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SUPPLEMENTARY INFORMATION 

1. Supplementary Methods 

Here, we provide further details for the four categories of simulated models that we used for 

validating our data analysis pipeline (see Methods). 

Models of decisions 

We simulated three distinct models of decisions governed by Equation 42 (see Methods), which 

are described below 

Saddle node (Unstable Integration) 

This model implemented binary decision making through a saddle node instability. The latent 

state (𝐱) of the model was governed by the following non-linear recurrent dynamics (Equation 

42, Methods): 

𝐅(𝐱) = [
−6𝑥(1)

3 + 20𝑥(1)
−10𝑥(2)

] (S1) 

where, x(i) is the ith dimension of the 2-dimensional latent state. 𝐅(. ) was characterized by 3 

distinct fixed points - an unstable fixed point (saddle node) at the origin: (0,0) where the dynamics 

are transiently stable and, two stable fixed points located symmetrically at (1.825,0) and (-

1.825,0), where the dynamics are globally stable. Initial conditions were sampled from a zero-

mean bivariate Gaussian distribution with covariance equal to a scaled identity matrix (= σ𝑖
2. 𝐈), 

with σ𝑖
2 = 0.005. On each trial k, the input drive at time t was defined as: 

𝐮𝑡(𝑘) = 𝑐(𝑘). [
8
−8
] (S2) 

where, c(𝑘) ∈  {−1,1} determined the sign of the input on each trial (choice 1 trials: c(𝑘) = +1, 

choice 2 trials: c(𝑘) = -1) and was sampled from a binomial distribution. Hence, the input drive 

was condition dependent but time-invariant. The latent noise (𝛜𝐭) was a zero-mean gaussian 

disturbance, whose covariance was the scaled identity matrix (= σ𝑒
2. 𝐈), with σ𝑒

2 = 0.0001. The 

covariance of the observation noise (𝛈𝒕) was also set to a scaled identity matrix (= σ𝑛
2 . 𝐈), with σ𝑛

2  

= 0.000001. 
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Line attractor (Perfect Integration) 

This model integrated sensory evidence along a line attractor, which was implemented using a 

linear dynamical process: 

𝐅(𝐱) = 𝐀. 𝐱 = [
0 −5
0 −5

] 𝐱 (S3) 

The dynamics matrix (𝐀) has two distinct eigenvalues equal to 0 and -5 and the corresponding 

eigenvectors are [1 0]T and [1/√2   1/√2]T respectively, the former specifying the local direction 

of the line attractor. The dynamics were non-normal, as the two eigenvectors were non-

orthogonal. The input drive at time t (𝐮t) was chosen independently for each condition choice 1 

or choice 2) such that the condition average at the next time step had an exact match to the 

corresponding condition averaged response simulated from the saddle point model. The 

covariance of the latent noise (𝛜𝐭) was a scaled identity matrix (= σ𝑒
2. 𝐈), with σ𝑒

2 = 0.00003. The 

variability in the initial conditions (parameterized by σ𝑖
2𝐈) and the observation noise covariance 

(σ𝑛
2  𝐈) were the same as in the saddle node model.  

The augmented line attractor model (Fig 5) was characterized by a 4-dimensional latent state i.e 

2 additional latent dimensions (eigenvalues = -7.5, -10), and governed by the following dynamics 

(similar to Equation 42, Methods): 

�̇� = 𝐅(𝐱) + 𝐮𝑡 + 𝛜𝐭 =  [

0 −5
0 −5

0   0
 0   0

0    0
0    0

−7.5   0
      0 −10

] 𝐱 + 

[
 
 
 
u1(t)

u2(t)

u3(t)

u4(t)]
 
 
 

+ 𝛜𝐭 (S4) 

where, the input components u1(t) and u2(t) were the same as defined previously for the line 

attractor model, and components u3(t) and u4(t) were defined as sinusoidal functions, 

20 × 𝑐𝑜𝑠(1.6π𝑡) and 20 × 𝑠𝑖𝑛(1.6π𝑡) respectively. The noise parameters of the model (σ𝑖
2, 

σ𝑒
2, σ𝑛

2 ) were the same as in the line attractor model. 

Point Attractor with time-varying inputs (Leaky Integration) 

A ‘leaky’ model of evidence integration was implemented with the following linear dynamics: 

𝐅(𝐱) = 𝐀. 𝐱 = [
−20 0
0 −40

] 𝐱 (S5) 

The matrix 𝐀 is normal (orthogonal eigenvectors) and has two distinct strongly stable eigenvalues 

equal to -20 and -40. The input drive at time t (𝐮t) was once again chosen such that the condition 

average at the next time step had an exact match to the corresponding condition averaged 
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response of the saddle node model. The various noise parameters of the model (σ𝑖
2, σ𝑒

2, σ𝑛
2 ) were 

the same as in the line attractor model. 

Models of movement 

We simulated three distinct models of movement (also governed by Equation 42, Methods) 

described below 

Rotational Dynamics 

We implemented a model of movement characterized by rotational dynamics. The recurrent 

dynamics 𝐅 was specified in terms of polar coordinates [r ϕ]: 

𝑟 = √𝑥(1)
2 + 𝑥(2)

2

𝜙 = 𝑡𝑎𝑛−1 (
𝑥(2)
𝑥(1)

)

�̇� = 0
�̇� = 1.2𝑟

(S6) 

The latent state (𝐱t) on each ’trial’ (obtained from converting polar into cartesian coordinates), 

was a result of purely autonomous dynamics set by an initial condition that differed across trials. 

The initial condition on the kth trial was sampled from a Gaussian distribution as follows: 

𝐱0
𝑘 ∼ 𝒩 ([

𝑐(𝑘)
0
] , [
0.01 0
0 0.0001

]) (S7) 

where, c(𝑘) determined the sign of the mean of the random initial condition vector on each trial 

(similar to c(𝑘) in the saddle node dynamics model). Thus, differences in initial conditions across 

trials determined the two types of conditions (choice 1 trials: = c(𝑘) = +1, choice-2 trials: = c(𝑘) 

= -1). The covariances of the latent noise (𝛜𝐭) and observation noise (𝛈𝒕) were scaled identity 

matrices σ𝑒
2. 𝐈 and σ𝑛

2 . 𝐈 respectively, with σ𝑒
2 = 0.00003 and σ𝑛

2  = 0.000001. 

We also simulated an augmented rotational dynamics model with two additional latent 

dimensions. The recurrent dynamics (eigenvalues = -7.5 and -10) and the inputs (u3(t) and u4(t)) 

associated with these two additional dimensions were the same as defined previously for the 

augmented line attractor model (Equation S4). 

Dynamic Attractor 

We constructed a dynamical system with a stable attracting circular trajectory. We 

parameterized the dynamics in terms of polar coordinates as follows: 
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𝜌 = 1 − 𝑟
�̇� = −20𝜌

�̇� = 1.2(1 − 𝜌)
(S8) 

The initial conditions for all trials were the same as the initial conditions generated for the 

rotational dynamics model. The model was autonomous (no external inputs). The covariances of 

the latent noise (𝛜𝐭) and observation noise (𝛈𝒕) were scaled identity matrices σ𝑒
2. 𝐈 and σ𝑛

2 . 𝐈 

respectively, with σ𝑒
2 = 0.0001 and σ𝑛

2  = 0.000001. 

Point Attractor with time-varying inputs (input-driven movement dynamics) 

The recurrent dynamics (𝐅) was the same as that of the leaky integration model (Equation S5, see 

models of decisions). However, unlike the rotational dynamics and dynamic attractor models, 

this model was input driven. The input drive at each time t (𝐮t) was chosen independently for 

each condition, such that the condition average at the next time step had an exact match to the 

corresponding condition averaged response of the rotational dynamics model. The initial 

conditions were the same as those generated for the rotational dynamics model. The covariances 

of the latent noise (𝛜𝐭) and observation noise (𝛈𝒕) were scaled identity matrices σ𝑒
2. 𝐈 and σ𝑛

2 . 𝐈 

respectively, with σ𝑒
2 = 0.0003 and σ𝑛

2  = 0.000001. 

Linear state-space models with uncorrelated latent noise 

These models were governed by linear time-varying dynamics (Equation 11, Methods) but using 

a continuous time latent state update (as in Equation 35, Methods). The observation models were 

either linear gaussian (Equation 11, Methods) or poisson as described below:  

Linear-Gaussian Models 

The models were characterized by 3 latent dimensions and 20 observed dimensions. For models 

characterized by time-invariant latent noise, the latent noise covariance was a scaled identity 

matrix (𝐐 = 0.5𝐈). The observation noise matrix 𝐑 was diagonal, with elements sampled from a 

uniform distribution between [0,0.01]. The steady-state initial noise covariance (𝐐0) was 

obtained by solving the continuous-time Lyapunov equation. The above choice of 𝐐, 𝐑 and 𝐐0 

resulted in simulated data with variability that matched the level of variability in the neural data 

(Extended Data Fig. 3e).  

The other simulation parameters were the same as those used for the simulations of the time-

invariant linear dynamical models used to determine the optimal bin-size (see Methods, Equation 

35). We simulated three different types of latent, time-varying dynamics matrices: 

1.  Switching eigenvalues (non-rotational) 
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The time-varying dynamics matrices of this model were normal (orthogonal eigenvectors) but 

showed an abrupt switch in the eigenvalue spectrum (Extended Data. Fig. 3a-c, top row). The 

eigenvectors of 𝐀t were time-invariant. The elements of the eigenvector matrix were 

sampled from a standard normal distribution and then orthogonalized with respect to one 

another. The eigenvalue spectrum was always real and switched from [−1, −3,  −5] to 

[−2, −4, −6] midway through the trial. 

2. Switching eigenvectors 

The dynamics matrices of this model had eigenvalues [−1,  −3,  −5] which did not vary in 

time. Instead the associated eigenvector basis exhibited a switch from an orthogonal 

(’normal’ dynamics) to a non-orthogonal eigenvector basis (’non-normal’ dynamics) mid-way 

through the trial (Extended Data. Fig. 3a-c, middle row). 

3. Switching eigenvalues (rotational) 

The time-varying dynamics matrices of this model (Extended Data. Fig. 3a-c, bottom row) 

were normal (orthogonal eigenvectors) but showed an abrupt switch in the eigenvalue 

spectrum from real - [−1, −3,  −5] to complex-valued eigenvalues - [−2 + i2π,  −2 −

i2π,  −5] mid-way through the trial. The complex eigenvalues were associated with ’slow’ 

rotations of 1Hz frequency. 

The models characterized by time-varying latent noise differed only in a single aspect. They were 

characterized by latent noise covariance that was itself time-dependent (𝐐𝒕 instead of 𝐐, as in 

Equation 35 of Methods). The latent noise covariance switched from 0.5𝐈 to 0.3𝐈 midway through 

the trial, locked to the corresponding change in the latent dynamics (𝐀t). 

Poisson Models 

Models described by a poisson observation process shared the same time-varying, latent 

dynamics processes as described above, but were instead associated with 100 observed 

dimensions. The poisson observations (𝐬𝒕), which corresponded to spike counts in 1ms bins were 

obtained as:  

 𝐲𝒕 =  𝐂𝐱𝒕 + 𝐝 

𝐬𝒕 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑥𝑝(𝐲𝒕)) 

(S9) 

where, 𝐱𝒕 is the latent state and the observation matrix 𝐂 (∈  ℛ100 × 2) was a random (elements 

sampled from a standard normal distribution), orthogonal matrix. The elements of the baseline 

input vector 𝐝 were chosen uniformly at random in the range [-4.8 -4.1], while the latent noise 
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covariance was time-invariant and set to a scaled identity matrix - 𝐐 = 12500𝐈. These choice of 

𝐐 and 𝐝 ensured realistic, over-dispersed fano factors between 1 and 1.5, and single-trial 

variability that matched the level of variability in the neural data (Extended Data Fig. 3e). The 

steady-state initial noise covariance (𝐐0) was obtained by solving the continuous time lyapunov 

equation.  

To match the overall level of variability in the simulated residuals to those measured in the data, 

we computed three different measures that specified (i) the total magnitude of instantaneous 

variability (𝑙0  = 〈‖�̃�t�̃�t
′
‖
F

2
〉𝑡), (ii) the total magnitude of lagged co-variability (𝑙1 =

〈‖�̃�t+1�̃�t
′
‖
F

2
〉𝑡) and, (iii) the strength of the most dominant mode of lagged co-variability (pvar =

〈𝜎𝑚𝑎𝑥(�̃�t+1�̃�t
′
)〉𝑡) in the simulated and measured residuals, where, �̃�t is the aligned residual data 

matrix at time t (see Methods) of dimensionality 20 x K, where K is the number of trials, ‖ . ‖F is 

the frobenius norm, and 𝜎𝑚𝑎𝑥(.) corresponds to the largest singular value of its matrix-valued 

argument. The latent noise parameter (𝐐) of the linear gaussian/poisson models, the observation 

noise parameter (𝐑) of the linear gaussian models, and the mean offset (𝐝) of the poisson model 

simulations were chosen such that these measures of variability qualitatively matched to those 

computed using PFC neural residuals. 

Linear state-space models with correlated latent noise 

We explored three distinct sub-categories of models (described below), all specified by Equation 

43, but which differed in the nature of 𝐀 and 𝛟 (i.e. either stable or rotational). To simplify our 

analyses, we only considered models with 2-dimensional dynamics (i.e. Dim(𝐱) = Dim(𝛆) = 2; 

Equation 43, Methods), although our analytical derivations (Supplementary Math Note B) were 

applicable for arbitrary dimensionalities. For each sub-category, we generated multiple 

instantiations of the model by systematically sweeping the magnitude and phase of the 

eigenvalues of 𝐀 and 𝛟. For all models, the covariance of the latent noise process 𝜻(t) was set 

to a scaled identity matrix (𝐐 =  σ𝑞
2 . 𝐈), with σ𝑞

2  sampled uniformly at random in the range [10-5, 

10-7], separately for each model instantiation.  

1. Inflation of eigenvalues (Extended Data Fig. 4a-b) 

We instantiated 5000 distinct models within this category by varying the eigenvalue 

magnitudes of 𝐀 and 𝛟. For all 5000 models, we set one of the eigenvalues of 𝐀 to a fixed 

constant such that it was associated with a decay time constant of 400ms. We swept the 

other eigenvalue (λ2, Extended Data. Fig. 4a-b) on a uniform grid in the range [0.4 0.999], 

resulting in 1000 distinct 𝐀 matrices. Both eigenvalues of 𝛟 were constrained to be equal to 

one another (λ1, Extended Data. Fig. 4a-b) and were sampled in 5 discrete steps (λ1 =

[0.40 0.75 0.91 0.97 0.99]), which resulted in 5 distinct  𝛟 matrices. The eigenvectors of 
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each 𝐀 and 𝛟 were the cardinal unit vectors 𝐞1, 𝐞2 of the 2D space. We also simulated 5 

additional models, in which, λ2 (eigenvalue specifying 𝐀) was set to zero specifying a 

scenario, in which, recurrent dynamics only unfolds upstream within the input area 

(Extended Data Fig. 4b).  

2. Inflation of rotation frequency (Extended Data Fig. 4c-d) 

We instantiated 5000 distinct models within this category by varying the eigenvalue phase 

of 𝛟 and the eigenvalue magnitude of 𝐀 (Extended Data. Fig. 4c-d). Since 𝛟 was associated 

with rotational dynamics, it was associated with a pair of complex-conjugate eigenvalues, 

which could be completely specified using its magnitude and phase. For all 5000 models, we 

set the magnitude of the complex-conjugate eigenvalue pair to a fixed constant that 

translated into a decay time constant of 1s. We instead systematically varied the phase of 

the complex-conjugate eigenvalue pair in 5 discrete steps, resulting in 5 distinct 𝛟 matrices 

that had associated rotation frequencies (ω1 , Extended Data. Fig. 4d) equal to [0.5 0.75 1.00 

1.25 1.5] Hz. Both eigenvalues of 𝐀 were constrained to be equal to one another (λ2, 

Extended Data. Fig. 4c-d) and sampled from a uniform grid in the range [0.4 0.999], resulting 

in 1000 distinct 𝐀 matrices. The eigenvectors of 𝐀 were the cardinal unit vectors 𝐞1, 𝐞2 of 

the 2D space. The eigenvectors of 𝛟 were complex-conjugate and were chosen such that 

they characterized by a circularly symmetric rotational flow-field.   

3. Equivalence of upstream and local recurrent dynamics (Extended Data Fig. 4e-f) 

We instantiated 5000 distinct models within this category by varying the eigenvalue phase 

of 𝐀 and the eigenvalue magnitude of 𝛟, in a manner that was mirror symmetric to the way 

the parameters were specified above (Extended Data Fig. 4c-d).  

In addition to the above analytical steady-state analyses, we also simulated data with a 1-

dimensional latent state (i.e. Dim(𝐱) = Dim(𝛆) = 1; Equation 43, Methods) in order to provide a 

graphical explanation for the inflation of the estimates of residual dynamics. We simulated 1000 

trials/trajectories in steps of 45ms starting from a base scenario (Extended Data Fig. 5a-b) where 

the 𝐱 (Equation 43, Methods) was driven by input noise that was not temporally autocorrelated 

(i.e 𝛟 = 0; Equation 43, Methods) and with a fixed variance (Var (𝜻(t)) = 1e-6; Equation 43, 

Methods). We then either switched (t=0 is denoted as time of switch in Extended Data Fig 5) to 

a condition - (i) where the latent noise (𝛆(t); Equation 43, Methods) was autocorrelated (𝛟 = 

0.798, Extended Data Fig. 5c-d), or (ii) where the variance was increased (by a factor of 10) to 1e-

5 (Extended Data Fig. 5e-f). 
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Modular two-area recurrent neural network 

Below, we describe the network configurations used in this study, the details of applying and 

analyzing residual dynamics in these models, and simulated perturbation experiments performed 

using these models. As described in the Methods, the RNN has two nodes/areas (PPC and PFC) 

characterized with both intra-areal (within area) and inter-areal (across areas) excitatory and 

inhibitory connections (see ref. 38 of main text for details of the architecture, and network 

parameters defined below)  

Network Configurations 

The intra-areal recurrent connectivity was determined by weight matrices 𝐉𝑝𝑝𝑐  and 𝐉𝑝𝑓𝑐 , whereas 

the inter-areal connectivity was determined by feed-forward weight matrix 𝐉𝑝𝑝𝑐 →𝑝𝑓𝑐  and 

feedback weight matrix 𝐉𝑝𝑝𝑐 ←𝑝𝑓𝑐 . Each of the above four weight matrices were directly 

determined by 4 scalar parameters J𝑠
𝑝𝑝𝑐 , J𝑠

𝑝𝑓𝑐 , J𝑠
𝑝𝑝𝑐 →𝑝𝑓𝑐  and J𝑠

𝑝𝑝𝑐 ←𝑝𝑓𝑐 , which modulated the 

coupling strength of the connectivity matrices. We constrained all our analyses to a setting where 

the within area recurrent weights of each area were the same (i.e 𝐉𝑝𝑝𝑐  =  𝐉𝑝𝑓𝑐, by setting J𝑠
𝑝𝑝𝑐  = 

J𝑠
𝑝𝑓𝑐  = J𝑠𝑒𝑙𝑓). We simulated two different classes of networks, one in which feedback was absent 

(i.e  𝐉𝑝𝑝𝑐 ←𝑝𝑓𝑐 =  𝟎, by setting J𝑠
𝑝𝑝𝑐 ←𝑝𝑓𝑐  = 0) and, another in which feedback was present and 

equaled the feed-forward connection strength (i.e 𝐉𝑝𝑝𝑐 →𝑝𝑓𝑐 =  𝐉𝑝𝑝𝑐 ←𝑝𝑓𝑐 , by setting  J𝑠
𝑝𝑝𝑐 →𝑝𝑓𝑐  = 

J𝑠
𝑝𝑝𝑐 ←𝑝𝑓𝑐  = J𝑎𝑐𝑟𝑜𝑠𝑠).  

We simulated 6000 trials from each network, each trial spanning a total of 1.2s (steps of 0.1ms, 

Euler integration). Each population within an area also received noisy current inputs determined 

by an Ornstein-Uhlenbeck (OU) process whose variance 𝜎𝑛𝑜𝑖𝑠𝑒  was set to 0.07. The observation 

matrices specific to each area (Equation 44, Methods; 𝐂ppc, 𝐂pfc ∈  ℛ
10 × 2) were specified as 

random orthogonal matrices. The covariance of the multivariate, gaussian observation noise 

process (𝛈t) was isotropic (variance = 0.0006). 

Residual dynamics estimation 

For ‘local’ estimates of residual dynamics, the cross-validation of the hyper-parameters (see Step 

3 of Extended Data Fig. 2) yielded dynamics of dimensionality d = 2 for all network configurations, 

which was consistent with the ground truth. For the ‘global’ estimates, depending on the 

underlying network configuration, we recovered residual dynamics with dimensionalities d in the 

range 2-4. As in the neural data (Extended Data Fig. 8), we consistently recovered an optimal lag 

(𝑙𝑜𝑝𝑡) of either 3 or 4 across most model configurations. Therefore, for the final model fits (Figs. 

6,7), we used 𝑙𝑜𝑝𝑡 = 3 for all model configurations. The smoothness hyper-parameter (𝛼 in 

Equation 27, Methods) of the second stage of 2SLS (see Step 4 of Extended Data Fig. 2) was 

uniquely determined for each model using cross-validation. 
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Overlap of task-relevant modes with residual dynamics 

For each model configuration (pair of J𝑠𝑒𝑙𝑓  and J𝑎𝑐𝑟𝑜𝑠𝑠  for each network type), we extracted the 

set of estimated residual eigenvectors at a specific time instant 𝑡𝑚𝑎𝑥
𝑝𝑓𝑐

, defined as the time instant 

at which the maximum eigenvalue magnitude was attained ‘locally’ within PFC (𝑡𝑚𝑎𝑥
𝑝𝑓𝑐

 = 

argmax
𝑡
max
𝑗
|𝜆𝑗
𝑝𝑓𝑐
(𝑡)| , where j indexes the jth eigen-mode). The overlap between residual 

eigenvectors and the task-relevant model dimensions was quantified as the subspace angle 

between the pair of vectors. To ensure vectors of a consistent dimensionality, we projected the 

4-dimensional task-relevant dimensions (Equation 45, Methods) through the ground-truth 

observation matrix 𝐂model (Equation 44, Methods); and the estimated ‘local’ and ‘global’ residual 

eigenvectors through the corresponding estimate of 𝐂model (i.e dynamics subspace).  

Simulated perturbation experiments 

Perturbations corresponded to small pulse-like current injections within a specific area along one 

of the two distinct task-relevant, dimensions (“choice” or “time”; Equation 45, Methods) defined 

for that area. The magnitude of each perturbation was set to a fixed constant of 0.001nA 

(duration of 0.1ms), chosen such that the resulting perturbed state lay within the realm of single-

trial neural variability (in the absence of a perturbative input). Perturbations were applied at six 

different times in the trial ([270 405 540 675 810 945]ms after trial onset). For each network 

configuration, we simulated 6000 ‘unperturbed’ trials, and 6000 ‘perturbed’ trials for 24 distinct 

perturbation conditions (4 directions x 6 times). Each ‘perturbed’ trial was paired with a 

corresponding ‘unperturbed’ trial, with which it shared the time course of the latent noise and 

input noise.  

To compute the ground truth impulse response for a specific perturbation condition, we sorted 

the ‘unperturbed’ trials into two choice conditions, based on the single-trial readout along 

𝒖𝑐ℎ𝑜𝑖𝑐𝑒
𝑝𝑓𝑐

 (Equation 45, Methods) at the last time of the trial, and computed trial-averaged 

trajectories specific to each area, for each choice condition (choice-1 and choice-2). Likewise, we 

sorted the ‘perturbed’ trials in each area based on the above assignment of choice (determined 

for the unperturbed trials) and computed ‘perturbed residuals’ by subtracting from each 

‘perturbed’ single trial the corresponding ‘unperturbed’, choice-specific trial-averaged trajectory. 

The ground truth impulse response in a given area was then defined as the mean across trials of 

the ‘perturbed residuals’ specific to that area. 

The impulse response 𝐯𝑝𝑟𝑜𝑝(𝑡
′) predicted by the residual dynamics was defined as:  

 𝐯𝑝𝑟𝑜𝑝(𝑡
′) = 𝐔𝑑𝑦𝑛

𝑑𝑜𝑝𝑡. (𝐀𝑡′ . 𝐀𝑡′−𝛥𝑡 . …𝐀𝑡0+𝛥𝑡). 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡

′

𝐯 (S10) 
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where, 𝛥𝑡 corresponds to the temporal bin size, 𝑡0 corresponds to the time at which the 

perturbation is applied, 𝐔𝑑𝑦𝑛
𝑑𝑜𝑝𝑡is the estimate of the dynamics subspace and, 𝐯 corresponds to the 

initial condition. We estimated residual dynamics (𝐀t) using only ‘unperturbed’ trials, separately 

for each choice condition. We constructed predicted impulse responses based on ‘local’ and 

‘global’ residual dynamics. The initial condition 𝐯 was the ground truth impulse response 

computed at the exact time instant of the corresponding perturbation. In other words, here we 

did not attempt to predict 𝐯 itself (i.e. activity during the current injection), but rather how 

activity in the simulated networks evolved from 𝐯 after the end of the current injection.  

To summarize the ground-truth and predicted impulse responses, we computed the norm of the 

impulse response and plotted it as a function of time in the trial (Fig. 8, colored points: ground 

truth, black/gray curves: predictions). We only reported the two-step look-ahead impulse 

responses, i.e we only plotted the impulse response at the time-instant of a given perturbation 

(which corresponds to 𝐯 for both the prediction and the ground-truth) and the two time instants 

that immediately followed the perturbation (𝑡′ =  𝑡0 + 2𝛥𝑡, in Equation S10).  

We also simulated impulse responses in simpler, two-dimensional linear time-invariant 

dynamical systems (Extended Data Fig 10) that reproduced key features of the estimated global 

residual dynamics in the two example networks (Extended Data Fig 10). The cardinal directions 

of the 2D state space that defined these linear dynamical systems corresponded to the choice 

modes in PPC and PFC respectively, and perturbations were applied along one of these cardinal 

directions to mimic ‘local’ perturbations applied to an area. The two models only differed in the 

arrangement of the two eigenvectors, but not in their eigenvalue magnitudes. For the 

feedforward model, the unstable eigenvector (EV1, magnitude = 1.1; see Extended Data Fig 10) 

projected mostly onto the PPC choice mode (angle with PPCc = 15 deg, Extended Data Fig 10), 

while the stable eigenvector (EV3, magnitude = 0.5; see Extended Data Fig 10) was perfectly 

aligned with the PFC choice mode (angle with PFCc = 0, Extended Data Fig 10). For the “feedback” 

model, both the unstable (EV1, Extended Data Fig 10) and stable (EV4, Extended Data Fig 10) 

eigenvectors were equally shared across PPC and PFC (angle of 45 deg with PPCc and PFCc; 

Extended Data Fig 10). 

2. Supplementary Analyses 
The table below summarizes the range (across all 4 task configurations, Extended Data Fig 6a) of 

the largest subspace angle (in degrees) between any pair of task activity subspaces (𝐔𝑡𝑎𝑠𝑘
𝑖  and 

𝐔𝑡𝑎𝑠𝑘
𝑗

, see Methods) computed using the aligned response patterns (Methods, Extended Data Fig 

2) for a specific epoch and monkey. 
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∠𝑖, 𝑗 ∠𝑗𝑃𝐶12, 𝑐ℎ𝑜𝑖𝑐𝑒 ∠𝑗𝑃𝐶12, 𝑡𝑖𝑚𝑒 ∠𝑗𝑃𝐶34, 𝑐ℎ𝑜𝑖𝑐𝑒 ∠𝑗𝑃𝐶34, 𝑡𝑖𝑚𝑒 ∠𝑐ℎ𝑜𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 

Monkey ‘T’ 

decision epoch 

[76.8, 85.0] [57.3, 64.3] [34.2, 50.7] [73.9 88.2] [76.3 89.2] 

Monkey ‘T’ 

movement epoch 

[58.5, 83.8] [21.1, 39.1] [31.1, 41.9] [62.6, 79.6] [79.3, 88.9] 

Monkey ‘V’ 

decision epoch 

[79.8, 87.5] [78.6, 85.3] [18.2, 49.7] [74.7, 87.2] [79.2, 88.2] 

Monkey ‘V’ 

movement epoch 

[65.1, 83.9] [16.4, 36.1] [42.6, 61.2] [61.9, 89.0] [76.2, 85.4] 

3. Supplementary Math Note A 
In this section, we provide a brief overview of subspace system identification (SSID) theory as 

applied to parameter identification of linear time-invariant (LTI) state-space models. We adapt 

linear, time-invariant SSID methods described below to models characterized by a linear time-

varying latent dynamical process, such as the one used in our study to investigate residual 

dynamics (Equation 11, see Methods). A standard linear, time-invariant state-space model can 

be described as: 

 𝐱(t + 1) =  𝐀𝐱(t) +  𝛆(t) 

      �̃�(t)  =  𝐂𝐱(t) +  𝛈(t) 

(S11)  

where, 𝐀 and 𝐂 are the dynamics and observation matrices respectively, 𝐱(t) is a 𝑝 ×  1 latent 

state at time ‘t’, �̃�(t)is a corresponding 𝑛 ×  1 observation vector, and 𝛆(t) and 𝛈(t) are zero-

mean white gaussian noise processes. In our study, “observations” �̃�(t) correspond to aligned 

neural residuals, computed by subtracting the condition-averaged trajectory from each 

corresponding aligned single-trial trajectory (see Methods).  

A common approach for parameter estimation of models such as those described by Equation 

S11 involves probabilistic inference techniques. The expectation-maximization (EM) algorithm 

provides closed-form updates for the parameter estimates of an LTI model through the Kalman 

filtering and smoothing recursions1. However, estimating system parameters for time-varying 

dynamics, as in our model (Equation 11, see Methods), is intractable using the exact EM. Such 

models typically require approximate inference techniques2,3 (e.g. variational inference) that rely 

on gradient optimization, which are susceptible to local minima in parameter space. 

We therefore opted for an alternative approach based on subspace identification techniques4,5. 

These non-probabilistic methods rely on a series of matrix decompositions and linear regressions 

to estimate the system parameters in closed form. SSID methods are ‘non-optimal’ in a 
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probabilistic sense, in that, they do not explicitly model the uncertainty in the underlying latent 

state. However, these methods do not suffer from problems of local minima and can yield 

unbiased and consistent parameter estimates for large sample sizes. 

The key idea underlying SSID methods is to build a linear predictor of the underlying latent state 

directly from the observed time series �̃�, by matching the empirical first and second order 

moments to those predicted by the model (Equation S11). This predictor, serves as a 

“bottleneck”, summarizing all the information in the “past” of the observed time-series that is 

relevant to predicting the “future” of the time-series. For a given time t and trial k, we can define 

the finite “future” and “past” (relative to t) of the observed time series as follows: 

 �̃�𝐭
+(𝑘) = [�̃�t(𝑘)

′ �̃�t+1(𝑘)
′ … �̃�t+q−1(𝑘)

′]′

�̃�𝐭
−(𝑘) = [�̃�t−1(𝑘)

′ �̃�t−2(𝑘)
′… �̃�t−q(𝑘)

′]′
 

(S12) 

where, �̃�t(𝑘) is the observation vector of dimensionality n × 1 at time t on trial k that populates 

the observation data matrix �̃� (of dimensionality n × T × K, where T and K are the total number 

of time-bins and trials respectively). �̃�t
+ and �̃�t

− respectively are the ’future’ and ‘past’ observation 

vectors (each of dimensionality (n. q)  × 1) constructed by stacking together q ‘future’ and, q 

‘past’ lags of the observed time series relative to ‘t’. 

An ordinary least squares linear predictor of the “future” (�̃�𝐭
+) based on the past (�̃�𝐭

−) is defined 

as:  

 �̂̃�𝐭
+ = (Cov(�̃�t

+, �̃�t
−)Cov−1(�̃�t

−, �̃�t
−))�̃�t

− = 𝐇t𝐆t
−1�̃�t

− (𝑆13) 

The “future-past” covariance matrix 𝐇𝑡 specified by Cov(�̃�t
+, �̃�t

−) in Equation S13 is referred to as 

a “hankel matrix”, and is a key element of SSID methods. The hankel matrix is in fact a block 

matrix of size (n × q)  ×  (n × q), with the individual blocks representing temporally lagged 

covariance matrices computed using observation vectors �̃� at different time-lags (relative to t)  

 

𝐇t = Cov(�̃�t
+, �̃�t

−) =

[
 
 
 
 
�̃�t. �̃�t−1

′ �̃�t. �̃�t−2
′ … �̃�t. �̃�t−q

′

�̃�t+1. �̃�t−1
′ �̃�𝐭+𝟏. �̃�t−2

′ … �̃�t+1. �̃�t−q
′

⋮ ⋱ ⋮
�̃�t+q−1. �̃�t−1

′ �̃�t+q−1. �̃�t−2
′ … �̃�t+q−1. �̃�t−q

′
]
 
 
 
 

 

  

(S14) 

where, �̃�t is an individual slice of the observation data matrix �̃� indexed by time ‘t’. For LTI 

systems in steady state, stationarity implies that the “future-past” hankel covariance matrix in 
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Equation S14 is time independent, since the individual blocks of the hankel matrix are covariance 

matrices that only depend on the relative lag between temporal observations (see Equations S14 

and S15) under stationary conditions.  

The parameter ‘q’ (referred to as the order of the hankel matrix) is a critical parameter required 

for accurate model identification of an LTI model. SSID theory specifies that q has to be chosen 

to be at least as large as the dimensionality of the true underlying latent state. An alternative 

interpretation of the above statement is that a given choice of q sets the upper bound for the 

dimensionality of the latent state and dynamics that one can recover based on the hankel matrix 

constructed out of the observations. 

For an LTI system in steady-state, the time independent hankel matrix (𝐇) can be written as: 

 

𝐇 = Cov(�̃�t
+, �̃�t

−) =

[
 
 
 
𝚲1 𝚲2 … 𝚲𝑞
𝚲2 𝚲3 … 𝚲𝑞+1
⋮ ⋱ ⋮
𝚲𝑞 𝚲𝑞+1 … 𝚲2𝑞−1]

 
 
 

 

  

(S15) 

where, 𝚲𝑙 = Cov (�̃�t+𝑙 ,  �̃�t). These lagged covariance matrices can then be written as a function 

of the underlying model parameters. Specifically, 𝚲𝑙 has the following functional form: 

 𝚲𝑙 = Cov (�̃�t+𝑙 ,  �̃�t) =  𝐂𝐀
𝑙𝐏𝑡𝐂′ (S16) 

where, 𝐏𝑡 =  Cov(𝐱𝑡 , 𝐱𝑡) is the zero-lag covariance of the latent state. For an LTI system in steady 

state, 𝐏𝑡  is typically independent of ‘t’ (stationarity). Given the form of the lagged covariance 𝚲𝑙 

in Equation S16 and assuming steady-state, we can factorize 𝐇 as shown below: 

 

𝐇 =

[
 
 
 
 
𝐂
𝐂𝐀
𝐂𝐀2

⋮
𝐂𝐀𝑞−1]

 
 
 
 

⏟    
𝓞

[𝐀𝐏𝐂′ 𝐀2𝐏𝐂′ ⋯ 𝐀𝑞𝐏𝐂′]⏟                  
𝚿

 

  

(S17) 

The matrix 𝓞 in Equation S17 is referred to as the observability matrix, and is a critical concept in 

linear systems theory. When 𝓞 is full rank, latent states 𝐱𝑡 are uniquely determinable based on 

observations �̃�t alone. By construction, the column space of 𝓞 spans the same subspace as the 

column space of 𝐂, which we have referred to alternately as the dynamics subspace (see 

Methods). Therefore, estimating the column space of 𝓞 allows us to obtain an estimate of the 

dynamics subspace. Based on the relationship between 𝓞 and 𝐇 in Equation S17, if 𝓞 is full rank 
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(i.e latent states are uniquely determinable), then 𝓞 and 𝐇 span the same column space. 

Therefore, 𝓞 can be obtained empirically through a singular value decomposition of 𝐇 because 

the left singular vectors of 𝐇 specify its column space. 

 𝐇 = 𝐔. 𝐒.𝐕′ 

�̂� = 𝐔(r). 𝐒(r)
1/2

 

(S18) 

The particular definition of �̂� in Equation S18 i.e the first ‘r’ left singular vectors (𝐔(r)) weighted 

by the square root of their respective singular values (𝐒(r)) is often referred to as the “balanced 

realization”. This choice of weighting has no bearing on the directions spanned by the dynamics 

subspace (�̂�).  

Obtaining an accurate estimate of �̂� requires determining the rank of 𝐇. Typically, for 

appropriate choices of q (q ≥ p), the Cayley-Hamilton theorem requires that 𝐇 is low rank and 

that the rank of 𝐇 matches the dimensionality of the latent state (p). Therefore, the parameter r 

in Equation S18 specifies the estimated rank of 𝐇.  

Based on the definition of 𝓞 in Equation S18, the estimate of the observation matrix/dynamics 

subspace (�̂�) can then be read off as the first block-row of �̂�.  

 �̂� = �̂�(1: n, : ) (S19) 

We adapted and extended the above framework described for LTI systems to a model 

characterized with a linear time-varying (LTV) latent dynamical process, by explicitly considering 

the dependence of the hankel and observability matrices on time. Therefore, in our data analysis 

pipeline, we build time-dependent hankel matrices 𝐇t, by considering a window of observations 

(residuals) centred around time ‘t’. These time-dependent hankel matrices then specify time-

dependent observability matrices 𝓞t in a manner similar to Equation S18. However, the explicit 

dependence of observability matrices on time adds a complication in the estimation of a time-

invariant observation matrix, as in the model used to estimate residual dynamics (Equation 11, 

Methods). Therefore, we develop a set of alternate procedures, wherein, we use 𝓞t to first 

estimate a ‘momentary’ dynamics subspace using the same definitions as in Equations S17-S20 

(�̂�𝑡; Equations 18 and 19, Methods) that is time-dependent. We then use the sequence of time-

dependent momentary dynamics subspaces estimated across all time to construct a single time-

invariant dynamics subspace (Equation 20, Methods). 
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4. Supplementary Math Note B 
In this section, we derive the effect of temporally correlated latent noise (Fig 1b, complex input; 

Methods & Supplementary Methods) on estimates of residual dynamics. We assumed the linear 

time-invariant state-space model specified by Equation 43 (see Methods). We assume that we 

only have access to latent residual states 𝐱(t) through observed residuals 𝐳(t), and that the 

model operates under steady-state conditions. By defining an augmented latent state, 𝐩(t), we 

can rewrite the model (Equation 43, Methods) as follows: 

 
[
𝐱(t + 1)

𝛆(t + 1)
]

⏟      
𝐩(t+1)

= [
𝐀 𝐈
𝟎 𝛟

]
⏟    

�̃�

[
𝐱(t)

𝛆(t)
]

⏟  
𝐩(t)

+ [
𝟎
𝜻(𝑡)

]
⏟  
𝛝(t)

 

[
𝐳(𝐭)
𝟎
] =  [

𝐂 𝟎
𝟎 𝟎

] [
𝐱(𝐭)

𝛆(t)
] + [

𝛈(t)
𝟎
] 

 

 

(S20) 

where, 

 𝛝(t)~ 𝒩 ([
𝟎
𝟎
] , [
𝟎 𝟎
𝟎 𝐐

]) 
(S21) 

We define the l-lag covariance between random variables u and v as follows: 

 𝐂ss
(l)(𝐮, 𝐯) = Cov(𝐮(t + l), 𝐯(t)) (S22) 

The steady-state zero-lag covariance of the augmented latent state 𝐩(t) can be computed using 

the discrete-time lyapunov equation for a specified �̃� and 𝐐. It corresponds to a block matrix 𝐂ss
(0)

 

which can be written as follows: 

 
𝐂ss
(0)(𝐩, 𝐩) = Cov(𝐩(t), 𝐩(t)) =  [

Cov(𝐱(t), 𝐱(t)) Cov(𝐱(t), 𝛆(t))

Cov(𝛆(t), 𝐱(t)) Cov(𝛆(t), 𝛆(t))
] 

                                                       =  [
𝐂ss
(0)(𝐱, 𝐱) 𝐂ss

(0)(𝐱, 𝛆)

𝐂ss
(0)(𝛆, 𝐱) 𝐂ss

(0)(𝛆, 𝛆)
] 

 

(S23) 

The steady-state lag-l covariance of the augmented state 𝐩(t) is therefore defined as: 

 𝐂ss
(l)
(𝐩, 𝐩) = Cov(𝐩(t + l), 𝐩(t)) =  �̃�𝒍𝐂ss

(0)
(𝐩, 𝐩) (S24) 
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Now, the exponentiated dynamics matrix �̃�𝑙 in the above equation has the following general 

form: 

 
�̃�𝑙 = [

𝐀𝑙 𝐔(𝑙)

𝟎 𝛟𝑙
] 

(S25) 

where,  

 
𝐔(𝑙) = ∑𝐀𝑘𝛟 𝑙−1−𝑘

𝑙−1

𝑘=0

 
 

(S26) 

Using Equations S23, S25 and S26, Equation S24 can therefore be expanded as follows: 

 
𝐂ss
(𝑙)(𝐩, 𝐩) = �̃�𝒍𝐂ss

(0)(𝐩, 𝐩) = [
𝐀𝑙 𝐔(𝑙)

𝟎 𝛟𝑙
] [
𝐂ss
(0)(𝐱, 𝐱) 𝐂ss

(0)(𝐱, 𝛆)

𝐂ss
(0)(𝛆, 𝐱) 𝐂ss

(0)(𝛆, 𝛆)
] 

                   =  [
𝐀𝑙𝐂ss

(0)(𝐱, 𝐱) + 𝐔(𝑙)𝐂ss
(0)(𝐱, 𝛆) 𝐀𝑙𝐂ss

(0)(𝐱, 𝛆) + 𝐔(𝑙)𝐂ss
(0)(𝛆, 𝛆)

𝛟𝑙𝐂ss
(0)(𝛆, 𝐱) 𝛟𝑙𝐂ss

(0)(𝛆, 𝛆)
] 

 

(S27) 

Therefore, based on Equation S27, the lag-l steady state covariance of the model latent state 𝐱 

(Equation 43, Methods) can be read off as the upper left block of 𝐂ss
(𝑙)(𝐩, 𝐩) as below: 

 𝐂ss
(𝑙)(𝐱, 𝐱) = 𝐀𝑙𝐂ss

(0)(𝐱, 𝐱) + 𝐔(𝑙)𝐂ss
(0)(𝐱, 𝛆) (S28) 

The expression in Equation S28 can be used to build a two stage least squares (2SLS) estimator. 

As outlined in the Methods, the first stage of the 2SLS regression, involves regressing the latent 

state 𝐱(t) against its past in order to build a predictor �̂�(t). In the second stage, the predictor �̂�(t) 

is regressed against 𝐱(t+1) in order to estimate the dynamics matrix. Assuming, that we use m 

past lags for the first-stage of the 2SLS, we constructed the following three ‘stacked’ multi-lag 

covariance matrices using 𝐂ss
(l)(𝐱, 𝐱) 
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𝐏0 =  

[
 
 
 
 𝐂ss

(0)(𝐱, 𝐱) 𝐂ss
(1)(𝐱, 𝐱) … 𝐂ss

(m−1)(𝐱, 𝐱)

𝐂ss
(−1)(𝐱, 𝐱) 𝐂ss

(0)(𝐱, 𝐱) … 𝐂ss
(m−2)(𝐱, 𝐱)

⋮ ⋱ ⋮

𝐂ss
(−m−1)(𝐱, 𝐱) 𝐂ss

(−m−2)(𝐱, 𝐱) … 𝐂ss
(0)(𝐱, 𝐱) ]

 
 
 
 

 

𝐏1 = [𝐂ss
(1)(𝐱, 𝐱) 𝐂ss

(2)(𝐱, 𝐱) … 𝐂ss
(m)(𝐱, 𝐱)] 

𝐏2 = [𝐂ss
(2)(𝐱, 𝐱) 𝐂ss

(3)(𝐱, 𝐱) … 𝐂ss
(m+1)(𝐱, 𝐱)] 

 

 

 

(S29) 

where, 𝐂ss
(−k)(𝐱, 𝐱) =  𝐂ss

(k)(𝐱, 𝐱)T. The two-stage least squares estimator based on m past lags is 

then given by: 

 �̂�2sls
(m)

= (𝐏2. (𝐏0
−1)T𝐏1

T)(𝐏1. (𝐏0
−1)T𝐏1

T)
−1

 (S30) 

As in the data, we use a lag of m = 3, in order to construct the 2SLS analytical estimator of the 

residual dynamics in Extended Data Fig. 4. The pseudocode for constructing the estimator is given 

below: 

Algorithm 1: Compute analytical 2SLS estimator for linear-SSM with correlated input noise 

INPUT: 𝐀, 𝛟, 𝐐, m 

OUTPUT: �̂�2sls
(m)

 

1. Construct �̃� =  [
𝐀 𝐈
𝟎 𝛟

] and �̃� =  [
𝟎 𝟎
𝟎 𝐐

] 

2. Solve for 𝐂ss
(0)(𝐩,𝐩) : �̃� 𝐂ss

(0)�̃�𝑻 − 𝐂ss
(0) + �̃� = 𝟎 (discrete-time lyapunov 

equation) 

3. Use individual block entries of 𝐂ss
(0)(𝐩,𝐩), 𝐀 and 𝛟 to define 𝐂ss

(𝑙)(𝐱, 𝐱) for 

𝑙 = 0,1,2 … m+1 (Equation S28) 

4. Define 𝐏0, 𝐏1 and 𝐏2 using 𝐂ss
(𝑙)(𝐱,𝐱) as in Equation S29 

5. Compute and return �̂�2sls
(m)

 using output of step 4 in Equation S30 
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