One-pot microwave synthesized high-performance BiVO₄/InVO₄ heterojunction for photocatalytic reduction of Cr⁶⁺

Ling Yu^{ab#}, Hui Wang^{c#}, Qi Huang^{ab}, Hainan Liu^{ab}, Qingkong Chen^{ab}, Bojie Yuan^{ab}, Qi

Li^{ab}, Xiaofei Zhao^{ab}, Junwang Tang ^c, Deqiang Zhao^{abc}*

^aSchool of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

^bKey Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education,

and National Engineering Research Center for Inland Waterway Regulation,

Chongqing, China

^cDepartment of Chemical Engineering, University College London, Torrington Place,

London WC1E 7JE, U.K.

*Correspondence authors.

[#]These authors contributed equally to this work.

Graphical abstract

1

2 Abstract

A series of BiVO₄/InVO₄ composites were synthesized by one-pot microwave method based on 3 the ratio regulation of Bi/In. Consequently, the as-fabricated BiVO₄/InVO₄ photocatalysts 4 performed higher photocatalytic activities (100%) than pure InVO₄ and BiVO₄. The prepared 5 photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron 6 spectroscopy (XPS), transmission electron microscopy (TEM), UV-vis diffuse reflection 7 spectroscopy (UV-vis DRS) and Fourier transform infrared spectra (FTIR). The results indicate 8 the formation of BiVO₄/InVO₄ and it possesses enhanced solar light absorption. The enhanced 9 reduction rate is ascribed to the efficient separation of photogenerated charge carriers due to the 10 heterojunction formed between BiVO₄ and InVO₄. The possible photocatalytic mechanism of 11 BiVO₄/InVO₄ composite was also discussed in detail. 12

13 Keywords: BiVO₄, InVO₄, heterojunction, Cr^{6+} reduction, photocatalytic activity.

14 **1. Introduction**

15 Chromium is the seventh most abundant element on the earth and is mainly mined in the form of chromite (FeCr₂O₄) ore (Cervantes and Campos-García, 2007; Sivaranjanee and Saravanan, 16 2018). Chromium plays an important role in industrial material and is widely used in 17 electroplating, ferroalloy products, leather manufacturing, fuels and chemical products. Cr⁶⁺ has 18 19 been classified as a class A carcinogen by the U.S. Environmental Protection Agency (EPA), with high solubility and mobility in aqueous solutions, difficulty in biodegradation and 20 21 enrichment in animal and human tissues through the food chain. According to pH and concentration, Cr⁶⁺ mainly exists in the form of Cr₂O₇²⁻, HCrO⁴⁻ and CrO₄²⁻ (Miretzky and 22 Cirelli, 2010; Sultana et al., 2014). Compared with Cr^{6+} , Cr^{3+} is more stable, and Cr^{3+} is an 23 essential trace element for human body. Photocatalysis has been seen as a green route to convert 24 Cr^{6+} to Cr^{3+} in aqueous media (Mao et al., 2016; Zhang et al., 2011; Zhao et al., 2021a). However, 25 26 most photocatalysts still suffer from limited light absorption and especially the rapid recombination of photo-induced charge carriers (Cheng et al., 2021). 27

In recent years, Bi-based photocatalysts have been extensively studied (Yang et al., 2019), 28 29 especially BiVO₄ due to the characteristics of wide range of component elements, good chemical properties and thermal stability in aqueous solution (Kim and Choi, 2014; Rao et al., 30 2014; Wang et al., 2020b). Hence, it has been reported to effectively use solar energy for 31 32 pollutants removal (Wang et al., 2020a; Yang et al., 2020b). Chala (Chala et al., 2014) prepared pure BiVO₄ and $0.5 \sim 5.0$ mol% Fe loaded BiVO₄ samples by a hydrothermal method. The 33 34 results clearly showed that Fe-loaded BiVO₄ sample exhibited remarkably higher activity than pure BiVO₄. Shi (Shi et al., 2017) showed that a novel bismuth vanadate-palygorskite (BiVO₄-35 Pal) photocatalyst exhibits photocatalytic activity for tetracycline hydrochloride removal under 36 visible light. The pseudo-first-order degradation rate constant for BiVO₄-Pal composites was 37 approximately 2.1 times higher than that of pure BiVO₄, and the photodegradation rate of the 38

39 BiVO₄-Pal composite was 1.4 times greater than that of pure BiVO₄. However, low surface adsorption capacity and rapid charge recombination were the two main reasons for limiting its 40 application. In order to solve this problem, many methods such as metal ion deposition, non-41 metal doping have been adopted (Yang et al., 2020a). Noteworthy, two or more semiconductors 42 are combined to form a heterojunction, which promotes the separation of photogenic carriers 43 and provides additional active sites for photocatalytic reactions (Li et al., 2022; Sun et al., 2018; 44 Zhao et al., 2021b). Many studies have shown that InVO₄ can enhance the photocatalytic 45 degradation efficiency of organic pollutants under visible light irradiation (Lin et al., 2015). 46 Based on the narrow band gap of $InVO_4$ (Eg = 1.9 eV) and $BiVO_4$ (Eg = 2.4 eV), combining 47 BiVO₄ and InVO₄ to form a type II staggered heterojunction is an effective route (Zhang et al., 48 2019). Besides, BiVO₄/InVO₄ heterojunction allows photogenerated carriers to migrate from 49 one semiconductor to another through the interface, thereby promoting photocatalytic property 50 51 (Fang et al., 2022; Mu et al., 2022; Wang et al., 2021; Wang et al., 2022; Yang et al., 2020a).

In this work, BiVO₄/InVO₄ heterojunction was obtained by one-pot microwave strategy. The 52 suitable band structures between BiVO₄ and InVO₄ make it possible to form a heterojunction, 53 allowing it to possess enhanced light absorption and charge transport, which was beneficial to 54 the improvement of photocatalytic activity The physical and chemical properties of the 55 heterojunction were analyzed by XRD, SEM, FTIR, X- XPS and UV-vis spectroscopy. The 56 photocatalytic performance of the samples was evaluated by the reduction of Cr^{6+} under visible 57 light irradiation. This study demonstrates that combining BiVO₄ and InVO₄ to form 58 BiVO₄/InVO₄ heterojunction is a feasible scheme for exploiting photocatalytic degradation of 59 60 hexavalent chromium.

61 **2 Materials and Methods**

62 2.1 Materials and Reagents

The materials included analytical grade pure bismuth nitrate (Bi(NO₃)₃·5H₂O, Alfa Aesar),
analytical grade pure sodium hydroxide powder (NaOH, SIGMA-ALDRICH), analytical grade
pure bismuth nitrate (In(NO₃)₃·SIGMA-ALDRICH,), ammonium metavanadate (NH₄VO₃,
SIGMA-ALDRICH), nitric acid(HNO₃, SIGMA-ALDRICH), Potassium chromate (K₂CrO₄,
SIGMA-ALDRICH), Sulfuric acid(H₂SO₄, SIGMA-ALDRICH), Methyl alcohol(C₂H₆O₂,
Fisher Scientific), phosphoric acid(H₃PO₄, SIGMA-ALDRICH), citric acid(C₆H₈O₇, Fisher
Scientific), which were purchased from Aladdin.

70 2.2 Synthesis of Photocatalysts

71 One-pot microwave strategy was used to prepare BiVO₄/InVO₄, as presented in Scheme 1. In detail, 2 mmol Bi(NO₃)₃·5H₂O and In(NO₃)₃·XH₂O with various molar ratio were dissolved in 72 73 4 mL of 4 mol/L HNO₃, followed by the addition of 50 mL of deionized water to form solution A. Similarly, 2 mmol NH₄VO₃ was dissolved in 4 mL of 4 mol/L NaOH to form solution B. 74 Finally, solution B was mixed to solution A, and then transferred the mixed solution to a PTFE 75 76 standard tank for the microwave reaction at 160°C (with a ramp of 25 min) for 40 min (power 120W). The mixed solution was allowed to cool to room temperature. The obtained precipitate 77 was further rinsed until a pH of ~7, and then dried at 60°C for 24 h in vacuum. The obtained 78 samples with expected Bi(NO₃)₃·5H₂O/In(NO₃)₃·XH₂O ratio of 0.75:0.25;0.5:0.5;0.25:0.75 79 were labeled as 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄, 0.25 BiVO₄/0.75 InVO₄, BiVO₄, 80 samples. As reference, normal InVO₄ and BiVO₄ were synthesized via the same strategy but 81 82 without the introduction of NH_4VO_3 and $In(NO_3)_3 \cdot XH_2O$.

86 2.3 Characterization

The crystal structures of prepared samples were characterized using X-ray diffraction (XRD) 87 under Mo Ka radiation with a Rigaku D/Max2500pc (Tokyo, Japan) diffractometer (scanning 88 angle 20 from 0° to 40°, and scanning rate of 4°/min). A high-voltage (10 kV) Tescan FEG-SEM 89 microscope (TESCAN, MARI3, Brno, Czech Republic) was used to acquire scanning electron 90 91 microscopy (SEM) images of the prepared samples. Transmission electron microscopic (TEM) images of the prepared samples were obtained by the JEM-2100F equipment (operating at 92 200kV). The chemical characteristics of sample surfaces were investigated using X-ray 93 photoelectron spectra (XPS) acquired with a PHI5000 (ULVAC-PHI, INC, Kanagawa 94 Prefecture, Japan) versa probe system under monochromatic Al K X-rays. The visible light 95 96 source was a 300 W Xe lamp (with a <420 nm UV cutoff filter), and all experiments were carried 97 out at room temperature. UV-vis absorbance spectra of the as-prepared samples were recorded with Solid Spec-3700/3700 DUV (Tokyo, Japan) in the range of 200-800 nm. Fourier transform 98 99 infrared spectra (FTIR) of the samples were collected from IRAffinity-1S FTIR spectrometer in the range of $600-4000 \text{ cm}^{-1}$. 100

101 2.4 Evaluation of Photocatalytic Activity Based on Cr^{6+} Reduction

The photocatalytic reduction of Cr⁶⁺ was conducted as follows. 0.01g catalyst was added to 102 25ml of 10mg/L Cr^{6+} solution (prepared with K₂CrO₄), the pH value of which was adjusted to 103 4.2 using the H₂SO₄ solution followed by introducing methanol as a hole scavenger. The 104 mixed solution was stirred for 1h under dark to achieve adsorption equilibrium, which was 105 106 seen as the initial concentration (C_0). A 300W Xe lamp with a <420nm cut-off filter 107 was used for photocatalytic reduction, and the solution was measured at defined time 108 intervals. In detail, 1mL of the reaction solution was diluted to 50 mL. Then 1:1 phosphoric acid and sulfuric acid solution were added to diphenyl carbazide (diphenyl 109 carbazide, DPC), and then the final colored solution was measured at 540 nm by 110 spectrophotometer (UV 3000).

111 3 Results and discussion

112 *3.1 Morphological studies*

113 Fig.1a and b show SEM images of BiVO₄ sample, which presents a cluster structure consisted 114 of several long rice grain particles accumulations with rough surface and an average diameter 115 about 2 µm. The morphology of pure InVO₄ (Fig.1c and d) demonstrates the bulb-like particles with an average diameter of 1 µm. Interestingly, the morphology and size of the BiVO₄/InVO₄ 116 117 are totally different to the pristine, demonstrating a leaf-like nanostructure (Fig.1e and f). This shows the formation of the hybrid BiVO₄/InVO₄. To further confirm the heterojunction structure 118 119 between BiVO₄ and InVO₄, 0.75 BiVO₄/0.25 InVO₄ sample was studied by a high resolution transmission electron microscopy (HRTEM), as shown in Fig.2. Fig.2a clearly shows leaf-like 120 121 nanostructure of BiVO₄/InVO₄. From the Fig.2.b, the resolved interplanar distances of BiVO₄ 122 and InVO₄ are about 0.23 and 0.258 nm, corresponding to the (121) plane of BiVO₄ and the (022) plane of InVO₄, respectively. The observed interconnection demonstrates the formation 123 124 of BiVO₄/InVO₄ heterojunction, which was further confirmed by the elemental mapping (Fig.2e-i), where In, V, Bi, and O elements are uniformly dispersed in the obtained leaf-like 125 126 nanostructure.

Fig.1. SEM images of the as-synthesized samples: (a) and (b) BiVO₄, (c) and (d) InVO₄, (e) and (f) 0.75 BiVO₄/0.25 InVO₄

134 *3.2 Structural analysis*

135 The purity and crystallinity of the samples was analyzed by the X-ray diffraction (XRD). Fig.3 shows the XRD patterns of InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄, 0.25 136 137 BiVO₄/0.75 InVO₄, BiVO₄ samples. BiVO₄ exhibits peaks at 20 angles of 8.6°, 13°, 16°, 21.5°, 27°, which are consistent with the XRD standard card of the monoclinic system BiVO₄ 138 139 (PDF#78-1534). InVO₄ presents the characteristic peaks at 8.5°, 15°, 15.9°, 21°, 27.2°, 140 matching well with the XRD standard card of orthorhombic InVO₄ (PDF#71-1689). When introducing 0.25 BiVO₄ in InVO₄, the peaks of InVO₄ remain but exhibit slight shifts. Such the 141 change of signals may be attributed to that InVO₄ may not crystallize well due to the adding of 142 143 BiVO₄. With the increasing content of BiVO₄, the XRD pattern of BiVO₄/InVO₄ tends to be similar to the pristine BiVO₄ and InVO₄. XRD and morphology results indicate the formation 144 145 of BiVO₄/InVO₄ heterojunction. The XRD patterns were analyzed by Rietveld refinement using the Maud 2.80 software. We can see from Fig.4 that the final calculation result of the mass 146 percentage of BiVO₄ is 78.19% and InVO₄ is 21.81% (Cao et al., 2020; Lutterotti, 2010). 147

148

Fig.3. XRD diffraction patterns of InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄, 0.25
 BiVO₄/0.75 InVO₄, BiVO₄ samples.

152

Fig.4 Rietveld refinement of 0.75BiVO₄/0.25InVO₄.

The FT-IR spectra of the obtained samples are shown in Fig.5, and the signals of pure BiVO₄ and InVO₄ match well with the earlier reports (Liu et al., 2016; Regmi et al., 2018; Shi et al., 2014). For BiVO₄, the peaks at 710 cm⁻¹ and 810 cm⁻¹ may be due to V-O symmetric and asymmetric stretching vibrations. The characteristic peak at 617 cm⁻¹ is ascribed to Bi-O vibration. For InVO₄, the characteristic peak at 956 cm⁻¹ may be due to V-O symmetric and asymmetric stretching vibrations. The peaks at 903 and 756 cm⁻¹ belong to the vibration modes of V–O–In. The characteristic peak at 717 cm⁻¹ could be ascribed to VO_4^{3-} (Faisal et al., 2021). For the 0.75 BiVO₄/0.25 InVO₄ composites, the characteristic peaks at various positions are detected, where 898 cm⁻¹ could be attributed to In-O vibration and 679 cm⁻¹ may be ascribed to the vibration of V-O, suggesting that the formation of the hybrid BiVO₄/InVO₄.

166 The XPS was performed to study the surface elemental composition and electronic structure of 167 the prepared samples. Fig.6a exhibits the XPS spectra of InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄, 0.25 BiVO₄/0.75 InVO₄, BiVO₄, which manifests the existence of In, Bi, V 168 169 and O elements of the hybrid samples. Given the carbon element in the air, C 1s characteristic 170 peaks are observed (Lin et al., 2013). As presented in Fig.6b, In 3d is composed of two peaks situated at 445.2 eV and 452.6 eV in InVO₄, 445.2 eV and 452.5 eV in 0.25 BiVO₄/0.75 InVO₄, 171 172 445.2 eV and 452.5 eV in 0.5 BiVO₄/0.5 InVO₄ and 445 eV and 452 eV in 0.75 BiVO₄/0.25 InVO₄, which are due to In³⁺(Min et al., 2012), in addition, Bi 4d peak located at 442.2 eV in 173 174 0.75 BiVO₄/0.25 InVO₄, 442.6 eV in 0.5 BiVO₄/0.5 InVO₄ and 442.5 eV in 0.25 BiVO₄/0.75 InVO₄ appears (Lakhera et al., 2019) It can be seen that the characteristic peaks of Bi 4f located 175 at 158.7 eV and 164.5 eV in BiVO₄, 159 eV and 164.7 eV in 0.25 BiVO₄/0.75 InVO₄, 159.2 eV 176 177 and 164.6 eV 0.5 BiVO₄/0.5 InVO₄ and 158.7 eV and 164.5 eV in 0.75 BiVO₄/0.25 InVO₄, are attributed to Bi³⁺(Wu et al., 2013), from Fig.6c. Fig. 6d shows the XPS spectra of V 2p and O 178

179 1s orbital in InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄, 0.25 BiVO₄/0.75 InVO₄, 180 BiVO₄. The V 2p peaks are located at 517 eV and 524.9 eV in BiVO₄, 517.8 eV 525.2 eV in InVO₄, 517.4 eV and 524.9 eV in 0.25 BiVO₄/0.75 InVO₄, 517.4 eV and 524.9 eV 0.5 181 BiVO₄/0.5 InVO₄ and 517 eV and 524.9 eV in 0.75 BiVO₄/0.25 InVO₄, which could be due to 182 the surface V^{5+} of BiVO₄ and InVO₄(Min et al., 2012). The O 1s peaks are situated at 183 approximately 530 eV,530 eV and 532 eV in BiVO₄, InVO₄, 0.25 BiVO₄/0.75 InVO₄, 0.5 184 BiVO₄/0.5 InVO₄ 0.75 BiVO₄/0.25 InVO₄, ascribable to the chemisorbed water, oxygen in 185 metal oxide lattice and hydroxyl groups (Li et al., 2015; Li et al., 2008). Obviously, the XPS 186 spectra of 0.5 BiVO₄/0.5 InVO₄ and 0.75 BiVO₄/0.25 InVO₄ composite film shifts to higher 187 wavelength, indicating the combination of BiVO₄ and InVO₄ heterojunction was very 188 successful. 189

190

Fig.6. XPS spectra survey, (a), (b) and (c) of InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄,
 0.25 BiVO₄/0.75 InVO₄, BiVO₄, samples.

191

194 UV-vis spectroscopy was performed to study the electronic structure of semiconductors. The UV-vis diffuse reflectance spectra of the samples, displayed in Fig.7a. The absorption edges of 195 196 pure InVO₄ and BiVO₄ are at approximately 490 and 530 nm, respectively, in agreement with the published (Cheng et al., 2017; Meng et al., 2017). Comparatively, the adsorption edge of 197 198 BiVO₄/InVO₄ heterojunction shows a significant red shift and enhanced the response of visible 199 light. Particularly, 0.75 BiVO₄/0.25 InVO₄ shows the strongest absorbance in the visible light 200 region, which might be helpful for the photocatalytic reaction. Further, the band gap energies of as-prepared samples were determined by Mott-Schottky plot. The absorption coefficient α and 201 202 direct band gap Eg of InVO₄ and BiVO₄ are related to the following equation: $\alpha hv =$ $A_0(h\nu - E_a)^{n/2}$ (Hu et al., 2015), where α , A₀, Eg and hv demonstrate the absorption 203 coefficient, the constant, the direct band gap energy and incident photon energy, respectively. 204 205 Among these parameters, n is determined by the type of optical transition of a semiconductor (n=1 for a direct transition and n=4 for an indirect transition). For InVO₄ and BiVO₄, the value 206 of n is 1 for the direct transition. The band gap energy of pure BiVO₄ and InVO₄ nanocomposite 207 were depicted in Fig.7b. According to the equation, the band gap energy of BiVO₄ 208 nanocomposites is 2.20 eV, which is smaller than that of the pure InVO₄ particles (2.32 eV). 209

Wavelength(nm)
 Fig.7. (a) UV-Vis diffuse reflectance spectra of InVO₄, 0.75 BiVO₄/0.25 InVO₄, 0.5 BiVO₄/0.5 InVO₄,
 0.25 BiVO₄/0.75 InVO₄, BiVO₄, samples. (b) plots of (ahv)² vs. photon energy (hv)for the band gap
 energies of InVO₄ and BiVO₄.

215 *3.3 Photocatalytic activity*

As shown in the Fig.8a, the photocatalytic performance of the samples were tested by reduction 216 of Cr⁶⁺ within 60 min of dark adsorption and 40 min under visible light irradiation. The control 217 218 experiment without adding any catalyst was carried out, and only the ignorable fluctuation of Cr^{6+} concentration is observed. The dark adsorption efficiency of all samples is less than 10%. 219 Under visible light irradiation, the Cr^{6+} reduction efficiency of pure BiVO₄ and InVO₄ are 220 improved to be 41% and 56.39% respectively within 40 min. The 0.75 BiVO₄/0.25 InVO₄ 221 catalyst exhibits the highest photocatalytic activity, and the Cr^{6+} reduced to Cr^{3+} completely 222 223 within 40 min. The efficiency of 0.5 BiVO₄/0.5 InVO₄ and 0.25 BiVO₄/0.75 InVO₄ are 71.6% and 46.81%, respectively after 40 min. From Fig.8c, the absorption peak intensity of Cr⁶⁺ were 224 drastically decreased and finally disappear, suggesting complete reduction of toxic Cr⁶⁺ to Cr³⁺ 225 226 within 40 min. In addition, as exhibited in the Fig.8d, the color of the reaction solution becomes 227 lighter with irradiation time increasing. The solution was completely transparent liquid after 60 min. The photocatalytic reduction kinetics could be depicted by pseudo-first-order kinetics 228 229 equation (Xing et al., 2017): $-\ln(C/C_0) = kt$, where k is the apparent rate constant, C and C₀ are concentrations of Cr^{6+} , corresponding to time t and t₀ respectively. As presented in Fig.8b, it can 230 be confirmed that the apparent rate constants of pure InVO₄ and BiVO₄ were 0.033 min⁻¹ and 231 232 0.011 min⁻¹, respectively. Nevertheless, the apparent rate constants of 0.75 BiVO₄/0.25 InVO₄,

236Wavelength(nm)237Fig.8. (a) Photocatalytic reduction of Cr^{6+} with InVO4, 0.75 BiVO4/0.25 InVO4, 0.5 BiVO4/0.5 InVO4,2380.25 BiVO4/0.75 InVO4, BiVO4, samples. (b) Kinetics plots for photocatalytic reduction of Cr^{6+} with239InVO4, 0.75 BiVO4/0.25 InVO4, 0.5 BiVO4/0.5 InVO4, 0.25 BiVO4/0.75 InVO4, BiVO4, 0.5 BiVO4/0.5 InVO4, 0.25 BiVO4/0.75 InVO4, samples.240Photocatalytic reduction of Cr^{6+} to Cr^{3+} in the presence of 0.75 BiVO4/0.25 InVO4 samples. (c).241Photocatalytic reduction of Cr^{6+} to Cr^{3+} in the presence of 0.75 BiVO4/0.25 InVO4 samples. (d). The242color rendering of 0.75BiVO4/0.25InVO4, after reduction of Cr^{6+} .

243 3.4 Proposed photocatalytic mechanism

To explore the mechanism of photocatalytic Cr^{6+} reduction via BiVO₄/InVO₄, the relative band positions of BiVO₄ and InVO₄ were studied. According to the equation(Ge et al., 2006; Jiang et al., 2009): $E_{VB} = X + 0.5E_g - E_0$, where the E_{CB} is the potential of conduction band edge, *X* is the electronegativity of the semiconductor, E_0 is the scale factor that correlates the redox level of the reference electrode with the absolute vacuum (for normal hydrogen electrode (NHE), $E_0 = 4.5 \text{ eV}$), and E_g is the band gap energy of the semiconductor. Combined with the following equation: $E_{VB} = E_g + E_{CB}$, the potential of conduction band edge (CB) and valence 251 band edge (VB) of BiVO₄ were calculated to be 0.4 eV and 2.8 eV, respectively, as well as the 252 CB and VB of InVO₄ were calculated to be -0.19 eV and 1.71 eV respectively. The electron transfer mechanism is proposed in Fig.9. The CB of InVO₄ is more negative than that of the 253 BiVO₄, demonstrating that photoinduced electrons could shift from the CB of InVO₄ to the CB 254 of BiVO₄, which is beneficial to charge separation. According to the chromium concentration 255 and pH value, its primary existence form is $HCrO^{4-}$ ($CrO^{4-}+7H^++3e^- \rightleftharpoons Cr^{3+}+4H_2O$). The 256 theoretical potential of Cr^{6+}/Cr^{3+} is 1.35eV, which is more positive than the CB of BiVO₄, 257 allowing the accelerated electrons in BiVO₄ thermodynamically reduce Cr⁶⁺ to Cr³⁺. Similarly, 258 given that the VB of InVO₄ is positive than that of BiVO₄, holes are transferred from the VB of 259 260 BiVO₄ to that of InVO₄, followed by the elimination of methanol.

Based on the above analysis, the possible photocatalytic mechanism of $BiVO_4/InVO_4$ heterojunction catalyst was proposed. First, $BiVO_4$ and $InVO_4$ semiconductors are excited under visible light to produce photogenerated electron-hole pairs. The h⁺ of $BiVO_4$ is migrated to $InVO_4$, while the e⁻ of $InVO_4$ is migrated to $BiVO_4$. Importantly, the addition of methanol eliminated the holes and inhibited the recombination of electron hole pairs. Finally, e⁻ participate in the reduction-oxidation reaction. The detailed reaction process is as follows:

$$267 \quad BiVO_4 + hv \rightarrow e^- + h^+ \tag{1}$$

$$268 InVO_4 + hv \rightarrow e^- + h^+$$
 (2)

$$269 \quad Cr^{6+} + e^{-} \rightarrow Cr^{3+} \tag{3}$$

The main reasons of the excellent performance of BiVO₄/InVO₄ heterojunction are following. Firstly, the enhanced light absorption of the hybrid is observed compared with two semiconductors, which helps to capture more photons for the photocatalytic reaction. What's more, the formed heterojunction facilitates the charge separation and transport, allowing the photo-generated electrons to be accelerated for Cr^{6+} reduction.

Fig.9. Schematic illustration for the possible photocatalytic mechanism of the 0.75 BiVO₄/0.25 InVO₄
 composite for Cr⁶⁺ reduction under visible light irradiation.

278 *3.5 Stability and recyclability properties*

To investigated the stability and recyclability of 0.75 BiVO₄/0.25 InVO₄, we have conducted 279 Cr^{6+} reduction efficiency recycling test by 5 times. Figure 10 shows the before and after 280 recycling XRD diffraction patterns of 0.75 BiVO₄/0.25 InVO₄. The results show that the 281 reduction efficiency of Cr^{6+} tends to be nearly constant over five cycles. In the repeated tests, 282 283 the reduction efficiency after each cycle is maintained at 100%. In addition, the phase structures of the sample remain unchanged, which verifies that the components of the 0.75 BiVO₄/0.25 284 285 InVO₄. are difficult to be photo-decomposed and its structure is stable during the photocatalytic process. This feature is very important for its practical application and modification. 286

287

Fig.10 Before and after recycling XRD diffraction patterns of 0.75 BiVO₄/0.25 InVO₄ and Cr⁶⁺ reduction efficiency as inset

291 4 Conclusions

In summary, a green conversion from Cr^{6+} to Cr^{3+} has been presented using BiVO₄/InVO₄ heterojunction that was obtained using a one-pot microwave strategy. The optimized sample exhibited the degradation rate of almost 100% in 40min, which was 2 times higher than that of BiVO₄ and InVO₄. The high photocatalytic performance could be ascribed to the thin leaf-like structure of BiVO₄/InVO₄ heterojunction, strong visible light absorption and more importantly hinders the recombination of photo-generated charge carries.

298 Acknowledgements

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202100739), Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0912), the Foundation for High-level Talents of Chongqing Jiaotong University (19JDKJC-C023, 20JDKIC-A042) and China Schoolar Council (CSC).

304 Author contributions

305 Deqiang Zhao (Corresponding Author): Conceptualization, Methodology, Software,

306 Investigation, Formal Analysis;

- 307 Ling Yu (First Author): Data Curation, Writing Original Draft;
- Hui Wang: Conceptualization, Funding Acquisition, Resources, Supervision, Writing Review
 & Editing;
- 310 **Qi Huang:** Visualization, Investigation;
- 311 Hainan Liu: Data Curation, Investigation;
- 312 **Qingkong Chen:** Software, Validation;
- **Bojie Yuan:** Visualization, Writing Review & Editing;
- 314 Qi Li: Resources, Supervision;

315 Xiaofei Zhao: Conceptualization, Resources;

Junwang Tang: Supervision, Writing - Review & Editing.

317 **References**

- 318 Cao, Y., Xia, X., Liu, Y., Wang, N., Zhang, J., Zhao, D., Xia, Y., 2020. Scalable synthesizing nanospherical
- Na4Fe₃(PO4)₂(P₂O₇) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. Journal
 of Power Sources 461, 228130.
- 321 Cervantes, C., Campos-García, J., 2007. Reduction and efflux of chromate by bacteria, Molecular microbiology of 322 heavy metals. Springer, pp. 407-419.
- Chala, S., Wetchakun, K., Phanichphant, S., Inceesungvorn, B., Wetchakun, N., 2014. Enhanced visible-light response photocatalytic degradation of methylene blue on Fe-loaded BiVO₄ photocatalyst. Journal of Alloys and
 Compounds 597, 129-135.
- Cheng, C., Fang, Q., Fernandez-Alberti, S., Long, R., 2021. Controlling Charge Carrier Trapping and
 Recombination in BiVO₄ with the Oxygen Vacancy Oxidation State. The Journal of Physical Chemistry Letters 12,
 3514-3521.
- Cheng, J., Yan, X., Mo, Q., Liu, B., Wang, J., Yang, X., Li, L., 2017. Facile synthesis of g-C₃N₄/BiVO₄
 heterojunctions with enhanced visible light photocatalytic performance. Ceramics International 43, 301-307.
- 331 Faisal, M., Iqbal, A., Adam, F., Jothiramalingam, R., 2021. Effect of Cu doping on the photocatalytic activity of
- InVO₄ for hazardous dye photodegradation under LED light irradiation and its mechanism. Water Science and
 Technology.
- Fang, B., Xing, Z., Kong, W., Li, Z., Zhou, W., 2022. Electron spin polarization-mediated charge separation in
 Pd/CoP@ CoNiP superstructures toward optimized photocatalytic performance. Nano Energy 101, 107616.
- Ge, L., Xu, M., Fang, H., 2006. Preparation and characterization of silver and indium vanadate co-doped TiO₂ thin
 films as visible-light-activated photocatalyst. Journal of sol-gel science and technology 40, 65-73.
- Hu, L., Dong, S., Li, Q., Li, Y., Pi, Y., Liu, M., Han, X., Sun, J., 2015. Effects of sodium dodecyl benzene sulfonate
 on the crystal structures and photocatalytic performance of ZnO powders prepared by hydrothermal method.
 Journal of Alloys and Compounds 649, 400-408.
- Jiang, H.-q., Endo, H., Natori, H., Nagai, M., Kobayashi, K., 2009. Fabrication and efficient photocatalytic
- Kim, T.W., Choi, K.-S., 2014. Nanoporous BiVO₄ photoanodes with dual-layer oxygen evolution catalysts for solar
 water splitting. Science 343, 990-994.
- Lakhera, S.K., Hafeez, H.Y., Venkataramana, R., Veluswamy, P., Choi, H., Neppolian, B., 2019. Design of a highly
 efficient ternary AgI/rGO/BiVO₄ nanocomposite and its direct solar light induced photocatalytic activity. Applied
 Surface Science 487, 1289-1300.
- Li, J., Zhao, W., Guo, Y., Wei, Z., Han, M., He, H., Yang, S., Sun, C., 2015. Facile synthesis and high activity of
 novel BiVO₄/FeVO₄ heterojunction photocatalyst for degradation of metronidazole. Applied Surface Science 351,
 270-279.
- Li, Y., Zhang, H., Guo, Z., Han, J., Zhao, X., Zhao, Q., Kim, S.-J., 2008. Highly efficient visible-light-induced
 photocatalytic activity of nanostructured AgI/TiO₂ photocatalyst. Langmuir 24, 8351-8357.
- Li, Z., Li, H., Wang, S., Yang, F., Zhou, W., 2022. Mesoporous black TiO₂/MoS₂/Cu₂S hierarchical tandem
 heterojunctions toward optimized photothermal-photocatalytic fuel production. Chemical Engineering Journal 427,
 131830.
- Lin, H., Ye, H., Xu, B., Cao, J., Chen, S., 2013. Ag₃PO₄ quantum dot sensitized BiPO₄: A novel p–n junction Ag₃PO₄/BiPO₄ with enhanced visible-light photocatalytic activity. Catalysis Communications 37, 55-59.
- Lin, X., Guo, X., Shi, W., Zhao, L., Yan, Y., Wang, Q., 2015. Ternary heterostructured Ag–BiVO₄/InVO₄
 composites: Synthesis and enhanced visible-light-driven photocatalytic activity. Journal of Alloys and Compounds
- **361** 635, 256-264.
 - Liu, Z., Lu, Q., Guo, E., Liu, S., 2016. Electrospinning synthesis of InVO₄/BiVO₄ heterostructured nanobelts and
 their enhanced photocatalytic performance. Journal of Nanoparticle Research 18, 1-11.
 - Lutterotti, L., 2010. Total pattern fitting for the combined size-strain-stress-texture determination in thin film
 diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials
 and Atoms 268, 334-340.
 - Mao, M., Chen, F., Zheng, C., Ning, J., Zhong, Y., Hu, Y., 2016. Facile synthesis of porous Bi₂O₃-BiVO₄ pn
 heterojunction composite microrods with highly efficient photocatalytic degradation of phenol. Journal of Alloys
 and Compounds 688, 1080-1087.
 - Meng, Y., Hong, Y., Huang, C., Shi, W., 2017. Fabrication of novel Z-scheme InVO₄/CdS heterojunctions with
 efficiently enhanced visible light photocatalytic activity. CrystEngComm 19, 982-993.
 - Min, Y., Zhang, K., Chen, Y., Zhang, Y., 2012. Sonodegradation and photodegradation of methyl orange by InVO₄/TiO₂ nanojunction composites under ultrasonic and visible light irradiation. Ultrasonics sonochemistry 19, 883-889.
 - 375 Miretzky, P., Cirelli, A.F., 2010. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified

- 376 lignocellulosic materials: a review. Journal of hazardous materials 180, 1-19.
- 377 Mu, F., Miao, X., Cao, J., Zhao, W., Yang, G., Zeng, H., Li, S., Sun, C., 2022. Integration of plasmonic effect and 378 S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. Journal of 379 Cleaner Production 360, 131948.
- 380 Rao, P.M., Cai, L., Liu, C., Cho, I.S., Lee, C.H., Weisse, J.M., Yang, P., Zheng, X., 2014. Simultaneously efficient 381 light absorption and charge separation in WO₃/BiVO₄ core/shell nanowire photoanode for photoelectrochemical 382 water oxidation. Nano letters 14, 1099-1105.
- 383 Regmi, C., Dhakal, D., Lee, S.W., 2018. Visible-light-induced Ag/BiVO₄ semiconductor with enhanced 384 photocatalytic and antibacterial performance. Nanotechnology 29, 064001.
- 385 Shi, W., Guo, F., Chen, J., Che, G., Lin, X., 2014. Hydrothermal synthesis of InVO4/Graphitic carbon nitride
- 386 heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. Journal of Alloys

387 and Compounds 612, 143-148.

- 388 Shi, Y., Hu, Y., Zhang, L., Yang, Z., Zhang, Q., Cui, H., Zhu, X., Wang, J., Chen, J., Wang, K., 2017. Palygorskite 389 supported BiVO₄ photocatalyst for tetracycline hydrochloride removal. Applied Clay Science 137, 249-258.
- 390 Sivaranjanee, R., Saravanan, A., 2018. Carbon sphere: Synthesis, characterization and elimination of toxic Cr (VI) 391 ions from aquatic system. Journal of Industrial and Engineering Chemistry 60, 307-320.
- 392 Sultana, M.-Y., Akratos, C.S., Pavlou, S., Vayenas, D.V., 2014. Chromium removal in constructed wetlands: a 393 review. International Biodeterioration & Biodegradation 96, 181-190.
- 394 Sun, B., Zhou, W., Li, H., Ren, L., Qiao, P., Li, W., Fu, H., 2018. Synthesis of particulate hierarchical tandem 395 heterojunctions toward optimized photocatalytic hydrogen production. Advanced materials 30, 1804282.
- 396 Wang, W., Yang, R., Li, T., Komarneni, S., Liu, B., 2021. Advances in recyclable and superior photocatalytic fibers: 397 Material, construction, application and future perspective. Composites Part B: Engineering 205, 108512.
- 398 Wang, Y., Ding, K., Xu, R., Yu, D., Wang, W., Gao, P., Liu, B., 2020a. Fabrication of BiVO₄/BiPO₄/GO composite 399 photocatalytic material for the visible light-driven degradation. Journal of Cleaner Production 247, 119108.
- 400 Wang, Y., Liu, M., Wu, C., Gao, J., Li, M., Xing, Z., Li, Z., Zhou, W., 2022. Hollow Nanoboxes Cu₂- xS@ ZnIn₂S₄ 401 Core- Shell S- Scheme Heterojunction with Broad- Spectrum Response and Enhanced Photothermal-402 Photocatalytic Performance. Small 18, 2202544.
- 403 Wang, Y., Yu, D., Wang, W., Gao, P., Zhong, S., Zhang, L., Zhao, Q., Liu, B., 2020b. Synthesizing Co₃O₄-BiVO₄/g-
- 404 C_3N_4 heterojunction composites for superior photocatalytic redox activity. Separation and Purification Technology 405 239, 116562.
- 406 Wu, S., Zheng, H., Lian, Y., Wu, Y., 2013. Preparation, characterization and enhanced visible-light photocatalytic 407 activities of BiPO₄/BiVO₄ composites. Materials Research Bulletin 48, 2901-2907.
- 408 Xing, M., Qiu, B., Du, M., Zhu, Q., Wang, L., Zhang, J., 2017. Spatially separated CdS shells exposed with
- 409 reduction surfaces for enhancing photocatalytic hydrogen evolution. Advanced Functional Materials 27, 1702624. 410 Yang, R., Dong, F., You, X., Liu, M., Zhong, S., Zhang, L., Liu, B., 2019. Facile synthesis and characterization of
- interface charge transfer heterojunction of Bi₂MoO₆ modified by Ag/AgCl photosensitive material with enhanced 411 412
- photocatalytic activity. Materials Letters 252, 272-276.
- 413 Yang, R., Zhong, S., Zhang, L., Liu, B., 2020a. PW₁₂/CN@ Bi₂WO₆ composite photocatalyst prepared based on 414 organic-inorganic hybrid system for removing pollutants in water. Separation and Purification Technology 235, 415 116270.
- 416 Yang, R., Zhu, Z., Hu, C., Zhong, S., Zhang, L., Liu, B., Wang, W., 2020b. One-step preparation (3D/2D/2D)
- 417 BiVO₄/FeVO₄@ rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent 418 chromium ions in water. Chemical Engineering Journal 390, 124522.
- 419 Zhang, H., Yu, D., Wang, W., Gao, P., Zhang, L., Zhong, S., Liu, B., 2019. Construction of a novel BON-Br-AgBr
- 420 heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity. Applied 421 Surface Science 497, 143820.
- 422 Zhang, L., Wang, H., Chen, Z., Wong, P.K., Liu, J., 2011. Bi₂WO₆ micro/nano-structures: synthesis, modifications 423 and visible-light-driven photocatalytic applications. Applied Catalysis B: Environmental 106, 1-13.
- 424
- Zhao, W., Dong, Q., Sun, C., Xia, D., Huang, H., Yang, G., Wang, G., Leung, D.Y., 2021a. A novel Au/g-C₃N₄ 425 nanosheets/CeO₂ hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of
- 426 hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chemical Engineering Journal 409, 128185.
- 427 Zhao, W., Ma, S., Yang, G., Wang, G., Zhang, L., Xia, D., Huang, H., Cheng, Z., Xu, J., Sun, C., 2021b. Z-scheme
- 428 Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of
- 429 hexavalent chromium and oxidation of Bisphenol A. Journal of hazardous materials 410, 124539.