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A B S T R A C T 

Producing thousands of simulations of the dark matter distribution in the Universe with increasing precision is a challenging 

but critical task to facilitate the exploitation of current and forthcoming cosmological surveys. Many inexpensive substitutes to 

full N -body simulations have been proposed, even though they often fail to reproduce the statistics of the smaller non-linear 
scales. Among these alternatives, a common approximation is represented by the lognormal distribution, which comes with its 
own limitations as well, while being extremely fast to compute even for high-resolution density fields. In this work, we train a 
generative deep learning model, mainly made of convolutional layers, to transform projected lognormal dark matter density fields 
to more realistic dark matter maps, as obtained from full N -body simulations. We detail the procedure that we follow to generate 
highly correlated pairs of lognormal and simulated maps, which we use as our training data, exploiting the information of the 
Fourier phases. We demonstrate the performance of our model comparing various statistical tests with different field resolutions, 
redshifts, and cosmological parameters, proving its robustness and explaining its current limitations. When e v aluated on 100 

test maps, the augmented lognormal random fields reproduce the power spectrum up to wavenumbers of 1 h Mpc −1 , and the 
bispectrum within 10 per cent, and al w ays within the error bars, of the fiducial target simulations. Finally, we describe how we 
plan to integrate our proposed model with existing tools to yield more accurate spherical random fields for weak lensing analysis. 

Key words: methods: statistical – software: simulations – large-scale structure of Universe – dark matter. 
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 I N T RO D U C T I O N  

he best current model to describe our Universe is the � CDM
odel, which prescribes the existence of a cosmological constant �

ssociated with dark energy, together with cold dark matter (CDM)
nd ordinary matter (baryons; see e.g. Dodelson 2003 ). In particular,
he � CDM model predicts that dark matter is about five times

ore abundant than ordinary matter, with galaxies forming along
he cosmic web structure wo v en by dark matter, made of filaments
onnecting different clusters, all surrounded by voids. While its
ravitational effects are observed by many probes, dark matter
emains a mystery, with multiple experiments still ongoing to shed
ight on its nature (see e.g. Trimble 1987 ; Bertone, Hooper & Silk
005 ; Buchmueller, Doglioni & Wang 2017 ; de Swart, Bertone &
an Dongen 2017 , and references therein). 

The most common tool to analyse and track the origin and evolu-
ion of dark matter structures are cosmological N -body simulations
Holmberg 1941 ; Navarro, Frenk & White 1996 ; Tormen 1997 ;
enkins et al. 1998 ; Springel 2005 ; Springel et al. 2005 ; Boylan-
olchin et al. 2009 ; Angulo et al. 2012 ; Villaescusa-Navarro et al.
021 , 2020 ; Chac ́on, V ́azquez & Gabbasov 2020 , and references
 E-mail: dr.davide.piras@gmail.com 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
herein). In its basic formulation, an N -body simulation is run by
utting a certain number of massive particles in a cubic box, imposing
eriodic boundary conditions and letting gravity be the only force
cting on the particles through its gravitational potential, go v erned
y the Poisson equation (Springel 2005 ). The initial conditions of the
niverse are usually approximated with a Gaussian density field, 1 

hich can be entirely summarized by a gi ven po wer spectrum, i.e. by
he Fourier counterpart of the correlation function between different
articles in the simulation. Starting from high redshift, the position
nd velocity of the particles are updated iteratively until today ( z =
), while various snapshots are taken at different redshifts. 
Several methods to run an N -body simulation are available, with

if ferent le v els of comple xity, approximation, and speed (Hockne y &
astwood 1988 ; Chac ́on et al. 2020 ). These include the direct resolu-

ion of the equation of motion for each particle (Mikkola & Aarseth
993 ), approximated methods like the tree code method (Barnes &
ut 1986 ; Callahan & Kosaraju 1992 ), or mean-field approaches

ike standard (Klypin & Holtzman 1997 ) or adaptive (O’Shea et al.
004 ) particle mesh. In general, though, N -body simulations are
omputationally e xpensiv e to run, and usually require access to
 Hereafter, ‘initial conditions’ will only refer to the initial conditions of N - 
ody simulations. 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-9836-2661
mailto:dr.davide.piras@gmail.com
https://creativecommons.org/licenses/by/4.0/


Mac hine-learning-augmented r andom fields 669 

Figure 1. Left-hand panel : histograms of the matter o v erdensity δ, defined in equation ( 1 ), for a lognormal random field (red) and an N -body simulation dark 
matter density field (grey). Middle and right-hand panels : square maps of a lognormal (middle) and N -body (right) density fields, with a side of 512 pixels, 
corresponding to a comoving length of 1 h −1 Gpc . The depth of these fields is � 1.9 h −1 Mpc. In these maps, we clipped the maximum and minimum values 
before applying a logarithm to reduce their dynamic range; the symbol ‘ ln ’ indicates the natural logarithm throughout this paper. The right-hand-side plot is a 
slice of a simulation from the Quijote suite (Villaescusa-Navarro et al. 2020 ), while the middle plot, obtained following the procedure described in Section 3.1 , 
represents its lognormal counterpart. The goal of this paper is to train a machine learning model (described in Section 3.2 ) to transform the lognormal map to 
the more realistic N -body map, thus improving the statistical power of the fast lognormal approximation. 
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igh performance computing hardware. This limits the possibility 
f fully exploring the impact of different cosmological parameters 
n the dark matter evolution in our Universe, and hinders statistical
nalyses of the large-scale structure (see e.g. Taylor, Joachimi & 

itching 2013 ; Taylor & Joachimi 2014 ): N -body simulations are
ssential to associate a covariance matrix to real measurements, and 
housands of simulations are required to obtain accurate estimates of 
uch matrices. 

In recent years, many cheaper approximations have been proposed, 
hich try to capture both the large-scale structure of the cosmic web

nd its smaller-scale details. These approximations often rely on 
agrangian perturbation theory (Buchert 1992 ; Buchert & Ehlers 
993 ; Buchert 1994 ), and can produce accurate dark matter halo
ock catalogues and dark matter density fields (Monaco et al. 

002 ; Monaco et al. 2013 ; White, Tinker & McBride 2013 ; Kitaura,
epes & Prada 2013 ; Chuang et al. 2014 ; Tassev, Zaldarriaga &
isenstein 2013 ; Tassev et al. 2015 ; Howlett, Manera & Percival
015 ; Rizzo et al. 2017 ; Tosone et al. 2020 , 2021 ). While being
apable of capturing the large-scale structure statistics with fewer 
omputational resources, these methods usually fail to accurately 
roduce the correct small-scale statistics. Although such approximate 
ocks are used to estimate covariance matrices in current large- 

olume data sets when not enough high-resolution simulations 
re available, to date no ine xpensiv e e xact alternativ e to N -body
ealizations exists. 

Another typical approximation to describe (dark) matter fields is 
ound by resorting to a lognormal random field, which represents 
he simplest alternative to running an entire N -body simulation 
Coles & Jones 1991 ; Peebles 1993 ; Taruya et al. 2002 ; Perci v al,
erde & Peacock 2004 ; Hilbert, Hartlap & Schneider 2011 ; Xavier,
bdalla & Joachimi 2016 ). A lognormal random field can be 

asily obtained from a Gaussian random field (see Section 3.1 for
urther details), and can be entirely described by a small number of
arameters; moreo v er, a lognormal variable has a skewed distribution
hich is suited for e.g. the matter o v erdensity field, whose values

ange from −1 in voids to values much higher than 1 in clustered
ense regions. Ho we ver, as reported in Xavier et al. ( 2016 ) and
hown in Fig. 1 , the lognormal approximation comes with its
wn limitations, and fails to reproduce the correct matter density 
istribution. 
Machine learning (ML) techniques have also been proposed to 

eplace e xpensiv e N -body simulations. In Rodr ́ıguez et al. ( 2018 ),
enerativ e adv ersarial networks (GANs; Goodfellow et al. 2014 )
ere successfully trained to generate slices of N -body simulations, 

nd Mustafa et al. ( 2019 ) applied the same technique to weak lensing
onvergence maps. Perraudin et al. ( 2019 ) and Feder, Berger &
tein ( 2020 ) then extended the application of GANs to 3D boxes,
roving that, while challenging to train, GANs can capture both large- 
nd small-scale features, and are capable of accurately reco v ering
he statistical information contained in the training data. He et al.
 2019 ) and Alves de Oliveira et al. ( 2020 ), on the other hand,
howed that it is possible to train a U-shaped neural network
rchitecture (U-net; Ronneberger, Fischer & Brox 2015 ) to map 
imple linear initial conditions to the corresponding final evolved 
elds, correctly learning the non-linear growth of structures under 

he gravitational influence. Kaushal et al. ( 2021 ) additionally used
agrangian perturbation theory to evolve such initial conditions and 
nly learn the difference in the density fields at z = 0. In these latter
 orks, it w as also shown that such architectures can perform well

ven on input data obtained from different cosmological parameters 
han the training data, thus demonstrating the appealing feature of 
eing able to extrapolate outside the training distribution. Other 
orks have explored the use of super-resolution techniques to N -
ody simulations (Kodi Ramanah et al. 2020 ; Li et al. 2021 ), the
pplication of normalizing flows (e.g. Papamakarios et al. 2019 ) as
enerative models of the large-scale structure (Rouhiainen, Giri & 

 ̈unchmeyer 2021 ; Dai & Seljak 2022 ), wavelet phase harmonics
tatistics to produce realistic 2D density fields (Allys et al. 2020 ),
r combinations of ML-inspired techniques with more traditional 
ethods to impro v e the accuracy of fast N -body solvers (Dai, Feng &
eljak 2018 ; Dai et al. 2020 ; Dai & Seljak 2021 ; B ̈ohm et al. 2021 ).
While being useful, all the previous approaches still require a 

elatively high amount of computational resources, might not scale 
ell to high-resolution fields, or introduce many approximations 

hat prevent them from being used reliably in place of full N -body
imulations. In this paper, we show that it is possible to impro v e the
MNRAS 520, 668–683 (2023) 
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ognormal approximation by means of ML techniques, with the long-
erm goal of integrating our approach with the Full-sky Lognormal
stro-fields Simulation Kit ( FLASK ; Xavier et al. 2016 ), in order to
e able to cheaply generate more realistic high-resolution full-sky
ensity fields. 
For this purpose, we start from the Quijote N -body simulation suite

Villaescusa-Navarro et al. 2020 ), which offers thousands of realiza-
ions of a single cosmological parametrization, as well as hundreds
f simulations at different values of the cosmological parameters.
e devise a pipeline to create lognormal density fields which are

he approximated counterpart of the simulated density fields. By
onstruction, these lognormal fields have the same power spectrum
s the one from the fiducial N -body simulations, and the phases of
he underlying Gaussian fields are taken from the initial conditions
f the simulated fields (all details are reported in Section 3.1 ).
aving the pairs of lognormal and corresponding simulated density
elds, we draw from image-to-image translation techniques based
n convolutional neural networks and adversarial training, in order
o obtain a model that can map simple lognormal fields to more
ealistic density fields (see Fig. 1 ). We e xtensiv ely validate our model
y measuring first-, second-, and higher-order statistics, obtaining
ood agreement, almost al w ays within 10 per cent, on all scales.
e additionally show that we can train our model using simulations

un o v er a latin hypercube of cosmological parameters, obtaining a
ood generalization performance o v er different cosmologies. While
 more e xtensiv e study for different redshifts and higher resolutions
ill be explored in future work, these encouraging results indicate

hat providing the model with a lognormal field as the starting
oint significantly impro v es the model’s generalization performance.
dditionally, we show that starting from lognormal maps with the

orrect power spectrum naturally leads to good performance at the
o wer spectrum le vel, and does not allo w the model to ‘collapse’
nd learn single modes in the data, a known problem of generative
dversarial networks (Metz et al. 2017 ). 

The paper is structured as follows. In Section 2 , we describe the
uijote simulation data, on which this work is based. In Section 3 ,
e detail the procedure that we apply to obtain the training data, and
escribe the image-to-image translation technique that we employ in
his work. In Section 4 , we present the results for different resolutions
f the density fields, as well as for dif ferent v alues of redshift and
osmological parameters, and demonstrate the performance of our
odel through a wide range of statistical tests. We conclude in
ection 5 with a summary of our work, planned impro v ements, and
n outline of possible future applications of our model. 

 DATA  

n this work, we use the Quijote simulation suite (Villaescusa-
avarro et al. 2020 ). This set of N -body simulations includes 15 000

ealizations following 512 3 dark matter particles in a box with
omoving length of 1 h 

−1 Gpc , with the matter density parameter
m 

= 0.3175, the baryon density parameter �b = 0.049, the Hubble
arameter h = 0.6711, the scalar spectral index n s = 0.9624, the root
ean square of the matter fluctuations in spheres of radius 8 h −1 Mpc,
8 = 0.834, and the dark energy equation of state parameter w =
1; neutrinos are considered massless. These simulations were run

sing the TREEPM code GADGET -III, which is an impro v ed v ersion of
ADGET -II (Springel 2005 ). We consider snapshots of both the initial
onditions ( z = 127) and today ( z = 0), as well the z = 1 snapshot
nd the latin-hypercube simulations at z = 0 for further validation of
ur model (see Section 4.5 ). 
NRAS 520, 668–683 (2023) 
In each N -body simulation, we convert the information on the
articles’ position to a continuous random field through a mass
ssignment scheme. We analyse the matter o v erdensity field δ( x ),
efined as: 

( x ) = 

ρ( x ) 
ρ̄

− 1 , (1) 

ith ρ( x ) being the matter density field at each position x , and ρ̄
eing the mean density in the volume of the simulation. 

Following Chaniotis & Poulikakos ( 2004 ), Jing ( 2005 ), and
efusatti et al. ( 2016 ), we consider a regular grid of points in
ll three directions. The continuous o v erdensity field is obtained
y interpolating the discrete o v erdensity field on this grid, i.e. by
 v aluating the continuous function 

˜ ( x ) = 

∫ 
d x ′ 

(2 π ) 3 
W ( x − x ′ ) δ( x ′ ) , (2) 

ith W ( x ) being the weight function describing the number of
rid points to which every particle is assigned. We choose the
iecewise cubic spline interpolation scheme, i.e. we explicitly write
he weight function as W ( x ) = W 1D ( x 1 /H ) W 1D ( x 2 /H ) W 1D ( x 3 /H ),
ith H being the grid spacing, x 1 ( x 2 , x 3 ) being the x ( y , z) direction,

nd W 1D being the unidimensional weight function 

 1D ( s) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 −6 s 2 + 3 | s| 3 
6 if 0 ≤ | s | < 1 ; 

(2 −| s| ) 3 
6 if 1 ≤ | s | < 2 ; 

0 otherwise ; 

(3) 

e refer the reader to Sefusatti et al. ( 2016 ) for more details. We
onsider both a grid with N 

3 
high = 512 3 pixels and N 

3 
low = 128 3 pixels,

nd present the results in Section 4.3 and Section 4.4 , respectively. 

 M E T H O D  

ur goal is to obtain 2D projected density lognormal fields corre-
ponding to slices of the QUIJOTE simulations, in order to train a
odel that can take as input a lognormal map and predict a more

ealistic density field with the same statistics as the simulated one.
n the following sections, we describe the procedure that we follow
o obtain such a data set (Section 3.1 ), and the machine learning
lgorithm that we employ to learn the transformation (Section 3.2 ). 

.1 Obtaining the training data 

ince the long-term goal of the project is to increase the accuracy
n large-scale structure description of random field maps on the
phere like the ones produced by FLASK (Xavier et al. 2016 ), we
hoose to work with slices of the density field rather than the full
D boxes. We slice a given box along the third axis, and obtain
ultiple square density fields from a single simulation (128 in the

ow-resolution case, and 512 in the high-resolution case); the width
f each slice is 1000 h 

−1 Mpc / 128 � 7 . 8 h −1 Mpc in the former case,
nd 1000 h 

−1 Mpc / 512 � 1 . 9 h −1 Mpc in the latter case. Our choice
f different thicknesses aims to demonstrate that our approach can
ork at different resolutions and different projection depths. Since
e consider 800 simulations in the low-resolution case, and 200

n the high-resolution case, we are left with 102 400 maps in both
nstances. We also consider the initial conditions of the 3D boxes,
amely the N -body simulations at z = 127, which we slice in the
ame way. 

In order to create the lognormal counterpart of the more realistic
aps, we start by measuring the power spectrum of each simulation’s

lice at z = 0, which we wish to impose on the lognormal fields. We
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ecall here that the 2D matter power spectrum P ( k ) can be implicitly
efined through the Fourier transform δ( k ) of the matter density 
ontrast δ( x ), 2 defined as in equation ( 1 ): 

 δ( k ) δ( k 

′ ) 〉 = ( 2 π ) 2 P ( k) δD ( k + k 

′ ) , (4) 

here 〈 · 〉 denotes an average over the whole Fourier space, k = | k | ,
nd δD ( ·) indicates the Dirac delta function (Dodelson 2003 ); this in
urn yields the estimator 

ˆ 
 ( k ) = 

1 

N modes ( k ) 

∑ 

| k |= k 

| δ( k ) | 2 , (5) 

here N modes ( k ) is the number of modes in each k bin, and the sum
s performed o v er all k vectors whose magnitude is k . The definition
n equation ( 4 ) implies that P ( k ) is the Fourier counterpart of the 2D
atter correlation function ξ ( r ), with r = | r | , i.e. 

 ( k) = 

∫ 
ξ ( r) e −i k ·r d 2 r , (6) 

here ξ ( r ) is defined as 

( r) = 〈 δ( x ) δ( x + r ) 〉 , (7) 

ith 〈 · 〉 representing the av erage o v er all locations x in the plane in
his case. 

In order to generate a lognormal random field with a given power
pectrum, we follow the procedure of Coles & Jones ( 1991 ) and
erci v al et al. ( 2004 ). We start by converting the measured power
pectrum to the matter correlation function ξLN ( r ), then we calculate
he corresponding Gaussian correlation function, 

G ( r) = ln [ 1 + ξLN ( r) ] , (8) 

ransform it back to Fourier space and create a Gaussian random field
ealization δG on a grid with this power spectrum and the required 
esolution ( N low or N high ). It is well known that a zero-mean Gaussian
eld is entirely specified by the gi ven po wer spectrum, which only
epends on the absolute value of the Fourier coefficients: this means 
hat the Fourier phases can be uniformly sampled from the [0, 2 π ]
nterval (Coles & Chiang 2000 ; Chiang & Coles 2000 ; Watts, Coles &

elott 2003 ). Crucially, when generating the Gaussian random field, 
e employ the set of phases of the Gaussian initial conditions of

he Quijote simulation realization. In this way, the final lognormal 
ensity fields will have a high level of correlation with the density
elds obtained from the simulations: while the amount of correlation 

s limited due to the evolution from z = 127 to z = 0, the Pearson
orrelation coefficient between pairs of maps can be as high as 0.5,
f we smooth the fields with a Gaussian kernel on scales of about
0 h −1 Mpc, while it is consistent with 0 if using completely random
hases. Therefore, we argue that our choice facilitates learning the 
apping from random fields to N -body slices. 
Finally, we obtain the lognormal field δLN by calculating for each 

rid point 

LN = exp 
(
δG − σ 2 

G / 2 
) − 1 (9) 

here σ G is the standard deviation of the Gaussian field. For all these
perations, we employ the PYTHON package NBODYKIT (Hand et al. 
018 ). A flowchart representing the steps followed to produce the 
raining data is reported in Fig. 2 . 

We observe two limitations due to the fact that we measure the
ower spectrum from a finite-resolution grid. First, by relying on the 
oxes only, we are capable of surveying only a limited range in k ,
 From now on, we use k , x , and r to indicate projected 2-D vectors. 

m
 

t  
amely no larger than k ∈ [0 . 025 h Mpc −1 , 1 h Mpc −1 ] in the high-
esolution case, and k ∈ [0 . 025 h Mpc −1 , 0 . 3 h Mpc −1 ] in the low-
esolution case. In order to access larger scales (i.e. lower k values),
e concatenate the measured power spectrum with the theoretical 
ne obtained with CLASS (Blas et al. 2011 ) for k ∈ [10 −5 h Mpc −1 ,
 . 025 h Mpc −1 ]: this makes the procedure outlined in the previous
aragraphs more stable numerically. 
Second, we observe a mismatch in power in the lognormal fields

ith respect to the imposed power spectrum. We attribute this 
iscrepancy to the fact that when converting the Quijote initial 
onditions (obtained using second-order Lagrangian perturbation 
heory) to a density field, the mass assignment scheme and non-
anishing non-linearities arising from perturbation theory introduce 
xtra spurious correlation in the phases. We correct for this ef-
ect, which actually introduces non-Gaussian features and is more 
ronounced at higher resolution, by iteratively rescaling the input 
ower by the ratio of the output and target power at each k , until
he mismatch across a sample of 100 random maps is smaller than
 per cent at all k values. We checked that this iterative adaptation
cheme ef fecti v ely remo v es the power mismatch, leaving the final
erformance of the model unaffected at prediction time: The results 
resented in Section 4 do not change significantly if, after training the
odel, we give it as an input a slice of a 3D lognormal field generated
ith completely random Fourier phases. We further remark that this 

orrection would not be necessary if we had access to a perfectly
aussian density field of the initial conditions. 
We are left with pairs of square density field maps (dubbed δLN 

nd δSIM 

), which we use as the training (80 per cent), validation
10 per cent), and test (10 per cent) data, further discussed in the
ext section. This split is done at simulation level, so that the test,
alidation, and training data sets are completely independent. Note 
hat to reduce the correlations between slices coming from the same
imulation cube, we shift the pixels by a random amount along
oth the first and second axis, independently for each pair of maps,
ssuming periodic boundary conditions. It could also be possible to 
andomly rotate and flip the slices in order to augment the training
ata; while we found it is not needed in our set-up, we defer further
nvestigations to future work. Before feeding the pairs into the neural
etwork architecture described in the next section, we additionally 
re-process each map by calculating ln (1 + δ) to decrease the
ynamic range of each density value δ. 

.2 Image-to-image translation 

s discussed in Section 1 , machine learning generative techniques 
av e e xtensiv ely been applied to N -body simulations. In this work,
e aim at mapping lognormal fields to more realistic fields, hence,
e employ the pix2pix network structure, first proposed in Isola et al.

 2017 ). The model is composed of two parts, as sketched in Fig. 3 ;
ll implementation details are reported in Appendix A . The first
art is a U-net (Ronneberger et al. 2015 ), which takes as an input
 lognormal map δLN , obtained and pre-processed as described in 
ection 3.1 . The map is passed through various convolutional layers

o yield a compressed feature map, which is then upsampled back
o the original resolution. Crucially, these upsampling steps are con- 
atenated with the corresponding downsampled feature maps, which 
llo w v arious scales to be accessible in the output map; removing
hese skip connections significantly impairs the performance of the 
odel. We call the output map the generated map δGEN . 
We want the generated map to carry the same statistical informa-

ion as the δSIM 

density field. We tested that minimizing a simple
MNRAS 520, 668–683 (2023) 
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Figure 2. Flowchart of the steps to create the training data, as described in Section 3.1 . We first measure the power spectrum of each slice of the z = 0 
boxes (in red in the top panel), which is concatenated with the theory power spectrum obtained using CLASS (Blas, Lesgourgues & Tram 2011 ; in grey in the 
top panel). We then generate a lognormal random field with this po wer spectrum, follo wing Coles & Jones ( 1991 ), Perci v al et al. ( 2004 ); the term ‘Gaussian 
correlation function’ indicates ξG ( r ) as in equation ( 8 ); the corresponding ‘Gaussian power spectrum’ is obtained using equation ( 6 ). Crucially, when generating 
the underlying Gaussian field, we use the Fourier phases of the initial conditions of the N -body simulation, which consist of a Gaussian random field at z = 127. 
In this way, the lognormal field displays increased correlation with the N -body field. The final training data consist of pairs of lognormal ( δLN ) and simulated 
( δSIM 

) density fields, with either low (side N low = 128) or high (side N high = 512) resolution, as explained in Section 2 . The machine learning model employed 
to learn the mapping from δLN to δSIM 

is presented in Section 3.2 . 


  

a  

e  

t  

G  

G  

e  

i  

t  

f  

i  

G  

w  

f  

t

w  

v  

e  

l  

a  

t  


  

t  

t  

g  

t  

o  

3 In particular, ˆ δ = δSIM 

+ u ( δGEN − δSIM 

), with u ∼ U (0, 1), where U (0, 1) 
indicates the uniform distribution between 0 and 1. This linear combination 
means that we are constraining the gradient norm to be 1 only along lines 
connecting real and f ak e data, which should be sufficient to guarantee good 
experimental results (Gulrajani et al. 2017 ). 
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1 or 
 2 norm between δGEN and δSIM 

is not sufficient to yield
ccurate results. For this reason, following Isola et al. ( 2017 ), we
mploy a second convolutional block as a discriminator, and express
he loss in the framework of adversarial training. In the standard
AN frame work (Goodfello w et al. 2014 ), the generator network
 is trained together with the discriminator network D until an

quilibrium where neither G or D can impro v e their performance
s reached: while G attempts to generate realistic images, D tries
o distinguish between real and f ak e examples. Since we found this
ramework to be particularly unstable during training, we actually
mplemented the Wasserstein GAN with gradient penalty (WGAN-
P; Arjo vsk y, Chintala & Bottou 2017 ; Gulrajani et al. 2017 ), which
e found superior both in performance and training stability. In this

ramework, a generator G is trained alongside a critic C to minimize
he following cost function: 

E δGEN [ C( δGEN ) ] − E δSIM [ C( δSIM 

) ] + λ1 E ˆ δ

[ (||∇ ˆ δC( ̂ δ) || 2 − 1 
)2 
] 

+ λ2 || δGEN − δSIM 

|| 2 2 , (10) 
NRAS 520, 668–683 (2023) 
here δGEN = G ( δLN ), E δGEN , and E δSIM indicate the expectation
alue o v er samples of the generated and simulated maps (usually
stimated through sample av erages), respectiv ely, ˆ δ represents a
inear combination of δGEN and δSIM 

, 3 || · || 2 indicates the 
 2 norm,
nd λ1 and λ2 are two positive hyperparameters that allow us to tune
he amount of regularization given by the gradient penalty and the
 

2 norm, respectively. In short, equation ( 10 ) indicates that we wish
o minimize the Wasserstein-1 (or earth mo v er) distance between
he real data and generated data distributions, while constraining the
radient of the critic network to be close to unity; this is needed since
he formulation of the Wasserstein distance as in the first two terms
f equation ( 10 ) only holds when the critic is a 1-Lipschitz function,

art/stad052_f2.eps
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Figure 3. A representation of the generative model employed in this work, as described in Section 3.2 . Following Isola et al. ( 2017 ), we have two convolutional 
neural networks, the generator (bottom left) and the critic (top right). We feed the lognormal maps through the generator, which is a U-net (Ronneberger et al. 
2015 ), that first downsamples and then upsamples each image using various convolutional layers, with all details reported in Appendix A . To impro v e the 
performance of the model, each upsampling step is concatenated with the output of a downsampling step, as indicated by the dashed lines ( skip connections ). 
The output of the generator, dubbed δGEN , is then compared with the target data δSIM 

by the critic network, which is again made of various convolutional layers, 
ending with a dense layer in order to have a single output. We chose this architecture based on those described in the literature (e.g. Isola et al. 2017 ); a full 
inv estigation o v er different architecture designs is be yond the scope of this paper. The critic and generator networks are trained together, minimizing the loss 
function of equation ( 10 ). Note that in addition to the standard adversarial loss, we include a penalty term in the form of the mean squared error between the 
generated and target maps, which we found to significantly impro v e the performance of our model; this is indicated by the short-dashed lines ( identity ). 
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.e. when its gradient is bound (see Gulrajani et al. 2017 , for more
etails). We observe that in the standard WGAN-GP formulation 
2 = 0, while in our case, we found it key to minimize the 
 2 norm
etween simulated and generated maps as well in order to obtain 
mpro v ed results. 

To train the networks, we use the Adam optimizer (Kingma & 

a 2014 ) with learning rate 10 −5 ; we set the additional Adam
yperparameters β1 = 0 and β2 = 0.9, following Gulrajani et al. 
 2017 ), and refer the reader to Kingma & Ba ( 2014 ) and Gulrajani
t al. ( 2017 ) for more details. We feed the data in batches of 32
airs at each iteration, and train our model for 10 epochs (150
n the low-resolution case), where each epoch consists of feeding 
he entire training set through the network. For each batch, we 
pdate the critic parameters n critic = 10 times, and the generator 
arameters only once. Multiple iterations of the critic are usually 
et to ensure its optimality while still allowing the generator to 
earn (Arjo vsk y et al. 2017 ; Gulrajani et al. 2017 ); in our work,
e only explored n critic = 5 and n critic = 10, and used the latter

ince it showed slightly better results. Each epoch takes about 0.5 h
4 h) for the low (high) resolution case, on a Tesla P100 GPU;
fter training, mapping a lognormal map through the generator 
akes O(1 s) on the same hardware, and can be efficiently done in
atches. 
We save the model after each epoch. In order to select the best
odel amongst the saved ones, for each of them, we run the statistical

ests described in Section 4.2 , and measure the mean percentage 
ifference between the target and predicted maps for randomly 
ampled maps of the validation set. The best model is chosen as the
ne which minimizes the sum of the mean percentage differences 
 v er all tests; the results are then shown on maps from the test set.
n the high-resolution case only, we actually found that the trained
odel can generate maps whose power spectrum is significantly 

ifferent (more than 10 per cent) from the input and target ones,
hich we attribute to instabilities of the WGAN-GP framework; 
e show one such example in Appendix B . For this reason, we
ropose a ranking system that takes all the predictions from the
est set, and orders them based on the mean difference between the
nput power spectrum and the predicted power spectrum, since they 

ust match by construction. We select the best 100 maps according
o this metric, and discuss possible ways to make the model more
table in Section 5 . We envision that in a realistic scenario where
n arbitrary number of lognormal maps can be generated with the
MNRAS 520, 668–683 (2023) 
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M

Figure 4. The lognormal (left) and N -body (right) density fields as in Fig. 1 , with the prediction of our model (middle) given the lognormal field. In these maps, 
we clipped the maximum and minimum values before applying the logarithm to reduce their dynamic range. The model is described in Section 3.2 . We remark 
that we are not interested in an exact match of the middle and right-hand panels, as we explain in Section 4.1 , and thoroughly test that the predicted fields carry 
the same statistical information as the N -body maps from Section 4.2 . 
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oal of producing m augmented fields, one could iteratively generate
ugmented lognormal maps through our model and discard those
hose precision is below a desired threshold, until all m maps are
roduced. 
We show the results of our best models in the next section. These
odels are found with λ1 = 100 and λ2 = 10; we defer a full grid

earch o v er these hyperparameters to future work. 

 RESULTS  

n this section, we validate the performance of the trained model
y comparing the statistics of the generated and simulated maps. In
ppendix C , we also show that our model is not affected by mode

ollapse. 

.1 Qualitati v e comparison 

hile the appearance of the maps is irrele v ant for the purpose of
ur statistical analysis, a visual inspection is none the less useful to
ntuitively understand whether our model is on the right track to learn
he N -body features. In Fig. 4 , we show a lognormal map, its N -body
ounterpart, and the prediction of our model given the lognormal
ap for the high-resolution case. 
Our goal is not to obtain an exact visual match between the model’s

rediction and the N -body map, given that we used the random phases
f the z = 127 simulations, which only have partial correlations with
he z = 0 slices. For the applications, we focus on (discussed in
ection 5 ), the actual position of peaks and voids in the lognormal
ap is irrele v ant, since it is dictated by the random sampling of

he phases: We only aim to generate maps which carry the same
tatistical signal as the N -body maps on av erage, impro ving on the
ognormal approximation. We observe that while the predicted field
oes not match the N -body pattern pixel by pixel, the model has
earnt the correct morphology of the large-scale structure on top of
he lognormal field. 

.2 Statistics 

hile visual inspection of the generated maps against the target ones
s a necessary zeroth-order test to provide intuition on whether the
odel was adequately trained, it is then fundamental to compare

he summary statistics of interests and carefully quantify their
greement. We compare the generated and simulated fields through
our different summary statistics, which we briefly describe here. 
NRAS 520, 668–683 (2023) 
.2.1 Pixel counts 

he first test consists of binning the pixels of the generated and target
ensity fields into a histogram. While the lognormal distribution is
 good approximation of the simulated fields, there is a significant
ifference between the two (see e.g. Fig. 1 ). We show in panel (a) of
igs 5 and 6 the performance of our model with respect to the pixel
ounts for high and low resolution, respectively. 

.2.2 Power spectrum 

e compare the power spectrum as defined in equation ( 4 ) for
he simulated maps and the ones predicted by our model given
he lognormal maps. While it could be argued that this is a trivial
ask (given that the input and output maps have the same power
pectrum by construction), it is not obvious that our model does
ot modify the power spectrum information while learning the new
ensity distribution, and as anticipated at the end of Section 3.2 ,
e actually found some failures of the trained model which yield
iscrepant power spectra in the high-resolution case. We therefore
ompute the power spectra and show the results in panel (b) of
igs 5 and 6 , for high and lo w resolution, respecti vely. Since N -
ody simulations are mainly used to associate a covariance matrix
o real measurements, we have also computed power spectrum
ovariance matrices for all data sets and models we considered.
hese are very similar for all cases, and while we do not show

hem for brevity, they further validate the performance of our
odel. 

.2.3 Bispectrum 

o probe the non-Gaussian features of the density fields, we measure
he matter bispectrum of the maps, i.e. the counterpart of the
hree-point matter correlation function in Fourier space. The matter
ispectrum B ( k 1 , k 2 , k 3 ) for a 2D field is defined implicitly as (see
.g. Sefusatti et al. 2006 ) 

( r) = 〈 δ( x ) δ( x + r ) 〉 , (11) 

here δ( k ) indicates the Fourier transform of the matter overdensity
( x ), k i = | k i | , and all k i vectors are in the plane of the simulation
ox slices. To further assess that our model correctly captured the
nformation beyond the power spectrum, we also measure the reduced
atter bispectrum [ Q ( k 1 , k 2 , k 3 ), see e.g. Liguori et al. 2010 ], defined

art/stad052_f4.eps
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Figure 5. Comparison of the statistical tests described in Section 4.2 for the lognormal ( δLN , in red), N -body ( δSIM 

, in grey), and predicted ( δGEN , in cyan) 
maps, considering a resolution of N high = 512. The performance is measured at the bottom of each panel by calculating the relative difference of N -body against 
predicted and lognormal maps (dashed lines). All solid lines indicate the mean values o v er 100 maps, and the error bars represent the error on the mean (or 
propagated error, in the case of the relative differences). We observ e that, e xcept for the range δ < 0 in panel (a) and (c) and some indi vidual θ v alues in panels 
(d)–(g), the prediction al w ays matches the target statistics within the error bars, performing significantly better than the lognormal approximation. 
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s: 

 ( k 1 , k 2 , k 3 ) = 

B( k 1 , k 2 , k 3 ) 

P ( k 1 ) P ( k 2 ) + P ( k 1 ) P ( k 3 ) + P ( k 2 ) P ( k 3 ) 
. (12) 

We measure bispectra and reduced bispectra for different configu- 
ations depending on the resolution; different triangle configurations 
sually probe different inflationary models (Liguori et al. 2010 ), and 
ne must include as many configurations as possible to break degen- 
racies when inferring cosmological parameters (Berg ́e, Amara & 

 ́efr ́egier 2010 ). Moreo v er, different bispectra configurations can
hed light on the size of collapsing regions, as well as on the relative
osition of clusters and voids in the large-scale structure (Munshi 
t al. 2020 ). 

We calculate bispectra and reduced bispectra based on an estimator 
f the binned bispectrum (see e.g. Bucher, Racine & van Tent 2016 );
e consider the centroid of each bin as the value of k at which the
ispectrum is e v aluated. We report the results in panels (d)–(g) of
igs 5 and 6 (for high and low resolution, respectively) as a function
f the angle θ between the vectors k 1 and k 2 . 

.2.4 Peak counts 

o further assess whether the model has correctly learnt the most
on-Gaussian features of the simulated density fields, we verify that 
he peak counts of the generated and target maps match within the
rror bars. A peak is defined as a density pixel which is higher
han the 8 surrounding pixels. Peak count statistics have been shown
o carry significant cosmological information, especially in weak 
ensing studies, as they trace the most dense regions (Pires et al. 2009 ;
ires, Leonard & Starck 2012 ; Dietrich & Hartlap 2010 ; Marian
t al. 2011 ; Mainini & Romano 2014 ; Lin & Kilbinger 2015a , b ;
in, Kilbinger & Pires 2016 ; Kacprzak et al. 2016 ; Shan et al. 2018 ;
artinet et al. 2018 ; Harnois-D ́eraps et al. 2021 ). We bin the peak

alues for both the simulated and target maps, and compare them in
anel (c) of Figs 5 and 6 , for high and low resolution, respectively. 

.3 High resolution 

n Fig. 5 , we compare the performance of the predictions of our
odel against the target maps, for the case with 512 2 pixels. We

un the statistical tests on 100 maps sampled from the test set as
escribed at the end of Section 3.2 ; the solid lines show the mean
alues and the dashed areas represent the error on the mean. 

In panel (b), we show that the trained model is capable of preserv-
ng the correct power spectrum on all scales from 0.025 h Mpc −1 

o 1 h Mpc −1 , with percentage differences going no higher than
 per cent, and al w ays within the error bars. At the same time, the
odel impro v es on the lognormal approximation as far as the pixel

ounts and peak counts are concerned, with ho we ver significant
ifferences in particular for δ < 0 in the latter case. We believe
MNRAS 520, 668–683 (2023) 
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Figure 6. Same as Fig. 5 , with a lower field resolution N low = 128. The solid lines indicate the mean values o v er 100 maps. We observ e that the model’s 
performance is almost al w ays within the 5 per cent range, except for the bispectra, where significant differences are present at high θ ; we discuss these 
discrepancies in Section 4.4 . Despite these differences, our model still outperforms the lognormal approximation. 
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hat the performance in this case could be ameliorated by e.g.
xploring different network architectures. In panels (d)–(g), we show
he results for the (reduced) bispectrum, for k 1 = 0 . 4 h Mpc −1 ,
 2 = 0 . 6 h Mpc −1 – panels (d) and (e) – and for k 1 = 0 . 4 h Mpc −1 ,
 2 = 0 . 4 h Mpc −1 – panels (f) and (g). The performance is very
ood o v erall, with the percentage difference between target and
redicted maps being within the error bars except for a few
ndi vidual v alues of θ , significantly improving on the lognormal
pproximation. 

.4 Low resolution 

n Fig. 6 , we compare the performance of the predictions of our
odel against the target maps, for the case with 128 2 pixels. We

se 100 randomly sampled maps from the test set. We observe good
greement between predicted and target maps for the pixel counts,
ower spectrum, and peak counts statistics, with the power spectrum
n particular being almost al w ays within 2 per cent. As far as the
ispectra are concerned, we consider two configurations, one with
 1 = 0 . 1 h Mpc −1 , k 2 = 0 . 3 h Mpc −1 – panels (d) and (e) – and for
 1 = 0 . 2 h Mpc −1 , k 2 = 0 . 2 h Mpc −1 – panels (f) and (g). Since the
elds have a lower resolution, the scales we probe are larger than in
ection 4.3 . We observe a good agreement o v erall, e xcept at high θ :
e argue that to impro v e the performance of the model, we could

se the same ranking approach based on the power spectrum as in
he high-resolution case. 
NRAS 520, 668–683 (2023) 
.5 Redshift and cosmology dependence 

o far, we have shown the performance of our model on a given
ducial set of cosmological parameters and redshift, from which the

raining data were obtained. Ho we ver, in order for the method to
ecome practical, it is critical to assess whether the performance
egrades when the model is tested on lognormal maps obtained
ith a different cosmology or at different z. Examples of good
eneralization properties of machine learning models applied to
osmological problems include He et al. ( 2019 ), Kaushal et al.
 2021 ), Shao et al. ( 2022 ). 

We checked that the performance of our model does not degrade
uch when acting on fields with slightly different (within 2 per cent)

alues of �m 

and σ 8 , even though a more complete analysis on
igger variations is required. We additionally verified that feeding our
odel, trained using maps at z = 0, with lognormal maps at z = 0.5

r z = 1.0 does not yield satisfactory results, with percentage errors
oing well abo v e 50 per cent. This failure is not unexpected: The
ifferent dynamic range of the lognormal maps at different redshifts
ighlights that our model is not capable of extrapolating to such
ifferent input values. 
To o v ercome these limitations, we use the Quijote simulations

un on a latin hypercube of the cosmological parameters, which are
ublicly available together with the simulations run at the fiducial
osmology (Villaescusa-Navarro et al. 2020 ). We consider 800 of
uch simulations at low resolution N low = 128 and z = 0, and repeat
he procedure described in Section 3.1 to generate a data set of
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(a) (b) (c)

(d) (e) (f) (g)

Figure 7. Same as Fig. 6 , but for a model trained on latin-hypercube simulations and applied to a different cosmology, as described in Section 4.5 . Except at 
lo w v alues of δ in panel (a), the results show good agreeement between the model predictions and the target N -body fields, demonstrating that our model has 
good generalization performance across different cosmologies. 
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ighly correlated pairs of lognormal and N -body fields. For each 
f the first 700 simulations, we keep 90 slices for training, 19 for
alidation, and 19 for testing (not used in this instance), and train
he same model described in Section 3.2 for 150 epochs. Note that,
e do not provide explicitly the label corresponding to the different 

osmological parameters during training. We select the best model 
ccording to the best performance on the summary statistics o v er the
alidation set, as in the fiducial case. 

We test the best model by applying it to 100 lognormal maps gen-
rated at the fiducial cosmology (with results shown in Appendix D ),
s well as at the cosmological parameters of one random simulation 
rom the test set ( �m 

= 0.1987, �b = 0.0446, h = 0.5601, n s =
.1707, σ 8 = 0.7665) in Fig. 7 . These results, while slightly worse
han those presented in Fig. 6 since e.g. the power spectrum shows
p to 5 per cent discrepancies, indicate that the model trained on the
atin-hypercube simulations has a good generalization performance, 
hich extends to cosmologies that were never shown at training or
alidation time. We plan to extend these encouraging results to higher 
esolutions and different redshifts in future work. 

Other possible solutions to obtain a good generalization perfor- 
ance include normalizing the maps, either after or before training 

he model. For instance, one could rescale the field at z = 1 through
he linear growth factor (Eisenstein, Hu & Tegmark 1999 ) to z = 0,
nd then invert this transformation after feeding the map through the 
enerator trained as abo v e. Ho we ver, this approach would ignore
he non-linear scales, and directly dividing each pixel value by 
he linear growth factor could lead to unphysical fields with δ < 
p
1. Alternatively, instead of the dark matter o v erdensity field, we
ould consider the corresponding peak height field, calculated by 
easuring for each pixel 1.686/ σ ( M ), where σ ( M ) is the mass

nclosed within a given scale; since the peak height is known to
xtrapolate better, having a weaker dependence on cosmological 
arameters (Press & Schechter 1974 ; Bond et al. 1991 ; Perci v al
005 ; Kravtsov & Borgani 2012 ), we expect a model trained on this
eld to have an improved generalization performance. 
Finally, we show that with our current set-up we can successfully

rain a second model on data generated as described in Section 3.1
ith z 
= 0. We show the results for a model trained on fields at z =
, which have a lower contrast and less non-linearity than z = 0, in
ig. 8 for the low-resolution case, with good performance o v erall. We
lso expect that it would be possible to train a conditional model by
roviding the redshift ‘label’ together with the input lognormal map, 
hus obtaining a conditional WGAN-GP (see e.g. Mirza & Osindero 
014 ; Yiu, Fluri & Kacprzak 2021 ); such a model could be trained
.g. on maps with z = 0 and z = 1, and then used to predict maps at
 = 0.5, similarly to Chen et al. ( 2020 ). All these points indicate that
t will be possible to make our model conditional on z and different
osmological parameters; we defer these studies to future work. 

 C O N C L U S I O N S  

n this paper, we employed the Quijote simulations as a starting point
o train a machine learning model that is capable of transforming
rojected lognormal realizations of the dark matter density field to 
MNRAS 520, 668–683 (2023) 
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Figure 8. Same as Fig. 6 , for a different model trained on data at redshift z = 1. We observe a good overall performance of our model, which generally 
outperforms the lognormal approximation. 
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ore realistic samples of the dark matter distribution. We employed
tate-of-the-art image-to-image translation techniques, combining
onvolutional neural networks and adversarial training, to learn
uch a model, and e xtensiv ely validated its performance through
 thorough set of statistical tests. We observed a significant reduction
n the error of non-Gaussian features like peak counts and bispectra,
rom tens of per cent for the pure lognormal model to no more
han 10 per cent obtained by our model in most cases; the latter
requently shows an order of magnitude impro v ement o v er the
ormer. Furthermore, the mapping is extremely fast, taking O(1 s)
n a single GPU. 
In order to a v oid running large suites of N -body simulations,

he proposed method has to generalize well to other redshifts and
osmologies. We demonstrated that it is possible to train a model on
imulations run o v er a latin hypercube of cosmological parameters
nd have good performance on the fiducial cosmology as well as
n unseen cosmologies. We outlined a few promising avenues to
nvestigate in order to extend these results to different redshifts and to
igher resolutions. Moreo v er, while in this work we trained different
odels for different resolutions of the density field, we also expect

n impro v ed model to be able to deal with a varying slice thickness.
We plan to extend this work to random fields on the sphere,

nd integrate it into the FLASK package developed in Xavier et al.
 2016 ). We aim to extend our approach to spherical random fields
y iteratively applying our model to square patches of the sky,
hus providing the community with a tool to quickly generate
NRAS 520, 668–683 (2023) 
ealistic dark matter realizations that o v ercome the limitations of the
ognormal approximation. We also plan to compare our approach
o a direct generation of spherical fields by means of spherical
onvolutional layers, as proposed e.g. for mass maps in Yiu et al.
 2021 ). 

Additionally, we believe that the image-to-image technique out-
ined in this paper could be applied to augment analytical approxima-
ions to N -body simulations (like L-PICOLA; Howlett et al. 2015 ,
r FastPM; Feng et al. 2016 ), as well as semi-analytic models of
alaxies, which, in the same vein as lognormal random fields, provide
 fast approximation to hydrodynamical simulations by modelling
omplicated baryonic processes (White & Frenk 1991 ; Kauffmann,

hite & Guiderdoni 1993 ; Cole et al. 1994 ; Somerville & Primack
999 ; Lacey 2001 ). In such instances, one could e.g. train a model
o learn the mapping between an N -body simulation augmented
ith semi-analytical models and the corresponding hydrodynamical

imulation. We further plan to explore the possibility to employ
he data set described in this work to reduce the variance in the
tatistics of large-scale structure observables using a small number
f e xpensiv e simulations (Chartier et al. 2021 ; Chartier & Wandelt
021 ; Ding et al. 2022 ), as well as to replace our WGAN-GP model
ith either a possibly more stable GAN version (Kwon et al. 2021 ),
r with a more compact model, like the one proposed in the context
f Lagrangian deep learning (LDL; Dai & Seljak 2021 ), using graph
eural networks (GNNs; see e.g. Zhou et al. 2018 for a re vie w) or
hrough normalizing flows (e.g. FFJORD; Grathwohl et al. 2018 , or

art/stad052_f8.eps
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ore recently TRENF; Dai & Seljak 2022 ). This will be investigated
n future work. 
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Table A1. Size of each layer’s output in the generator and the critic neural 
networks, detailed in Section 3.2 and Appendix A , for the high-resolution 
case. The low-resolution architecture is built analogously. 

Size Comments 

512 × 512 × 1 Input size; δLN 

256 × 256 × 64 
128 × 128 × 128 

64 × 64 × 256 
Generator 32 × 32 × 512 

64 × 64 × 512 First upsampling step 
128 × 128 × 256 
256 × 256 × 128 
512 × 512 × 64 
512 × 512 × 1 Linear acti v ation; δGEN 

512 × 512 × 1 Input size; either δSIM 

or δGEN 

256 × 256 × 32 
128 × 128 × 64 

Critic 64 × 64 × 128 
63 × 63 × 512 

62 × 62 × 1 
3844 Flattening; input to dense layer 
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PPENDI X  A :  M O D E L  A R C H I T E C T U R E  

n its basic formulation, a layer in a convolutional neural network
CNN; see e.g. Fukushima 1980 ; Krizhe vsky, Sutske ver & Hinton
017 ) is made of a certain number of square filters, each associated to
earnable parameters, usually called weights. During training, each
lter is convolved through each input data point: This means that the
ot product of the learnable weights and the input pixels is calculated,
epresenting a single output for that particular filter. Repeating this
peration while moving the filter across the input data creates an
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utput map, which is then passed through an acti v ation function
o introduce non-linearities in the network. This operation is done 
or multiple filters, and each output map becomes the input to the
ollowing convolutional layer. Stacking convolutional layers allows 
ne to extract progressively larger scales from the input data, and 
epresents a more efficient implementation of a neural network with 
espect to standard dense layers when dealing with high-dimensional 
ata like images (Le Cun et al. 1989 ; Goodfellow, Bengio & Courville
016 ). 
As anticipated, our model, depicted in Fig. 3 , consists of two

eural networks. The first neural network (the generator) contains 
our downsampling blocks, followed by four upsampling blocks. 
ach downsampling block first pads the input data assuming periodic 
oundary conditions, and then applies a convolution operation with 
x4 filters. There are 64 convolutional filters in the first place, and
his number doubles for each block. Note that no pooling layers 
re present (Yamaguchi et al. 1990 ), and we are able to reduce the
imensionality of the extracted feature maps by shifting each filter 
y two pixels in both directions; in other words, we set a stride
f 2. The compressed map is then symmetrically upsampled using 
he transposed convolution operation (Dumoulin & Visin 2016 ). At 
ach block, each feature map is concatenated with the corresponding 
ownsampled map by simply stacking them along the last spatial 
xis; this is done in order to better learn the representations at each
evel (Ronneberger et al. 2015 ). The activation function used after 
ach downsampling layer is the rectified linear unit (ReLU; Glorot, 
igure B1. High-resolution example where the power spectrum, shown in the 
isagreement (more than 20 per cent) between the prediction (cyan) and the N -body
onstruction. Given these failure modes, we employed the ranking system describe
heir lognormal counterpart. 

r

ordes & Bengio 2011 ), while for the upsampling blocks, we found
he leaky ReLU (Maas, Hannun & Ng 2013 ) with α = 0.3 to perform
etter. A final convolutional layer with linear acti v ation function
utputs the generated map δGEN . Note that all downsampling and 
psampling blocks include batch normalization (Ioffe & Szegedy 
015 ), which during training subtracts the batch mean and divides by
he batch standard deviation, in order to make the training procedure

ore stable. The second neural network is done similarly, with 
hree downsampling blocks followed by two convolutional layers 
ith Leaky ReLU as the acti v ation function, and a final dense

ayer with a single output and a linear acti v ation function. Input
nd output shapes for each layer are reported in Table A1 . We
mplement our neural networks in TENSORFLOW (Abadi et al. 2015 ),
nd will make the trained models available upon acceptance of 
his work. 

PPENDI X  B:  H I G H - R E S O L U T I O N  M O D E L  

A I LURES  

n Fig. B1 , we show an example field in the high-resolution case
or which the prediction has a power spectrum with an average
0 per cent disagreement with respect to the expected one. We
ttribute such problems to instabilities in the WGAN-GP model we 
onsidered, and describe a possible ranking system that addresses 
his problem in Section 3.2 . 
MNRAS 520, 668–683 (2023) 

left-hand panel for the three fields in the other panels, is significantly in 
 (grey). The lognormal power spectrum (red) agrees with the N -body one by 
d in Section 3.2 to select the predictions whose power spectrum agrees with 
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PPENDIX  C :  M O D E  COLLAPSE  

s we explained in Section 1 and Section 3.2 , our choice of
roviding the model a lognormal field as input, as well as the choice
f the WGAN-GP loss function, should prevent the model from
emorizing the training set, or only focus on single modes of the

ata. Following Mustafa et al. ( 2019 ), we provide evidence that the
enerator is capable of producing diverse maps and is not affected
y mode collapse. 
In Fig. C1 , we show three random predictions from the test set, and

he closest map in the training set according to pixel-wise distance;
e focus on low-resolution data only to limit the computational cost.
NRAS 520, 668–683 (2023) 

igure C1. F irst r ow : three random predictions from the test set, in the low-resolu
et which is closest to the corresponding panel in the first row according to pixel
ummary statistics in agreement, not shown here for brevity), they are visually diff
espite showing similar texture, and having summary statistics in
greement (not shown for brevity), the maps are clearly different,
hus confirming that our model is immune to mode collapse. 

PPENDI X  D :  LATI N-HYPERCUBE  M O D E L  

PPLIED  TO  F I D U C I A L  C O S M O L O G Y  

n Fig. D1 , we show the summary statistics results for the model
rained on latin-hypercube simulations and applied to fields at the
ducial cosmology, as described in Section 4.5 . The redshift is fixed
t z = 0. 
tion case at z = 0. Second row : each panel represents the field in the training 
-wise distance. As can be seen, while the maps have the same texture (and 
erent, thus confirming that our model is not affected by mode collapse. 
D
ow

n
loaded from
 https://academ

ic.oup.com
/m

nras/article/520/1/668/6991219 by C
atherine Sharp user on 08 February 2023

art/stad052_fC1.eps


Mac hine-learning-augmented r andom fields 683 

MNRAS 520, 668–683 (2023) 

(a) (b) (c)

(d) (e) (f) (g)

Figure D1. Same as Fig. 6 , but in this instance, the model was trained on latin-hypercube simulations, as described in Section 4.5 . Despite a small degradation 
in performance, visible e.g. at high k for the power spectrum, there is good agreement o v erall, further validating our approach. 
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