eigenvalues of the 
residual dynamics are generally inflated (top), but the relation with 𝝀𝟐 is non-monotonic and depends on 𝝎𝟏. The residual 
dynamics is rotational (bottom, 𝝎𝒓𝒆𝒔 > 𝟎) even though the recurrent dynamics in the recorded area is not (𝝎𝟐= 0). The inflation 
of rotation frequency is reduced for increasing 𝝀𝟐. e-f, Equivalence of upstream and local recurrent dynamics. e, Analogous to c, 
but dynamics is switched between input and recorded area. f, Analogous to d, but for the dynamics in e. The residual dynamics is 
identical to that in d. In general, residual dynamics in the recorded area reflects the combined effect of local and upstream 
recurrent dynamics. 
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Extended Data Fig. 5: Explanation of input driven inflation in residual dynamics 

To gain an intuitive understanding of inflation of eigenvalue magnitude, we consider simulations of two-area linear dynamical 
systems similar to those in Extended Data Fig. 4a. For simplicity, here we simulate stable 1d-dynamics in each area, whereby 
variability of the input into the recorded area is either temporally correlated (c-d) or uncorrelated (a-b, e-f), and has fixed (a-b, c-
d) or time-dependent latent noise variance (e-f). The variability injected into the input area is always temporally uncorrelated. 
Recurrent dynamics in the recorded area is identical in all simulations. a, Model parameters for the case of temporally uncorrelated 
input (𝜆1 = 0). b, Contributions to activity x in the recorded area at steady-state. Activity x(t) (x-axis) is propagated through the 
recurrent dynamics (left, y-axis) and added to the noise e(t) (middle, y-axis) to obtain activity x(t+1) at time t+1 (right, y-axis). The 
noise e(t) corresponds to activity/output of the input area, and is shaped by dynamics determined by 𝜆1. Points in the scatter plots 
correspond to different simulated trials. Estimating the eigenvalue of the residual dynamics in the absence of observation noise 
amounts to measuring the slope of the regression line relating x(t) to x(t+1) (right, gray line). In this case, this slope is identical to 
that obtained if the latent noise had not been added to the activity (left, gray line), meaning that residual dynamics correctly 
reflects the effect of the recurrent dynamics in the recorded area (slope < 0, reflecting 𝜆2 < 0; left). c, Model parameters for the 
case of correlated input (𝜆1 > 0 for t > 0; 𝜆1 = 0 at other times). d, Analogous to b, but for the model in c. Here activity and noise 
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are shown at two times in the trial: early, when steady-state is not yet reached (top) and late, at steady-state (bottom). At both 
times, residual dynamics is inflated, i.e. the regression slope between x(t) and x(t+1) (right) is larger than that obtained by applying 
only the recurrent dynamics (left), indicating inflation of the eigenvalues. Inflation occurs because the noise itself is correlated 
with activity in the recorded area (middle, slope > 0), an effect that results indirectly from the correlation between e(t) and e(t-1). 
At steady state, even the inflated residual dynamics is still stable (bottom-right, slope < 1; see also Extended Data 4b). However, 
immediately after the onset of the temporally correlated input, residual dynamics erroneously reveals an instability (top-right, 
slope > 1). e, Parameters for the case of temporally uncorrelated noise but time-varying noise variance. The variance of the noise 
injected into the input area is increased at time t = 0, from 𝜎𝑙𝑎𝑡𝑒𝑛𝑡  = 10-6 to 10-5. f, A change in noise variance does not result in 
inflation of the residual dynamics, neither early nor late after the change (right, top and bottom; same slope as on the left; see 
also Extended Data Fig. 3a-c, squares).  
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Extended Data Fig. 6: Alignment of neural population responses from different experiments. 

Validation of the session alignment procedure of the analysis pipeline (Extended Data Fig. 2, Step 1; see Methods). We aligned 
neural population responses of all experiments belonging to the same task configuration and then pooled the aligned single trial 
responses across experiments before computing the residuals used in estimating the dynamics. The outcome of the session 
alignment procedure is a set of 20 ‘aligned’ modes for each experiment, defined such that the activity of each mode has the same 
dependency on time and choice across experiments. a, Definition of task configurations. We assigned each experiment to one of 
four target configurations (distinguished by markers, indicated on top of each panel along with number of experiments) based on 
the angular position of the targets (blue: choice 1; red: choice 2). The position of the targets was similar, but not identical, across 
experiments within the same task configuration. (left: Monkey T, right: Monkey V). b, Psychometric curves for all experiments in 
both monkeys (left: Monkey T, right: Monkey V), showing the fraction of saccades to choice 1 as a function of the signed motion 
coherency. Each gray data point is computed from trials belonging to a single experiment. The employed values of signed 
coherency varied slightly across experiments, in an attempt to achieve a comparable overall performance in each experiment. 
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Black curves show logistic functions fitted separately to data points from a given task configuration (different markers; see legends 
in c) and evaluated at logarithmically spaced levels of coherency (positions of the white markers along the x-axis). c, Cumulative 
variance explained in condition-averaged population responses (mean +/- 2 s.e.m. across experiments; symbols as in a, n = number 
of experiments in each task configuration: see a) as a function of the number of aligned modes in both monkeys (left: Monkey T, 
right: Monkey V). The cumulative variance explained by the first 20 aligned modes for all 164 experiments in Monkey T and 80 
experiments in Monkey V showed a strong positive trend with number of trials (inset, bottom) and a weak negative trend with the 
number of units (inset, top). d, Activity of the first 20 aligned modes (numbered from top-left to bottom-right) for config-3 in 
monkey T (15,524 trials across 41 experiments) ordered according to the amount of variance explained. Activity is defined as the 
projection of the population condition averages onto each mode. The projection was computed separately across experiments for 
choice 1 and choice 2 (blue and red) with responses aligned either to stimulus onset or saccade onset (black arrows). The resulting 
projections were then averaged across experiments (line: mean; shading: 2 s.e.m. across 41 experiments). e, Same data as in d, 
but showing the time-course of each aligned mode (numbered from 1 to 20) for each individual experiment (y-axis) separately for 
the two choice conditions (choice 1 and choice 2, top and bottom sub-panels). Differences in the activation of a given mode across 
experiments (i.e. across rows in each sub-panel) are much smaller than the differences in the activations across modes (i.e. across 
sub-panels), demonstrating the success of the alignment procedure. f, Absolute value of the projection (y-axis) of the 8 basis 
vectors (dim-1 through dim-8; red to blue) that span the dynamics subspace (𝑼𝑑𝑦𝑛, estimated in Step 2 of the analysis pipeline; 

Extended Data Fig. 2) onto the 20 aligned modes, indicating the relative alignment of the aligned and dynamics subspace. The 
dynamics subspace is computed separately for each task configuration (symbols as a) in each monkey (left: Monkey T, right: 
Monkey V), and projects most strongly onto the first few aligned components (i.e large projection values for smaller aligned mode 
number). The dynamics subspace thus largely overlaps with the subspace of activity that captures most of the task-related 
variance in the responses (see also Extended Data Fig. 7c). g, Evaluation of the alignment procedure for all task configurations 
(columns) in both animals (rows). Each element of the matrix is obtained from the correlation coefficient between the time-courses 
of two aligned modes (i.e. positions along horizontal and vertical axes). We show the median correlation coefficient across all 
pairs of dissimilar experiments. Values close to 1 along the diagonal and close to 0 in the off-diagonal indicate that the time-
courses are much more similar across experiments than across modes, indicating successful alignment.  
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Extended Data Fig. 7: Single session and single unit results 

a, Residual dynamics estimated using neural data for a single choice condition (choice-1, 875 trials) from a single experiment in 
monkey T. This experiment has the largest number of trials among all experiments in monkey T. Conventions as in Fig 4b-d. We 
estimated the residual dynamics directly from high-dimensional residual observations that corresponded to square-root 
transformed, binned spike-count vectors (dimensionality = number of units; 170 for this session), without performing the session 
alignment (step 1 in Extended Data Fig. 2). Overall, the properties of the residual dynamics estimated from this single session are 
similar to those obtained after pooling trials across sessions (Fig 4b-d, 8 dimensional), suggesting that the main features of the 
residual dynamics (Fig. 4) are not affected by the alignment procedure. The lower dimensionality of the estimated residual 
dynamics (4 dimensions, blue to cyan; compared to 8 dimensions in Fig. 4a-d) most likely is a consequence of the smaller number 
of available trials in the single session compared to the aligned sessions. The resulting smaller statistical power makes is harder 
to estimate, in particular, the faster decaying eigenmodes of the dynamics. b, Trial-by-trial variability in single neurons is 
transiently reduced at the onset of specific task-events. We quantified single neuron variability as the time-varying, mean-matched 
Fano-factor computed by pooling units/neurons across all experiments in a monkey (empty circles: mean; dashed curve: 95% 
normal confidence intervals obtained by resampling datapoints; left: Monkey T, n = 218,856 datapoints; right: Monkey V, n = 
118,629 datapoints; each datapoint corresponds to a single neuron-condition pairing within an experiment). In both monkeys, the 
mean-matched Fano factor undergoes a transient reduction locked to the onset of the stimulus and the onset of the saccade. The 
reduction in variability around the time of saccade onset coincides with a contraction of the eigenvalues of the residual dynamics 
(Fig. 4b,e), suggesting that more quickly decaying dynamics may underlie variability quenching at that time. A contraction of 
eigenvalues, however, does not appear necessary to explain variability quenching, as an analogous contraction is not observed at 
the time of stimulus onset, despite the consistent reduction in variability at stimulus onset. c, Overall fraction of variance explained 
by the dynamics subspace. We quantified what fraction of the variance of the condition-averaged trajectories in the high-
dimensional neural space (state space defined by the individual units) is contained in the dynamics subspace (𝑼𝑑𝑦𝑛, estimated in 

Step 2 of the analysis pipeline; Extended Data Fig. 2). Data from all 164 experiments in monkey T. On average in monkey T, the 8-
dimensional dynamics subspace explains 68% of the variance in the average neural trajectories in monkey T (dashed vertical line, 
n = 164 experiments).  
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Extended Data Fig. 8: Cross-validation of hyper-parameters used for estimating residual dynamics 

a-c, Representative results of the cross-validation procedure used to determine the various hyper-parameters of the analysis 
pipeline (Extended Data Fig. 2; see Methods) for neural data from a single task configuration in monkey T (config-3, see Extended 
Data Fig. 6a). a, Cross-validated hankel matrix reconstruction error (Ehankel; circle: mean over n = 20 repeats of hold-out cross 
validation; error bars: 1 s.e.m) plotted as a function of the rank of the hankel matrix (r, step 2 in Extended Data Fig. 2; see Methods) 
for residuals from the two epochs (left: decision; right: movement) and two choices (blue: choice 1; red: choice 2). The 
reconstruction error for each of the 20 repeats was computed by assigning a random 50% of the trials as a "training" set and the 
rest as a "test" set. b, 5-fold cross-validated mean squared error (Efs; circles: mean over n=5 folds; error bars: 1 s.e.m) of the 
denoised residual predictions obtained from the first stage of the two-stage least squares regression (2SLS; step 3 in Extended 
Data Fig. 2), plotted as a function of the hyper-parameters: d (dimensionality of dynamics subspace); and l (number of past lags). 
For each cross-validation fold, a single mean squared error measure was computed by pooling the denoised predictions across 
time points in both epochs (left: choice 1; right: choice 2). c, Cross-validated mean squared error (circle: mean across n = 5 ’repeats’ 
of the average mean squared error across 5-folds; error bars: 2 std across repeats) of the residual predictions obtained from the 
second stage of the 2SLS regression (step 4 in Extended Data Fig. 2), plotted as a function of the smoothness hyper-parameter 𝛼 
for different epochs (left: decision; right: movement) and choice (choice 1 and 2). Both the train (orange) and test (gray) error are 
shown. d, Summary showing the optimal value for the dimensionality d and lag l (step 3 in Extended Data Fig. 2) for all task 
configurations and monkeys (symbols as in Extended Data Fig. 6a). A dimensionality of 8 and a lag of 3 was deemed optimal for 
both monkeys and task configurations (used in Fig 4). e, Summary showing the optimal smoothness hyper-parameter 𝛼 (step 4 in 
Extended Data Fig. 2) for all task configurations and monkeys. Final values of 𝛼 were chosen to be the same across monkeys in 
Fig. 4 (decision epoch: 𝛼 = 200; movement epoch: 𝛼 = 50) despite a small degree of variability across the two monkeys. Same 
conventions as in d.  
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Extended Data Fig. 9: Assessing statistical bias of eigenvalue estimates 

We estimated the residual dynamics for different choices of bin size, to identify the smallest bin size resulting in unbiased 
estimates. In the discrete time formulation of a linear dynamical system, like the one we use here, re-binning of the responses 
trivially results in a scaling of the estimated eigenvalues of the residual dynamics. To compensate for this rescaling, here we 
“mapped” the estimated eigenvalues onto a common, reference bin size (see Methods). In the absence of statistical biases, the 
resulting “re-binned eigenvalue” would be independent of bin size. a, Re-binned eigenvalues for simulations of a time-invariant, 
latent-variable (3 latent dimensions), LDS model (reference bin size = 40ms) as a function of bin-size (dashed line: ground truth). 
Different gray lines correspond to models with different levels of latent noise (legend). When latent noise is large, estimates of the 
residual dynamics are biased for small bin sizes, but become unbiased when bin size is sufficiently large (light gray). When latent 
noise is too small, estimates are biased for any choice of bin size (black). b, Estimated, re-binned eigenvalues (reference bin size = 
15ms) as a function of bin size for all configurations in monkey T. Columns correspond to the 8 distinct eigenmodes of the estimated 
8-dimensional residual dynamics (left to right, largest to smallest EV), rows correspond to task configurations (top to bottom, 
config-1 to 4; see Extended Data Fig. 6a). Here the re-binned eigenvalues were computed separately for each choice (red vs blue) 
and averaged in small temporal windows specific to each epoch: 0.2-0.4s relative to stimulus onset (solid lines) and -0.15 to 0.25s 
relative to saccade onset (dashed lines). All main analyses of recorded neural responses are based on a bin size of 45ms, for which 
eigenvalue estimates have converged to an asymptote, suggesting that our estimates are not biased. Note that the re-binned 
eigenvalues for a bin size of 45ms are larger than the corresponding eigenvalues reported in other figures (e.g. Fig. 4b), because 
the former were mapped onto a reference bin size of 15ms.  
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Extended Data Fig. 10: Unidirectional and bidirectional communication between areas. 

A population level mechanism explaining unidirectional and bidirectional communication between areas, incorporating key 
properties of the global residual dynamics in the feedforward (a, b) and feedback networks (c, d) in Fig. 7. We simulated time-
independent, two-dimensional, linear dynamics, whereby the two cardinal dimensions (left panels in a-d) represent the choice 
modes in PPC and PFC (Fig. 6a,d). The time modes in each area are ignored here. We simulated a local perturbation (right panels 
in a-d) either in PPC (a, c) or PFC (b, d) by initializing activity along the corresponding choice mode (black circles, left panels) and 
then letting activity evolve (white points) based on the linear dynamics determined by the respective EVs (Fig 7a; see 
Supplementary Methods). a, Perturbation in PPC in the feedforward model. Left: evolution of activity in the two-dimensional, 
global state-space spanned by PPC and PFC. Right: time-course of the norm of the population activity. The PPC perturbation causes 
expanding activity in PPC that propagates to PFC. b, Perturbation of PFC in the feedforward model in Fig 6a. The PFC perturbation 
decays in PFC and does not propagate to PPC. This unidirectional communication results from non-normal dynamics, as EV1 is 
shared, while EV3 is private to PFC (EV1 not orthogonal to EV3). c, Perturbation of PPC in the feedback model. The PPC perturbation 
causes a dip in PPC and expanding activity in PFC. d, Perturbation of PFC in the feedback model in Fig 6d. The PFC perturbation 
causes a dip in PFC and expanding activity in PPC. In the feedback model, perturbations in one area thus propagate to the other 
area. This bidirectional communication arises because both EV1 and EV4 are shared equally between PPC and PFC. Somewhat 
counter-intuitively, the existence of bidirectional communication in these models can be inferred when considering activity in the 
perturbed area alone. Activity in the perturbed area initially decays, and expands only later; activity in the unperturbed area does 
not show this dip. The dip occurs because any local perturbation is only partially aligned with the shared, unstable direction (EV1). 
Initially, activity in the perturbed area then mostly reflects the rapidly decaying component of activity along the second, global 
eigenvector (EV4). 
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Methods 

Experimental Procedures 

All surgical, behavioral, and animal-care procedures complied with National Institutes of Health 

guidelines and were approved by the Stanford University Institutional Animal Care and Use 

Committee. 

Behavioral Task 

Two adult male rhesus macaque monkeys (monkey T: 14kg, monkey V: 11kg) discriminated the 

direction of motion of a random dot motion kinetogram and reported their choice by saccades 

to one of two choice targets67 (Fig. 3a). Visual stimuli were presented on a cathode ray tube 

monitor (viewing distance = 57 cm, frame rate = 120Hz) controlled by a VSG graphics card 

(Cambridge Graphics, UK). Each trial began with the appearance of a small spot requiring fixation 

for a duration of 500ms (± 1.5° visual angle, fixation window). Eye position was measured with 

a scleral search coil (CNC Engineering, Seattle, WA). The fixation period was followed by the 

appearance of two saccade targets (eccentricity 6-18°, angular locations varied across recording 

sessions) . After a 400ms delay, the random-dot stimulus was presented centered on the fixation 

point (circular aperture diameter: 7°/6°, monkey T/V) for a fixed duration of 800ms (decision 

epoch). The percentage of dots moving coherently in the same direction (motion coherency) 

controlled the task difficulty, and was chosen randomly on each trial from a fixed set of values. 

The decision epoch was followed by a delay period (no random dots; only fixation point and 

saccade targets visible) of variable duration (300-1100ms, mean = 700ms). Saccades were 

initiated following a ‘Go’ cue (disappearance of fixation point at end of the delay), followed by a 

‘hold’ period (500-1200ms, mean 900ms) requiring fixation on the target (± 2-4° fixation 

window, depending on eccentricity). At the end of the hold period, both targets disappeared and 

a liquid reward was dispensed for correct trials (0% motion coherence trials rewarded at 

random). 

Neural Recordings 

Single and multi-unit neural activity was recorded in the left cerebral hemisphere of both 

monkeys using surgically implanted68, multi-channel electrode arrays (Blackrock Microsystems, 

Salt Lake City, UT) (96 electrodes; length = 1.5 mm; spacing = 0.4 mm) in the pre-arcuate gyrus 

(Brodmann’s area 8Ar) between the posterior end of the principal sulcus and the anterior bank 

of the arcuate sulcus (Fig. 3b). Array signals were amplified with respect to a common subdural 

ground, filtered and digitized prior to spike-sorting. For each electrode, spikes from the entire 

duration of a recording session were sorted and clustered offline (Plexon Inc., Dallas, Texas) 
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based on a principal component analysis of voltage waveforms. Candidate action-potential 

classifications for each electrode were subject to additional quality controls, including 

considerations of waveform shape, waveform reproducibility, inter-spike interval statistics, and 

the overall firing rate. Spike-sorting yielded approximately 100-200 single and multi-unit clusters 

distributed across the array in each recording session. The term “units” collectively refers to both 

isolated single-units and putative multi-units.  

Data pre-processing 

We consider neural data in two non-overlapping time epochs of the trial: -200 to +1000ms 

relative to random-dots onset, or -700 to +500ms relative to movement (saccade) onset. In each 

recording session, we removed ‘silent’ units that had an average firing rate (computed across all 

trials and time-points) of <1Hz. For unknown reasons, in most sessions the neural data exhibited 

abrupt synchronous changes in the overall firing rate of many units locked to specific trial indices 

in the session. We automatically identified these putative ‘change-points’ and used them to split 

each recording session into shorter “experiments” (total number of experiments = 164/80 from 

81/76 separate recording sessions, resulting in 58,187/34,451 trials in monkey T/V), within which 

the overall firing rate was stationary. Experiments with fewer than 200 trials were excluded from 

further analysis. We also removed units that exhibited strong discontinuities in their temporally 

averaged firing rate across trials, within every experiment. Square-root transformed binned 

spike-counts4 were computed for each unit in non-overlapping time bins (45ms long, see 

Extended Data Fig. 9).  

Data from each experiment was assigned to one of four different “task configurations” based on 

the coarse angular positions of the two choice targets (Extended Data Fig. 6a). Each trial was 

categorized either as a choice 1 or choice 2 trial depending on the selected target. In 3 out of 4 

task configurations, choice-1 corresponds to saccades to the contra-lateral visual hemifield (blue 

targets, Extended Data Fig. 6a). For each experiment we computed the percentage of responses 

to the choice 1 target as a function of signed motion coherence and, fitted a logistic sigmoidal 

curve to all the resulting data points that came from the same task configuration (Extended Data 

Fig. 6b). 

Overview of the analysis 

Assuming simple inputs (see main text, Fig. 1b), an analysis of response residuals can reveal the 

properties of recurrent dynamics 𝐅(. ), even when input 𝐮𝑡 is unknown (Equation 1). Henceforth, 

for simple inputs we assume (without loss of generality) that the input equals the input drive 

(𝐮𝑡 ≡ �̅�𝑡, �̅�𝑡 defined as input drive in main text; Fig. 1b, Supplementary Methods), whereby the 

uncorrelated input latent noise is implicitly included within the latent noise (𝛜𝑡) in Equation 1. 
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The instantaneous change in the single trial state on trial k at time t is given by: 

�̇�𝑡
𝑘 = 𝐅(𝐳𝑡

𝑘) + 𝐮𝑡 + 𝛜𝑡 (2) 

Likewise, we assume that the instantaneous change in the average state across trials (denoted 

by ⟨. ⟩) can be written as: 

⟨𝐳𝑡⟩̇ = 𝐅(⟨𝐳𝑡⟩) + 𝐮𝑡 (3) 

The equality in the above equation follows from Equation 2 (as 𝛜𝑡 is zero-mean), in particular if 𝐅 

is locally linear. The average state and the 𝑘th single trial state are approximated by the following 

discretized updates 

⟨𝐳𝑡+1⟩ = ⟨𝐳𝑡⟩ + 𝛥𝑡 ∙ (𝐅(⟨𝐳𝑡⟩) + 𝐮𝑡) (4) 

𝐳𝑡+1
𝑘   =  𝐳𝑡

𝑘 + 𝛥𝑡 ∙ (𝐅(𝐳𝑡
𝑘) + 𝐮𝑡 + 𝛜𝑡) (5) 

The dynamics of the residual vector �̃� on the 𝑘th trial is obtained as 

𝐳𝑡+1
𝑘 − ⟨𝐳𝑡+1⟩⏟        

=�̃�𝑡+1
𝑘

= 𝐳𝑡
𝑘 − ⟨𝐳𝑡⟩⏟      
=�̃�𝑡

𝑘

+ 𝛥𝑡 ∙ (𝐅(𝐳𝑡
𝑘) − 𝐅(⟨𝐳𝑡⟩) + 𝛜𝑡) (6) 

Therefore, the temporal evolution of the residuals is itself governed by a differential equation, 

expressed in terms of the single trial dynamics as 

�̇̃�𝑡⏟
residual flow

= (𝐅(𝐳𝑡
𝒌) + 𝐮𝑡)⏟        

"effective" flow at 𝐳𝒕
𝒌

− (𝐅(⟨𝐳𝑡⟩) + 𝐮𝑡)⏟        
"effective" flow at ⟨𝐳𝐭⟩

+ 𝛜𝑡 (7) 

Grouping and rearranging terms of Equation 6, we obtain. 

𝐅(𝐳𝑡
𝑘) − 𝐅(⟨𝐳𝑡⟩) +  𝛜𝑡 = 𝐅(⟨𝐳𝑡⟩ + �̃�𝑡

𝑘) − 𝐅(⟨𝐳𝑡⟩) + 𝛜𝑡 (8) 

A first order Taylor expansion of the first term on the right-hand side of Equation 8 results in: 

𝐅(⟨𝐳𝑡⟩ + �̃�𝑡
𝑘) = 𝐅(⟨𝐳𝑡⟩) + 𝛻𝐅|⟨𝐳𝑡⟩⏟  

=𝐉𝑡

 .  �̃�𝑡
𝑘 + higher order terms

 (9) 

Ignoring second and higher order terms, and re-expressing Equation 6 using Equations 8 and 9 

yields a discrete-time, time-varying, linear dynamical system at the level of the residuals 

�̃�𝑡+1 = �̃�𝑡 + 𝛥𝑡. (𝐉𝑡�̃�𝑡 + 𝛜𝑡)

= (𝐈 + 𝛥𝑡. 𝐉𝑡⏟      )
=𝐀𝑡

�̃�𝑡 +  𝛥𝑡. 𝛜𝑡 (10) 

The time-varying "dynamics matrix" (𝐀𝑡) maps residuals from time t to t+1, and is directly related 
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to the Jacobian (𝐉𝑡) of the underlying dynamical system, computed at each state along the 

average trajectory. Critically, 𝐮𝑡 does not appear in Equation 10, meaning that, for simple inputs 

(Fig. 1b) and instantaneous noise 𝛜𝑡, the residual dynamics 𝐀𝑡 only reflects the recurrent 

dynamics. The corresponding analytical derivations for the complex input regime (Fig. 1b) are 

considered in Supplementary Math Note B.  

Residuals obtained from neural population spike-counts are modeled using a latent-variable, 

autonomous, linear, time-varying dynamical system as described below 

𝐱𝑡+1 = 𝐀𝑡𝐱𝑡 + 𝛜𝑡
�̃�𝑡 = 𝐂𝐱𝑡 + 𝛈𝑡

(11) 

where, 𝐱𝑡 is a low-dimensional, latent residual state with dynamics determined by 𝐀𝑡 (Equation 

10-11), and is mapped linearly through an “observation matrix” (𝐂) resulting in observed 

residuals �̃�𝑡 . 𝛜𝑡 and 𝛈𝑡 are “latent” and “observation” gaussian noise processes. The subspace 

spanned by the columns of 𝐂, termed the “dynamics subspace” (later denoted by 𝐔𝑑𝑦𝑛, Extended 

Data Fig. 2), contains the dynamically relevant portion of response variability (trial-by-trial 

variability along any dimension within it covaries with variability along the same or other 

dimensions at later times). The observations �̃�𝑡 could, in principle, directly correspond to the 

neural spike-count residuals (Extended Data Fig. 7). However, in most of our analyses, they 

correspond to a low dimensional projection of neural spike-count residuals, obtained by aligning 

neural data across multiple experiments (Extended Data Fig. 2). 

Linear, time-varying latent dynamics (Equation 11) make exact probabilistic inference  

intractable, requiring approximate inference techniques5,6,8. We estimate parameters 𝐂 and 𝐀𝑡 

using an alternative approach, combining subspace system identification (SSID) theory33,45,69 (see 

Supplementary Math Note A) and instrumental variable (IV) regression34,70. For PFC responses, 

the amount of variance explained by the inferred dynamics appear to be limited primarily by the 

large contribution of (unpredictable) observation noise (see below, Qualitative estimates of 

goodness of fit).  

Neural data analysis pipeline 

We developed a data analysis pipeline (Extended Data Fig. 2) to estimate the dynamics subspace 

(𝐔𝑑𝑦𝑛) and the residual dynamics (𝐀𝑡) in four steps: (i) aligning neural responses across different 

experiments (session alignment), (ii) using aligned residuals pooled across experiments to 

estimate the dynamics subspace (dynamics subspace estimation), (iii) using aligned residuals and 

the dynamics subspace to estimate the latent residual state 𝐱t (residual latent state estimation) 

and, (iv) combining the outputs of the previous three steps to estimate the residual dynamics  𝐀𝑡 
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(time-varying dynamics estimation). We used SSID in Step (ii) and two-stage least squares (2SLS) 

based on instrumental variables for Steps (iii) & (iv) 

Session alignment 

We aligned condition-averaged neural activity from different experiments (Extended Data Fig. 2, 

Step 1) to improve the statistical power of our analyses, assuming that neural population activity 

in different experiments correspond to different high-dimensional readouts of a fixed set of low-

dimensional activity patterns31. A full example of the results of the alignment procedure applied 

to neural data from a single task configuration in one monkey is shown in Extended Data Fig. 6c-

g. 

We constructed (separately for each task configuration) a block condition average matrix (𝐘joint)  

by concatenating row-wise, the trial averaged, neural population binned spike-counts (𝐘𝑖) of 

each experiment: 

𝐘𝐣oint =

(

 
 
𝐘1

𝐘2
⋮

𝐘𝑃)

 
 
= 𝐔. 𝐒. 𝐕′ (12) 

where, 𝐘𝑖 is a N𝑖 × (Tall × C) data matrix (mean centered; 𝛍𝑖= subtracted row means, N𝑖 = 

number of units for experiment i; Tall = total number of time bins in the decision and movement 

epochs; C = total number of conditions; 𝑃 = total number of experiments to be aligned) computed 

by averaging single-trial trajectories, sorted into two choice conditions (C = 2, choice 1 or choice 

2). 

The singular value decomposition (SVD) of 𝐘joint resulted in a matrix of left singular vectors (𝐔 in 

Equation 12), block-structured, of size ∑ N𝑖
P
𝑖=1 × (Tall × C), represented as: 

𝐔 =

[
 
 
 
𝐮1
1 𝐮1

2 … 𝐮1
T.C

𝐮2
1 𝐮2

2 … 𝐮2
T.C

⋮ ⋱ ⋮
𝐮𝑃
1 𝐮𝑃

2 … 𝐮𝑃
T.C]
 
 
 

(13) 

where, 𝐮𝑖
𝑗
, is the left singular ‘sub-vector’ (size-N𝑖 × 1) corresponding to mode j in experiment i. 

The aligned coordinate basis, defined as matrix 𝐔𝑖,M
⊥  (size N𝑖 ×M) for experiment i, corresponds 

to the first M orthogonalized columns (QR decomposition) of the ith block row of 𝐔.  

The M-dimensional, aligned single trial response 𝐳𝑡
𝑖(𝑘), at time t on trial k in experiment i is 
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obtained as:  

𝐳𝑡
𝑖(𝑘) = 𝐔𝑖,M

⊥ ′
. (𝐲𝑡

𝑖(𝑘) − 𝛍𝑖) (14) 

where, 𝐲𝑡
𝑖(𝑘) is the corresponding neural spike-count population vector (size N𝑖  × 1). This 

procedure therefore resulted in P aligned, single trial data matrices 𝐙𝑖 (i = 1, 2, …, P), each of size 

M× Tall × K𝑖 , where K𝑖 is the number of trials in experiment i. 

We inspected the cumulative amount of variance explained in the condition-averaged data 

matrix 𝐘𝑖 as a function of M, by progressively retaining a larger number of columns for 

constructing 𝐔𝑖,M
⊥  . The fraction of variance explained by M aligned modes in experiment i is given 

by:  

(1 – 
var  (𝐘𝑖 − 𝐔𝑖,M

⊥ . 𝐔𝑖,M
⊥ ′
. 𝐘𝑖  )

var(𝒀𝑖)
) (15) 

For all subsequent analyses, we chose M = 20 (Extended Data Fig. 6c). We visualized each of the 

twenty aligned activity modes, obtained for experiment i by projecting 𝐘𝑖 into 𝐔𝑖,20
⊥ , either 

individually for each experiment (Extended Data Fig. 6e), or by averaging across experiments 

(Extended Data Fig. 6d).  

To evaluate the efficacy of alignment, we computed a correlation coefficient Corr (< 𝐳(𝑎)
𝑖 > ,<

𝐳(𝑏)
𝑗
>) for any given pair of aligned modes (indexed by a, b, where a,b ∈ {1,2,..,20}) across all 

possible pairs of experiments (indexed by i and j), where < 𝐳(𝑎)
𝑖 > (size 1 × (Tall × C)) is the trial-

averaged, activity time course (for both choices) of the ath aligned mode in experiment i. We then 

computed the median correlation coefficient across all pairs of dissimilar experiments (i≠j) for 

each pair of modes and visualized the resulting correlation matrix. The median correlation 

coefficient matrix (Extended Data Fig. 6g) displayed large values along the diagonal and almost 

zero values along the off-diagonals indicating that the aligned time-courses were much more 

similar across sessions than across modes.  

Dynamics Subspace Estimation 

We estimated the dynamics subspace (Extended Data Fig. 2, Step 2) using residuals computed in 

the 20-dimensional space of aligned activity patterns. The dynamics subspace was estimated 

using SSID which is based on the idea of finding “temporally-predictive” directions in state space69 

(see Supplementary Math Note A). We adapted existing SSID methods for linear time-invariant 

systems, to make them suitable for linear time-varying dynamics (Equation 11).  

To compute residuals, we redefined conditions separately for the two task epochs 



 

 48 

(decision/movement). For the decision epoch, we defined conditions based on choice and motion 

strength (2 choices × 4 to 8 coherencies ≈ 8 to 16 conditions; number of distinct motion 

coherencies varied across different experiments). For the movement epoch, we defined 

conditions based on choice and the length of the delay period preceding the ‘go’ cue, by sorting 

trials in each experiment into 5 different groups based on the length of the delay period (bin 

boundaries = [0 0.4 0.6 0.8 1.0 1.5]s). To ensure minimal overlap between the decision and 

movement epochs, we excluded all trials with delay lengths < 400ms. For the movement epoch, 

we obtained a total of 8 conditions in monkey T (2 choices × 4 delay length bins) and 6 conditions 

in monkey V (2 choices × 3 delay length bins; no trials in monkey V had delays > 1s) across all 

experiments. For each condition, we subtracted from the aligned single trial trajectories (𝐙𝑖) the 

corresponding condition-averaged trajectory, which ultimately resulted in 𝑃 aligned residual data 

matrices �̃�𝑖 (i = 1, 2, …, P; each of size 20 × Tall × Ki) for each experiment i. We then sorted trials 

in each �̃�𝑖 based on choice (choice 1 or choice 2), and pooled them across the P experiments, 

resulting in two, choice-dependent, ‘pooled’ residual data matrices, �̃�{choice=1}and �̃�{choice=2}. 

All subsequent procedures were carried out separately on �̃�{choice=1} and �̃�{choice=2}. For sake of 

convenience, below we drop the subscripts unless otherwise indicated.  

Based on SSID theory, we constructed a sequence of time-varying, future-past hankel covariance 

matrices (𝐇𝑡) using temporally windowed chunks of �̃� centered at time t (Supplementary Math 

Note A, Equation S14). Specifically, we assigned trials in �̃� to two random halves (labelled “train” 

and “test”), and constructed two distinct, corresponding hankel matrices 𝐇𝑡
𝑡𝑟𝑎𝑖𝑛 and 𝐇𝑡

𝑡𝑒𝑠𝑡 , at 

each time t. The order of the hankel matrix (given by q in Equation S14, Supplementary Math 

Note A), which determines the number of “future” and “past” lags of �̃� to use for constructing 

𝐇𝑡, is set to 5. Increasing q beyond 5 did not change the results of our analyses. We obtained the 

r-rank approximation of 𝐇𝑡
𝑡𝑟𝑎𝑖𝑛 (Extended Data Fig. 2, Step 2) by using a hard-thresholding of its 

singular values: 

𝐇𝑡,(𝑟)
𝑡𝑟𝑎𝑖𝑛 = 𝐔𝑡,(𝑟)

𝑡𝑟𝑎𝑖𝑛 . 𝐒𝑡,(𝑟)
𝑡𝑟𝑎𝑖𝑛 . 𝐕𝑡,(𝑟)

𝑡𝑟𝑎𝑖𝑛′ (16) 

where, 𝐔𝑡,(𝑟)
𝑡𝑟𝑎𝑖𝑛 and 𝐕𝑡,(𝑟)

𝑡𝑟𝑎𝑖𝑛 are matrices whose columns are the first r left and right singular vectors 

of 𝐇𝑡
𝑡𝑟𝑎𝑖𝑛 respectively. Similarly, 𝐒𝑡,(𝑟)

𝑡𝑟𝑎𝑖𝑛 is a diagonal matrix, with diagonal entries corresponding 

to the first r singular values. We then computed a temporally averaged, hankel matrix 

reconstruction error with respect to the full rank hankel matrix computed using the “test” trials: 

Ehankel =
1

𝑇 − 2𝑞 + 1
∑ ‖

𝑇−𝑞+1

𝑡=𝑞+1

𝐇𝑡
𝑡𝑒𝑠𝑡 − 𝐇𝑡,(𝑟)

𝑡𝑟𝑎𝑖𝑛‖𝐹
2 (17) 
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where ‖. ‖𝐹  is the matrix frobenius norm, and T is the total number of time bins in �̃� for a specific 

task epoch (either decision or movement). We computed Ehankel using 20 different random splits 

of �̃� into "train" and "test" halves, for different values of the hankel rank (r). The average 

reconstruction error (over 20 repeats) was plotted as a function of r (Extended Data Fig. 8a) and 

the optimal rank (𝑟𝑜𝑝𝑡) was determined as the smallest value of r for which Ehankel was no larger 

than one standard error above the minimum Ehankel (1 standard error rule71). Thus, we obtained 

a single value of 𝑟𝑜𝑝𝑡 for each task epoch and choice condition. While a single 𝑟𝑜𝑝𝑡 (determined 

across all times in an epoch) may over/under estimate the optimal rank at a specific time t, we 

found that using an 𝑟𝑜𝑝𝑡 deemed optimal at each time t also yielded similar results.  

Next, we used the above estimate of 𝑟𝑜𝑝𝑡 and the aligned residuals to define observability 

matrices, which were eventually used to estimate the dynamics subspace. For the subsequent 

steps of the pipeline, we used a 5-fold cross validation approach. Time-varying hankel matrices 

(𝐇𝑡) were computed using �̃�𝑡𝑟𝑎𝑖𝑛 (composed of 4/5th of all trials in �̃�) and subjected to an SVD. 

The resulting, first 𝑟𝑜𝑝𝑡 left singular vectors and singular values were used to define a time-

dependent observability matrix �̂�𝑡 (Equation S18, Supplementary Math Note A): 

�̂�𝑡 = 𝐔𝑡,(𝑟𝑜𝑝𝑡). (𝐒𝑡,(𝑟𝑜𝑝𝑡))
1
2 (18) 

where, �̂�𝑡 is a block matrix of size (M × 𝑞)  × 𝑟𝑜𝑝𝑡, q = 5 is the order of the hankel matrix and 

M= 20 is the dimensionality of the aligned space. As in SSID for time-invariant dynamical systems, 

the first block row of �̂�𝑡 specifies the momentary dynamics subspace at time t, given by the first 

M rows of �̂�𝑡: 

�̂�𝑡 = �̂�𝑡(1:M, : ) (19) 

To define a single time-invariant dynamics subspace as in our model (Equation 11), from the 

sequence �̂�𝑡 we constructed a matrix 𝐂all̂  by concatenating, column-wise, the momentary 

dynamics subspaces �̂�𝑡 for all t across both task epochs (decision and movement), and both 

choices (choice 1 or choice 2) 

𝐂all̂ = (�̂�𝑞+1
de, 1…… �̂�𝑇𝑑𝑒−𝑞+1

de, 1 �̂�𝑞+1
mo, 1…… �̂�𝑇𝑚𝑜−𝑞+1

mo, 1 �̂�𝑞+1
de, 2…… �̂�𝑇𝑑𝑒−𝑞+1

de, 2 �̂�𝑞+1
mo, 2…… �̂�𝑇𝑚𝑜−𝑞+1

mo, 2 )

                                                                                                                                                              (20)
 

where, �̂�𝑡
de, j and �̂�𝑡

mo, j are the momentary dynamics subspaces for choice j (j = 1 or 2), at time t 

in the decision (de) and movement (mo) epochs. 𝑇𝑑𝑒 and 𝑇𝑚𝑜 are the total number of time bins 

in the decision and movement epochs. The left singular vectors of 𝐂all̂  , by definition, span the 

union of the column spaces of all �̂�𝑡 (across time, task epochs and choice conditions), and 

therefore specify a time-invariant dynamics subspace shared across time, task epochs and 
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choices. We denote the left-singular vectors of 𝐂all̂  by 𝐔𝑑𝑦𝑛, which is an orthonormal matrix of 

size M×M. The M columns of 𝐔𝑑𝑦𝑛 are ordered in terms of their relative importance in capturing 

temporally correlated variability in the residuals resulting from the underlying dynamics (Fig. 4a, 

Extended Data Fig. 6f). In practice, only an ordered subset of the columns of 𝐔𝑑𝑦𝑛 are sufficient 

to capture residual dynamics across choices and task epochs (using more columns than necessary 

leads to over-fitting). Accordingly, the number of columns of 𝐔𝑑𝑦𝑛 that are retained corresponds 

to a hyper-parameter (denoted by d) that determines the dimensionality of the residual dynamics 

(𝐀𝑡 , Equation 11). We determine the optimal value of d (denoted as dopt) using cross-validation 

in the next step of the pipeline (Extended Data Fig. 8). The first dopt columns of 𝐔𝑑𝑦𝑛(Fig. 4a, 

Extended Data Fig. 6f) therefore correspond to the estimate of the observation matrix of our 

model (C, Equation 11).  

Overview of two-stage least squares (2SLS) 

Next, we estimate the latent residual state (𝐱t , Equation 11; Extended Data Fig. 2, Step 3) and 

the time-varying residual dynamics (𝐀𝑡 , Equation 11; Extended Data Fig. 2, Step 4) using a two-

stage least squares (2SLS) approach based on instrumental variable regression.  

First, we obtained a d-dimensional, noisy estimate of the latent residual state at time t, for each 

trial k in the training fold, by projecting the corresponding observed residual (�̃�𝑡
𝑡𝑟𝑎𝑖𝑛(𝑘)) into a d-

dimensional dynamics subspace: 

�̃�𝑡
𝑡𝑟𝑎𝑖𝑛(𝑘) = (𝐔𝑑𝑦𝑛

𝑑 )′�̃�𝑡
𝑡𝑟𝑎𝑖𝑛(𝑘) (21) 

where, 𝐔𝑑𝑦𝑛
𝑑  are the first d columns of 𝐔𝑑𝑦𝑛 (estimated in Step 2 using only “train” trials, �̃�𝑡𝑟𝑎𝑖𝑛). 

Such a projection does not entirely eliminate the observation noise present in �̃�𝑡
𝑡𝑟𝑎𝑖𝑛; specifically, 

observation noise lying within the column space of 𝐔𝑑𝑦𝑛
𝑑  corrupts �̃�𝑡. Therefore, if one were to 

directly estimate residual dynamics (𝐀𝑡) using ordinary least squares (OLS) by regressing �̃�𝑡 

against �̃�𝑡+1 (as suggested by Equation 11), the resulting estimates would be biased and 

inconsistent (Extended Data Fig. 3d). This is commonly referred to as the “error-in-variables” 

problem72, in which components of observation noise corrupting �̃�𝑡 act as a confounding 

variable, resulting in an attenuation bias in OLS estimates of 𝐀𝑡 (Extended Data Fig. 3d). Such 

biases would complicate the interpretation of the eigen/singular value spectrum of 𝐀𝑡, which are 

crucial for drawing conclusions about underlying computations.  

Therefore, we instead use an instrumental variable regression approach, commonly used to help 

mitigate the deleterious effects of confounding variables for causal inference34, which relies on 

two separate least-squares regressions performed in two stages (2SLS). Two key assumptions 

underly the validity of this approach: (i) dynamics is considered markovian, and (ii) observation 
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noise is considered temporally uncorrelated. In the first stage, we regress the noisy, latent 

residual state at time t (�̃�𝑡) against its past 𝑙 lags, [�̃�𝑡−1,    �̃�𝑡−2   … �̃�𝑡−𝑙]. These lagged variables 

known as “instruments” (their validity subject to the above two assumptions), are therefore used 

to construct a de-noised prediction of the latent residual state at time t (Extended Data Fig. 2, 

Step 3). In the second stage, the noisy, latent residual state at time t+1 (�̃�𝑡+1) is regressed against 

this de-noised prediction to obtain estimates of 𝐀𝑡 that are unbiased and consistent (Extended 

Data Fig. 2, Step 4). 2SLS estimates of 𝐀𝑡 can be potentially biased when instruments are ‘weak’73 

(i.e when past lags have low predictive power in the first stage regression), underscoring the need 

to choose optimal values for the hyper-parameters d and 𝑙 (Extended Data Fig. 8b).  

Residual latent state estimation 

The first stage of 2SLS involved estimating, at each time t (separately in each task epoch, for trials 

from the two choice conditions), the regression coefficients 𝛃𝑡
𝑙− (using least squares) as follows: 

�̂�𝑡
𝑙− = (𝐗𝑡

𝑡𝑟𝑎𝑖𝑛�̃�𝑡,𝑙−
𝑡𝑟𝑎𝑖𝑛′)(𝐗𝑡,𝑙−

𝑡𝑟𝑎𝑖𝑛�̃�𝑡,𝑙−
𝑡𝑟𝑎𝑖𝑛′)−1 (22) 

where, 𝐗𝑡
𝑡𝑟𝑎𝑖𝑛 is a matrix of size d × Ktrain, whose columns correspond to the noisy latent 

residual state (�̃�𝑡
𝑡𝑟𝑎𝑖𝑛 , Equation 21) for individual trials in the “training” set. Similarly, 𝐗𝑡,𝑙−

𝑡𝑟𝑎𝑖𝑛 is a 

matrix of size (d ×  l) × Ktrain , where each column corresponds to the past 𝑙 lags (stacked 

vertically) relative to �̃�𝑡
𝑡𝑟𝑎𝑖𝑛, for the corresponding trial. Therefore, the kth column of 𝐗𝑡,𝑙−

𝑡𝑟𝑎𝑖𝑛 

(corresponding to trial index k) is a vector of size (d ×  l) × 1 specified as: 

�̃�𝑡,𝑙−
𝑡𝑟𝑎𝑖𝑛(𝑘) =

[
 
 
 
�̃�𝑡−1
𝑡𝑟𝑎𝑖𝑛(𝑘)

�̃�𝑡−2
𝑡𝑟𝑎𝑖𝑛(𝑘)
⋮

�̃�𝑡−𝑙
𝑡𝑟𝑎𝑖𝑛(𝑘)]

 
 
 

(23) 

We then predicted observed residuals in the test set (�̃�𝑡𝑒𝑠𝑡 , remaining 1/5th of the data) using 

estimates of 𝐔𝑑𝑦𝑛
𝑑  and �̂�𝑡

𝑙− (both  estimated using �̃�𝑡𝑟𝑎𝑖𝑛) by first obtaining a noisy latent residual 

state at each time t for each trial in the test set (denoted by �̃�t
𝑡𝑒𝑠𝑡(𝑘), analogous to Equation 21). 

The denoised prediction of the corresponding latent residual state is obtained as. 

�̂̃�𝑡
𝑡𝑒𝑠𝑡(𝑘) = �̂�𝑡

𝑙−�̃�𝑡,𝑙−
𝑡𝑒𝑠𝑡(𝑘) (24) 

The corresponding prediction of the observed residual is then obtained by projecting �̂̃�𝑡
𝑡𝑒𝑠𝑡(𝑘) 

(Equation 24) back into the 20-dimensional aligned space, through the columns of 𝐔𝑑𝑦𝑛
𝑑 :  

�̂̃�𝑡
𝑡𝑒𝑠𝑡(𝑘) = 𝐔𝑑𝑦𝑛

𝑑 �̂̃�𝑡
𝑡𝑒𝑠𝑡(𝑘) (25) 

These predictions were then used to compute a single mean squared error value for both task 
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epochs (i.e. summation index t below spans both epochs) as follows: 

𝐸𝑓𝑠 =
1

𝑇𝑝𝑟𝑒𝑑 . 𝐾𝑡𝑒𝑠𝑡
∑∑‖

𝑡𝑘

�̂̃�𝑡
𝑡𝑒𝑠𝑡(𝑘) − �̃�𝑡

𝑡𝑒𝑠𝑡(𝑘)‖2
2

(26) 

where, 𝑇𝑝𝑟𝑒𝑑  corresponds to the total number of time-bins across both epochs (including only 

those time indices t which are greater than the maximum lag used for grid-search cross-

validation), and 𝐾𝑡𝑒𝑠𝑡 is the total number of trials in �̃�𝑡𝑒𝑠𝑡. 

Different values of hyper-parameters d (dimensionality) and 𝑙 (number of past lags) were 

sampled on a two-dimensional grid. The resulting values of 𝐸𝑓𝑠  (averaged across folds) for 

different settings of d and 𝑙 revealed a tendency to over-fit for large values (Extended Data 

Fig.8b). The optimal values of d and 𝑙 (denoted henceforth as 𝑑𝑜𝑝𝑡and 𝑙𝑜𝑝𝑡) were determined as 

the combination that resulted in the smallest number of parameters for �̂�𝑡
𝑙−(Equation 22), with 

an average 𝐸𝑓𝑠  value no larger than one standard error above the minimum average 𝐸𝑓𝑠  (1 

standard error rule71).  

Time-varying dynamics estimation 

For the second stage of 2SLS, first, we used optimal values (𝑑𝑜𝑝𝑡 and 𝑙𝑜𝑝𝑡) of hyper-parameters d 

and 𝑙 (determined in the previous step), to recompute the optimal dynamics subspace (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡; 

using all trials from both choices within a task configuration) and the optimal, denoised 

predictions of the latent residual states (Equation 24; using all trials of a specific choice and task 

configuration). To obtain residual dynamics (𝐀𝑡), we then solved (in closed form) the following 

penalized least squares objective74: 

ℒ =∑‖

𝑡

𝐗𝑡+1 − 𝐀𝑡�̂�𝑡‖𝐹
2 + 𝛼‖𝐀𝑡+1 −𝐀𝑡‖𝐹

2
(27) 

where, 𝐗𝑡+1 is a matrix whose columns correspond to the noisy (𝑑𝑜𝑝𝑡-dimensional), residual 

latent states at time t+1, for individual trials (obtained analogously as in Equation 21); �̂�𝑡 is a 

matrix whose columns correspond to denoised predictions of the latent residual states at time t 

for corresponding trials (kth column corresponds to �̂̃�𝑡(𝑘), analogous to Equation 24). The above 

objective is optimized separately for each task epoch (therefore, t in Equation 27 indexes only 

time bins within an epoch). Critically, 𝛼 is a regularization parameter (Extended Data Fig. 2, Step 

4) that imparts smoothness (larger values implies more smoothness) to the sequence of 

dynamics matrices (𝐀𝑡) across time, and is tuned in a separate 5-fold cross-validation step. As 

expected, very small /large values of 𝛼 exhibit over/under-fitting (Extended Data Fig. 8c).  
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Choices of hyperparameters 

We found that values of 𝑑𝑜𝑝𝑡 = 8 and 𝑙𝑜𝑝𝑡 = 3 were optimal for all 8 datasets (one dataset consists 

of trials for a specific choice and task configuration; Extended Data Fig. 8d) in each monkey. 

Despite small amounts of variability across different datasets, we used these fixed values for 

consistency, and to facilitate easier comparison of residual dynamics across different datasets. 

The 8-dimensional dynamics subspace 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡 computed using only residuals explained 68% 

(monkey T, median across 164 experiments; Extended Data Fig.7c) and 55% (monkey V, median 

across 80 experiments) of the variance in the trial-averaged trajectories in the high-dimensional 

neural space (𝐘𝑖, computed prior to alignment of sessions), as compared to 87% (monkey T) and 

73% (monkey V) explained by the 20-dimensional aligned subspace (𝐔𝑖,M
⊥ , Extended Data Fig. 6c) 

that was optimized to capture trial-averaged variance across all experiments. We found 

considerable variability in optimal values of 𝛼 across monkeys and task epochs (Extended Data 

Fig. 8e; larger values for monkey V and movement epoch). Across all datasets in both monkeys, 

we chose 𝛼𝑜𝑝𝑡 = 200 for fits in the decision epoch and 𝛼𝑜𝑝𝑡 = 50 for fits in the movement epoch 

in order to simplify comparisons between monkeys. 

Analysis of residual dynamics 

The optimal hyper-parameters (𝑑𝑜𝑝𝑡, 𝑙𝑜𝑝𝑡, and 𝛼𝑜𝑝𝑡 ), were used, in one final step, to estimate 

the time-varying dynamics matrices 𝐀𝑡 (Equation 27) using all trials in �̃�, separately for each 

choice, task epoch, and task configuration. We analyzed the resulting eigenvalue and singular 

value spectra of 𝐀𝑡 at all times t in the trial. The eigenvalues/eigenvectors at the very first time-

step were sorted in descending order of their eigenvalue magnitudes. At subsequent times, we 

sorted eigenvalues and the associated eigenvectors such that they were maximally consistent 

with those at the preceding time-step, using a modified version of an open-source MATLAB script 

(eigenshuffle.m75). A similar procedure was used to sort the time-varying singular values and the 

associated right and left singular vectors.  

We computed the time constant of the dynamics (Fig. 4b,e) directly from the eigenvalue 

magnitudes of 𝐀𝑡 as follows: 

𝜏𝑡
𝑗
=

𝛥𝑡

log(|𝜆𝑡
𝑗
|)

(28) 

where, λ𝑡
𝑗
 is the eigenvalue at time t associated with the jth eigenmode, and Δt is the time step (= 

45 ms, length of time bin).  

We analyzed the imaginary components of the complex-valued eigenvalues of 𝐀𝑡 to obtain 
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evidence for rotational dynamics (Fig. 4d,g). The natural oscillation frequency associated with the 

jth eigenmode is given by: 

𝑓𝑡
𝑗
=
∠𝜆𝑡

𝑗

2𝜋𝛥𝑡
(29) 

where ∠𝜆𝑡
𝑗
 is the angular phase of the jth eigenvalue. 

We computed the largest eigenvalue magnitude (|𝜆𝑡
𝑚𝑎𝑥|, Data Fig. 4e) and singular value (|𝜎𝑡

𝑚𝑎𝑥|, 

Data Fig. 4f) at time t as: 

|𝜆𝑡
𝑚𝑎𝑥| = max

𝑗
|𝜆𝑡
𝑗
|

|𝜎𝑡
𝑚𝑎𝑥| = max

𝑗
|𝜎𝑡
𝑗
|

(30) 

We quantified the magnitude of non-normality of the dynamics (Fig. 4h) based on a previously 

proposed measure76 , which compared the singular values and eigenvalues magnitudes as 

follows: 

𝑑𝐹(𝐀𝑡) =
√∑ (𝑗 𝜎𝑡

𝑗
)2 −∑ (𝑗 |𝜆𝑡

𝑗
|)2

√∑ (𝑗 |𝜆𝑡
𝑗
|)2

(31) 

where, σt
j
 and λt

j
 are the jth singular and eigenvalue respectively. 

Task activity subspaces 

Computing average task activity subspaces 

We used the 20-dimensional, aligned, single trial response patterns (𝐙, output of Step 1 in 

Extended Data Fig. 2), to compute four distinct task activity subspaces. These four subspaces 

(denoted 𝐔𝑡𝑎𝑠𝑘
𝑗

, 𝑗 ∈{choice, time, jPC12, jPC34}) captured variance in the aligned, trial-averaged 

trajectories due to choice (condition-dependent), time (condition-independent), and rotations36 

(Fig. 3c-d) and were computed separately for the decision (aligned to dots onset) and movement 

(aligned to movement onset) epochs, and for each task configuration. 

To compute “choice” and “time” subspaces, trials in 𝐙𝑖 (i indexes experiments) were assigned to 

one of two choice conditions (choice 1 or choice 2), pooled across all experiments (within a task 

configuration) and then averaged, resulting in two trial-averaged response matrices ⟨𝐙⟩choice=1 

and ⟨𝐙⟩choice=2 of dimensionality 20 × T𝑒𝑝𝑜𝑐ℎ  (T𝑒𝑝𝑜𝑐ℎ  = number of time bins in a single task 
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epoch). We then compute a normalized “difference response matrix” (𝑫) and a “sum response 

matrix” (𝑺) as follows: 

 𝑫 = 0.5 ∗ (⟨𝐙⟩choice=1 − ⟨𝐙⟩choice=2) 

𝑺 =  0.5 ∗ (⟨𝐙⟩choice=1 + ⟨𝐙⟩choice=2) 

(32) 

The first two principal components of the difference response matrix (𝑫) together defined the 

“choice” subspace, and captured most of the variance in response patterns due to differences 

between choices. Similarly, the first two principal components of the sum response matrix (𝑺) 

together constituted the “time” subspace, capturing maximal variance due to choice-

independent components of aligned activity patterns.  

To compute the jPC subspaces, we temporally smoothed single trials in 𝐙𝑖 (box filter, width = 

180ms) before computing the trial-averaged response matrices ⟨𝐙⟩choice=1 and ⟨𝐙⟩choice=2 as 

described previously. The jPC vectors for the decision and movement epochs were estimated 

using these trial-averaged responses restricted to narrow time windows in each epoch ([500 

1000]ms aligned to dots onset, as evidence for rotational dynamics was strongest at these times 

in the decision epoch, Fig. 3c,4d; [-250 250]ms aligned to movement onset, as rotational 

dynamics could underly movement related responses36, also see Fig. 3d). jPC vectors were 

computed in the space spanned by the top 4 principal components (computed jointly on 

⟨𝐙⟩choice=1 and ⟨𝐙⟩choice=2), without removing the condition-independent components of neural 

activity36, resulting in two orthogonal jPC planes (jPC12 and jPC34, Fig. 3c-d), each spanned by a 

pair of complex-conjugate jPC vectors (𝐯1 and 𝐯2). To determine the projection of the responses 

onto a single jPC subspace, we computed a pair of normalized real-valued vectors 𝐮1 and 𝐮2 as 

𝐮1 = 𝐯1 + 𝐯2 and 𝐮2 = j ∗ (𝐯1 − 𝐯2), which spanned the same subspace as 𝐯1 and 𝐯2. The 

imaginary components of the eigenvalues associated with 𝐯1 and 𝐯2 specified the natural 

frequency of rotation associated with a jPC plane. The jPC planes were ordered in descending 

order of their associated rotation frequency. 

Only the two jPC planes (jPC12 and jPC34) were constrained to be mutually orthogonal (see 

Supplementary Analyses for alignment between other task activity subspace pairs). The task-

activity subspaces 𝐔𝑡𝑎𝑠𝑘
𝑗

 capture variance in the aligned, trial-averaged trajectories, but, need 

not perfectly align with the 8-dimensional dynamics subspace 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡 computed using the 

residuals. To assess the extent of the overlap between these two subspaces, we computed the 

fraction of total variance in a given task activity subspace that was attributable to activity 

unfolding within the dynamics subspace as follows:  
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Tr (Cov (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡 (𝐔𝑑𝑦𝑛

𝑑𝑜𝑝𝑡
′

 𝐔𝑡𝑎𝑠𝑘
𝑗

)𝐔𝑡𝑎𝑠𝑘
𝑗 ′

〈𝐙〉))

Tr (Cov (𝐔𝑡𝑎𝑠𝑘
𝑗

𝐔𝑡𝑎𝑠𝑘
𝑗 ′

〈𝐙〉))
 (33) 

where Tr(. ) is the matrix trace operator, Cov(. ) corresponds to the covariance matrix of the 

argument, and 〈𝐙〉 is the matrix of aligned, condition-averaged trajectories of size 20 × (T𝑒𝑝𝑜𝑐ℎ ×

 2). We computed a null distribution by replacing the numerator of Equation 33 by 

Tr (Cov (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡 (𝐔𝑑𝑦𝑛

𝑑𝑜𝑝𝑡
′

 𝐔𝑟𝑎𝑛𝑑)𝐔𝑡𝑎𝑠𝑘
𝑗 ′

〈𝐙〉)), where 𝐔𝑟𝑎𝑛𝑑 (sampled randomly 5000 times) is a 

pair of a random, orthogonal directions embedded within the 20-dimensional, aligned space. The 

resulting null distribution provides the range of possible values for the above fraction that could 

occur due to chance alignment of the 8-dimensional dynamics subspace with an arbitrary two 

dimensional subspace embedded within the 20-dimensional aligned space. The fraction of 

variance explained was in the range 0.66-0.94 (median = 0.85, n = 32, 2 task epochs x 4 planes x 

4 task configurations) for monkey T, with 31/32 (32/32) datapoints lying beyond the 99th (95th) 

percentile of the null distribution. The range was 0.41-0.95 (median = 0.72, n =32) for monkey V, 

with 25/32 (28/32) datapoints beyond the 99th (95th) percentile of the null distribution. These 

findings imply that the components of the dynamics revealed by projections onto the task activity 

subspaces largely and consistently unfold within the dynamics subspace estimated using the 

residuals. 

Comparison of residual eigenvectors to task activity subspaces 

We computed the alignment between each task activity subspace (𝐔𝑡𝑎𝑠𝑘
𝑗

) and the eigenvectors 

of the residual dynamics, separately within each task epoch. For each real-valued eigenvalue 

(pooled across 8 dimensions, times within epoch, and choices), we computed the subspace angle 

between a chosen task activity subspace and the associated real-valued eigenvector. For every 

estimated complex-conjugate eigenvalue pair, we computed a pair of subspace angles between 

a 2-dimensional eigenplane spanned by a pair of real-valued projection vectors 𝐮1 and 𝐮2 

(computed as described previously, i.e 𝐮1 = 𝐯1 + 𝐯2 and 𝐮2 = j ∗ (𝐯1 − 𝐯2), where 𝐯1 and 𝐯2 are 

the complex-conjugate eigenvector pair) and the task activity subspace. To compute these 

subspace angles, we projected each eigenvector/eigenplane through the columns of 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡, back 

into the 20-dimensional aligned space to ensure that they were of the same dimension as vectors 

defining 𝐔𝑡𝑎𝑠𝑘
𝑗

. We quantified the relationship between the eigenvalues and the alignment of the 

corresponding eigenvector/eigenplanes with the task activity subspace using a linear model (Fig. 

5e). Specifically, we regressed each subspace angle indexed by a given task activity subspace (y-
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axis, Fig. 5e) against the corresponding eigenvalue magnitude (|ev|, x-axis in Fig. 5e, top) and 

rotation frequency (freq, x-axis in Fig. 5e, bottom; Equation 29) as shown below: 

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐸𝑉, 𝑗) =  𝛽1
𝑗|𝑒𝑣| + 𝛽2

𝑗
𝑓𝑟𝑒𝑞 (34) 

where, j indexes the individual task -activity subspaces (𝑗 ∈ {choice, time, jPC12, jPC34}). The 

regression coefficients were estimated using least squares and we also reported the 95% 

confidence intervals (based on the t-statistic) for each regression coefficient (errorbars in Fig. 5f). 

Robustness of the analysis pipeline 

Estimating bias in the estimates of residual dynamics 

The choice of bin-size for binning spike-counts was critical for avoiding biases in estimates of 𝐀t 

(Extended Data Fig. 9). To illustrate the effect of bin-size on the quality of estimates, we simulated 

data from a continuous-time, time-invariant linear dynamical system with a linear gaussian 

observation model: 

�̇�𝑡 = 𝐀𝐱𝑡 + 𝐛+ 𝛜𝑡
𝐲𝑡 = 𝐂𝐱𝑡 + 𝐝 + 𝛈𝑡
𝐱1 ∼ 𝒩(0,𝐐0)

𝛜𝑡 ∼ 𝒩(0,𝐐)

𝛈𝑡 ∼ 𝒩(0,𝐑)

(35) 

where, 𝒩 (. , . ) denotes a normal distribution. We simulated 5000 single-trial trajectories for a 

total of 1500 time steps (1ms time steps) from a system with 3 latent dimensions and 20 observed 

dimensions. The elements of the three eigenvectors of 𝐀 were sampled randomly from a 

standard normal distribution, and were orthogonalized (normal dynamics), and normalized to 

unit norm. The three eigenvalues were set to (-2, -4, -6) indicating stable, strongly decaying 

dynamics. The input vector 𝐛 was set to [2  2  2]T. The covariance of the latent noise (𝛜𝑡) was set 

to a scaled identity matrix (𝐐 = σ2𝐈). The values of σ2 (grey lines, Extended Data Fig. 9a) were 

swept across two orders of magnitude to assess how latent noise variance affects estimates of 

𝐀𝑡. The observation matrix 𝐂 was a random (elements sampled from a standard normal 

distribution), orthogonal matrix. The elements of the baseline input vector 𝐝 were sampled from 

a uniform distribution between [0,8]. The observation noise matrix 𝐑 was diagonal, with 

elements sampled from a uniform distribution between [0,0.05]. The initial noise covariance (𝐐0) 

was obtained by solving the continuous time Lyapunov equation. 

We estimated the dynamics matrix (𝐀𝑡) using residuals binned in non-overlapping bins of sizes 

[2, 3, 5, 10, 15, 30, 40, 60]ms. Specifically, we chose a hankel order q = 5 (Equation S14, 

Supplementary Math Note A) and did not optimize hyper-parameters 𝑙 and 𝛼 during estimation. 
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Instead, we chose 𝑙 and 𝛼 sensibly, ensuring that they were consistent across different bin sizes 

and with the underlying model class. For instance, 𝛼 was set to a large value (= 106) ensuring 

time-invariant fits, while 𝑙 was set such that it roughly translated into equal units of time for 

different bin sizes. 

We assessed the effect of bin-size on the estimated eigenvalues of 𝐀𝑡. Importantly, eigenvalues 

for different bin-sizes cannot be compared directly, as discretizing a continuous-time dynamical 

system trivially results in eigenvalues that depend on the duration of the discretization time-step 

(here the bin size). The same dynamical system, when expressed at step-sizes Δtj and Δtref, 

would therefore result in eigenvalues λ̂Δtj  and λ̂Δtref
(j)

 related by the following scaling relation:  

λ̂Δtref
(j)

= (λ̂Δtj)

𝛥𝑡𝑟𝑒𝑓
𝛥𝑡𝑗 (36) 

To discount these trivial differences, we transformed each estimated eigenvalue λ̂Δtj  obtained 

for bin size Δtj into an ‘re-binned’ eigenvalue λ̂Δtref
(j)

 expected for a reference bin size Δtref = 40ms, 

and compared them to the ’ground truth’ eigenvalue expected for a bin size of Δtref (Extended 

Data Fig. 9a). The absolute value of λ̂Δtref
(j)

 asymptotically converged to the ground truth for 

increasing bin sizes, meaning that large bin sizes resulted in unbiased estimates, with 

convergence being independent of the specific choice of Δtref. 

We observed a similar asymptotic convergence for the neural data (Extended Data Fig. 9b). This 

observation was used to determine the optimal bin size for which estimates of residual dynamics 

can be expected to be unbiased. We binned the recorded spiking data for monkey T in bin sizes 

of [15, 30, 45, 60, 90]ms and projected the resulting single trial trajectories (for all bin sizes) into 

a common aligned subspace (Step 1, Extended Data Fig. 2; 𝐔𝑖,M
⊥  , Equation 14) determined for a 

bin size of 45ms, before computing residual dynamics. Once again, we did not optimize the hyper-

parameters (d, 𝑙, and 𝛼; Steps 3 and 4, Extended Data Fig. 2) of the pipeline, as the aim was to 

understand how bin size alone effects the estimated eigenvalues. Instead, we fixed values of d 

and 𝛼 to the optimal ones determined by cross-validation (for residuals binned in 45ms bins) 

described previously (Extended Data Fig. 8, Fig. 4; d = 8, 𝛼 = 200/50 for decision/movement 

epochs) Values of 𝑙 were instead chosen separately for each bin size such that it roughly 

translated into equal units of time (𝑙 = 3/2 for bin sizes of 45/60ms implying a 135/120ms long 

window in the past, Equations 22-24). 

We computed the ‘re-binned’ eigenvalue magnitudes of 𝐀𝑡 (Equation 36) for the different bin 

sizes, expected under a reference bin size (Δtref) of 15ms. The ‘re-binned’ eigenvalue 

corresponding to each of the 8 eigen-modes was averaged across time within two distinct time 
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windows that exhibited the most pronounced temporal dependencies (Fig. 4; t ∈  [200 400]ms 

aligned to dots onset, and t ∈  [−150 250]ms aligned to movement onset). We observed 

asymptotic convergence for all 8 eigen-modes in all task conditions (choice 1 or choice 2), task 

epochs (decision or movement), and all task configurations in monkey T for bin sizes greater than 

30ms (Extended Data Fig. 9b). Based on these findings, a bin size of 45ms was well motivated for 

our analyses. 

Qualitative estimates of goodness of fit 

The average, cross-validated mean squared error (computed using held-out test trials) of the 

predictions resulting from the first stage of 2SLS (Efs, Equation 26; Extended Data Fig. 8b, shown 

only for a single configuration in monkey T) for optimal values of hyperparameters (𝑑𝑜𝑝𝑡 = 8, 

𝑙𝑜𝑝𝑡=3) translated into a coefficient of determination (R2) of 0.0367/0.0390 (mean across all task 

configurations and choices, std = 0.0064/0.0029) in monkey T/V respectively. Similar R2 values 

(mean(std) = 0.0577(0.014)/0.065(0.013) for monkey T/V) were obtained for predictions 

resulting from the second stage of 2SLS (Extended Data Fig. 8b, shown only for a single 

configuration in monkey T) for optimal values of 𝛼𝑜𝑝𝑡 (=200/50 for the decision/movement 

epochs)  

The small R2 values made it difficult to gauge ‘goodness of fit’, as their relatively small magnitudes 

could be due to unstructured observation noise (which cannot be predicted by any model) 

dominating the variability in the residuals. To determine if this is indeed true, we simulated 

residuals from a time-varying linear dynamical system (Equation 11) with dynamics matrix (𝐀𝑡) 

and the observation matrix (𝐂) matched to optimal estimates of residual dynamics and dynamics 

subspace (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡) obtained using neural data.  

Simulating observed residuals (�̃�𝑡, Equation 11) also required, as a first step, estimating the latent 

noise covariance (Cov(𝛜𝑡) = 𝐐), variance in the initial latent state (Cov(�̃�0) =  𝐐0), and the 

observation noise covariance (Cov(𝛈𝑡) =  𝐑 ). Closed form estimates for these parameters were 

obtained using maximum likelihood: 

�̂� =
1

(𝑇 − 𝑙).𝐾
diag( ∑ ∑[

𝐾

𝑘=1

𝑇

𝑡=𝑙+1

�̃�𝑡(𝑘) − 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡 �̂̃�𝑡(𝑘)][�̃�𝑡(𝑘) − 𝐔𝑑𝑦𝑛

𝑑 �̂̃�𝑡(𝑘)]
′) (37) 

�̂�0 =
1

K
∑�̂̃�𝑙+1

𝐾

𝑘=1

(𝑘)�̂̃�𝑙+1(𝑘)
′ (38) 
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�̂� =
1

𝑑. (𝑇 − 𝑙 − 1).𝐾
𝑇𝑟 ( ∑ ∑[

𝐾

𝑘=1

𝑇−1

𝑡=𝑙+1

�̂̃�𝑡+1(𝑘) − 𝐀𝑡 �̂̃�𝑡(𝑘)][�̂̃�𝑡+1(𝑘) − 𝐀𝑡 �̂̃�𝑡(𝑘)]
′
) (39) 

where, �̂̃�𝑡(𝑘) is the denoised prediction of the residual latent state at time t on trial k (Equation 

24) resulting from the first stage of 2SLS. 

These estimates were used to simulate residuals (Equation 11) for a matched number of trials for 

each choice and task configuration, which were then used to compute idealized coefficients of 

determination (R2
sim-fs and R2

sim-ss), under the assumption that our analysis pipeline works 

perfectly i.e. is able to perfectly retrieve the dynamics (second stage of 2SLS) and the de-noised 

residual latent states (first stage of 2SLS) at each time. We reasoned that this would provide a 

realistic benchmark, if not a strict upper limit, for the fit quality that one can hope to obtain in 

the context of large observation noise. 

To compute R2
sim-fs and R2

sim-ss, we projected the simulated residual observations (�̃�𝑡
𝑠𝑖𝑚(𝑘)) into 

the estimated dynamics subspace (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡, Equation 21) and computed the amount of variance 

explained in the resulting projection by (i) the simulated latent state (denoted by �̃�𝑡
𝑠𝑖𝑚(𝑘)), and 

by (ii) a ‘noise-free’, one-step propagation of the simulated latent state through the 

corresponding estimate of the dynamics matrix. The former (R2
sim-fs) provides a benchmark for 

comparing the coefficient of determination obtained for the first stage of the 2SLS, whereas the 

latter (R2
sim-ss) provides the same for the second stage of the 2SLS. Mathematically, these 

quantities were defined as follows: 

R𝑠𝑖𝑚−𝑓𝑠
2  =  1.0 −  

∑ ∑ (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡

′

. �̃�𝑡
𝑠𝑖𝑚(𝑘) − �̃�𝑡

𝑠𝑖𝑚(𝑘))

2

𝑘𝑡

∑ ∑ (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡

′

�̃�𝑡
𝑠𝑖𝑚(𝑘))

2

𝑘𝑡

  (40) 

R𝑠𝑖𝑚−𝑠𝑠
2 =  1.0 −  

∑ ∑ (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡

′

. �̃�𝑡
𝑠𝑖𝑚(𝑘) − 𝐀t−1�̃�𝑡−1

𝑠𝑖𝑚(𝑘))

2

𝑘𝑡

∑ ∑ (𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡

′

�̃�𝑡
𝑠𝑖𝑚(𝑘))

2

𝑘𝑡

 (41) 

where, �̃�𝑡
𝑠𝑖𝑚(𝑘) =  𝐀𝑡−1�̃�𝑡−1

𝑠𝑖𝑚(𝑘) + �̂�𝑡−1, and �̂�𝑡−1 is a sample from a multi-variate gaussian 

with covariance �̂�.  

The range of values of R2
sim-fs (monkey T : 0.0738 ± 0.011, monkey V : 0.0958 ± 0.33; mean ± std 

across task configurations and choices) and R2
sim-ss (monkey T : 0.0512 ± 0.0171, monkey V: 
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0.0674 ± 0.0157; mean ± std) qualitatively matched the range of values of the corresponding 

cross-validated coefficient of determination (R2) for the first and second stage of 2SLS obtained 

for the data (reported above). This finding implies that the low coefficient of determination 

measured in the real data is likely due to residuals being dominated by uncorrelated observation 

noise. 

Simulated Models 

We validated our analysis pipeline on a number of simulated models, which were broadly 

categorized into four groups – (1) models of decisions and movement, (2) linear state-space 

models with uncorrelated latent noise, (3) linear state-space models with correlated latent noise, 

(4) modular two area recurrent network model. The first two model categories exemplified the 

simple input regime (Fig. 1b), whereas the latter two represented the complex input regime (Fig. 

1b). We only provide a brief description of these four model categories here (see Supplementary 

Methods for details). 

Models of decisions and movement 

We simulated single trial responses from 6 distinct models; three of these corresponded to 

“models of decisions” (saddle point35, line attractor12, and point attractor), and the other three 

to “models of movement” (rotational dynamics36, dynamic attractor37, and point attractor). 

Within each sub-category (decision or movement), the three models had distinct recurrent 

dynamics and time-varying input drives, informed by previous models of sensory evidence 

integration and movement generation, but defined so as to exhibit the same condition average 

trajectories (Fig. 1c-d, Supplementary Methods). All six models were described by a 2-

dimensional latent state (𝐱) governed by Equation 1 (see Supplementary Methods for 

specifications of parameters in Equation 42). Observed states (𝐲) resulted from a linear gaussian 

observation process (similar to Equation 11, but with 𝐂 =  𝐈) as defined below: 

 �̇� = 𝐅(𝐱) + 𝐮𝑡 + 𝛜𝑡 

𝐲𝑡 = 𝐱𝑡 + 𝛈𝑡  

(42) 

For each model, we simulated a total of 4000 trials, each of duration of 1s (steps of 1ms). Each 

trial belonged to one of two conditions (choice 1 or choice 2) determined either by the initial 

condition of the recurrent dynamics or the inputs. We estimated the time-varying residual 

dynamics (𝐀𝑡, Equation 11) using only the 2SLS regression (Steps 3 and 4 of analysis pipeline, 

Extended Data Fig. 2) directly on the two-dimensional residuals (without Steps 1 and 2 of the 

analysis pipeline, Extended Data Fig. 2). We did not optimize any of the hyper-parameters of the 
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pipeline. We used dimensionality (d) = 2, lag (𝑙) = 5 and a regularization parameter (𝛼) = 100 for 

for all model fits. 

To illustrate the various hypothesized relationships between the residual dynamics and the 

condition-averaged trajectories (Fig. 5), we also simulated an “augmented” line attractor model 

(Fig. 5a-b) and an “augmented” rotational dynamics model (Fig. 5c-d), both characterized by two 

additional latent dimensions (4 latent dimensions in total). The two additional latent dimensions 

were orthogonal to the first two latent dimensions and were associated with quick, decaying 

dynamics and sinusoidal inputs (Supplementary Methods). 

Linear state-space models with uncorrelated latent noise 

We also validated the analysis pipeline on simulated single trial responses from six distinct latent-

variable state space models (Extended Data Fig. 3), which were characterized by (i) three distinct 

linear but time-varying latent dynamics (Equation 11, also see Supplementary Methods), and (ii) 

two distinct observation models: linear-gaussian (Equation 11) or poisson (Supplementary 

Methods). Additionally, we simulated three more models characterized by linear-gaussian 

observations (Equation 11) but subject to both time-varying dynamics and time-varying latent 

noise (Supplementary Methods). These simulations demonstrated the robustness of our pipeline 

to different latent dynamics and observation model types. For all nine models, residuals were 

binned in 45ms bins (poisson observations were square-root transformed), and were subjected 

to steps 2-4 of the analysis pipeline (Extended Data Fig. 2, without session alignment), using 

cross-validation to tune the hyper-parameters. 

Linear state-space models with correlated latent noise 

To study the inflationary effects of correlated, latent input noise (𝜉(t) in Fig. 1b, complex input) 

on estimates of residual dynamics , we considered state-space models with linear time-invariant 

dynamics, characterized by latent noise with decaying temporal autocorrelations (correlated 

noise). We used these models to understand how neural activity that is a consequence of 

recurrent processing in unobserved/unrecorded areas influences residual dynamics measured 

within recorded/observed areas. To model correlated latent noise, we assumed a time-invariant, 

linear state-space model governed by the following set of equations. 

 𝐱(t + 1) =  𝐀𝐱(t) +  𝛆(t) 

𝛆(t + 1) =  𝛟 𝛆(t) +  𝜻(t) 

(43) 

where, 𝜻(𝑡) is a zero-mean white gaussian noise process with covariance matrix 𝐐. We 

interpreted the model specified in Equation 43 as follows. 𝐱(t) was assumed to represent the 
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latent population state of the recorded/observed area, yielding observations 𝐳(t). 𝛆(t) was 

considered to represent the latent population state of unobserved or unrecorded areas, 

contributing auto-correlated, latent input noise process (similar to 𝛏𝑡, Fig. 1b, complex input) that 

directly influenced 𝐱(t). Therefore 𝛟, which determined the dynamics of 𝛆(t), reflected the 

dynamics of the unobserved/unrecorded areas. For a given 𝐀, 𝛟 and 𝐐, we were able to 

analytically derive the two-stage least squares (2SLS) estimate of the residual dynamics (see 

Supplementary Math Note B), assuming that (i) the model operated in steady-state and, (ii) that 

we only had access to 𝐱(t). We systematically varied 𝐀, 𝛟 in order to quantify the effect of 

correlated, latent input noise on analytically derived estimates of residual dynamics, under 

steady-state conditions (Extended Data. Fig. 4,5; Supplementary Methods, Supplementary Math 

Note B). These analyses did not require specifying an observation model (unlike the previous 

models). 

Modular two-area recurrent neural networks 

We simulated single trial responses using a modular, two area RNN model of perceptual decision 

making, which emulated the interactions between posterior parietal cortex (PPC) and pre-frontal 

cortex (PFC)38. Each area was characterized by two choice-selective (choice 1 or choice 2) neural 

populations, which were recurrently interconnected through excitatory and inhibitory (E/I) intra-

areal (within area) connections. These neural populations were also interconnected across areas 

though inter-areal (between areas), E/I, feedforward and feedback connections.  

We denote the state of area a (local state) at time t as 𝐱𝑡
𝑎, a 2-dimensional vector (one dimension 

per choice selective population in area a). The ‘global’ network state 𝐱𝑡 (4 dimensional) was 

defined by concatenating the local state across both areas (Equation 44). Observations specific 

to area a, denoted by 𝐲𝑡
𝑎 (10-dimensional), were obtained through a linear-gaussian observation 

model (𝛈t is multivariate, isotropic gaussian, with variance equal to 0.0006) applied to the ‘global’ 

state. The observation matrix (𝐂𝑚𝑜𝑑𝑒𝑙) was block-diagonal (each block representing the 

observation matrix specific to an area): 

𝐲𝒕 = (
𝐲𝑡
𝑝𝑝𝑐

𝐲𝑡
𝑝𝑓𝑐) =  𝐂model𝐱𝑡 + 𝛈𝑡 =  [

𝐂ppc 𝟎

𝟎 𝐂pfc
] (
𝐱𝑡
𝑝𝑝𝑐

𝐱𝑡
𝑝𝑓𝑐) + 𝛈𝑡 (44) 

Considering that each area is characterized by two choice-selective populations, the task relevant 

dimensions corresponding to “choice” and “time” modes specific to each area (Fig. 6a,d) were 

naturally defined in the 4-dimensional ‘global’ stat space space as: 
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 𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑝𝑐 = [1  – 1  0  0]𝑇 

𝒖𝑡𝑖𝑚𝑒
𝑝𝑝𝑐    = [1   1  0  0]𝑇  

𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑓𝑐

= [0   0  1 – 1]𝑇 

𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑓𝑐

= [0   0  1 – 1]𝑇 

 

 

(45) 

We simulated two different types of networks, one in which feedback from PFC to PPC was 

absent and another in which feedback was present (see details in Supplementary Methods). For 

each network type, we simulated thirty different network configurations with distinct intra-areal 

and inter-areal connectivity strengths, parameterized using scalar-valued parameters J𝑠𝑒𝑙𝑓  (5 

distinct values; colored markers, Fig. 6c,f) and J𝑎𝑐𝑟𝑜𝑠𝑠  (6 distinct values; x-axis Fig. 6c,f) 

respectively. For the network configuration shown in Fig. 6a (J𝑠𝑒𝑙𝑓  = 0.36, J𝑎𝑐𝑟𝑜𝑠𝑠 = 0.08, no 

feedback), we simulated an identical network (with frozen noise) for a ‘shuffled’ condition, in 

which, only the feed-forward current inputs at each time from PPC to PFC were randomly shuffled 

across trials, in order to remove any slow temporal autocorrelations (Fig. 6b). Only PPC was 

driven using external input on each trial (indexed by k) defined as follows: 

 

𝐼𝑘(𝑡) =  {

0 ,    0 < 𝑡 ≤ 𝑇𝑜𝑛

𝐼𝑒 (1±
𝑐(𝑘)

100%
) , 𝑡 > 𝑇𝑜𝑛

 

 

(46) 

where, Ie = 0.0130nA, 𝑇𝑜𝑛 (= 400ms) is the time of stimulus onset and, c(k) corresponds to the 

coherency on the kth trial. We simulated only trials with zero coherency (c(k) = 0) and assigned 

each trial as either “choice-1” or “choice-2”, depending on the population ‘choice’ readout from 

PFC (projection onto 𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑓𝑐

) at the last time step of the trial. Specific details about network 

architecture and dynamics can be found in ref38. 

Residual dynamics was estimated either ‘locally’ (see Fig. 6b), using observations of PPC alone 

(𝐲𝑡
𝑝𝑝𝑐) or PFC alone (𝐲𝑡

𝑝𝑓𝑐
); or ‘globally’ (Fig. 7a), using observations from both areas (𝐲𝑡). 

Observations were temporally binned in 45ms long bins and residual dynamics was computed 

separately for each choice condition by employing the full analysis pipeline (Supplementary 

Methods), but excluding the session alignment (step 1 in Extended Data Fig. 2). Additionally, we 

also computed the ‘local choice’ residual dynamics, by fitting the 1-dimensional projection of 

residuals in PPC and PFC onto their respective choice dimensions, 𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑝𝑐  and 𝒖𝑐ℎ𝑜𝑖𝑐𝑒

𝑝𝑓𝑐
. We 

examined the relationship between the largest eigenvalue magnitude (across time in the trial) of 

the ‘local choice’ residual dynamics (y-axis in Fig. 6c,f ; error bars are 95% bootstrap confidence 
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intervals) and the network connectivity parameters J𝑠𝑒𝑙𝑓(colors in Fig. 6c,f)  and J𝑎𝑐𝑟𝑜𝑠𝑠(x-axis in 

Fig. 6c,f).  

We performed a set of targeted causal perturbation experiments (Fig. 8, Extended Data Fig. 10) 

for the two example network configurations (Fig. 6 & 7). We first obtained a set of “ground 

truths” that summarized how activity patterns associated with each area change in response to 

a simulated perturbation. We then compared the simulated perturbations to predictions based 

on either the ‘local’ or ‘global’ estimates of residual dynamics (Supplementary Methods). 
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