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Abstract— This paper presents a novel method of tuning 
vibration parameters to elicit specific perceptions of texture 
using vibration artefacts detected in EMG signals. Though often 
used for prosthetic control, sensory feedback modalities like 
vibration can be used to convey proprioceptive or sensory 
information. Literature has shown that the presence of sensory 
feedback in prosthesis can improve embodiment and control of 
prosthetic devices. However, it is not widely adopted in daily 
prosthesis use, due in large part to the daily change in 
perception and interpretation of the sensory modality. This 
results in daily parameter adjustments so that sensory 
perception can be maintained over time. A method therefore 
needs to be established to maintain perception generated by 
modalities like vibrations. This paper investigates modulating 
the vibration parameters based on how the vibrations dissipate 
in the surrounding tissue from the stimuli. This is with the aim 
of correlating dissipation of vibration to specific perceptions of 
texture. Participants were asked to control vibration motor 
parameters to elicit the perception of three different grades of 
sandpaper, provided to them for reference. Once the vibration 
parameters were chosen a CNN algorithm identified and 
categorized the artefact features along equidistantly spaced 
EMG electrodes. Participants were asked to repeat this 
experiment on three separate days and on the fourth was asked 
to complete a texture identification task. The task involved 
identifying the texture of the sandpaper based on their 
previously chosen parameters and compared the results to 
tuning against an AI-based algorithm using the dissipation of 
the vibration artefacts. 
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I. INTRODUCTION  
Through technological advancements in sensory feedback, 
both prosthetic users and able-bodied individuals are able to 
feel a variety of tactile information from the external 
environment  [1-3].  The inclusion of sensory feedback in 

prosthesis has been shown in literature to improve grasping, 
object recognition, embodiment, and reduce instances of 
neuropathic pain [4-8]. It was also found that accurate and 
intuitive sensory feedback was a high priority for prosthesis 
users.  Peerdman et al conducted a study that determined that 
easy, intuitive, and adjustable feedback was a priority in the 
continued use of non-invasive prosthesis [9]. Similarly, 
Cordella et al found that integration of a tactile sensorization 
system that provided accurate sensory feedback was 
important to prosthesis users [10].  
 
Vibrational feedback is one of the most commonly used 
modalities for sensory feedback and can be used to establish 
discernable patterns of texture, which has been shown to 
allow prosthesis users to adjust and manipulate objects more 
effectively [11]. Despite its success, vibrational feedback is 
often underutilized in prosthesis due to the variability in 
perception of the stimuli. For example, vibration parameters 
can be adjusted so that individuals perceive the feeling of 
moving their hand along specific surfaces [11, 12], however, 
the same parameters may elicit a different perception the 
following day or over time [13]. Consequently, daily fine-
tuned adjustments to the parameters are made to maintain the 
same level of perception, preventing long term adoption of 
sensory feedback in prosthesis. Daily changes in weight, hair, 
body temperature, and other physical attributes are factors 
that can affect the stimuli and is therefore believed to be the 
cause of the variations in perceptions [13]. These physical 
attributes can also vary significantly between individuals and 
thus prevents the adoption of a ubiquitous system or settings 
that can maintain accurate, long-term sensory feedback for 
users [13, 14].  It is therefore important to establish a 
relationship between subjective processes like perception and 
the physiological response from vibration stimuli. 
 
Previous work conducted has found that vibrations generated 
distinct artefacts in the frequency spectrum of 
electromyography  (EMG) signals. These artefacts are often 
sensitive enough to detect changes in the physiological state 
of individuals and produce unique trends of vibration 
magnitude when monitored along the biceps [15]. These 
dissipation trends are unique to the individual and do not vary 
greatly over time. 
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Both machine learning and deep machine learning 
techniques, such as convolutional neural networks (CNN),  
have been utilized in pattern recognition of features from 
EMG activity [16, 17]. These are typically used to classify 
movement, position, and gesture of prosthesis to varying 
degrees of success [18, 19]. This work examines using a CNN 
architecture to establish a relationship between the 
dissipation of vibrations in the surrounding tissue from the 
stimuli and the perception of textures of sandpaper.  This is 
towards the aim of developing an autonomous system that 
can maintain a consistent perception of vibration, irrespective 
of the changes in physiology of the user. 
 

II. METHODOLOGY 

A. Experimental Design and Procedure 
Design: Four participants above the age of 18 (1 male, 3 
females) were selected and recruited from University College 
London (UCL), with approval from the UCL ethics 
committee (Project ID: 14679/001). All participants gave 
informed consent to the experimental procedure.  
 
The main objective of the study was to investigate whether 
the perception of a specific texture could be classified using 
the dissipation patterns of vibration artifacts from EMG 
sensor electrodes and thus tuned against to ensure a 
consistent perception of texture. Participants were asked to 
adjust the PWM settings of vibration motors to mimic the 
perception of the three different textures of sandpaper placed 
in front of them. The three grades of sandpaper were as 
follows: coarse (FEPA grade P80), medium (FEPA grade 
P120), and fine (FEPA grade P240). The frequency and 
amplitude of each motor were controlled via two 
potentiometers and used to elicit three distinct perceptions of 
textures being rubbed along the surface of the skin. This 
corresponded to the effect of rubbing a finger along the 
different textures of sandpaper. Vibrations were controlled 
using an Arduino UNO and a L298N Motor driver. An EMG 
array was spaced equidistantly down the biceps belly of the 
dominant arm directly below the vibration source. 
Dissipation of the vibration artefacts were analyzed in post 
processing.  
 
Setup: Participants were seated in a comfortable position 
facing a desk with their dominant arm resting on the surface.  
Two Precision Microdrive vibration motors (model: 334-
401), were placed into a customized 3D printed case on a 
Velcro band and attached to the top of the bicep and triceps 
muscle bellies of the upper dominant arm, approximately 
15cm from the elbow crease. Four surface EMG electrodes 
were placed distally from the motor along the biceps 2.5cm 
apart from each other. Two potentiometers were placed in 
front of the participants to control the pulse width modulation 
(PWM) parameters of each vibration motor. EMG signals 
were acquired using the TMSi porti7 amplifier, with a 
sampling frequency set to 512Hz, connected via Bluetooth to 
a laptop running open vibe software for data collection.  
 

Procedure: Participants were asked to sit by an adjustable 
table with their dominant arm contracted and placed on the 
table surface. The EMG sensors and vibration motors were 
placed on the dominant arm of the participant, while one of 
three given sandpaper textures was placed in front of them. 
Once the experiment began, participants were required to 
adjust the two potentiometers until the perception of vibration 
matched the effect of moving their finger along the sandpaper 
texture. Participants were asked to make these adjustments 
using their non-dominant hand to prevent additional artifacts 
and had a five-minute time limit by which to find the 
appropriate settings to prevent desensitization. If participants 
could not find the setting in that time frame, they were 
allowed a 5-minute break before trying again. The chosen 
PWM parameters were recorded, and the task was repeated 
with the two other textures. Once the participants had 
indicated that they had matched the vibration motor 
parameters to all texture perceptions, they were required to 
stay in the seated position for 25 minutes while the vibration 
motor continuously ran. The vibration motors were set to run 
their chosen parameters for 5 minutes per texture while the 
EMG response was recorded. Additionally, the sensors 
recorded EMG data for 5 minutes while the motors were in 
the off state and finally, while the motor generated 5 random 
textures for the duration of 1 minute per texture.  Participants 
were asked to come in on four consecutive days. The 
experiment was repeated over the course of the initial three 
days and the results analyzed in post processing at the end of 
the third day.   
 

B. Classification Methods 
Different simulations of textures are generated by varying the 
amplitude, frequency, and delay between each parameter of 
the two vibration motors. These variations can be used to 
classify specific perceptions of textures for each participant, 
using algorithms seen in multiclass classification problems. 
In these problems, multilayer perceptions (MLP) are used to 
predict outputs. In a fully connected layer, every neuron is 
connected to every neuron in the following layer with  
 
 
 

Figure I shows the experimental setup when participant is in 
the contracted condition  



weights and biases to determine the best linear combination 
that gives the desired output. Backpropagation is used to 
repeatedly adjust the weights and biases while hidden layers 
are used to learn more complex features. In this work, two 
fully connected hidden layers are used after the CNN layer to 
classify the input. 
 
Previous work has explored similar architectures using Long-
Short Term Memory Networks and Recurrent Neural 
Networks in place of the CNN layer and found there to be 
little difference in the classification accuracy in each 
condition. Simple neural networks and other classifiers such 
as support vector machines (SVM) and K-Nearest Neighbors 
(KNN) produced low accuracy classifications. Overall, CNN 
networks tended to provide slightly higher results 
consistently in all conditions tested. 
 

III. PROPOSED ALGORITHM  

A. Data Segmentation 
Figure II  presents an overview of the algorithm applied to 
the collected data. The collected data is segmented into 
sections of 1 second. Additionally, an overlap window of 
200ms is established. Other overlap window lengths of 
500ms and 1s were tried but the best results were obtained 
with smaller window lengths. This mostly is due to most 
neural networks requiring larger amounts of data and the 
200ms window length provides enough data.  
 

B. Feature Extraction 
Vibration artifacts can be clearly seen in the frequency 
domain of the EMG signal. This makes it appropriate as a 
means of establishing a dissipation trend across all electrodes 
for classification. There are many analysis techniques that 
were used to identify the magnitude of vibration artifacts in 
the EMG signal, such as pwelch, wavelet, and empirical 
mode decomposition analysis; however  short-time Fourier 
transforms (STFT) were used as they provided a more 
consistent and richer array of information [15]. Spectrograms 
have the capability of retaining both time and frequency 
information, and so each segment of data was run through a 
STFT algorithm and compared against the other signals to 
establish the change in magnitude of vibration artifacts along 
the dominant upper arm. A Hamming window was also 
applied to reduce the possibility of spectrum leakage.  
 

C. Classifier Architecture  
Data from the three experimental days were collected and 
concatenated into a large, labelled dataset for each 
participant. The input was comprised of four sequences from 
the EMG recordings of the different bicep electrodes and 
produced one output based on the three possible sandpaper 
texture categories, as described above or a fourth output of 
undetermined. The data for each channel was concatenated 
into one layer and then fed into a one-dimensional CNN layer 
with a rectified linear activation function. Gaussian noise was 
added to each EMG signal input prior to concatenation as 
well as a dropout layer of 15% after the convolutional layer. 

Following this, the data was passed through a time distributed 
layer, 2 fully connected layers and, finally, a softmax 
activation layer to give the final classification. The full 
architecture is given in figure II. 
 

IV. DATA COLLECTION 
 

On the fourth day, participants were placed in an identical 
experimental setup to the previous days. Seven parameter 
values were randomly selected from the list of nine possible 
parameters that participants had identified as the correct 
texture response over the course of the three previous days. 
These values were used to generate a perception of sandpaper 
texture. Participants were given two minutes, for each 
response, to verbally identify which grade of sandpaper was 
being induced by the motors based on four options. Their 
options were texture 1, texture 2, texture 3, or none of the 
above and corresponded to the three textures given to them 

Figure II: Figure showing  full architecture of classification 
algorithm 



on the three training days. A 2-minute break was given 
between every other texture to prevent desensitization. 
Participants also had the option of asking for texture to be 
repeated or to change their answers throughout the 
experiment. Once all textures had been identified, a five-
minute break was given before  moving onto the second 
phase of the experiment. 
 
In the second phase of the experiment, the experimenter ran 
the output of the EMG signals through the generated AI base 
classification model. The model took real time data from the 
four EMG electrodes and predicted what the user might 
perceive the texture to be based on the associated dissipation 
of vibration artifacts found in the signal. The experimenter 
could adjust the parameters of the vibration motors, via 
potentiometers,  until the algorithm indicated that the desired 
texture was achieved. A randomly generated list of seven 
desired textures was produced from the four options 
mentioned in the first phase. Participants were asked to 
verbally determine which texture was being presented to 
them and their answers noted down by the experimenter.  

 

V. RESULTS AND DISCUSSION 
 
A. Model Parameter Optimization  
The data collected for each participant was concatenated, 
labelled, randomized, and split into an 80:20 ratio, where 
80% of the data was used to train the model and 20% to test. 
Each participant had a separately trained model associated to 
them, as in previous studies we found that dissipation trends 
of vibration artefacts were unique to individuals and 
remained relatively consistent over time [15]. A batch size of 
32 and other associated hyper-parameters were kept constant 
for each participant and their corresponding model.  
 

1) An Adams optimizer was used and trained on several 
different learning rates ranging from 0.1 to 1e-7. Accuracy 

and loss curves for all participants were generated and 
indicated that a learning rate of 0.001 produced the best 
results. 

2) Overall, there were 5 distinct layers in the model. The 
input layer was determined by the number of EMG channels 
and its features were concatenated together into a single 
layer. A single CNN layer with a filter size of 16, padding 
and a kernal size of three followed by a rectified linear 
activation function. After the dropout layer, the data was 
passed into two dense layers with 8 and 4 units respectively. 
Finally, an output layer with 4 units corresponding to the 4 
categories of classification was established and trained with 
the Adams optimizer mentioned above.  

 
B. Statistical Analysis 
Figure III shows the normalized power spectrum of one 
second of data from a participant in three different textures 
for one participant on day 1. The intensity of the vibration 
artifacts is clearly seen in all texture conditions and produces 
distinct patterns of behavior. The intensity of decay varies 
slightly in different texture conditions but is indistinguishable 
by the time it arrives at electrode 4, the furthest electrode 
from the source.  
 
Figure IV shows a graph of correct texture identification 
responses per participant in both conditions. The chart in blue 
shows the percentage of correct responses given when 
previous chosen vibration parameters are used to elicit 
textures. The data shown in red displays the percentage of 
correct texture responses when the vibrations are controlled 
via the  dissipation trends and adjusted using the machine 
learning classifier. The results show that, overall, participants 
performed better at identifying the different textures in the 
condition in which the machine learning classifier was used. 
An average texture identification score of 67.8% (18.6% 
STD) across all participants was achieved. This is in 
comparison to the condition in which the vibration 

Figure III shows the log-scale spectrogram of the one second of EMG data across the four electrodes for one participant on the same day. 
Each row shows a specific texture pattern based on the vibration parameters the participant chose. Vibration artifacts can be clearly seen 
in the spectrogram as well as its decay across the electrodes.  The pattern of behavior of the artifacts for each texture is different and 
clearly distinguishable.  



parameters were pre-selected where an average score of 
39.3% (24.4% STD) was achieved. Participants 1, 3, and 4 
show increases in over 50% in accuracy when comparing the 
two conditions. Participant 2 scored very highly in both 
conditions, although still performed slightly better in the 
machine learning condition. Participant 2 has a history of 
performing texture identification tasks which may explain the 
discrepancy in results. 
 
A binomial proportion confidence interval test was used to 
calculate the probability of success in standard Bernoulli 
trials. This statistical test is appropriate for this study as it 
shows the portion of participants who showed improvement 
using the machine learning method. The data shows a lower 
95% confidence interval of 51.01% and an  upper confidence 
interval of 100%. This indicated that if the experiment was 
repeated, 95% of the time the results would show a 51-100% 
improvement in the correct texture identification scores using 
the machine learning methodology.  
 
Perception is highly subjective and difficult to quantify. 
Despite consistent vibration parameters used to elicit specific 
textures, these parameters do not yield the same perception 
of texture for the individual the following day. Even when 
asked to tune the parameters themselves, the values differ 
greatly daily. This is consistent with the results shown in this 
experiment as most participants only managed to identify one 
or two textures, despite using the parameters they had chosen. 
It is therefore beneficial to look at the relationship between 
how vibrations behave on surrounding skin tissue and how 
they are perceived. This experiment represents an initial 

exploration into a means of quantifying how users perceive 
modalities like vibrations by correlating it to the propagation 
behavior in the tissue surrounding the stimuli. Despite the 
small number of participants, the results obtained are 
promising and can be further developed into a ubiquitous 
method of categorizing and controlling feedback to maintain 
perception of texture. 
 

VI. CONCLUSION 
In this paper, we proposed an algorithm based on deep 
learning techniques that can classify the vibration dissipation 
in the dominant arm of 4 healthy participants using EMG 
artifacts. The EMG signals were transformed into the 
frequency-time domain using STFT and the data from each 
electrode fed into an input of the classification algorithm. 
Participants were asked to perform a texture identification 
task to compare the efficacy of tuning vibration parameters 
using the classification algorithm to previously determined 
values. This is with the aim of maintaining perception of 
texture over time. The results show that overall participants 
perform better at identifying texture when using the machine 
learning algorithm to classify the dissipation. 
  
Based on these findings, we suggest that EMG artifacts can 
be used to categorize vibrational sensory feedback in 
prosthetics. This process requires no added hardware to 
existing myoelectric prosthesis and can, we hypothesise, be 
used to provide a basis for autonomous feedback in sensory 
feedback for prosthesis. Current work looks at improving the 
robustness of the AI-classifier as well as further exploring 

Figure IV shows a comparison of the percentage of correct responses to the texture identification task for each participant in each 
condition. The figure shows that participants overall performed better when using the machine learning based method. 



automating this process using reinforcement learning 
algorithms to provide consistent feedback irrespective of 
participant or muscle state. This will be the subject of future 
studies.   
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