Surface Wave Antenna Metallic Cell Pattern Design
Using Neural Network Method

Jiashu YANG
Department of Electronic and Electrical Engineering
University College London
London, United Kingdom
uceejyl@ucl.ac.uk

Abstract—This work presents a surface wave antenna
metallic cell pattern prediction method which can be generated
based on the required far-field radiation pattern by the mean of
applying Wasserstein generative adversarial network (WGAN)
and bi-directional gated recurrent unit (Bi-GRU) neural
network models. The predicted metallic cell pattern has been
3D-modelled in CST and the radiation pattern shows less than 1
dBi variation level from the desired input radiation pattern.
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1. INTRODUCTION

In the FMCW vertical-looking radar (VLR) system design
[1], the antenna utilised for upward-looking is a scalar feed
horn antenna. The beam is pointing upward with an offset of
0.18° The angle adjustment needs to be very accurate and is
complicated to perform. Such antenna only provides a limited
circular observation area with a diameter of 1.2m. Such
narrow observation areas can only detect a limited number of
insects. Cosecant-squared radiation pattern antennas could
offer considerable improvements to the VLR system due to
the fact that they enable an adapted distribution in the radiation
pattern, which results in Dbetter space scanning.
Conventionally, the cosecant-squared radiation pattern can be
achieved by curve shaped reflectors [2] and phased array
antennas [3]. However, these techniques are costly and large
in size, which is incompatible with the compact VLR system.
Therefore, a low fabrication cost and low profile surface wave
antenna, designed by a neural network-based method, is
proposed to have the cosecant-squared radiation pattern.

Trapped surface wave (TSW) is a type of surface wave and
it travels along the inductive boundaries and keeps being
trapped between the two mediums. The TSW plane can be
formed by inductive boundaries, such as dielectric-coated
plane conductors and corrugated surfaces [4]. The TSW can
be disrupted and scattered out to free space by introducing
metallic cells on the substrate surface. Different distributions
of the metallic cells have different near zone E-field and thus
have different far-field radiation patterns. The relationships
between the metallic cells and the near zone E-field and the
relationships between near zone E-field and far-field radiation
pattern can be studied by neural network models. Once the
relationships are confirmed, the metallic cell distribution can
be obtained by using desired radiation pattern as input.

WGAN is a type of generative adversarial network that
uses Wasserstein distance as the loss function. It leads to more
stable training than the original GAN with less evidence of
mode collapse [5]. WGAN is a data augmentation technique
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that produces new data samples, in this work, WGAN is used
to produce near-zone E-field. GRU is a sequence processing
model and is suitable for designing an effective sequence
learning system to address sequence-in-sequence-out. Bi-
GRU combines a forward and a backward GRU and enables
the neural network model to improve the classification
accuracy [6]. Bi-GRU is used to learn the relationship between
near zone E-field and far-field radiation patterns and the
relationship between near zone E-field and metallic cell
patterns.

In this paper, a 30° dual-sided cosecant squared radiation
pattern will be served as input to the neural network models to
design the surface wave antenna. The full 3D electromagnetic
(EM) simulation will be performed to verify the performance
of the neural network models.

II. ANTENNA GEOMETRY
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Fig. 1. The proposed surface wave antenna with coplanar SWL.

In this neural network-based method, a planar mmWave
surface wave antenna is proposed to provide the training data
to the neural networks. Fig. 1 shows the geometry of the
proposed antenna operating at 34.5 GHz. The antenna
comprises a coplanar surface wave launcher (SWL), five
radial rows of metallic rectangular shape cells and a piece of
conductor-backed microwave dielectric substrate. The five
radial rows of metallic cells are separated by 5° in ¢ direction.
The Rows 1, 3 and 5 are the same and consist of six metallic
cells, while the Rows 2 and 4 are the same and have five
metallic cells. The position of the metallic cells in Row 2 is
determined by the position of gaps in Row 3, such that
metallic cells in Row 2 fit precisely where the gaps are in
Row 3. In the electromagnetic (EM) simulations, a K-
connector (Amphenol SV Microwave 1621-60050) is



implemented at the feed of this surface wave antenna for
including its potential effect in the radiation pattern. In this
research, a cosecant-squared radiation pattern in the yz-plane
is to be determined. Therefore, the metallic cells are located
symmetrically along the y-axis. The thickness of the metallic
cells is 0.0175 mm. The metallic cells are printed on a piece
of 0.787 mm thick microwave substrate Rogers RT5880 (& =
2.2, tand= 0.009 at 10 GHz), which will provide the surface
impedance of ;117Q with the appropriate excitation
efficiency of 94.2% of the SWL. The substrate is 77.56 mm
in length and 40 mm in width.
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Fig. 2. The predicted metallic cell pattern of the central radial row.
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Fig. 3. The far-field radiation pattern (yz-plane).

III. METHODOLOGY AND EM SIMULATION RESULTS

In the neural network method, the WGAN and Bi-GRU
model need to be trained first before prediction. A user-
defined cosecant-squared radiation pattern is input to the
neural network models first. The WGAN will generate a
random near-zone E-field and the Bi-GRU model 1 will
produce a corresponding far-field radiation pattern based on
the WGAN generated near-zone E-field. The produced
radiation pattern will be compared with the input radiation

pattern to compute the loss (difference). If the loss is
unacceptable, this procedure will be iterated until the loss is
acceptable. If the loss is acceptable, it means the WGAN
generated E-field can be used to feed the Bi-GRU neural
network model 2 to generate the metallic cell pattern.

The dash-dot line in Fig.3 shows the user-defined 30°
cosecant-squared radiation pattern. The input radiation pattern
only regulates the dual-sided 30° range, whereas the range
beyond the dual-sided 30° does not have any regulation. The
30° dual-sided cosecant-squared radiation pattern is served as
the input to the neural network prediction models without
considering the radiation pattern outside the range. After input
the user-defined radiation pattern to the neural network
models, the metallic cell pattern of the central radial row is
shown in Fig. 2. The metal on or off denotes the value 1 or 0
in the figure, where 1 means there is metal and 0 indicates no
metal at that point. Therefore, the distribution of the metallic
cell of the surface wave antenna can be designed according to
the value on the y-axis. Once the positions of the metallic cells
in the central radial row are obtained, the rest of the rows can
be defined according to the position relationship between the
radial rows.

The ideal 30° dual-sided cosecant-squared radiation
pattern is set as the goal to the neural network models. From
Fig 3, it can be observed that the CST simulated radiation
pattern is within £ 1dBi variation from the ideal cosecant-
squared radiation pattern in the range from (¢, 8) = (270°, 30°)
to (90°, 30°). The maximum gain is 8.49 dBi at (¢, ) = (90°,
29°). This radiation pattern improves the diameter of the
circular observation range to 9.8 m.

IV. CONCLUSION

A neural network-based method is proposed to predict the
metallic cell pattern of the surface wave antenna. The
predicted metallic cell pattern has been 3D-modelled in CST
and shows less than 1dBi variation from the ideal input
radiation pattern.
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