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Abstract— Minimally invasive surgery requires real-time tool
tracking to guide the surgeon where depth perception and visual
occlusion present navigational challenges. Although vision-
based and external sensor-based tracking methods exist, fibre-
optic sensing can overcome their limitations as they can be
integrated directly into the device, are biocompatible, small,
robust and geometrically versatile. In this paper, we integrate
a fibre Bragg grating-based shape sensor into a soft robotic
device. The soft robot is the pneumatically attachable flexible
(PAF) rail designed to act as a soft interface between manipula-
tion tools and intra-operative imaging devices. We demonstrate
that the shape sensing fibre can detect the location of the tools
paired with the PAF rail, by exploiting the change in curvature
sensed by the fibre when a strain is applied to it. We then
validate this with a series of grasping tasks and continuous US
swipes, using the system to detect in real-time the location of
the tools interacting with the PAF rail. The overall location-
sensing accuracy of the system is 64.6%, with a margin of error
between predicted location and actual location of 3.75 mm.

I. INTRODUCTION

Minimally invasive surgery (MIS) is becoming the gold

standard for many surgical procedures. However, there are

long training times due to the steep learning curve associated

with working in an environment with a limited field of view

and limited perception of depth and scene shape [1][2].

Robotic-assisted laparoscopic surgery, although offering bet-

ter instrument manoeuvrability and increased degrees of

freedom (DoF), suffers from visual and sensory occlusion

to the surgical workspace through the endoscopic field of

view (FoV) [3].

Surgical tool tracking technology assists the surgeon in

guiding them during robotic-assisted surgical procedures

by estimating the pose of surgical tools with respect to

the anatomy in the endoscopic FoV[4]. The most com-

mon approaches to tool-tracking in surgery are vision-based

[5][6], including marker and marker-less tracking [7], intra-

operative imaging such as Ultrasound (US) [8] and Fluo-

roscopy [9], and pre-operative imaging such as Computed
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Tomography (CT) [10] and Magnetic Resonance Imaging

(MRI) [11].

Image-based marker-less tracking can prove beneficial to

tool-tracking by providing positional and motion informa-

tion without modification to the tool itself. However, the

challenge of visual occlusion remains, as well as robustness

due to the vast array of different surgical tools available and

the patient-specific surgical workspace [7]. Other limitations

of purely vision-based tracking are discussed extensively in

[12], namely reliance of segmentation accuracy performance

on instrument colour, lack of distinct feature points in the

surgical workspace [13], and dependency on the direct line

of sight [14].

Alternative forms of tool tracking are: electromagnetic

(EM) [15][16][17], optical [18], and robot kinematics [19].

Electromagnetic tracking has been used for localizing de-

vices in situations where direct line-of-site is unavailable

[20], such as in endoscopic capsules [21], orthopaedic

surgery [22], and in combination with ArUco markers for

tracking intra-operative US probes [23]. Kinematics-based

localization has traditionally been employed for continuum

robots [24] but has been demonstrated in combination with

vision [25] and marker-based tracking [26] in the surgical

setting.

A potentially beneficial method of tool-tracking in MIS is

fibre-optic sensing (FOS). FOS is ideal for this application

as sensors can be fabricated on small scales, are flexible,

bio-compatible, and immune to electromagnetic interference

[27]. FOS has many advantages over other tool tracking

methods in this context. It is not susceptible to local field

distortions, unlike EM tracking, where the use of a C-arm

in theatre can introduce errors on the millimetre scale [28].

It also is not heavily reliant on image quality, segmentation

ability, and line-of-sight as in vision-based methods [3][7].

Intensity-modulated optical fibres have been used to estimate

curvature in orthopaedic systems [29], while the pose of a

soft actuator was estimated using a braided configuration of

optical sensors [30]. Fibre-optic ultrasound sensors have also

been employed in ultrasonic needle-tracking [31].

The use of fibre optic sensors based on Fibre Bragg

Gratings (FBG) has been widely investigated in medical

robotics for shape sensing and tool tracking [31][32][33][34].

In [35], the authors present a novel FBG-based sensor to

localize tissue abnormalities in MIS. The sensor outper-

formed previous work in measuring the force applied to a

tissue phantom and demonstrated how FBG-based sensing

of force distribution can be used to locate tumours. Further
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experiments were conducted by [36] on ex-vivo organs, and

force distribution maps were used to localize tumours with

better accuracy and lower palpation forces than conventional

sensors. FBG-based sensing has also been used in retinal

surgery, where the forces involved are below the level of

human perception [33], and in endovascular surgery, where

sensors are required to operate on the micro-scale [34].

FBG-based sensing lends itself well to the field of soft

robotics, as the sensors are able to bend and contort them-

selves in the same manner as many soft robotic devices. Soft

robots are ideally suited to laparoscopic surgical applications

as soft tissue is deformable and the surgical environment is

highly dynamic [12]. The use of soft robotics in minimally

invasive and robotic-assisted laparoscopic surgery has gar-

nered much attention in recent years due to their compli-

ance with these complex environments while presenting a

significantly lower risk of trauma than conventional rigid

instruments [37]. However, the dynamism of the surgical

workspace coupled with the challenges of soft robotic control

adds further complexity to tracking problems [12].

In previous work, we presented a Pneumatically Attach-

able Flexible [38] (PAF) rail to be deployed in Robotic

Assisted Partial Nephrectomy (RAPN) for the facilitation of

the US scanning sub-task. The proposed use and deployment

process of the PAF rails in RAPN is fully detailed in [38].

The purpose of the PAF rail system is to act as a soft

interface between rigid tools and organs targeted in the

context of manipulation tasks, as well as to provide a stable

track-like interface to guide probes and tools on the surface

where the system is deployed, e.g. in the case of ultrasound

(US) scanning with drop-in US probes during intra-operative

image acquisition [39]. In this work, we demonstrate how the

sensorised PAF rail can be used to localize pairing tools that

would enable real-time tracking of the paired US probe. We

employ a first-generation da Vinci Surgical System (Intuitive

Surgical Inc., Sunnyvale, CA, US) in combination with

the da Vinci Research Kit (dVRK) to test how well the

location of grasping can be identified based on the curvature

information derived from the shape sensing fibre embedded

in the PAF rail system. We further demonstrate that the

sensing framework can be applied to pairing the US probe

with the rail and tracking the location of the probe with

respect to the rail. In the clinical environment, this allows

positional information, as well as cues for when the US

probe or grasping tool has detached, to be relayed back to

the surgeon.

The paper is structured as follows; in Section II, the design

and fabrication of the sensorised PAF rails with embedded

FBG sensors is described, as well as the experimental setup

involving the da Vinci Surgical System and dVRK. Section

III covers experimental results of the curvature sensing and

tool localization experiments; these results are discussed in

the context of robotic-assisted minimally invasive surgery.

Finally, Section V concludes this paper and provides direc-

tion for further work.

Fig. 1. Schematic diagram of the PAF rail with integrated FBGS DTG
shape-sensing fibre. The top view (top) shows the segmented grasping fin
running centrally along the axis of the rail. The side view (bottom) highlights
how each individual FBG sensor is positioned with respect to the fins.

II. MATERIAL AND METHODS

A. Design and Fabrication of the Sensorised PAF rails

The design and fabrication techniques of the PAF rails

was introduced in [38]. In this study, the proposed design

improves on the rail-tool interface by introducing a con-

tinuous segmented fin that enables grasping of the rail at

any point along it, while maintaining axial flexibility (see

Fig. 1). The PAF rail is fabricated using injection moulding

of Smooth-Sil 940TM silicone (Smooth-On Inc., Macungie,

PA, US). To facilitate curvature sensing, a shape sensing

optical fibre is inserted in the perimeter of the rail (see Fig.

1). The fibre is threaded through a fine bore low-density

polyethylene (LDPE) tube, which is fixed at the proximal

end using Sil-Poxy TM silicone adhesive (Smooth-On Inc.,

Macungie, PA, US). The shape-sensing fibre is inserted such

that each grating pair corresponds to a segment of the fin (see

Fig. 1). FBG-based optical sensing utilises the principle of

Bragg reflection to facilitate strain and temperature sensing.

The fibre in use is a custom-made multi-core fibre (MCF)

(CP-FBG DTG® (Draw Tower Grating), FBGS International,

Jena, Germany), with a central core surrounded by six

equally spaced outer cores. Each core contains 25 FBGs

spaced at 10 mm intervals along the optical axis, giving an

overall sensing length of 240 mm.

The bending of the shape-sensing fibre induces a specific

Fig. 2. Schematic diagram of the setup for experiment 2 (side view). The
rail is pulled in the +z direction at each fin segment, as highlighted by the
orange arrow.



Fig. 3. Schematic diagram of the setup for calibration and experiment
3 (Top view). The Hitachi Arietta drop-in US probe is equipped with a
custom attachment, paired with the EndoWrist® ProGrasp™ Forceps during
calibration and a hand-held laparoscopic grasping tool during experiment 3.
The custom attachment is then manually paired with the perimeter of the
rail on the FBGS-embedded side. The coloured arrows indicate the direction
of the motion. (Purple) Calibration - The rail is pulled in the +y direction at
each fin segment by the US probe. (Orange) Experiment 2 - The US probe
slides along the rail in the x direction.

strain in each of the FBGs, which is quantified by shifts

in the Bragg wavelengths of the gratings. This is monitored

by an optical interrogator, where the raw wavelength shifts

are converted to strains for each grating. The strains of the

seven gratings at each position along the fibre are then used

to compute the local curvature at that position, while the

core fibre is used for temperature compensation. A pro-

prietary software (IllumiSense v3.1.x, FBGS International,

Jena, Germany) records each core’s wavelength data. Then,

a proprietary LabVIEW VI (National Instruments, Austin,

TX, USA) estimate the curvature along the fibre using these

wavelengths as input. Finally, the curvature data is recorded

and visualised through a custom Python application.

For our experiments, we employed the first-generation da

Vinci robot coupled with the dVRK platform [40], [41]. The

PAF rail was suctioned to a platform of acrylic plastic by

means of a pneumatic circuit. We used a 3 CFM single-stage

vacuum pump (Bacoeng, Hawthorne, CA) to vacuumise a

12-litres vacuum chamber (Bacoeng, Hawthorne, CA) and

monitored the pressure with an embedded manometer. The

vacuum pressure used for all the tests was Pabs = 7.325kPa,

as discussed in [38]. The chamber was connected with a

pressure line to the PAF rail. Each experiment was repeated

five times unless otherwise stated.

B. Calibrating the system for Tool Localization

The aim of our first experimental procedure was to obtain a

dataset of curvature measurements from the integrated shape-

sensing fibre for specific tool-rail interactions. We wanted

to measure the robotic end-effector vertical displacement

in Cartesian space, at which the sensorised PAF rail could

detect the interaction between the grasper and its fins.

This trajectory was chosen to replicate the grasping action

performed in RAPN. We equipped the first da Vinci Patient

Side Manipulator (PSM1) with the EndoWrist® Prograsp™

Forceps. The EndoWrist® ProGrasp™ Forceps were manu-

ally paired with the PAF rails by grasping the centre of each

fin along the z-axis, perpendicular to the principal axis of

the rails (shown in Fig. 2). The fin was then pulled by the

grasper tool perpendicularly to the plane locally tangent to

the surface of the surface underneath in increments of 1 mm,

to a maximum displacement of 7 mm. At each increment,

raw wavelength shift and curvature data received from the

shape sensing fibre was recorded. The entire trajectory was

repeated five times for each of the eight fins. Based on these

calibration experiments, the location of the grasping fins was

approximated by finding the location, with respect to the

length of the rail, of the weighted average of the maximum

and minimum of the curvature differential.

Continuing our experimental evaluation, we aimed to

calculate the horizontal displacement in Cartesian space, at

which the sensorised PAF rails could identify the US probe

paired with the rail. We equipped the first da Vinci Patient

Side Manipulator (PSM1) with the EndoWrist® Prograsp™

Forceps paired with the drop-in US probe BK X12C4 (BK-

Medical Holding Inc., Peabody, Massachusetts), as shown

in Fig. 3. The US probe was manually paired with the

PAF rails (see Fig. 3). Beginning at the proximal end, the

US probe was then pulled in the direction orthogonal to

the principal axis of the PAF rails (the y-axis - see Fig.

3) in increments of 1 mm to a maximum displacement of

7 mm. The US probe was then manually slid along the

rail to the next fin-adjacent subsection, and the pulling was

repeated. This process was repeated five times for each of

the eight sub-sections. For each iteration, raw wavelength

shift and curvature data received from the FBGS software

was recorded.

C. Validation

As a means to validate the sensed locations of the fins,

we executed repeated pulling trajectories with the da Vinci

Surgical System equipped with the EndoWrist® Prograsp™

Forceps in the same configuration as Fig. 2. Each fin was

pulled in the +z direction in one continuous trajectory to

a maximum displacement of 5 mm. Raw wavelength and

curvature data were recorded at the maximum displacement.

The final step in our experimental procedure was to extend

the US pairing experiment by sliding the US probe along the

rail instead of discrete measurements. We wanted to further

test the compatibility of the system with different tools, hence

the use of a second intra-operative US probe and hand-held

grasper configuration. We paired the Hitachi Arietta drop-in

US probe (Hitachi, Chiyoda City, Tokyo, Japan) with a hand-

held laparoscopic grasper tool (Ruihui Electronic Technology

Co. Ltd., Zhengzhou, China). The attachment was equipped

with a custom roller part that pairs with the perimeter of the

rail, as shown in Fig. 3. A manual swipe along the length of

the rail was executed ten times, five in the +x direction and

five in the −x direction. Raw wavelength and curvature data

were recorded for the duration of the swipe. We created an

animation to visualize in real-time the grasped fin and hence

location along the length of the PAF rail, of the probe as it

executes the swipe.

III. RESULTS & DISCUSSION

We present in Fig. 4 the evolution of the curvature shift

sensed by the rail for incremental pulling displacement on
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Fig. 4. Experiment 2 results. Each subfigure corresponds to data from each
of the 8 fins. The region from x mm to y mm is embedded in the PAF rails.
The vertical black lines correspond to the location of pulling based on the
weighted average of the maximum and minimum peaks. Note the change
in y axis scale.

each of the eight fins. We easily identify the increase in

magnitude sensed curvature change at greater displacement,

as well as the evolution of the waveform along the length of

the fibre as consecutive fins, are pulled.
For each of the grasping fins, we evaluated the relationship

between pulling displacement and the absolute change in

sensed curvature (see Fig. 5 (right)). We observe a linear

relationship between the displacement of the grasper and the

shift in absolute curvature. Hence, we observe a relationship

between the stretching of the silicone fin and the change in

curvature sensed by the shape-sensing fibre embedded in the

rail. The magnitude of the curvature differential for fin 1 is

greater than the others as fin 1 is adjacent to the pipeline of

the PAF rail. At this location, the fin experiences more strain

as it is less supported by the surrounding rail structure.

a =
|maxpeak|

|minpeak|+ |maxpeak| (1)

b = 1−a =
|minpeak|

|minpeak|+ |maxpeak| (2)

m = a.argmaxpeak +b.argminpeak (3)

With |maxpeak| and |minpeak| being the absolute values of

the maximum and minimum peaks, respectively. In Fig. 4,
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Fig. 5. Pulling displacement (x-axis) against derivative of curvature with
respect to distance along the rail for each of the fins. Calibration data from
the vertical pulling (left) and from the horizontal pulling (right).

the location of the grasped fin was estimated by calculat-

ing the weighted average positions of the maximum peak

(argmaxpeak) and minimum peak (argminpeak) of curvature

differential, as summarised in Eq. 1 Eq. 2 Eq. 3 and as shown

in Fig. 8. We represented the sensed grasping position by the

black line in each plot, while the shaded region represents

the fin width.

We wanted to evaluate the minimum required displace-

ment to obtain an accurate estimate of the fins’ position.

The main source of error is noise in our system. Thus,

we expected to improve our location-sensing accuracy by

applying a greater pulling force. In this regard, we display

the distance to the sensed location for each fin at a pulling

displacement in fig. 6. Overall, the distance to the estimation

position at 5mm is less than 2cm for all the fins except for fin

7. In this context, we can expect a good location estimation

even when the system undergoes smaller strain.

Fig. 8 (top) shows the derived fin locations for the length

of the PAF rail (x-axis) at 5mm displacement. For this task,

the derived location of the fins is not sorted correctly. We

attribute this to significant noise in the system causing peaks

in the sensed curvature signal that does not correspond to

a pulling location. Since the signal is dependent on the

initial reference wavelength, any initial strain on the rail will

introduce peaks that don’t correspond to a pulling location.

Another source of error comes from the fact that we imply

the location of the gratings in respect to the fins. We know the

position of the first grating and that they are equally spaced

at 10 mm increments along the length of the fibre, but cannot
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Fig. 6. Distribution of the fin’s sensed locations relative to the sensed
position at the maximum displacement’s amplitude (5mm) according to the
displacement amplitude of the grasper.
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Fig. 7. Distribution of the fin’s sensed locations relative to the sensed
position at the maximum displacement’s amplitude (5mm) according to the
displacement amplitude of the US probe.

be more specific than that. Moreover, the standard deviation

(shaded area of Fig. 4 increases with each subsequent fin

pulling. We attribute this result to the error induced by

the manual reposition of the grasper on each fin between

each experimental iteration. During each iteration, the tool

grasps the fin at a different position. Furthermore, the fins

themselves are not all the same width in the x direction; fin

1 is 10 mm, fin 8 is 9. 4 mm while the rest are 9 mm.

Results from the horizontal pulling with the paired US

probe are shown in Figs. 5 (right), 7, 8 and 9. For

each pulling location we evaluated the relationship between

pulling displacement and change in sensed curvature (see

Fig. 5 (right)). We observed a linear relationship between

the pulling displacement perpendicular to the principle axis

of the rail and Δcurvature. As highlighted in Fig. 5 (right),

Δcurvature is proportional to the +y displacement (see

Fig. 3), therefore greater locating accuracy is present at

greater displacements. However, Fig. 9 also highlights that a

Δcurvature is observable at displacements as small as 1 mm

from the axis of the rail. The location of the grasping fin was

estimated by the same method as the previous experiment,

and is shown in Fig. 8 (bottom). Compared with those

estimated by the vertical pulling (top), the fin order is more

accurate, at least for the first four fins of the rail. Again, we

attribute the error in estimation to noise in the signal causing

the peaks selected for location estimation to be incorrect.

This could be mitigated in future work by implementing a

more robust peak selection algorithm and filtering out the

noise. Based on the findings in Fig. 8, we chose to use

Fig. 8. Derived location of fins along the fibre based on vertical pulling
of the fins (top) and horizontal pulling with the US probe (bottom).
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Fig. 9. Experiment 3 results. Each subfigure corresponds to data from each
pulling location adjacent to each of the 8 fins. The region from x mm to
y mm is embedded in the PAF rails. The vertical black lines correspond to
the location of pulling based on the weighted average of the maximum and
minimum peaks. Note the change in y axis scale

the model data from the horizontal pulling experiments as

that localized the fins in the correct order. In addition, we

chose to only select the first and last fin location, as the

intermediate fin locations could then be calculated based on

prior knowledge of the design of the PAF rail.

A. Validation Results

We validated the approximation of grasping locations by

performing a second set of grasping tasks to obtain the

validation data. We compared the curvature change sensed

during validation to the calibration set and reported the

results in Fig. 10. Overall sensing accuracy is 64.6 % with

the average absolute error in location between actual fin

and predicted fin being 3.75 mm, considering an average fin

length of 9.18 mm. This represents a 3.6 % error over the

entire length of the rail (88.3 mm). The grasping location

error is lowest at the 1st and 2nd fin-pair, as well as the

7th and 8th, which are located at opposite ends of the PAF

rail. In the centre of the rail, where fins 3 - 6 are located,

sensing performance is less accurate. This can be possibly

attributed to erroneous sensing of the fin adjacent to the

correct one. We could increase accuracy by obtaining more

data; we could increase the calibration dataset by sensing

grasping at different locations along each fin.
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Fig. 10. Confusion matrix of validation set of fin pulling tasks vs.
calibration set of fin pulling tasks.

The continuous US swipe was used to validate the pulling
data obtained in experiments described in II.B. As the swipe
was executed, our custom graphical user interface (GUI)
provided real-time visualisation of which fin was adjacent to
the US probe. This is done by highlighting in block colour
the fin being detected. It also provided visualisation of the
sensed curvature derivative, with applied noise thresholding.
Snapshots of this task executed in the real frame vs the sens-
ing GUI are shown in Fig. 11 for three example locations.
At all three locations, it can be seen on the GUI that the fin
adjacent to the US probe has been correctly identified.

Fig. 11. Snapshots of the US probe sliding execution in the sensed location
GUI (left) and from the video stream (right). The custom GUI signifies the
detected fin with a solid colour block. The real-time curvature differential is
also visualised. We display three random samples of the sliding acquisition;
in each case, we correctly detected the fin adjacent to the US probe, as
determined by visual inspection.

IV. CONCLUSION

This paper presented an integrated system for localizing
tools during grasping and interaction with the PAF rail using
fibre-optic shape sensing. Sensing the tools’ location paired
with the PAF rail in real-time is highly beneficial for use in
surgical environments where image-based and EM tracking
is not possible.

A multi-core FBG optical fibre was embedded in the body
of the PAF device and uses local wavelength shift to sense
curvature along the axis of the rails, therefore providing
information on local curvature changes without the need
for external sensors. We exploited this capacity to sense a
curvature shift to provide positional information on surgical
tools paired with the PAF rail.

Our paper demonstrates the capability of FBG sensors
embedded in a soft-robotic device to detect the location of
pairing tools. To confirm this idea, two different task tests,
grasping and pairing with the US probe, were conducted us-
ing a first-generation da Vinci surgical robot with the dVRK.
The curvature data from these experiments helped determine
the location of grasping, by finding the point long the rail
where the derivative of curvature was a maximum/minimum.
This was then validated by performing a series of grasping
tasks on the fins and a continuous swipe with a paired US
probe. Using the prior localization information we were able
to detect which fin was interacting with a tool with a 64.6%
success rate and determine the location of the probe in real-
time as it moves along the length of the rail.

Future work will focus on addressing the current limita-
tions of the system; increasing the volume of calibration data
available, and looking into noise filtering and different peak
detection algorithms. We will need to ascertain the sensitivity
of the system, to find the minimum interaction with the
PAF rail needed to correctly detect the location of the
interaction. Beyond this, we would like to assess how well
the proposed system can perform in detecting when pairing
tools have become detached, as this will provide useful
information to the surgeon. Nonetheless, one key drawback
of FBG sensing technology is its high cost, particularly when
compared with the cost of devices they are integrated into
[42]. Sterilization, robustness and single-use are important
issues that currently provide barriers to translating this device
to surgery. However, the system’s sensitivity provides a
benchmark for evaluating future shape-sensing modalities in
this context.
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