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Abstract 25 

 26 

[Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma 27 

incidence is bimodal, peaking at 18 and 60 years of age and it is slightly more common in 28 

males. The key pathophysiological mechanism involves several possible genetic drivers of 29 

disease linked to bone formation, causing malignant progression and metastasis. While there 30 

have been significant improvements in the outcome of patients with localized disease, with 31 

event-free survival outcomes exceeding 60%, in patients with metastatic disease event-free 32 

survival outcomes remain poor at at less than 30%. The suspicion of osteosarcoma based on 33 

radiographs still requires pathologic evaluation of a bone biopsy specimen for definitive 34 

diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, 35 

population-based screening and surveillance strategies have not been implemented due to the 36 

rarity of osteosarcoma and lack of reliable markers. Current screening focuses on high-risk 37 

groups only, such as patients with genetic cancer predisposition syndromes. Management of 38 

osteosarcoma requires a multidisciplinary team of pediatric and medical oncologists, 39 

orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of 40 

osteosarcoma require specialized medical follow up, as curative treatment consisting of 41 

chemotherapy and surgery has long-term adverse effects, which also affect patients' quality of 42 

life. The development of osteosarcoma model systems and related research, as well as 43 

evaluation of new treatment approaches, are ongoing to improve patient outcomes. 44 

  45 
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Introduction 46 

Osteosarcoma is a common primary malignant tumour of the bone, with a peak incidence in 47 

adolescents and adults >60 years of age.1Although Osteosarcoma can present in any bone in 48 

the body, the most common sites are around the knee and the proximal humerus (Figure 1).2 It 49 

can also arise in individuals with a history of cancer as a secondary osteosarcoma. The 50 

diagnosis of osteosarcoma, which will be discussed further below, is made by the biopsy of 51 

mass located most commonly at the metaphysis of the long bones based on the imaging 52 

findings of patients who presented with pain, decreased mobility, and often times a palpable 53 

mass. Histologically, conventional osteosarcomas most commonly appear as spindle cell 54 

tumours hat produce malignant osteoid and, consequently, are thought to derive from the 55 

malignant transformation of cells of the mesenchymal lineage at an undefined stage of 56 

differentiation towards becoming osteoblasts.3 Microscopically, based on the predominant 57 

matrix being produced, the tumours can be subdivided into chondroblastic, fibroblastic, 58 

osteoblastic, and telangiectatic. This suggests that the tumours maintain some of the 59 

pluripotency of their early undifferentiated mesenchymal precursors4. Osteosarcomas can be 60 

also divided into three major groups: low, intermediate, and high-grade.5 The grade of the 61 

tumour serves as a relative indicator of the risk of developing metastatic disease. Low grade, or 62 

parosteal, osteosarcomas are typically indolent and are treated by surgical removal alone. High 63 

grade tumours have a high-risk of developing metastasis in the lungs, lymph nodes and other 64 

bones 6,7, and they require surgery and adjuvant chemotherapy as treatment.  High-grade 65 

osteosarcomas are the focus of this Primer. Unfortunately, the outcomes for patients with 66 

osteosarcomas have remained relatively stagnant since the advent and remarkable 67 

improvement in tumour survival associated with modern chemotherapy in the 1980’s.8 However,  68 

improvements in our understanding of the biology of the disease has provided the foundation for 69 

a new wave of innovative targeted therapy clinical trials using treatment directed at the intrinsic 70 

molecular biology of osteosarcomas or antigens ubiquitously expressed on the surface of the 71 

tumour9.  72 

In this Primer, we summarize the epidemiology of osteosarcoma, including known genetic risk 73 

factors, influences of age and sex, and discuss current knowledge of disease pathophysiology, 74 

highlighting carcinogenesis, clinical progression and development of metastasis, genetic drivers 75 

of disease and the identification of potential targets. We summarize osteosarcoma diagnosis 76 

and management, which requires a multidisciplinary team approach. Finally, we provide an 77 
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overview on patient quality of life, the impact of late effects, and discuss future areas of 78 

research. 79 

 80 

Epidemiology 81 

 82 

Incidence and mortality  83 

Although rare, osteosarcoma is the most common primary malignancy of bone with an 84 

incidence in children and adolescents of ~3-4.5 cases per million population per year.10 In the 85 

USA, osteosarcoma accounts for <1% of all new cancer diagnoses with ~1,000 new cases 86 

diagnosed per year and half of these cases occurring in children and adolescents.1 The global 87 

incidence rates in younger age groups (individuals ≤24 years) are relatively consistent across 88 

the USA, Europe, and Asia. However, higher incidence has been reported in South America (7-89 

7.6 per million young males in Colombia and Ecuador) and in Africa (Sudan and Uganda, 90 

relative frequency in childhood 5.3% and 6.4%, respectively) than in Europe (frequency ~2-91 

3%)10,11. Data regarding differences between ethnic groups are limited, but higher rates of 92 

osteosarcoma have been observed in African American children and young adults in the USA 93 

than in white individuals1. Greater geographic variation in osteosarcoma incidence in individuals 94 

≥ 60 years has been observed, but data are insufficient to determine whether these differences 95 

are due to varying criteria for disease classification in registries, differences in environmental 96 

exposures, such as prior radiotherapy for other cancer types, or genetic predisposition.  97 

Approximately 80% of patients with osteosarcoma present with radiographically localized 98 

disease9. Those patients with radiographically confirmed non-metastatic osteosarcoma have a 99 

5-year event-free survival of ~60%9. In patients who present with a primary lesion and an 100 

isolated pulmonary nodule that survival is generally <40%9. For individuals with a primary lesion 101 

and multiple pulmonary nodules or radiographically detectable metastatic disease at other sites, 102 

survival prognosis is <20%9.  103 

Influence of age and sex 104 

Osteosarcoma incidence has a bimodal age distribution with a primary peak in adolescents and 105 

young adults  and a second smaller peak in the seventh and eighth decade of life1 (Figure 2A) It 106 

is particularly uncommon in young children <10 years of age in whom the genetic etiology may 107 

be different to that in adolescents12. The incidence rise and peak in adolescents up to the age of 108 
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24 years are often attributed to the hormonal changes that occur during puberty with an earlier 109 

peak in girls than in boys13. Osteosarcoma in adults (>40) and elderly populations (>60) tend to 110 

occur secondary to other conditions, such as Paget’s disease of bone, transformation of other 111 

benign bone conditions, or as a late effect of therapeutic irradiation14. 112 

Osteosarcoma is slightly more common in males, with an average male-to-female ratio of 113 

1.4:115. A Surveillance, Epidemiology, and End Results (SEER) analysis in a US population 114 

provides additional insight into demographic differences that relate to age, sex, and 115 

race/ethnicity of patients with osteosarcoma (Figure 2B and 2C)16. The age-adjusted incidence 116 

rate was 1.9 per million for 0-9 years old, 6.7 per million for 10-24 years old, 1.9 per million for 117 

25-59 years old, and 2 per million in the ≥60 years old age group. In the USA, Hispanic males 118 

aged 10-24 had the highest incidence rate compared with any other age group or sex. Data of 119 

all age groups combined revealed that the Black population had the highest overall incidence. 120 

Notably, the incidence of osteosarcoma in children and adolescents has increased from the 121 

1970s to the 2000s but has declined in adults >60 years of age.  Some of the increase in this 122 

population may be related to the increase incidence of subsequent osteosarcomas over the past 123 

decade which may be attributable to the increasing number of childhood survivors.  In regards, 124 

the patients >60 years old, the decrease incidence of osteosarcoma in this population may be 125 

attributable to the decrease rate of Paget related osteosarcoma.  Patient sex does not seem to 126 

markedly influence prognosis but reports suggest males may have a slightly worse outcome 127 

than females and older patients have a worse outcome than young patients with 128 

osteosarcoma16. Health disparities do not seem to have a major effect on survival outcomes but 129 

data are limited17. 130 

 131 

Risk factors 132 

Genetic predisposition 133 

Most osteosarcoma cases are sporadic; however, a considerable subset of cases occur in the 134 

setting of established cancer predisposition syndromes. The frequency of germline mutations in 135 

patients with osteosarcoma ranges from 18% to 28% and these mutations are more common in 136 

younger patients12,18. A growing number of cancer predisposition syndromes are considered risk 137 

factors for development of osteosarcoma, including Li-Fraumeni Syndrome, hereditary 138 

retinoblastoma, and Diamond-Blackfan anemia, as well as primary DNA helicase disorders 139 

involving RECQ family of genes, including Rothmund-Thomson Syndrome, RAPADILINO 140 
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Syndrome, Bloom Syndrome and Werner Syndrome (Table 1).19-21 Age of onset for these 141 

syndrome-associated tumours can be younger than in individuals with sporadic cases. Patients 142 

with retinoblastoma and Rothmund-Thomson Syndrome might present with osteosarcoma in 143 

their teens and osteosarcoma associated with Werner Syndrome or Li-Fraumeni Syndrome in 144 

middle age22,23. The most commonly observed pathogenic or likely pathogenic autosomal 145 

dominant germline variants in patients with osteosarcoma are in the tumour suppressor genes 146 

TP53 (associated with Li-Fraumeni Syndrome) and RB1 (hereditary retinoblastoma). Other 147 

likely pathogenic variants have been observed in cancer susceptibility genes including APC, 148 

MSH2, PALB2, CDKN2A, MEN1, VHL, ATRX and others12. In addition, polygenic interactions 149 

may explain the association between tall stature and risk of osteosarcoma24. 150 

 151 

Radiation and chemotherapy 152 

Osteosarcomas can occur as secondary cancers in patients that have been previously treated 153 

with radiotherapy or chemotherapy. Radiotherapy-associated osteosarcomas tend to occur 154 

within the radiation field following a long latency period of >10 years and are more frequent in 155 

patients with cancer predisposition syndromes, such as Li-Fraumeni Syndrome or hereditary 156 

retinoblastoma25  Similarly, exposure to alkylating chemotherapy, particularly when given along 157 

with radiotherapy, has been associated with an increased incidence of subsequent 158 

osteosarcoma in childhood cancer survivors25.  159 

Paget’s disease of bone and other predisposing conditions 160 

Particularly in older adults, osteosarcomas may also arise in the setting of Paget’s disease of 161 

bone and other bone disorders, suggesting a role of abnormal bone turnover in osteosarcoma 162 

pathogenesis26. Paget’s disease of bone is a benign metabolic bone disorder associated with 163 

osteoclast dysregulation. Although the precise incidence is unknown, it is estimated that 164 

malignant transformation to osteosarcoma occurs in ~1% of patients with Paget’s disease26 165 

Children or adults  with other bone conditions, including fibrous dysplasia (as seen in McCune-166 

Albright syndrome27) and several benign bone tumours (such as enchondroma, aneurysmal 167 

bone cysts, and giant cell tumour of bone), also have an increased risk of developing 168 

osteosarcoma.  Whether these benign bone tumours trigger a transformation based on the 169 

accumulation of genetic and epigenetic events or the creation of an environment permissive to 170 

malignant transformation remains unclear28. 171 
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Mechanisms and Pathophysiology 172 

 173 

Osteosarcomagenesis 174 

 175 

Cellular origin  176 

  177 

Osteosarcoma is defined histologically as a tumour of osteoid-producing cells, which often exist 178 

within an admixture of adipogenic, muscle, spindle, fibroblastic, and chondroblastic cells3. This 179 

microscopic phenotype has long fuelled the assumption that osteosarcoma arises from a 180 

multipotent mesenchymal precursor. Epidemiologic observations support this interpretation as 181 

tumours were found to arise most frequently within the metaphyses of long bones in children, 182 

adolescents, and young adults during times of peak linear growth, suggesting that the bone- 183 

and cartilage-producing cells that proliferate rapidly during those growth spurts are those 184 

susceptible to transformation giving rise to osteosarcoma29,30. Introduction of TP53 mutations 185 

into partially differentiated osteogenic stem cells generated osteosarcoma-like cells in vitro31. 186 

Similarly, genetically engineered mouse models have been most successful when introducing 187 

TP53 and other mutations using promoters for genes activated along the path that leads from 188 

mesenchymal stem cell to osteoblast29. Together, these data support the hypothesis that 189 

osteosarcomagenesis occurs within a proliferating population of partially-differentiated 190 

osteoblast precursor cells (Figure 3). While mesenchymal differentiation is not as well 191 

characterized as the hematopoietic system, a number of transcription factors have been 192 

identified as key regulators of clusters of genes involved in the development of various cell 193 

types. Some of these are highly expressed in the context of osteosarcoma and relate to its 194 

osteogenic phenotype and include SOX9, RUNX2 and Osterix. Some of these transcription 195 

factors themselves are influenced by tumor suppressor genes and oncogenes such as TP53 196 
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and MYC. WWOX a tumor suppressor gene associated with bone tumors and osteosarcoma 197 

exerts its effect through RUNX2. 198 

Chromosomal complexity and copy number alterations  199 

The genomic landscape of osteosarcoma tumours is usually dominated by widespread 200 

structural rearrangements, suggesting that several different mutational mechanisms, including 201 

chromothripsis, chromoplexy, ketaegis and other structure-altering mechanisms, are involved32-
202 

34. These rearrangements give rise to genome-wide copy number alterations, usually dominated 203 

by copy number loss, including of PTEN, CDKN2A/B, but with recurrent amplifications of MYC, 204 

VEGFA, CCNE135. Osteosarcoma tumours often show signs of whole-genome duplication, 205 

which probably occurs in response to stresses imposed by pervasive copy number losses36. 206 

This genomic complexity has long been interpreted as a sign of chromosomal instability, but 207 

emerging data suggest that the mechanisms triggering complexity are active early in the 208 

process of malignant transformation35,37. Of note, the resulting complex genomes are 209 

subsequently maintained with some fidelity, even from diagnosis to relapse35,37. 210 

Recurrent mutations  211 

 212 

Aside from these characteristic structural alterations, large-scale sequencing has identified only 213 

moderate levels of point mutations with few recurrently mutated genes33,34,36,38. The single most 214 

frequently altered gene is the tumour suppressor TP53, which is lost in >90% of  osteosarcoma 215 

tumours, with the majority lost through intron 1 rearrangements or deletions rather than through 216 

point mutations33,36,38. TP53 is an extremely well known tumor suppressor gene which has been 217 

referred to as the “guardian of the genome.” Its normal function is to induce apoptosis in cells 218 

that acquire mutations. Given the chaotic genome typically present in osteosarcoma, abrogating 219 

that guardian function is necessary for cancer cell survival. Deletion of RB1 also occurs in up to 220 

30% of osteosarcoma tumours, often through loss of heterozygosity (LOH)33,34. Using these 221 

genomic aberrations to infer the evolution of the tumours, loss of TP53 and RB1 likely occurs 222 

early in the transformation process (with TP53 inactivation required to propagate abnormal 223 

genomes39-41), followed by rapid accumulation of driver lesions such as MYC amplification, 224 

PTEN loss42, and deletion of ATRX, which seems to activate alternative lengthening of 225 

telomeres and is associated with decreased survival36,43.  226 
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Malignant progression and metastasis 227 

 228 

The stepwise mechanisms that result in osteosarcomagenesis are not well understood, but one 229 

can deduce that the process involves loss of TP53 and a catastrophic event causing 230 

widespread chromosomal rearrangements. TP53 loss likely precedes the mass rearrangement 231 

events (via LOH) and/or arises as a consequence of those events (via LOH and intron 1 232 

rearrangements). Cells that inherit patterns of gene copy number changes that endow them with 233 

a growth advantage might form the basis of primary tumours, with dominant clones emerging 234 

through further acquisition and amplification of growth-promoting alterations.The most likely 235 

order of events for osteosarcoma evolution is loss of TP53 and RB1 as early events of which 236 

TP53 loss is likely the initiator of the genomic instability39-41, followed by whole genome 237 

doubling, the gain of 8q (CMYC), and loss of 10q (PTEN)42.  238 

Osteosarcoma development can be described by the conjunction of multiple factors: oncogenic 239 

events that initiate the malignant transformation; progressive increase of genetic aberrations 240 

with the increasing proliferation rate of cells committed toward the osteoblast lineage during 241 

bone growth44; and involvement of a permissive microenvironment which is a prerequisite for 242 

the growth of cancer cells (Figure 4).  The dialog between osteosarcoma cells and their 243 

microenvironment is crucial for tumour growth at the bone site and is associated with direct 244 

interaction between mesenchymal, vascular and immune cells (depending on cell differentiation 245 

level)45.  interaction of cells with soluble factors such as chemokines, cytokines46, and 246 

interaction of cells with extracellular vesicles47. In early-stage disease, proliferation of 247 

osteosarcoma cells disturbs the balance between osteoblasts and osteoclasts and exacerbates 248 

osteoclast activity and bone resorption which, in turn, releases pro-tumoural factors from the 249 

bone organic matrix. However, the overall role of osteoclasts in osteosarcoma development 250 

remains unclear, as they seem to hold a pro-tumour role in early-stage disease48 but the 251 

opposite role in later-stage disease49. Osteoclasts, molecularly related to macrophages have 252 

been related to reduced metastases perhaps related to immune surveillance and tumor 253 

implantation. Mesenchymal stem cells, vascular cells and immune cells complete the landscape 254 

of osteosarcoma at the bone site15 These cells in the context of normal bone provide the cellular 255 

scaffold, vascular supply and other critical functions. 256 

The tendency for osteosarcoma to metastasize to the lung is an outcome-defining complication 257 

that drives patient mortality and challenges clinicians50 (Figure 4). This seed and soil 258 

phenomenon is driven by a microenvironment that modulates osteosarcoma cell behaviour and 259 
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facilitates proliferation, quiescence, invasion, migration and drug resistance15,51-53, and 260 

contributes to their intrinsic heterogeneity54,55. Extracellular vesicles released from 261 

osteosarcoma cells manipulate the lung environment at a distance and prepare the pre-262 

metastatic niche to host migrating tumour cells56. Mesenchymal stem cells (MSCs) have been 263 

implicated in osteosarcoma metastasis and therapeutic resistance57-59. Osteosarcoma cells 264 

educate these MSCs by secreting TGF-β-containing extracellular vesicles60. triggering MSC IL-6 265 

release and activating a STAT3-mediated tumour progression program that drives the formation 266 

of metastatic foci within the lung61The targetable IL-6 and CXCL8 pathways were identified as 267 

crucial to lung colonization62, whereas osteosarcoma- and niche-derived extracellular vesicles 268 

were shown to reprogram myofibroblasts63 and osteosarcoma stem cells64 toward a fibrogenic 269 

phenotype, which seems to be important for metastatic colonization and  also provides a 270 

targetable process65.  271 

Tumour education of the innate immune cells was found essential for the maintenance of 272 

metastatic lesions. Here, comparative studies (Box 1) have been insightful. Evaluation of 273 

samples taken from osteosarcoma-harbouring dogs treated with adjuvant therapy (muramyl 274 

tripeptide) suggested that reprogramming of these immune cells, especially macrophages, could 275 

prevent metastatic lesions formation66, a finding that was reproduced to some extent in 276 

humans67,68. Similar approaches have used engineered Listeria bacteria to reprogram 277 

macrophages while also eliciting adaptive responses to the potential tumour antigen HER2, an 278 

approach that has suggested increased event free survival in early-phase canine osteosarcoma 279 

trials69.  280 

Several other mechanisms have key roles in osteosarcoma metastasis. Activation of the 281 

WNT/β-catenin pathway is important during early steps in the metastatic cascade70,71. The 282 

cytoskeletal linker ezrin provides a scaffold for PI3K/AKT signalling and facilitates survival 283 

through the stresses that disseminated tumour cells first encounter within the lung72-74. Evidence 284 

further suggests that triggering the hemostatic cascade is important for early survival of 285 

disseminated cells75,76. Similarly, ANGPTL277 and the RANK/RANKL/OPG system78 have been 286 

identified as key contributors to the formation of the pre-metastatic niche in the lung. While 287 

epigenomic mechanisms may also play a role in metastases, progression and recurrence, 288 

studies thus far are limited for precisely determining the extent to which these mechanisms 289 

contribute. 290 

   291 



12 
 

Drivers of disease and potential targets 292 

Investigations of the genomic and immune landscapes of osteosarcoma have suggested 293 

several potential precision strategies for patients with osteosarcoma based on somatic gene 294 

alterations, copy number alterations, tumour mutational burden, and immune and stromal 295 

features. However, each of these approaches comes with important caveats. A major caveat is 296 

each of these alterations only apply to a very limited number of patients making clinical trials of 297 

these subgroups challenging and many more common alterations are not associated with 298 

targetable therapies.  299 

Genetic alterations  300 

Even the most successful molecular matching studies have identified few targetable mutations 301 

in patients with osteosarcoma79,80. Personalized medicine studies that have included 302 

osteosarcoma patients have targeted DNA damage repair pathways, CCNE1, ATR and CDK4 303 

amongst others. If matches were identified, very few responses were observed when patients 304 

received the corresponding targeted agent.  Copy number amplifications of potentially 305 

targetable genes seemed to predict sensitivity to specific agents 35; however, subsequent work 306 

has shown that the picture is much more complicated9. Numerous examples of alterations which 307 

are not oncogenic drivers related to either redundancy or alternate pathways existing have 308 

compromised efficacy of the targeting approaches. As an example, osteosarcoma patients may 309 

harbour a CCNE1 amplification at the same time as PDGFR amplification confounding target 310 

selection.  Further investigation is needed to understand how these genetic lesions identify 311 

tumours likely to respond to precision therapies. 312 

Immune approaches  313 

 314 

There has been a long standing interest in immune based therapies based on the activity of 315 

mifurmatide in osteosarcoma in phase 2 and subsequently a randomized phase 3 trial 316 

conducted by the Children’s Oncology Group81. Compelling evidence suggests this agents acts 317 

through its activation of macrophages. This agent has been approved by many drug regulatory 318 

bodies but not the Food and Drug Administration in the United States limiting its use. A 319 

subsequent international study explored the efficacy of interferon-α and it did not show any 320 

activity82. Interest in immune based therapies remains high. 321 
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The genomic complexity of osteosarcoma might suggest sensitivity to immune modulators such 322 

as immune checkpoint inhibitors, but the overall mutational burden within most osteosarcomas 323 

is markedly less than that associated with responses to immune checkpoint inhibition (ICI) in 324 

other adult tumours83. Even in the context of osteosarcoma older patients have a profile that is 325 

more associated with response to immune checkpoint inhibitors.36 Only a few of the mutations 326 

occurring in osteosarcoma cells result in protein structure alterations and therefore, possible 327 

neo-antigens further limiting the potential immunogenicity of osteosarcoma cells9. Indeed, 328 

clinical responses to ICI have been generally disappointing84,85, although several emerging 329 

immune-based approaches other than ICI have generated encouraging preclinical results86-91 330 

Targeting cell surface antigens is one of those approaches that has received much attention 331 

(Figure 5). Several cell surface antigens expressed on osteosarcoma cells are also expressed 332 

on other adult tumour cells, making it possible to develop approaches that can be used broadly. 333 

Some of these targets include the surface proteins HER2, GD2, GPNMB, LRCC15 and B7H3. 334 

The emerging preclinical data for chimeric antigen receptor (CAR)-T and CAR-NK cell therapies 335 

are encouraging88,89 and clinical trials designed to refine those approaches and assess their 336 

efficacy are ongoing with those studies including cohorts of osteosarcoma patients Preclinical 337 

data evaluating antibody-drug conjugates, such as those targeting B7-H390, LRRC1586, and 338 

HER292, have been particularly promising and are rapidly moving to and through clinical trials.  339 

Cell-Cycle, transcriptional and translational targets  340 

Several large-scale screening efforts have honed in on drugs that target the cell cycle 341 

machinery as agents of particular interest. The most intriguing data has come from a preclinical 342 

study of agents that broadly disrupt transcription and translation.93 The promising preclinical 343 

successes seen with CDK12 inhibitors93 and drugs that block protein elongation94 may not be 344 

surprising, as osteosarcoma cells depend on massive levels of protein production. Recurrent 345 

CDK4 alterations have been described in osteosarcoma35.  There are currently clinical trials 346 

evaluating CDK4/6 inhibitors in osteosarcoma95,96.  347 

Cytokines and growth factors  348 

Osteosarcoma tumours arise during puberty, when many progenitor cells undergo differentiation 349 

in response to signalling via, for example, FGF297, RANKL, and IGF198.  Indeed, IGF1 receptor 350 

amplifications occur in up to 14% of osteosarcoma patients38, which seems to drive activation of 351 

the PI3K-AKT-mTOR pathway through the MAPK pathway99. Several of the cytokines that 352 

mediate metastasis may also constitute therapeutic targets, including IL6, CXCL862, CCL2100, 353 
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and β-catenin101. These have demonstrated positive data in preclinical studies testing these 354 

agents in a variety of osteosarcoma models.  355 

 356 

Diagnosis, screening and prevention 357 

 358 

Diagnosis 359 

Presentation  360 

 361 

Many patients later diagnosed with osteosarcoma  first seek medical care with concerns for 362 

persisting pain in an extremity102. A question frequently asked to assess the severity of pain is 363 

whether the pain keeps them up at night, with the answer int the context of osteosarcoma 364 

typically answered in the affirmative. The pain is often accompanied with swelling at the same 365 

site and patients might misassociate these symptoms with recent minor injuries. The loss of 366 

structural integrity due to tumour-related osteolysis puts patients at risk for pathologic fractures, 367 

which occur in ~10% of patients and can complicate initial management103. Identification of an 368 

aggressive lesion should prompt referral to a specialist centre with multidisciplinary experience 369 

in caring for patients with skeletal sarcomas to improve outcomes.  370 

Imaging  371 

The work-up for the presenting symptoms usually includes plain-film radiographs, potentially 372 

revealing large lesions, which are causing destruction of normal trabecular bone with poorly 373 

defined margins104 (Figure 6) . Lesions often stimulate periosteal new bone formation, which can 374 

give rise to the characteristic Codman triangle. The associated soft tissue mass can exhibit 375 

variable patterns of ossification, leading to the characteristic radial sunburst pattern often 376 

associated with osteosarcoma. Even if conventional radiographs are highly suggestive of 377 

osteosarcoma diagnoses, MRI covering the entire length of the affected bone should still be 378 

performed105,106. MRI can better characterize the associated soft tissue masses and facilitates 379 

planning for biopsy and eventual surgical resection. MRI also often reveals skip metastases 380 

frequently captured by local site imaging or if more distant suggested by bone scan., which have 381 

implications for management and prognosis.  382 
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Biopsy and pathology  383 

 384 

The diagnosis of osteosarcoma requires the pathologic evaluation of a bone tissue biopsy 385 

sample, which can be obtained using either a minimally invasive core needle biopsy approach 386 

or an open biopsy. For core needle biopsies, adequate sampling of the tissue has to be 387 

ensured, as osteosarcoma lesions can be quite heterogeneous and diagnostic features (such as 388 

malignant osteoid) can vary from sample to sample. The biopsy should be performed after 389 

consulting with the surgeon that will do the final operation in case the diagnosis is confirmed to 390 

ensure the needle track can be removed easily as part of the definitive surgery. For additional 391 

downstream molecular diagnostics of fresh or frozen tissue, adequate sampling is even more 392 

important. Open biopsies are often preferred, as they provide larger amounts of intact tissue. 393 

Fine needle aspirates are usually inadequate for definitive diagnosis of osteosarcoma due to the 394 

lack of sufficient histologic context and the resulting difficulty to assess tumour grade and they 395 

are not recommended.   396 

The histologic diagnosis of osteosarcoma depends on the identification of malignant cells 397 

producing osteoid and irregular woven bone within fields of malignant tumour cells107 (Figure 7). 398 

The tumour cells usually exhibit marked atypia with a high degree of pleiotropism, and multiple 399 

morphologies (spindle, epithelioid, small round, and giant cell) may exist within the same 400 

tumour. Although SATB2 and osteocalcin immunostaining and negative immunostaining to rule 401 

out alternative diagnostic entities can help guide a diagnostic workup, no immunological or 402 

molecular marker has yet been identified that confirms a diagnosis of osteosarcoma . 403 

Staging  404 

The post-diagnostic staging work-up aims to identify and to characterize established metastatic 405 

disease, whether that is overt (diagnosed synchronously with the primary lesion) or covert 406 

(diagnosed metachronously, e.g. after definitive local therapy).  All patients presenting with 407 

newly diagnosed disease should undergo CT imaging of the chest, which has the highest 408 

efficiency for identifying lung nodules (Figure 6G). Skeletal imaging with PET or technetium 409 

bone scans is important to identify covert bony disease108..  Guidelines from the Children’s 410 

Oncology Group published in 2008 and still widely accepted advocate PET imaging with 411 

accompanying whole-body CT or whole-body MRI, with isotope bone scans if these modalities 412 

are not available. This workup recommendation reveals lung metastases in 15-20% of patients, 413 

and occasionally identifies tumours within other bones or, very rarely, lesions at other sites.  414 
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Staging is guided primarily by the Musculoskeletal Tumor Society (MSTS) staging system for 415 

sarcomas109, which defines tumours as being either low or high grade, confined to an anatomic 416 

compartment or violating anatomic barriers, and localized or metastatic. Most patients present 417 

with high grade lesions that have both bony and soft tissue components, making the presence 418 

or absence of metastasis the primary risk-stratifying feature at diagnosis. A small number of 419 

patients present with localized, lower grade parosteal and periosteal lesions110,111   420 

Stratification systems that categorize patients into subgroups based on prognosis and/or 421 

underlying osteosarcoma biology are currently being developed and validated112. Future clinical 422 

trials will benefit from these systems in patient assignments to either targeted therapy or de-423 

escalation therapy in patients likely to respond well.  424 

Prognosis  425 

 426 

At baseline, children and adolescents who present with localized osteosarcoma have an overall 427 

survival of ~60%113. Patients who present with lung metastasis have the worst prognosis with 3-428 

year survival rates of <30%114. Fractures may also be an indicator of more aggressive disease. 429 

Patients experiencing fractures have higher rates of lung metastasis, both at presentation and 430 

subsequent to treatment103. The response to neoadjuvant chemotherapy, assessed in the 431 

definitive resection specimen, has clear prognostic value and has been used in previous clinical 432 

trials to stratify patients into good responders and poor responders; however, intensification of 433 

treatment did not improve outcomes in the poor responder group115.   434 

The definition of good responder and poor responder to chemotherapy varies depending on the 435 

study. For example, necrosis grading had 4 levels but each level was defined descriptively 436 

only116,117 and percentages were added later to facilitate comparison117. The improvement in 437 

prognosis seems linear with increasing necrosis, with some studies setting the cut-off point 438 

between good and poor between grade 2 and grade 3, whereas others have set it between 439 

grade 3 and 4. With differences in percentages ascribed to each, the demarcation between 440 

good and poor response varied between studies (90% to 98% tumor necrosis in the resection 441 

specimen)118. Some studies suggested that histologic subtype of osteosarcoma can influence 442 

the degree of necrosis, with chondroblastic and telangiectatic subtypes having less necrosis, but 443 

those differences have not translated into improvement of survival1,119. The dosage of 444 

chemotherapy given before surgery shifts the degree of necrosis but it does not change the 445 

prognostic value of necrosis grading nor influence survival120. Other factors have not been 446 

shown to have a consistent effect on the observed degree of necrosis. As therapy changes 447 
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based on necrosis grading have not been shown to modify survival outcomes, the use of 448 

necrosis grading has declined.   449 

Molecular features that identify patients with higher risk include RB1 loss, MYC amplification, 450 

VEGFA amplification, and others. Unfortunately at the moment none of these risk factors are 451 

sufficiently validated to serve as a basis for risk stratification in the clinic.  452 

 453 

Screening and prevention 454 

 455 

Given the rarity of osteosarcoma, broad population-based screening and surveillance strategies 456 

have not been developed or implemented. Instead, strategies that focus on identifying patients 457 

with cancer predisposition (including osteosarcoma predisposition) in childhood should serve as 458 

the basis for osteosarcoma surveillance. These individuals are either identified based on a 459 

family member with known cancer predisposition syndrome and subsequent genetic testing or 460 

as a result of genetic testing obtained after a cancer diagnosis. Identification of at-risk 461 

individuals enables adherence to clinical practice guidelines and early identification and risk 462 

reduction for osteosarcoma as well as other cancers121. Practical challenge, however, is that 463 

nearly half of pathogenic TP53 germline variants in children with osteosarcoma may be de 464 

novo122. In these patients, pathogenic germline TP53 mutations are only identified after the 465 

initial diagnosis of osteosarcoma or other Li-Fraumeni Syndrome associated cancers.  466 

Current osteosarcoma screening is focused on high-risk groups, primarily patients with genetic 467 

cancer predisposition syndromes. Screening strategies advocate for increased awareness of 468 

osteosarcoma risk and annual comprehensive physical examination. Intensive blood and 469 

imaging-based surveillance in patients with pathogenic germline TP53 variants has been shown 470 

to be feasible resulted in detection of solid tumours at an earlier stage, and is associated with 471 

improved long-term survival, although these findings were not specific to osteosarcoma123. 472 

Guidelines for patients and families with Li-Fraumeni Syndrome include annual whole-body MRI 473 

to screen for multiple possible malignancies including sarcomas and maintaining a high index of 474 

suspicion for rare cancers124.  475 

No specific blood-based biomarkers or routine imaging for screening and early detection of 476 

osteosarcoma exist. An additional challenge in osteosarcoma prevention is that most of the 477 

cases are sporadic12. Efforts to de-escalate cancer treatment by reducing or eliminating the 478 
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need for radiotherapy may be beneficial in reducing the incidence of radiation-associated 479 

osteosarcomas. Patients with germline TP53 mutations as well as hereditary retinoblastoma are 480 

at particularly high risk for developing radiation-associated sarcomas and, therefore, radiation 481 

should be avoided in these at-risk groups125,126.  482 

Management 483 

The complex multi-modality management of osteosarcoma requires an expert multidisciplinary 484 

team that includes pediatric, medical and radiation oncologists, surgeons, pathologists, 485 

radiologists and specialist nurses127. Combination chemotherapy and complete surgical 486 

resection are essential for cure. This applies to both patients with localized disease and those 487 

with primary metastatic osteosarcoma, provided complete surgical removal of all known 488 

metastatic deposits has been achieved. Current treatment paradigms offer patients with newly 489 

diagnosed, resectable osteosarcoma long term survival rates of 60-70%128. However, outcomes 490 

have hardly improved in the past decades, and the intensive chemotherapy regimens used are 491 

associated with important acute and long-term toxic effects and a considerable impact on quality 492 

of life. In addition, patients with unresectable primary or metastatic disease at diagnosis and 493 

those with disease relapse have extremely poor outcomes2,129. New therapies and treatment 494 

strategies are, therefore, urgently required for osteosarcoma (Figure 8).  495 

Systemic therapy at diagnosis 496 

Until the 1980s, the extremely high propensity of osteosarcoma to form pulmonary metastases 497 

led to an almost universally fatal disease outcome with only local surgical management 498 

available. Progress was only made  with the introduction of systemic chemotherapy, which was 499 

soon administered neoadjuvantly130. Multiple studies using a combined approach of neoadjuvant 500 

chemotherapy and surgery showed long-term, disease-free survival rates in the range of 60-501 

70% in young patients with apparently localized disease128.Doxorubicin, high-dose methotrexate 502 

with leucovorin rescue, cisplatin, and ifosfamide have since been established as the most active 503 

agents in osteosarcoma as both neoadjuvant and adjuvant therapies. The most efficacious 504 

regimens employ at least three of these drugs, but adding a fourth agent may not lead to further 505 

benefits131.  506 

Although a minority of international investigators apply other, partially divegent protocols, most 507 

experts routinely use the neoadjuvant MAP-regimen of high-dose methotrexate, doxorubicin, 508 

and cisplatin as their treatment standard (Figure 9).  This choice of regimen is based on the 509 
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largest osteosarcoma study ever performed, EURAMOS-1115. This prospective, randomized 510 

trial, based on the MAP-regimen, unequivocally proved that long-term outcomes could not be 511 

further improved by postoperative treatment alterations and augmentations for poor responders. 512 

Patients who were and were not randomized to such salvage therapy had event-free survival 513 

rates of 53% (95% CI 47–53%) and 55% (95% CI 49–60%), respectively. In addition, 514 

maintenance therapy with interferon-α was not of any benefit in those with a good response82.  515 

Attempts to further improve disease outcomes have generally not been met with undisputed 516 

progress. Immunotherapy with the macrophage-activator muramyl tripeptide-phosphatidyl 517 

ethanolamine encapsulated in liposomes (L-MTP-PE) was investigated in a US population67. 518 

The results were hotly disputed at the time and left many questions open132. The use of L-MTP-519 

PE in patients with metastatic osteosarcoma was not  found to improve event-free or overall 520 

survival and should not be used outside of clinical trials133. The effectiveness of L-MTP-PE given 521 

post-operatively with ifosfamide-containing chemotherapy in patients with high-risk localized and 522 

metastatic osteosarcoma is the subject of a small ongoing randomized controlled phase II trial in 523 

France134.  524 

Patients with unresectable or widely metastatic osteosarcoma who are deemed incurable, are 525 

generally managed with the same systemic therapy options including MAP chemotherapy and 526 

local tumor control,  and outcome is very poor with <30% of patients surviving long term6. Due 527 

to the toxic effects of treatment, quality of life must be balanced against potential treatment 528 

benefits for those individuals.  529 

There is no standard-of-care systemic therapy for patients >40 years of age with poor outcome 530 

and few clinical trials to inform practice135.  These guidelines suggest that adult patients (defined 531 

as greater than 40) should be treated similar to pediatric and young adult patients.  However, 532 

adult patients may require tailored regimens especially in regards to high dose methotrexate.  533 

Retrospective analysis of the European Musculoskeletal Oncology Society of patients over 40 534 

did demonstrate that adult patients may benefit from aggressive treatment with surgery and 535 

chemotherapy, with outcomes possibly being related to decreased chemotherapy administered 536 

to some of the elderly patients135.  The EURO-B.O.S.S study demonstrated a favourable 5-year 537 

probability of survival of 66% (95% CI 57–75%) in patients with localized disease receiving 538 

intensive multi-agent chemotherapy that included attenuated doses of methotrexate136. 539 

However, considerable chemotherapy-related toxic effects were observed; neutropenia and 540 



20 
 

other haematologic adverse effects were most frequent. Randomized studies are required to 541 

standardize care for these patients. 542 

 Data on lower grade lesion management remains sparse; however, most clinicians agree that 543 

grade I localized parosteal tumours can be treated surgically. The general principles of treating 544 

subvariants in osteosarcoma is based on their grade. Low grade lesions including low grade central 545 

lesions are treated by local control only which is surgical. Intermediate grade lesions which include 546 

periosteal lesions and most osteosarcomas that include the jaw similarly need local control that is also 547 

typically surgery. In intermediate grade osteosarcomas the role of chemotherapy is controversial and 548 

certainly not associated with the same risk:benefit relationship as high grade osteosarcomas. 549 

Osteosarcomas in other craniofacial locations can be high grade and are treated with chemotherapy and 550 

local control when that is the case. In craniofacial locations local control can become challenging and 551 

most often is approached by multidiciplinary surgical oncologists and reconstructive teams. 552 

 553 

Surgery 554 

Primary osteosarcoma resection should be carried out by experts in surgical reconstruction to 555 

preserve bone function, while achieving a complete resection. Otherwise, intralesional or 556 

marginal resections increase local recurrence rate, which is associated with reduced overall 557 

survival2,137. Limb salvage is feasible for most patients with extremity tumours via reconstruction 558 

using an endoprosthetic implant, or allogeneic or autologous bone graft. Minimally invasive and 559 

non-invasive growing implants enable limb-salvage reconstruction as well as future limb-length 560 

equality for skeletally immature patients138. Reconstruction by using the uninvolved part of the 561 

limb, for example, by rotationplasty or tibial turn-up may also be beneficial, particularly in 562 

children139. Amputation remains optimal for some patients with large tumours when limb 563 

preservation is not possible, or the expected functional differences between limb-sparing 564 

surgery and amputation are small and the risks of limb-sparing surgery high. Technologies such 565 

as transosseous suture fixation devices and advances in prosthetics offer the potential for 566 

improved functionality for these patients140.  Local recurrence rates for extremity osteosarcoma 567 

is low and generally less than 5% suggesting in most cases complete resection is achieved. In 568 

selected patients with osteosarcoma, radiation is considered postoperatively particularly 569 

patients with close surgical margins and a poor grade of necrosis in the resection specimen. 570 
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Surgery is also an important local control modality for metastatic sites, with long term survival 571 

improving with resection of lung metastases. Here, the number of metastases and 572 

completeness of excision seems to affect outcomes6. 573 

Radiotherapy 574 

Although osteosarcoma is regarded as a radio-resistant disease, radiotherapy as local control 575 

may be considered if resection of a primary tumour is not possible or anticipated to lead to 576 

unacceptable morbidity, such as pelvic, trunk or cranio-facial primary sites of disease127. Heavy 577 

particles offer a technical advantage to deliver the high doses of 60Gy or ideally 70Gy deemed 578 

necessary for disease control141. Proton beam therapy (PBT) and carbon ion radiotherapy 579 

(CIRT) is, therefore, increasingly used for patients with inoperable disease or disease at 580 

challenging primary sites. Five-year local control rates of 62-67%  in patients with inoperable 581 

pelvic and trunk sarcomas are encouraging141,142. The combination of CIRT and PBT for 582 

inoperable osteosarcoma, was found to be feasible143. A comprehensive evaluation of particle 583 

beam therapy, in this setting, is a priority. 584 

Relapsed osteosarcoma  585 

Osteosarcoma recurs most often in the lung followed by bone at a site distant to the primary 586 

tumour. Local recurrence is rare; for example, it accounted for only 7% of all events in almost 587 

1,000 patients who had an event in the EURAMOS-1128. Surgery to completely remove all sites 588 

of recurrent osteosarcoma is recommended (Figure 8). This second complete remission, which 589 

is only achievable through surgery, has a strong association with improved outcomes after 590 

relapse in retrospective studies129. 591 

Several chemotherapy regimens are recommended by National Cancer Care Network (NCCN) 592 

and European Society of Medical Oncology (ESMO) guidelines at the time of osteosarcoma 593 

recurrence105,144. In cases of recurrent, surgically resectable osteosarcoma, chemotherapy may 594 

be given either prior to or after surgical resection; in select cases with a long disease-free 595 

interval, chemotherapy may be omitted. The regimens include high-dose ifosfamide with or 596 

without etoposide and gemcitabine and docetaxel. These chemotherapy regimens are 597 

recommended based on phase 2 trials or retrospective studies with small numbers of 598 

osteosarcoma patients showing moderate response rates of 20-50%145-147. One study suggests 599 

fractionated cyclophosphamide can replace ifosfamide with similar response rates148.  600 
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As a class, multi-targeted kinase inhibitors (MTKIs) demonstrate activity in recurrent 601 

osteosarcoma and are most often utilized in patients with advanced unresectable disease 602 

Prospective clinical trials evaluated the MTKIs sorafenib, regorafenib, cabozantinib, lenvatinib, 603 

and apatinib as single agents in patients with relapsed or refractory osteosarcoma, with most 604 

enrolled patients falling in the adult age range (Table 2)149-154. Objective response rates were 605 

low at 10-15%. Four-month progression free survival (PFS) ranged from 35% to 70%149-152,154. 606 

For comparison, a 4-month PFS of 0% in the control arm of the phase 2 trials of regorafenib and 607 

15% for a historical benchmark established by pooled analysis of 96 patients with osteosarcoma 608 

and measurable disease enrolled on seven Children’s Oncology Group phase 2 trials were 609 

observed155. Of note, dose interruptions and reductions of MTKIs have been frequent across 610 

these trials, secondary to common toxic effects of this drug class including hand-foot rash 611 

syndrome (palmar plantar erythrodysesthesia), gastrointestinal toxic effects, and 612 

hypertension149-154. The mechanism of action of MTKIs in osteosarcoma is still not well 613 

understood and correlative translational studies have yet to identify predictive biomarkers of 614 

response to MTKIs. 615 

Several different approaches are being taken in recurrent osteosarcoma to identify new, 616 

potentially more effective, therapies. Different combinations of MTKIs are currently studied, such 617 

as ifosfamide and etoposide plus lenvatinib (randomized phase 2 trial)156.  The phase 1 trial of 618 

this combination demonstrated tolerability and a 4-month PFS of 51%153. DNA damage 619 

response pathway drugs, such as PARP inhibitors and WEE1 inhibitors, are under investigation 620 

in patients with osteosarcoma, based on the  genomic features within the patient’s tumor.  621 

These features include the presence of COSMIC mutational signature possibly representing 622 

defective DNA damage response in osteosarcoma, in ~30% of cases, and the frequent 623 

presence of genomic events that lead to replication stress, such as MYC amplification and 624 

CCNE1 amplification. In addition, PD-1 and PD-L1 ICIs did not show activity in osteosarcoma157. 625 

Trials combining ICI with other anti-cancer therapies, such as MTKIs and trials of other immune 626 

activation approaches such as antibody combinations and cellular therapy, in individuals with 627 

osteosarcoma are at early stages 9. More research is warranted to fully understand the 628 

oncogenic and immune response pathways in osteosarcoma that promote cancer development, 629 

treatment resistance and metastasis. New trial approaches are expected to emerge as 630 

understanding of the disease increases.  631 

Late Effects 632 

 633 
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Osteosarcoma patients who are long-term, disease-free survivors still require dedicated medical 634 

care. Curative therapy has long-term toxic effects. The severity of these late effects may be life-635 

threatening, severe, or mild158. Surgery adds its own sequelae, which are usually not life-636 

threatening but may be incapacitating. 637 

Osteosarcoma surgery is usually associated with loss of a major joint, most often the knee. 638 

Even the most modern endoprostheses have a limited life-span, as mechanical wear or 639 

infections require repeated operations in most patients who undergo limb salvage. Ablative 640 

surgery (amputation) may be associated with poor joint function, but usually involves fewer 641 

episodes of revision surgery than limb salvage. Numerous studies have been published on both 642 

the psychological and functional consequences of surgeries both ablative and limb salvage. The 643 

most consistent impairment shown is increased consumption associated with ambulation 644 

reflecting the increased work needed to do so159. 645 

One of the life-threatening late effects of chemotherapy are secondary malignancies such as 646 

therapy-related acute myelogenous leukaemia/myelodysplastic syndrome, CNS tumors, or 647 

secondary solid tumors, which occur in ~3% of patients128. Curative osteosarcoma treatment 648 

including anthracyclines, alkylating agents, and/or topoisomerase II inhibitors is known to cause 649 

secondary malignancies and the risk is likely increased by individual cancer predisposition and 650 

other yet unidentified factors158,160. Among all pediatric cancer patients, those with 651 

osteosarcoma carry one of the highest rates of genetic cancer predisposition (10-20%)161. Li-652 

Fraumeni syndrome is most prominent, but hereditary retinoblastoma, helicase-associated 653 

cancers, and others also contribute160. The secondary cancers are frequently acute myeloid 654 

leukemias158. These may be caused by previous exposure to DNA damaging alkylators, often 655 

arising after a median of around seven years after the initial treatment 162 Other secondary 656 

leukemias are often myelomonoblastic and their lag-time is shorter. These develop after 657 

exposure to topoisomerase II inhibitors, including anthracyclines such as doxorubicin162. Both 658 

forms of secondary leukemia have an extremely poor prognosis despite the most intensive 659 

therapies, such as bone marrow transplantation158,163.  660 

Anthracycline-induced, severe cardiomyopathy is another common, potentially fatal late effect of 661 

chemotherapy, with ~2% of non-relapse related deaths amongst childhood cancer survivors 662 

attributed to cardiomyopathy or heart failure164. The cumulative anthracycline dose is a major 663 

risk-factor for severe cardiomyopathy development, but young age at treatment, female sex, 664 

peak drug exposure, and additional stress to the heart have also been implicated165-167. 665 

Importantly, cardiac function may deteriorate over time, even several decades after treatment. 666 
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Treatment for anthracycline-induced heart-failure is similar to that of heart failure from any 667 

cause168. Allogeneic heart transplants may be indicated for severe cases169,170. Patients should 668 

be screened for signs of cardiac malfunction to detect even subclinical malfunction early to 669 

hopefully prevent progression168,171. 670 

Inner ear damage and permanent hearing loss is a possible incapacitating late chemotherapy 671 

effect of cisplatin use with moderate to severe hearing loss occurring in < 30% of osteosarcoma 672 

patients172. This begins at the highest acoustic frequencies and progresses into the range of 673 

speech (225 to 85 Hz) with increasing drug exposure. In addition to the cumulative cisplatin 674 

dose, peak drug exposure, young age at treatment, co-administration of other ototoxic drugs, 675 

and others are well defined risk factors for more severe auditory damage171-173. Hearing aids 676 

may be required in those individuals174.  677 

The renal glomerulus might be affected by cisplatin treatment in 60-80% of children and 678 

adolescents and renal tubular function by ifosfamide teatment in 20-25%. Cisplatin-induced 679 

glomerular effects are rarely severe enough to require treatment, but ifosfamide-induced renal 680 

tubular effects can lead to clinically relevant electrolyte wasting in the form of Fanconi 681 

syndrome175.  Patients affected may require permanent oral electrolyte substitution. 682 

Patients that have received intensive, multi-drug chemotherapy against osteosarcoma may 683 

have reduced antibody titers against vaccine-preventable infections for some months after 684 

chemotherapy, and some guidelines suggest measuring vaccine-induced antibody titers and 685 

repeating vaccinations176,177. An increased risk of herpes zoster infection has been found in 686 

those individuals and administration of prophylaxis is recommend for at risk patients178.  687 

Fertility is only modestly affected by standard chemotherapy regimens. Generally, fertility is 688 

most impaired by alkylators and more so in males than in females179. Oocyte cryopreservation 689 

before commencing therapy might be an option for selected young female patients, and sperm-690 

banking should be routine for eligible young male patients180. The rate of treatment-related 691 

malformations does not seem to be increased in the offspring of former osteosarcoma 692 

patients158.  693 

Quality of life 694 

  695 

Few studies have investigated the health-related quality of life (HRQoL) of osteosarcoma 696 

survivors181. A single institution study evaluating the HRQoL in 80 survivors at least 10 years 697 
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after the initial diagnosis of osteosarcoma, revealed that individuals had neurocognitive 698 

impairment, with significantly lower mean scores in reading skills (p = 0.01), sustained attention 699 

(p = 0.002), short term memory (p = 0.01), and physical processing speed (p < 0.001) compared 700 

with matched controls182. In this group of patients, the burden of physical health conditions was 701 

high, with 32% of osteosarcoma survivors self-reporting impaired physical functioning and 16% 702 

impaired general health, being considerably worse than in matched controls. Having a grade 3 703 

or grade 4 cardiac, pulmonary, or endocrine toxic effect on chart review was associated with an 704 

increased risk of neurocognitive impairment182. Surgery for primary site disease control is an 705 

important contributor to poor HRQoL in osteosarcoma survivors. A cross-sectional Dutch study 706 

compared HRQoL of patients who underwent resection of a malignant bone tumour from the 707 

lower extremity to that of healthy controls183. Patients who had undergone surgery had lower 708 

scores for motor function, cognitive function, pain, and general health.  709 

Given the late toxic effects and their impact on quality of life of osteosarcoma treatments, multi-710 

disciplinary specialized cancer survivor care is recommended for all osteosarcoma patients. 711 

Further studies  are of importance, as robust data on late effects and HRQoL is required to 712 

inform future approaches aimed at minimizing toxic effects and improving quality of life. 713 

 714 

[H1] Outlook 715 

Basic Research 716 

 717 

In the past 20 years,  osteosarcoma research has dramatically changed our understanding of 718 

the biology of the disease. Despite being known as one of the most genomically complex 719 

pediatric malignancies, many of the alterations that occur in osteosarcoma are translocation 720 

events that silence genes rather than create neoantigens184. A high proportion of osteosarcoma 721 

samples have an increased number of tumour infiltrating lymphocytes, suggesting immune 722 

system activation in many osteosarcoma patients185. Furthermore, current molecular research 723 

continues to classify osteosarcomas not by histologic appearance via classical osteosarcoma 724 

pathologic descriptions but by proteo-genomic drivers of disease that provide further insight into 725 

disease biology and may have both prognostic and therapeutic implications35. To assist this 726 

approach, large libraries of PDX models of osteosarcoma have been developed186,187. Once fully 727 

genomically characterized, these shared resources will be fundamental in expanding our 728 
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understanding of the proteo-genomic segmentation of the disease. Combining these large 729 

libraries will be necessary to recapitulate the full spectrum of disease in humans. The rational 730 

testing of targeted agents in PDX models will provide better understanding of the relevance of 731 

the putative disease drivers. Furthermore, analyses of resistant outgrowths may provide further 732 

rationale for combination strategies188,189.  733 

Another major approach to improve treatment of osteosarcoma is the development of agents 734 

that target antigens expressed on the tumour cell surface. This strategy, a targeted approach to 735 

immunotherapy, is based on the immune cell infiltration known to occur in osteosarcoma, and 736 

on the broad development of these types of treatment in a range of other malignancies 737 

However, one of the main challenges is to identify antigens that are present in a high proportion 738 

of patient tumours but are not expressed on normal tissues to ensure effectiveness and low 739 

toxic effects, respectively. he two major areas of active study for this approach are T-cell based 740 

therapies and antibody-drug conjugates9,190. Further research is required to increase the 741 

number of suitable, targetable surface antigens as combinatorial strategies will most likely be 742 

required given the intra-tumour and inter-tumour heterogeneity of osteosarcomas191.  743 

Clinical Research 744 

In the past few years, numerous clinical trials have evaluated new strategies to treat 745 

osteosarcoma, with most available for patients with relapsed or refractory disease. In these 746 

trials, multi-targeted tyrosine kinase inhibitors (MTKIs) were effective in reducing progression-747 

free survival, becoming the mainstay of treatments for patients with relapsed disease. The 748 

Children’s Oncology Group is moving forward a clinical trial evaluating MTKIs in combination 749 

with standard chemotherapy in patients with newly diagnosed high-risk disease192. Another 750 

strategy incorporating MTKIs, is evaluating their role as maintenance therapy193,194. These trials 751 

will hopefully provide a better understanding of how these agents can improve outcomes in 752 

patients with newly diagnosed osteosarcoma, at which point most patients have the highest 753 

chance of cure. 754 

Trials that evaluate targeting of the genomic complexity of osteosarcoma by inhibiting cell cycle 755 

DNA damage regulatory proteins are also ongoing195,196. The fundamental premise for these 756 

trials being that further inhibition of the regulatory pathways involved in DNA repair 195,196 by 757 

targeting Wee 1 kinase or a combination of PARP and ATR inhibition will lead to mitotic 758 

catastrophe and cell death.  759 
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Personalized medicine targeting somatic alterations in osteosarcoma has become increasingly 760 

common as small molecule inhibitors are being developed and tested in various cancers80. Due 761 

to loosening of FDA restrictions, many of these trials are now also available to patients aged 762 

≥12 years, which includes most patients with osteosarcoma. These trials are histology agnostic, 763 

which enables more patients to participate; however, this approach might limit new insights into 764 

the biology of the disease given the heterogeneity of actionable mutations in osteosarcoma and 765 

the limited number of patients with osteosarcoma treated on any one trial.  In addition, because 766 

these are new agents, the data is strictly controlled by trial sponsors, which prevents their 767 

application to increase understanding of the disease. Once these data enter the public domain, 768 

building improved bioinformatic systems to collate and curate the data might be useful to better 769 

understand the role of these targeted therapies in osteosarcoma. 770 

Finally, many clinical trials are evaluating agents that target osteosarcoma surface antigens, for 771 

example using CAR-T cells  targeting GD2197-199, HER2200, EGFR201, and B7-H3202,203 (Figure 6). 772 

Other trials are using antibody-based therapies to target surface proteins either as antibody–773 

drug conjugates or in combination with other immunoregulatory therapies. Tissue sampling of 774 

resistant tumours should be an important component of these trials. Future development of 775 

these therapies will be, in part, contingent on understanding whether resistance is the result of 776 

antigen escape, anergy or resistance to the drug conjugates.  777 

As our understanding of the biology of osteosarcoma continues to improve, new paths are 778 

created for innovative clinical trials. In step with these new clinical trials, specimen and 779 

bioinformatic data need to be collected and shared with the research community to improve our 780 

understanding of the complex biological mechanisms driving osteosarcoma and treatment 781 

resistance.  782 

  783 
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Figures  1456 

Figure 1 | Anatomical distribution of a primary osteosarcoma tumour 1457 

Osteosarcoma can present in any bone in the body but the most common sites are around the 1458 

knee and the proximal humerus204.   1459 

 1460 

Figure 2 | Osteosarcoma incidence by age and sex  1461 

A) Incidence of primary and subsequent osteosarcoma by age at diagnosis. B) Incidence of 1462 

primary osteosarcoma by age at diagnosis for males and females. C) Incidence of secondary 1463 

osteosarcoma according to age at diagnosis for males and females. 1464 

Data from the Surveillance, Epidemiology, and End Results 18 database. Adapted from Cole et 1465 

al. 2022  1466 

 1467 

Figure 3 | Model of osteosarcomagenesis: key role of oncogenetic drivers  1468 

Molecular mechanisms of osteoblast differentiation and cell signalling associated with 1469 

osteosarcomagenesis. Osteoblasts originate from mesenchymal pluripotent progenitors under 1470 

the control of driver transcription factors, including SOX9, RUNX2 and OSTERIX. The 1471 

progressive differentiation stages of osteoblasts can be followed by specific temporally 1472 

regulated protein expression. Osteosarcoma cells are thought to originate from malignant 1473 

transformation of cells within the osteoblastic lineage at any stage of its differentiation, which is 1474 

controlled by numerous cellular signaling pathways (e.g. Notch, Wnt and RTK) that can initiate 1475 

uncontrolled proliferation205-208 FZD: Frizzled; LRP: Low density lipoprotein receptor-related 1476 

protein; NCID: Notch intracellular domain; RTK: Receptor tyrosine kinase.  1477 

 1478 

Figure 4 | Model of osteosarcomagenesis: local tumour microenvironment.   1479 

osteosarcoma (OS) cells become progressively oligoclonal or polyclonal and form a highly 1480 

heterogeneous tumour mass. The local microenvironment provides a fertile niche for 1481 

osteosarcomagenesis and tumour growth. Interaction between cancer and bone cells leads to 1482 

an increase of OS cell proliferation and altered bone remodeling. In addition, OS cells activate 1483 

local mesenchymal stem cells by producing extracellular vesicles (EVs) containing TGF-β, 1484 

which in turn release EVs containing IL-6, facilitating tumour progression. Similarly, cytokine-1485 
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containing EVs prepare the lung metastatic niche to receive OS circulating tumour cells. In the 1486 

metastatic foci, cytokines and growth factors contribute to the local tumour development and 1487 

EVs seem to be the main messenger between OS cells and the pulmonary parenchyma. 1488 

 1489 

Figure 5 | Osteoblastic osteosarcoma imaging  1490 

A) Radiograph of affected left humerus, B) MRI of the left humerus showing an extracortical soft 1491 

tissue mass and intramedullary infiltration, C) Radiograph of another affected left humerus, D) 1492 

and E) Bone scintographs showing lytic, metastatic steosarcoma lesions,  F) MRI of the 1493 

humerus showing osteosarcoma soft tissue and intramedullary extensions, G)  CT image of 1494 

lung metastases of varying sizes.  1495 

 1496 

Figure 6 | Potential targets for osteosarcoma treatment 1497 

 1498 

Tyrosine Kinase Inhibitors: Can block multiple tyrosine kinase receptors. With individual 1499 

difference in binding affinities. Blocking downstream intracellular growth signals 1500 

Surface Targets: HER2: Antibody, ADC, CAR-T GD2: Antibody, CAR-T B7-H3: CAR-T EGFR: 1501 

CAR-T 1502 

Inhibitors of DNA Damage Repair: Inhibitors of Wee1, PARP, ATR 1503 

 1504 

Figure 7 | Osteosarcoma histology  1505 

Representative osteosarcoma histology images of a malignant spindle cell tumour producing 1506 

osteoid. A) Osteoblastic osteosarcoma. Atypical pleomorphic cells with osteoid. B) 1507 

Chondroblastic osteosarcoma. Heterogeneous tumor with areas of atypical hyaline cartilage and 1508 

osteoid-producing malignant cells. C) Fibroblastic osteosarcoma. Atypical spindle cells with 1509 

osteoid. D) Small cell osteosarcoma. Monotonous round cells with osteoid. E) Telangiectatic 1510 

osteosarcoma. Blood filled cystic spaces lined by atypical pleomorphic cells with osteoid 1511 

(magnified inset  F) Low-grade central osteosarcoma. Bland spindle cells with thickened 1512 

neoplastic bone.  1513 
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Figure 8 | Osteosarcoma treatment algorithm  1514 

Patients with suspected osteosarcoma (OS) require referral to a specialist centre with expert 1515 

pathology, imaging review panel and multi-disciplinary discussion to confirm management. Low 1516 

and intermediate grade OS are managed with surgery alone.  Patients with resectable high-1517 

grade osteosarcoma require chemotherapy and resection of all sites of disease. Both 1518 

neoadjuvant and adjuvant chemotherapy is usually given but surgery may be considered upfront 1519 

followed by adjuvant chemotherapy in selected cases. Patients with unresectable and/or widely 1520 

metastatic disease may receive palliative chemotherapy and/or radiotherapy.  At relapse, 1521 

surgery should be considered for resectable disease. The role of adjuvant chemotherapy in this 1522 

setting is not well-defined but may offer palliative benefit for those with unresectble or systemic 1523 

relapse. Multi-tyrosine Kinase inhibitors (MTKIs) have demonstrated activity in phase II clinical 1524 

trials and may offer benefit in this setting. Entry into clinical trials is advised if possible.  1525 

*Surgery can be considered upfront, followed by adjuvant chemotherapy. **If available. 1526 

 1527 

Figure 9 | Osteosarcoma MAP chemotherapy example 1528 

Traditional MAP chemotherapy involves 10 weeks (2 cycles) of neoadjuvant chemotherapy, 1529 

followed by local control surgery. After surgery, 18 weeks (4 cycles) of adjuvant chemotherapy 1530 

are given. Either methotrexate (M), doxorubicin (an anthracycline (A)) or cisplatin (P) may be 1531 

substituted with ifosfamide, based on toxic effects or practice patterns. In the weeks without any 1532 

letters, no chemotherapy is administered.  1533 

  1534 
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Tables  1535 

 1536 

Table 1 | Cancer predisposition syndromes associated with osteosarcoma  . 1537 

 1538 

Syndrome Gene Inheritance Pattern Reference 

Li-Fraumeni syndrome TP53 Autosomal dominant 13 

Retinoblastoma RB1 Autosomal dominant 123 

Rothmund-Thomson 
syndrome 

RECQL4 Autosomal recessive 20 

Baller-Gerold syndrome RECQL4 Autosomal recessive 20 

RAPADILINO RECQL4 Autosomal recessive 20 

Werner syndrome RECQL2 (WRN) Autosomal recessive 21 

Bloom syndrome RECQL3 (BLM) Autosomal recessive 21 

Diamond-Blackfan 
anaemia  

>12 different 
ribosomal protein 
genes and GATA1 

Autosomal dominant 19 

Adapted from 209  1539 
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Table 2 | Response to MTKIs in relapsed or refractory osteosarcoma.  1540 

Agent 
Number of 
patients 
evaluated 

Objective 
response  

Median PFS 
[months] (95% CI) 

4-month PFS 
(95% CI) 

Median OS 
[months] (95% 
CI) 

Sorafenib163 35 3 (8%) 4 (2-5) 0.46 (28-63%) NR  

Apatinib165 37 16 (43%) 4.5 (3.5-6.3) 0.57 (39-71%) 9.9 (8-18.9) 

Lenvatinib166 26 2 (7%) 3 (1.8-5.4) 0.29 (14-48%) 10 (5.6-12.3) 

Cabozantinib164 42 5 (12%) 6.7 (5.4-7.9) 0.71 (55-83%) 10.6 (7.4-12.5) 

Regorafenib 
(REGOBONE) 
167  

26 (regorafenib) 2 (8%) 16.4 (8-27) 0.46 (28-63%) 11.3 (5.9-23.9) 

12 (placebo) 0 (0%) 4.1 (3-15.7) 0% 5.9 (1.3-16.4) 

Regorafenib 
(SARCO24) 162  

22 (regorafenib) 3 (14%) 3.6 (2-7.6) 44% 11 (4.7-26.7) 

20 (placebo) NR 1.7 (1.2-1.8) 0% 13.4 (8.5-38.1) 

NR; not reported.  1541 
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Boxes 1542 

 1543 

Box 1 | Relevant osteosarcoma disease models  1544 

 1545 

Cell lines  1546 

Well-established cell lines such as SaOS, MG63, KHOS, MNNG-HOS, U2OS, and OS-17 have 1547 

facilitated investigation into mechanisms of malignancy210,211 and high-throughput screens to 1548 

identify osteosarcoma vulnerabilities93,212. Companion cell lines with enhanced lung colonization 1549 

capacity (such as SaOS2-LM7, MG63.3, 143B)213-215 have enabled studying metastasis driver 1550 

mechanisms50,216 Cultures derived from mice with spontaneous osteosarcoma214 or  from 1551 

genetically engineered mouse models (GEMM)101,217 are available study disease biology or 1552 

therapeutics in mice with intact immune systems.  1553 

Ex Vivo organ cultures  1554 

Ex vivo culture systems are useful to study of tumour cells growing within an intact lung 1555 

environment218,219.These techniques have been adapted to study tumour-host interactions, to 1556 

screen for metastasis-related vulnerabilities, and to validate hits identified in other 1557 

screens74,75,93,220-223. 1558 

Primary and PDX-derived cultures  1559 

Established cell cultures have been the predominant research models of osteosarcoma for 1560 

decades, but the culture-related alterations that cell lines acquire over tens and sometimes 1561 

hundreds of passages224,225 led to the development of systems for propagating osteosarcoma 1562 

tumours224,225 by creating libraries of primary tumour cell cultures and patient-derived xenografts 1563 

(PDXs). These PDX model systems are of particular value in both basic science and potentially 1564 

personalized medicine research,185,188,226 as they have clinical and molecular features that are 1565 

quite representative of the human disease.227-230 Although prolonged passage in mice can alter 1566 

the behaviour of tumours maintained as PDXs231, strategic use of low-passage PDX lines limits 1567 

this mouse-specific evolution and is a useful tool in the study of osteosarcoma biology,232 1568 

precision medicine approaches, and preclinical validation of therapeutic candidates. 1569 

Genetically engineered mouse models (GEMMs)  1570 

Many insights into the origins29 and pathophysiology216 of osteosarcoma have come from mouse 1571 

models engineered to develop osteosarcoma233. Most of these models incorporate genetic 1572 
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changes that drive tissue-specific p53 inactivation, together with knockout of other tumour 1573 

suppressors (such as Rb) or activation of oncogenic pathways such as Myc and c-fos234. 1574 

Comparative studies  1575 

Canine companion animals that develop sporadic osteosarcoma present a unique opportunity to 1576 

study tumour biology and therapy in ways that can accelerate discovery and benefit both 1577 

species235. Canine osteosarcoma has histological, genetic, and clinical features nearly identical 1578 

to the human disease236, but has a much higher incidence, with an estimated 25,000 new cases 1579 

of canine disease occurring each year236. Large clinical trial networks facilitating multi-1580 

institutional studies are well-established237. This integrated approach has been particularly 1581 

promising for the evaluation of anti-metastatic100,238 and immune-based therapeutics239,240. 1582 


