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Abstract

“Can machines optimally take sequential decisions over time?”. Since decades,

researchers have been seeking an answer to this question, with the ultimate goal

of unlocking the potential of artificial general intelligence (AGI) for a better and

sustainable society. Many are the sectors that would be boosted by machines being

able to take efficient sequential decisions over time. Let think at real-world appli-

cations such as personalized systems in entertainment (content systems) but also

in healthcare (personalized therapy), smart cities (traffic control, flooding preven-

tion), robots (control and planning), etc.. However, letting machines taking proper

decisions in real-life is a highly challenging task. This is caused by the uncertainty

behind such decisions (uncertainty on the actual reward, on the context, on the envi-

ronment, etc.). A viable solution is to learn by experience (i.e., by trial and error),

letting the machines uncover the uncertainty while taking decisions, and refining

its strategy accordingly. However, such refinement is usually highly data-hungry

(data-inefficiency), requiring a large amount of application specified data, leading to

very slow learning processes – hence very slow convergence to optimal strategies

(curse of dimensionality). Luckily, data is usually intrinsically structured. Identifying

and exploiting such structure substantially improves the data-efficiency of sequential

learning algorithms. This is the key hypothesis underpinning the research in this

thesis, in which novel structural learning methodologies are proposed for decision-

making strategies problems such as Recommendation System (RS), Multi-armed

Bandit (MAB) and Reinforcement Learning (RL), with the ultimate goal of making

the learning process more (data)-efficient. Specifically, we tackle such goal from

the perspective of modelling the problem structure as graphs, embedding tools from
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graph signal processing into decision learning theory.

As the first step, we study the application of graph-clustering techniques for

RS, in which the curse of dimensionality is addressed by grouping data into clus-

ters via graph-clustering techniques. Next, we exploit spectral graph structure for

MAB problems, representing online learning problems. A key challenge is to learn

sequentially the unknown bandit vector. Exploiting the smoothness-prior (i.e., bandit

vector smooth on a given underpinning graph), we study theoretically the Laplacian-

regularized estimator and provide both empirical evidences and theoretical analysis

on the benefits of exploiting the graph structure in MABs. Then, we focus on the

theoretical understanding of the Laplacian-regularized estimator. To this end, we

derive a theoretical error upper bound on the estimator, which illustrates the impact of

the alignment between the data and the graph structure as well as the graph spectrum

on the estimation accuracy.

We then move to RL problems, focusing on the specific problem of learning a

proper representation of the state-action (representation learning problem). Motivated

by the fact that a good representation should be informative of the value function, we

seek a learning algorithm able to preserve continuity between the value function and

the representation space. Showing that state values are intrinsically correlated to the

state transition dynamic structure and the diffusion of the reward on the MDP graph,

we build a new loss function based on the newly defined diffusion distance and we

propose a novel method to learn state representation with such desirable property.

In summary, in this thesis we address both theoretically and empirically impor-

tant online sequential learning problems leveraging on the intrinsic data structure,

showing the gain of the proposed solutions toward more data-efficient sequential

learning strategies.



Impact Statement

Artificial Intelligence (AI) research dedicates to understanding and developing human

intelligence which creates and shapes the fantastic world we live in. It is unarguable

that AI would benefit humanity and the world at large. Reinforcement Learning (RL),

an important branch of AI research, is about understanding and solving sequential

decision making problems. Sequential decision making is ubiquitous in almost

every domain in the real-world such as making a coffee, driving a car, traveling

round the world, planning and accomplishing a scientific experiment, writing an

academic paper, etc. Human’s ability in sequential decision making is remarkable.

RL dedicates to understanding and demystifying such ability.

Recently, RL has emerged as a powerful solution to many complex sequential

decision making problems including video games, simulated robotic control and

data centre energy allocation, etc. Despite numerous demonstrated successes, the

wide application of RL to real-world problems is still limited. One of the main

reasons is the low data efficiency of modern RL. Modern RL algorithms require a

large amount of data to achieve a reasonable level of performance, which is usually

in many orders of magnitude than human need. Unfortunately, in many real-world

problems, collecting a large amount of data is expensive or even prohibited.

This thesis is an effort towards more data-efficient RL solutions. We improve

the data efficiency from two important perspectives: exploration and representation

learning. As a results, our contributions lead to more data-efficient RL algorithms in

comparison with existing algorithms in the literature. We believe that the research

contained in the thesis are applicable to many real-world problems. At large, this

research contributes to improving the applicability of RL to data-limited domains.
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Chapter 1

Introduction

Sequential decision-making plays a pivotal role in our daily life. As humans, we

constantly face a variety of tasks involving sequential decision-making strategies.

Planning and adjusting the commute route from home to the working place according

to the traffic conditions. Shopping in grocery based on products’ availability and

family need. Changing trajectory and speed while walking or driving based on

others’ behaviour. In these examples, each of us need to make a series of interrelated

decisions, while interacting with the real-world, to then achieve a desired (possibly

long-term) goal. Being able to solve such complex tasks is one of the hallmarks of

human intelligence.

However, sequential decision-making is also ubiquitous in real world problems

that should be solved by machines instead of humans. Smart cities with efficient

traffic systems proactively managed to avoid congestion. Personalized healthcare

with medical treatment procedures fine tuned to address each patient needs. Data

centre cooling system adapting to the dynamic workload and outdoor temperatures.

Being able to automatize such decisions would lead to significant societal and

economical impact. Given the ability of humans as decision maker, demystifying

and understanding such ability is one of the foundational driving force underlying

the research of artificial intelligence.

Reinforcement Learning (RL) along with supervised learning and unsupervised

learning form the main paradigms in machine learning research, as shown in Fig 1.1.

Supervised learning learns under supervision trying to infer the relationship between
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Figure 1.1: Machine Learning Paradigms

inputs and outputs, and apply the inferred relationship to unseen but similar inputs

via generalization and extrapolation. Typical applications include prediction and

classification. Unsupervised learning (i.e., learning without supervision) aims to mine

the hidden structure of data with applications in clustering and dimension reduction.

While both supervised learning and unsupervised learning paradigms can be useful

for learning decision making strategies (could be useful for representation learning

tasks in RL, for example), they can not solve the sequential decision problems

alone. Hence, the need for a new learning paradigm, called Reinforcement Learning

(RL). RL paradigm focuses on sequential decision making aiming to learn without

supervision the mapping from situations (states) to optimal actions in order to

maximized a long-term goal.

Specifically, within the RL framework, a decision-making agent interacts se-

quentially with an environment and aims to achieve a long-term goal (defined by the

task). At each interaction, the agent takes an action upon its sensing about the current

state of the environment and then receives a feedback signal from the environment.

The environment transits to next state according to its dynamic and the action of

agent. The agent seeks a sequence of actions, called policy, by trails and error to

solve the task. RL concerns the learning of an optimal policy from interactions with

the environment. The learning methodology of RL mimics the foundational way

which is used by human to learn. Throughout our live, we constantly interact with

the environment around us and adapt our actions based on our sensing to fulfil goals

like grasping a cup of tea, making a meal and riding a bicycle, etc.

RL has a history of decades [1]. Recently, with the combination of deep learning

[2] and powerful computational capability, (Deep) RL has gone through a tremendous
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Figure 1.2: Depiction of Reinforcement Learning Framework

progress making remarkable successes in a wide range of complex applications. For

example, Playing video games at the level of human players [3]. Outperforming the

world champion in broad game Go [4]. Training walking robotics to learn locomotion

skills [5]. Recommending videos to user from million of candidate videos [6].

Despite impressive successes, there are still many challenges preventing the

wide use of RL in real-life applications [7]. A profound challenge is the low data

efficiency, which refers to the amount of data required to achieve a certain level of

performance. Modern deep RL algorithms require a large amount of interactions with

the environment to achieve a reasonable level of performance, which is usually in

many orders of magnitude than human need [8]. Unfortunately, collecting interaction

data in many real-life tasks are costly or even prohibited. For example, in healthcare,

the data collection, involving the interaction between medical treatments and patients,

could be expensive and dangerous. In robotics, data collection, requiring intensive

experiments, could be time consuming and with high cost in terms of labor and

finance. Therefore, it is vital to develop data efficient algorithms able to achieve

reasonable performance while drastically reducing the amount of required data.

In this thesis, we devote our investigation on data efficiency in RL and make

several contributions allowing RL agents to learn faster (with less data) while mini-

mizing the suboptimality gap of the learned policy.
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1.1 Main Challenges
The remarkable successes achieved by RL algorithms has draw an exponentially

increasing attentions in applying RL algorithms into real-life problem. However,

many challenges remained unsolved preventing RL algorithms to be actually adopted

in such real-life problems in a data-efficient and reliable manner. In the following,

we highlight the key challenges underpinning the data inefficiency problem in RL.

Exploration-Exploitation Dilemma

The balance between exploration and exploitation is a foundation issue for solving

RL problems. The agent is expected to find the optimal policy as soon as possible,

exploiting the acquired knowledge. However, committing to the policies too early

without sufficient exploration might lead to local/sub-optimal policies. In short, too

little exploration provides insufficient information for policy improvement, while too

much exploration delays the finding of the optimal policy. This issue is particularly

serious in tasks with large action and state space, such as continuous control in

robotic and recommendation system with millions items. Finding the right balance

between exploration and exploitation critically determines the data efficiency of RL

algorithms. i.e., how quick the optimal policy can be found.

Representation Learning

In RL, the agent first senses the environment based on observations and then acts

according to it. In many real-world scenarios, the observations provided by the

environment might contain redundant and distracting information which is irrelevant

to the problem the agent aims to solve. For instance, in self-driving car applications,

the shape of building and cloud in the background are irrelevant to the driving task.

This implies that the agent needs to distil useful information from redundant/rich

observations. This is known as representation learning and in RL is particularly

challenging. Specifically, in the literature, there is a lack of theoretical understanding

and a consensus on the notion of optimal representations for RL. A representation

learned to reduce the value-function approximation error, might not lead to efficiently

learn the optimal agent policy. Similarly, it is not clear which conditions an optimal
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representation should respect to ensure for the agent to quickly learn the optimal

policy. Because of all those problems, current representation learning strategies

could lead to low data efficiency.

Generalization

Most RL research has been focused on solving a specific task where the environment

is given, a prior defined and stationary. This leads the machine to overfit to such given

environment, developing an impressive ability in taking decision but in a very narrow

task. As a consequence, every time there is 1) a slight change of environment/task; 2)

a noisy or out of distribution, the machine miserably fails in taking proper decisions.

This is a very important limitation of current RL agent as in many practical tasks, the

environment is dynamic and constantly changing. For instance, in financial portfolio

management, the financial market (environment) is versatile and non-stationary.

If those scenarios are treated as new ones every time, a new learning process is

experienced, instead of relying on previously acquired knowledge. Hence, the well

populated new line of research on generalization, robustness and open-ended learning

in RL, to make the agent with a more general intelligence. The goal is for the RL

agents to able to quickly adapt to new unseen situations and be robust with respect

to variations of the environment. It is clear that achieving this goal would drastically

impact the learning efficiency of the agents.

With the above challenges in mind and noticing the common denominator of data-

inefficiency (as current limitation of RL), in this thesis, we made several contribu-

tions toward data-efficient RL with a particular focus on exploration-exploitation

dilemma and representation learning.

1.2 Contributions

Through our investigations on exploration-exploitation dilemma and representation

learning, this thesis makes a step toward more data-efficient RL agents.
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Figure 1.3: Depiction of Reinforcement Learning (RL) and Multi-armed Bandit (MAB)

Exploration-Exploitation Dilemma

Our efforts devoted to the exploration-exploitation dilemma fall under the framework

of Multi-armed Bandit (MAB). MAB can be viewed as a special RL problem, as

shown in Figure 1.3. In the RL framework, at decision opportunity, the agent

observes the state, and selects an action among the feasible ones from the current

state. Then, the agent receives a reward upon the selected action and the environment

transits to next state, according to both the environment dynamics and the selected

action. With the new state, the agent needs to select an action again and the process

continues. In RL there is a clear dependency on the actions timeline since actions

have an impact on the future evolution of the environment. In contrast, in MAB

problems, the environment state does not change after an action is selected by the

agent, or if this changes (as in the case of contextual bandit), this variation is action-

independent and it is usually randomly or adversarial selected. Therefore, MAB

problems disentangle the exploration-exploitation dilemma from more complex

aspects of RL such as off-policy learning (collecting data on a behavioural policy

different from the learned policy) and temporal evolution/transitions of states in the

environment. The MAB problems have a long history [9] and been studied intensively

across many disciplines such as statistics, operation research and mathematics [10].

During recent years, MAB has experienced a dramatic increase of interest due to

its fundamental importance in RL and its own wide range of applications such as

recommendation system [11], experimental design [12], auctions [13] and radio

channel allocation [14]. Within the MAB framework, this thesis makes three main
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contributions in addressing the MAB problem.

1. Leveraging structural knowledge for multi-task MABs. We consider multi-

task linear bandit problems. Solving each bandit task independently would

result in a total regret scaling linearly with the number of tasks. This makes the

multi-task bandit problem unfeasible in a large-scale setting (large number of

tasks). Specifically, Suppose the number of linear bandit task to solve is n, and

bandit tasks are sampled uniformly across the time horizon T . Each bandit will

appear roughly T ′ = T/n times. If the agent solves each bandit independently

(suppose LinUCB is used), the cumulative regret of each bandit can be upper

bounded as R(T ′) = O(d
√

T ′). The total regret will be R(T ) = O(nd
√

T ′),

which scales linearly with the number of bandit n. Under the assumption

that those tasks share similarities, we propose an algorithm that exploits prior

knowledge regarding such relational structure among tasks. We model the task

relatedness as graph structure and we demonstrate, empirically and theoret-

ically, that such prior structural knowledge leads to better cumulative regret

and we also highlight the dependency of the regret on the task relatedness.

2. Theoretically understanding the impact of structure knowledge in learn-

ing frameworks. We provide a theoretical analysis of the Laplacian-

regularized estimator, well known estimator with a close form solution but

with a lack of theoretical understanding. We fill-in this gap by providing an

error upper bound that illustrates the impact of the alignment between the

data and the graph structure as well as the graph spectrum on the estimation

accuracy. We then show how this theoretical result plays a key role in the

multi-task problem. However, we believe this contribution is of strong interest

beyond MABs, as such Laplacian-regularized estimators have been applied to

many learning problems and its statistical consistency properties have been

largely overlooked in the literature.

3. Balancing the exploration and exploitation in a data-driven fashion: In

some existing works, the uncertainty around the reward of each arm is char-
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acterized by upper confidence bound [15], which is typically derived from

concentration inequalities based on assumptions on the reward and noise distri-

bution. The validity of these assumptions however is unknown in practice. We

propose a differentiable linear bandit algorithm, which learns the confidence

interval in a data-driven fashion, making it adaptive to the actual problem

structure.

4. Graph-based recommendation system: As an application of MAB, we

consider the problem of recommendation system (RS) in a large settings,

i.e., when recommending to a large number of users. Each user is modelled

as a bandit problem and items represent arms. Again, the users’ similarity

can be captured by an underpinning graph. To improve the efficiency of the

recommender agent, we group users via spectral clustering technique, where

RS serves user groups rather than individual users. As additional contribution,

we built a real-users dataset from our collaboration with BBC and modelled

user viewing behaviours on BBC programs as random walk process over an

item (program) graph. The goal is to predict what program each user will visit

(random walk) given past behaviours.

Representation Learning in RL

The second part of the thesis focuses on representation learning in RL. In RL tasks

with large or continuous state space, one usually resorts to function approximation

where state values are modelled as a function in terms of state representations.

Such representations can be hand-crafted [16] [1] or learned through representation

learning techniques. The data efficiency of RL algorithms heavily relies on its ability

of learning compact representation, which serves to approximate value functions and

enact new policies. In the literature, there is a lack of consensus on the concept of

what is a good representation for RL. This thesis contributes toward improving the

representation learning in RL from the perspective of value function approximation.

1. RL agent behavioural similarity as diffusion model. Intuitively, value

functions are inherently induced by the underlying environment dynamics and
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reward function. Such transitions, dynamics and reward values are usually

driven by an underpinning structural model, which captures the behaviour

of the RL agent. Leveraging such structure could help in inferring the value

functions (hence better learning). Following this line of thought, we first

investigate the intrinsic structure of value functions and identify a clear link

between agent behaviour and diffusion model on graph. Then we identify

a state distance metric upon which value functions are provable Lipschitz

continuous. Such metric is key in behavioural representation learning in RL,

which has been considered among the most promising strategies for data

efficient RL.

2. Developing of novel diffusion-based representation learning strategies

for data-efficient RL agents. To facilitate the representation learning, we

first present a sample-based approach to learn the diffusion-distance from

transition data. Then we propose a novel auxiliary loss which utilizes the

learned distance to shape the state representation in such a way that value

functions are Lipschitz continuous with respect to the learned representations.

We hypothesise that the auxiliary loss can improve the learning efficiency, due

to the metric-respect representation which facilities the generalization ability

of value function approximation across states with similar representations.

1.3 Thesis Outline
This thesis consists of 8 chapters divided in parts. Subsequent to this introductory

chapter, the rest of this document is organised as follows:

• Chapter 2 provides the relevant background knowledge, problem formulations

and existing methods related to Multi-armed Bandit and Reinforcement Learn-

ing. This chapter lays the foundation upon which this thesis is established.

• Chapter 3 introduces our algorithm on multi-task linear bandit problem which

exploits a prior knowledge on the relational structure among tasks through

graph Laplacian regularizer. It also presents a finite-time analysis on the
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proposed algorithm showing a significant improvement in terms of regret in

comparison with existing algorithms, and demonstrate empirical advantages

on both synthetic and real-world data.

• Chapter 4 presents the theoretical analysis on Laplacian-regularized estimator,

which illustrates the impact of the alignment between the data and the graph

structure as well as the graph spectrum on the estimation accuracy. As expected,

our analysis suggests that the smoother the data with respect to the graph and

the denser the graph connected, the lower the estimation error.

• Chapter 5 presents a differentiable linear bandit algorithm that utilizes upper

confidence bound to balance exploration and exploitation trade-off. Such

confidence bound is learned in a data-driven fashion by introducing a gradi-

ent estimator. This chapter also contains theoretical analysis and empirical

demonstrations on the performance of the proposed algorithm.

• Chapter 6 introduces a new approach for representation learning in RL based

on the intrinsic structure of value functions. It also provides theoretical guar-

antee on value function approximation and demonstrates empirically that the

proposed approach gives arise to informative and structural representations,

and improves the control performance in comparison with baselines.

• Chapter 7 presents an empirical work where we utilize graph-based clustering

technique (spectral clustering) to solve the multi-task linear bandit problem

with an application in recommender system (RS). Specifically, each user

represents a bandit problem. Users on social network are grouped together

through spectral clustering, and then the RS serves user groups rather than

individual users.

• Chapter 8 summarises the work presented in this thesis and highlights the

importance of the proposed methods and tools. In addition, the chapter out-

lines future research directions.
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• Appendices include proofs of theoretical results provided in the above chapters

as well as supplementary experimental results.

Due to IP-copyright, this thesis cannot include the main contribution on real-

users recommend systems. However, the goal is to publicly release both the dataset

built in collaboration with BBC as well as designed algorithms.

1.4 Publications
The research presented in this document has resulted the following publications,

listed in chronological order:

• Proceedings

1. K. Yang and L. Toni, “Graph-based recommendation systems”, IEEE

Global Conference on Signal and Information Processing (GlobalSIP),

2018

2. K. Yang, X. Dong, L. Toni, “Laplacian-regularized graph bandits: Algo-

rithms and theoretical analysis", International Conference on Artificial

Intelligence and Statistics (AISTATS), 2020.

• In Submission

1. K. Yang, and L. Toni, “Differentiable linear bandit algorithm”, arXiv

preprint arXiv:2006.03000, 2020.

2. K. Yang, X. Dong, L. Toni, “Laplacian-Regularized Estimator: Analysis

and Application on Contextual Bandits”, in submission IEEE Transaction

on Signal and Information Processing over Networks (arXiv preprint

arXiv:1902.03720). 2022.

3. K. Yang, S. Madjiheurem, L. Toni, “Learn Diffusion-Induced

State Representation”, in submission to ICLR 2023 (arXiv preprint

arXiv:2101.02230).

• Open-source dataste and graph-based RS algorithms
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1. K. Yang, L. Toni, D. Walker, M. Mrak, “A Time-dependent real-users

dataset for iPLayer recommendation”, gitHub (to be released soon jointly

with a challenge publication, now IP-protected on BBC side).

• PhD Scholarship

1. UCL Overseas Research Scholarship (UCL-ORS).

• Internships

1. July-Nov, 2021, machine learning applied scientist at Amazon Web

Services (China).

2. Jan-June 2021, research intern on recommendation systems at BBC

R&D London (UK).

3. Sep-Nov 2019, visiting researcher on theoretical analysis of bandit prob-

lems at SequeL team at Inria (Lille, France).



Chapter 2

Background

This chapter introduces the relevant background knowledge related to sequential deci-

sion making strategies. To ensure a good understanding of the body of this thesis, we

first review the background knowledge of multi-armed bandit problems (Section 2.1).

Next, we provide the fundamental concepts and algorithms in Reinforcement Learn-

ing. Finally, we introduce the representation learning in Reinforcement Learning

(Section 2.2).

2.1 Multi-armed Bandit (MAB)
MAB provides a framework to formalize the problem of sequential decision making

under uncertainty. Within the MAB framework, an agent repeatedly interacts with

an environment over a time horizon T , with T being a positive integer number. The

environment consists of a set of alternatives choices made available to the agent,

often referred as K-arms of the bandit. Each arm leads to a reward, unknown to the

agent, who needs to learn, by trial and error, which is the best arm to select (i.e., the

ones with the higher reward). At each time step t ∈ [T ], the agent is required to select

one arm and receives a bandit feedback. Over the time horizon T , the agent generates

a sequence of arm selections, called policy, and corresponding sequence of rewards.

The goal of the agent is to find the policy such that maximizes the cumulative reward.

When making the arm selection, at each time step, the agent encounters an

trade-off between exploration and exploitation: selecting the highest-rewarded arm

based on current information (exploitation) or selecting unknown arms to gain more
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information (exploration). Selecting unknown arms (exploration) provides more

information at the possible expense of immediate reward. Selecting the current

highest-rewarded arm might miss the chance of finding arms with higher rewards.

Finding the right balance between exploration and exploitation is the key of solving

MAB problems.

MAB problems were first introduced, in almost a century ago, for medical

experiment trails [9] and formally investigated in [17] and [18]. In recent decades,

due to its essential role in Reinforcement Learning and its own wide range of

applications such as ads recommendation [11], auction [13] and resource allocation

[14], MAB problems have experienced a surge of attention from various disciplines

resulting an enormous body of work in the literature. Many books exist on various

branches of MAB problems, such as [19, 20, 21, 10]. Interested readers are referred

to such books for deep studies.

Based on assumptions about time horizon, the number of arm, reward distribu-

tions and feedback mechanism, MAB problems can be divided into many categories

such as stochastic bandit, adversary bandit, partial-feedback, bandit-feedback, finite

arm, infinite arm, known/unknown horizon, etc [10]. This thesis focuses on the

stochastic bandit problem with finite arms, the basic form for MAB problem, which

is formally defined in the next section.

2.1.1 Stochastic Bandit

In the stochastic bandit problem, an agent interacts with an environment repeatedly

over a time horizon T . The environment consists of a finite set of arms A where

|A | = K denotes the number of arms. Each arm a ∈ A is associated with an

unknown but fixed reward distribution P(a). At each time step t ∈ T , the agent

selects one arm at ∈A from the arm set and receives a reward yt which is sampled

independently from the corresponding reward distribution yt ∼P(at). The agent

aims to maximize the cumulative reward collected over the time horizon, defined as

YT = ∑
T
t=1 yt .

The arm selection strategy used by the agent is called policy, denoted as π . A

commonly adopted measure of the policy performance is the regret, which is defined
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as the gap between the cumulative reward of the policy π and that of a benchmark

policy. One type of benchmark policy is the optimal policy, denoted as π∗, which

always selects the arm a∗ with the highest expected reward y∗ throughout the time

horizon. More formally, the regret of policy π is defined as

RT (π) = T · y∗−E
[ T

∑
t=1

yt

]
(2.1)

The expectation is taken over the randomness of reward realization and the arm

selection process. Intuitively, the regret measures how much the agent loses following

policy π instead of always selecting the optimal arm. Minimizing the regret is

equivalent to maximizing the cumulative reward.

When analysing the policy performance, we mainly concern about the depen-

dence of regret RT (π) over the time horizon T . A policy π is said to be no-regret

when the regret is sublinear with respect to the time horizon. Formally,

lim
T→∞

RT (π)

T
→ 0 (2.2)

The sublinear regret implies that the agent concentrates on the optimal arm as the

time horizon approaches to infinity (no more regret incurs). In [18] and [19], authors

showed the optimal scalability of regret RT over the time horizon T is Ω(logT ).

Several algorithms [22] [23] [24] were proposed satisfying the optimal regret lower

bound. The subtle difference in terms of algorithm design and regret analysis can

be found in respect papers and books [20] [10]. In the following, we describe

two foundational algorithms for stochastic bandit problem: UCB1 and Thompson

Sampling.

UCB1

As discussed before, the core of MAB problems is to balance exploration and

exploitation trade-off. To deal with this trade-off, [25] proposed the UCB1 algorithm,

based on a principle called Optimism in Face of Uncertainty. The key intuition is that

the agent selects an arm that either has high reward or large uncertainty. Specifically,
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due to the uncertainty of the environment, i.e., noise, the expected reward of each arm

can not be estimated accurately, especially at the beginning of the decision process.

Therefore, at each time step t, based on information obtained so far, the reward of

each arm can be estimated by its empirical average ŷt(a) = ∑at=a yt(a)/nt(a) where

nt(a) is the number of times in which arm a has been chosen up to time t. Beyond

the estimated reward, there is a need to quantify the uncertainty on the estimation,

i.e, a confidence interval, which can be constructed using the Hoeffding inequality.

P{|ŷt(a)− y(a)| ≤ βt(a)} ≥ 1− 2
T 2 where βt =

√
2log(T )

nt(a)
(2.3)

This results in a confidence interval of the reward of each arm at round t,

ŷt(a)−

√
2log(T )

nt(a)
≤ y(a)≤ ŷt(a)+

√
2log(T )

nt(a)
(2.4)

Thus, the upper confidence bound is defined as

UCBt(a) = ŷt(a)+

√
2log(T )

nt(a)
(2.5)

At each time step t, the agent chooses the arm with the maximum upper confi-

dence bound, i.e., at = maxa∈A UCBt(a). This naturally favors the exploration and

exploitation trade-off. In fact, UCBt(a) assumes large value in two settings:

• The first is a large ŷt(a) which means a appears to be a high rewarded arm

based on current information.

• The second is a large
√

2log(T )/nt(a) which means a large uncertainty of the

estimated reward due to a small nt(a).

Both are good reasons to choose arm at leading to a trade-off between exploration√
2log(T )/nt(a) and exploitation ŷt(a). Striking the trade-off leads to good regret.

Theorem 1. [25] Suppose K arms and T rounds, UCB1 achieves regret

RT ≤O(
√

KT log(T )) (2.6)
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Algorithm 1: UCB1
Input :A : Arm set, T : Time horizon

1. Choose each arm once.

2. for t ∈ [1,T ] do
Choose arm

at = argmaxa∈A UCBt(a) = argmaxa∈A

(
ŷt(a)+

√
2log(T )

nt(a)

)
end

3. Receive yt , update ŷt(a) and nt(a).

Thompson Sampling

An alternative to Optimism in Face of Uncertainty is Probabilistic Randomization.

Thompson Sampling [26] models the reward of each arm via a posterior dis-

tribution and takes samples from this distribution. The arm with largest sampled

reward is selected. The underlying idea is that if the posterior distribution is less

concentrated, samples with high fluctuation lead to a high level of exploration (a low

level of exploitation). On the other hand, a highly concentrated distribution leads to

a low level of exploration (a high level of exploitation).

More specifically, Thompson Sampling initializes the reward distribution per

arm to be Pa
0, it updates this distribution over time, denoted by Pa

t based on all the

rewards observed up to t. At each round t, a sample is drawn from the posterior

distribution ŷt(a) ∼ Pa
t of each arm a, the arm with the largest sampled reward is

selected. Formally,

at = argmax
a∈A

ŷt(a) (2.7)

Theorem 2. [26] Suppose K arms with T rounds, Thompson Sampling achieves

regret

RT ≤O(
√

KT log(T )) (2.8)

In the above, we present the upper bounds of algorithms’ regret which measure

their worst-case performance. To justify that an algorithm is optimal or close to



2.1. Multi-armed Bandit (MAB) 34

Algorithm 2: Thompson Sampling
Input :A : Arm set, T : Time Horizon

for t ∈ [1,T ] do
1. For each arm a, sample ŷt(a) from distribution Pa

t .

2. Choose arm at = argmaxa∈A ŷt(a).

3. Receive yt , update distribution Pa
t .

end

optimal, it is necessary to compare the upper bound with a lower bound. In the

literature, there exits two types of lower bound: worst-case (minimax) and instance-

dependent lower bound.

Theorem 3. (Worst-case regret lower bound) [10] Fixed time horizon T and the

number of arms K. For any bandit algorithm, there exists a problem instance such

that

R(T )≥Ω(
√

KT ) (2.9)

This lower bound implies the upper bounds of UCB1 and Thompson

Sampling, stated above, are essentially close to the optimality except the log(T )

term. To merge the log(T ) gap, many effort have been devoted. In the next remark,

we briefly review the progress been made.

Remark 1. A variant of UCB1, called MOSS [27], removes the log term entirely by

refining the arm index as shown in Algorithm 3.

R(T )≤O(
√

KT ). (2.10)

A phased elimination [28] algorithm achieves the optimal regret rate, R(T ) ≤

O(
√

KT log(K)) which is an improvement when K ≤ T .

The regret bound of Thompson Sampling, stated in Theorem 2, is obtained

by [29], which is then improved by [30], removing the log factor R(T )≤O(
√

KT ).

Theorem 4. (instance-dependent regret lower bound) For stochastic bandit instance,

let T be the time horizon. The instance-dependent lower bound is in the following
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Algorithm 3: MOSS [27]
Input :A , T

for t ∈ [1,T ] do
1. Choose each arm once.

2. Subsequently choose

at = argmax ŷt(a)+

√
4

nt(a)
log+(

T
Knt(a)

) (2.11)

where log+(x) = logmax{1,x}.

end

Algorithm 4: Phased Elimination [28]
Input :A , sequence (ml)l
A1 = 1,2,3, ...K

for l = 1,2,3, ... do
1. Choose each arm a ∈Al exactly ml times.

2. Calculate ŷl(a) the empirical average reward for arm a from this phase.

3. Update the active arm set

Al+1 = {a : yl(a)+2−l ≥max
a∈Al

ŷl(a)} (2.12)

end

form:

R(T ) = Ω(c logT ) (2.13)

where c is a constant dependent on the bandit problem instance rather than T .

Remark 2. Both UCB1 and Phased Elimination satisfy the following regret

upper bound [10].

R(T )≤ O(C logT ) (2.14)

where C = ∑a:y(a)≤y(a∗)
1

y(a∗)−y(a)

The instance-dependent regret upper bound of Thompson Sampling is
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stated below [10]:

R(T )≤ O(Cts logT ) (2.15)

where Cts = ∑a:y(a)≤y(a∗)
y(a∗)−y(a)

KL(y(a),y(a∗))

Comparing the instance-dependent bound and upper bounds, we see that these

algorithms are near-optimal up to a constant factor.

2.1.2 Contextual Linear Bandit

In the previous described stochastic bandit setting, the reward (or distribution) is

assumed to be independent between arms. The received reward upon selecting an

arm is the only information available to the agent. However, practical applications

are the seldom the case. For example, in news recommendation scenarios, a rec-

ommender system is usually informed with side information regarding users and

news features (or meta-data). The preference (reward) of users on news (arms) can

be predicted to some extent based on the side information. Such side information,

called context, provides a hint on the reward of arms. In this section, we introduce

the Contextual Bandit problem, a framework modelling MAB problems in which

contextual information is available.

In contextual bandit, at each time step t ∈ [T ], before selecting the arm, the

agent is informed a context Ct ∈ C generated by the environment, with C being the

set of contexts. Both C and the generate process of Ct from C is unknown to the

agent and independent to agent’s arm selection. Given this context Ct , the agent

selects an arm at from the arm set A and receives a reward yt which is dependent on

both Ct and at . Formally,

yt = f (Ct ,at)+ηt (2.16)

where f : C ×A → R is the unknown reward function and ηt is a noise term.

Denote the best arm, at each time step t, as a∗t = argmaxa∈A f (Ct ,a). Note that

the best arm is time-dependent due to its dependency of context. Denote the agent’s

policy as π . The policy regret is defined as

RT (π) = E
[ T

∑
t=1

f (Ct ,a∗t )−
T

∑
t=1

yt

]
(2.17)
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The expectation is taken over the randomness induced by context generate process,

reward noise and arm selection process. Note that we make no restriction on the form

of the reward function f (·). Under the generic setting, [20] showed the worst-case

regret over any contextual bandit, with |C | = M contexts and K arms, is at least

Ω(
√

T MK). The
√

MK dependency over contexts number and arm number might be

infeasible in practical applications. For example, in production recommendation for

online shopping site which might have million users (M) and hundreds of thousands

of products (K). To make the problem more tractable, some assumptions can be

made to pose structures on the reward function.

Lipschitz contextual bandit [31] [32] [33], as an example, assumes the reward

function is Lipchitz continuous with respect to the contexts and arms. Formally,

| f (C,a)− f (C′,a′)| ≤ DC (C,C′)+DA (a,a′), ∀(C,C′) ∈ C and ∀(a,a′) ∈A

(2.18)

where DC (·, ·) and DA (·, ·) are metrics in context space and arm space, respectively.

Another line of work poses linearity on the reward function [34] [35] [36] [37]

[38] where the expected reward of each arm follows an unknown linear function.

Usually, the agent has the access to a feature mapping φ : C ×A → Rd , which

maps a context-arm pair to a vector feature φ(C,a) ∈Rd with dimensionality d. The

corresponding reward follows an unknown linear function in terms of the feature

vector. Namely, y = φ(C,a)T θ where θ ∈ Rd is the fixed but unknown parameter

vector and η is a noise term.

There are several slightly different variants [36] [37] [38] of contextual linear

bandit in the literature. In the following, we focus on a specific instance defined in

[37], upon which our contributions are built.

At each time step t ∈ [T ], the agent chooses an arm at ∈A from the arm set.

Each arm is represented by a vector feature φ(at) ∈ Rd , called arm feature. Given

the selected arm, the reward yt is received which is assumed has the following form:

yt = φ(at)
T

θ +ηt (2.19)
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where θ ∈Rd is the unknown function parameter and ηt is the noise term. The noise

term is assumed to be conditional σ−subgaussian, such that

E
[

ληt |Ft

]
≤ exp

λ 2σ2

2
, ∀λ ∈ R (2.20)

where Ft = σ(a1,y1,a2,y2, ...,at−1,yt−1) summaries the information up to time step

t. The σ−subgaussion means E[ηt |Ft ] = 0 and Var(ηt |Ft ]≤ σ2.

By denoting the optimal arm as a∗ = argmaxa∈A φ(a)T θ , the regret of a policy

is defined as

RT (π) =
T

∑
t=1

θ
T

φ
∗−

T

∑
t=1

θ
T

φ(at) (2.21)

The goal of the agent is to find the policy such that minimizes the regret. In the follow-

ing, we present two fundamental algorithms, LinUCB [35] and LinTS [26], which

extend UCB1 and Thompson Sampling to contextual linear bandit, respectively.

LinUCB

Similarly to UCB1, LinUCB [35] is built on the Optimism in Face of Uncertainty

principle. To take into account the linear model, the confidence interval in Eq. (2.4)

is replaced by a confidence set of θ which contains the unknown ground-truth θ

with high probability 1−δ . This set is defined as

Ct = {θ : |θ̂t−θ | ≤ βt} (2.22)

with

βt =
√

αS+

√
2log

(
1
δ

)
+d log

(
1+

T S
dα

)
(2.23)

under the following assumptions: xa ∈Rd and ||xa|| ≤ S for a ∈A , θ̂t =V−1
t Bt with

Vt = αI +∑
t
s=1 xasx

T
as

and Bt = ∑
t
s=1 ytxas and δ > 0.

Then, the confidence interval of reward can be expressed as

θ̂
T
t xa−βt(a)||xa||V−1

t
≤ yt(a)≤ θ̂

T
t xa +βt(a)||xa||V−1

t
(2.24)
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Algorithm 5: LinUCB
Input :A , T

for t ∈ [1,T ] do
1. Construct a confidence set Ct such that θ ∈ Ct in high probability.

2. Choose arm at = argmaxa∈A UCBt(a).

3. Receive yt and update confidence set Ct .

end

Then, the upper confidence bound is defined as

UCBt(a) = θ̂
T
t xa +βt(a)||xa||V−1

t
(2.25)

At time step t, the agent selects the arm with maximum UCBt(a) to balance the

exploration and exploitation:

at = argmax
a∈A

UCBt(a) (2.26)

Theorem 5. [35] Suppose xa ∈ Rd and ||xa|| ≤ S for a ∈A . Let θ̂t =V−1
t Bt with

Vt = αI +∑
t
s=1 xasx

T
as

and Bt = ∑
t
s=1 ytxas . For any δ > 0, with probability at least

δ , LinUCB achieves regret

RT = O(d
√

T log(T S)) (2.27)

LinTS

Similar to Thompson Sampling, LinTS is based on Probabilistic Randomization.

Given a prior on the reward distribution of each arm and likelihood function, the

agent selects the arm with the highest expected reward, according to the posterior

distribution. More precisely, LinTS [26] models the posterior distribution of each

arm reward based on Gaussian prior and Gaussian likelihood function. The reward

of each arm is modelled as a posterior distribution. More specifically, the reward

of each arm is modelled as a Gaussian distribution N (ŷt(a),σ2V−1
t ). The mean
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Algorithm 6: LinTS
Input :A , T

for t ∈ [1,T ] do
1. For each arm a, sample ŷt(a) from distribution Pa

t .

2. Choose arm at = argmaxa∈A ŷt(a).

3. Receive yt and update distribution Pa
t .

end

reward of each arm is estimated via least-square estimator as follows

ŷt(a) = θ̂
T
t xa = (V−1

t Bt)
T xa (2.28)

where Vt = ∑
t
s=1 xasx

T
as

and Bt = ∑
t
s=1 ysxas .

Theorem 6. [26] LinTS achieves regret

RT = O(d
√

T log(T ) log(T/d)) (2.29)

2.1.3 Multi-task Contextual Linear Bandit

In this section, we present the basic setting of Multi-task Contextual Linear Bandit

(MLB) problem. One of our contribution is dedicated to solve this problem.

In MLB [39] [40], the agent is required to solve multiple contextual linear bandit

tasks. In practical applications, this setting mimics the task faced by a recommender

system, which recommends items to multiple users. Each user represents a bandit

instance and all users (bandit instances) share a same set of candidate items (arm

set). The bandit parameter vectors represent users’ preference and items are arms

characterised by arm features (contexts). The reward corresponds to user’s preference

to the recommended item.

Formally, the agent is given an arm set A , each arm a ∈A is associated with a

feature φ(a) ∈ Rd . The environment consists of a set of bandit problem B, where

each bandit instance b ∈B is characterized by a fixed by unknown parameter vector
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θb ∈ Rd . Over a time horizon T , the agent is required to solve bandit problems

sequential. At each time step t, a bandit problem bt is randomly sampled from B.

The agent selects an arm at ∈A for this bandit and receives a reward whose expected

value is a linear combination of the arm feature and bandit parameter. Namely,

yt = θ
T
bt

φ(at)+ηt (2.30)

where the noise term ηt is modelled as a conditional σ -subgaussian variable.

The agent aims to find a policy π that minimizes the cumulative regret over the

time horizon.

RT (π) =
T

∑
t=1

θ
T
bt

φ(a∗bt
)−

T

∑
t=1

θ
T
bt

φ(at) (2.31)

where a∗bt
= argmaxa∈A θ T

bt
φ(a) is the optimal arm with respect the bandit instance

bt ∈B.

Suppose the number of contextual linear bandit instance to solve is n and

bandit instances are sampled uniformly across the time horizon T . Each bandit

will appear roughly T ′ = T/n times. If the agent solves each bandit independently,

the cumulative regret of each bandit can be upper bounded as R(T ′) = O(d
√

T ′).

The total regret will be R(T ) = O(nd
√

T ′), which scales linearly with the number

of bandit n. To mitigate this, we can define a notion of similarity between tasks,

which can be exploited by transferring the knowledge of one task to other tasks.

One of our contribution – Laplacian-regularized Bandits in Chapter 4 – focuses on

how to exploit the task similarity prior knowledge and how much it can reduce the

cumulative regret. In essence, we propose a term Ψ ∈ (0,1) measuring the similarity

among bandit instances. We show that the total regret scales R(T ) = O(mΨd
√

T ′)

and prove that if bandit instances are closely related (similar), the term Ψ→ 0

leading to a lower regret.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a learning framework formalizing the sequential

decision making problems. As shown in Fig 2.1, RL consists of two components:
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Figure 2.1: Depiction of Reinforcement Learning Framework.

the agent and the environment. The agent learns how to take decisions through

sequential interactions with the environment. Within each interaction, the agent

senses the environment state through observations and then takes an action. The

environment transits to a new state due to the action and internal dynamic. The agent

receives a feedback signal (reward) from the environment. Then, the next interaction

continues. The agent aims to maximize the cumulative reward over interactions.

This way of learning mimics the foundational way of which we human learn.

In this thesis, we consider the standard RL setting in which the agent-

environmnet interaction is modelled as a Markov Decision Process (MDP). An

MDP is described as a five-tuple (S ,A ,P,R,γ), where S is a finite set of states,

A is a finite set of actions, P is the transition function with P(s′|s,a) denoting

the distribution of next state s′ given action a is taken in state s. R is the reward

function where the expected reward obtained if action a is taken in state s is denoted

as R(s,a); and γ ∈ [0,1) is a discount factor.

The agent interacts with the environment in the following way: at each time

step t ∈ [T ], the agent observes the state of the environment st and then it takes

an action at ∈ A . The environment transits to next state according the transition

dynamic st+1 ∼P(·|st ,at). The agent receives a reward rt = R(st ,at). The sequence

of interactions recorded up to time step t is called trajectory:

Tt = (s0,a0,r0;s1,a1,r1; ...;st ,at ,rt) (2.32)
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A policy π is a mapping from state to action space: π : S → ∆A , which is the

agent’s action selection strategy. A stochastic policy: π : S →P(A ) is a mapping

from state to the distribution of actions. A deterministic policy π : S → A is a

mapping from state to a specific action.

The state value Vπ(s) under a policy π is defined as the expected discounted

cumulative reward received by executing π starting from state s.

Vπ(s) = E
[

∞

∑
t=1

γ
tR(st ,at)|s0 = s,at ∼ π(·|st)

]
(2.33)

The expectation is taken over the randomness of trajectory which is caused by the

state transition and stochasticity of policy.

Similarly, the state-action value function Qπ(s,a), under policy π , is the ex-

pected discounted cumulative reward received by taking action a in state s and

following π afterward, namely

Qπ(s,a) = E
[

∞

∑
t=1

γ
tR(st ,at)|s0 = s,a0 = a,at ∼ π(·|st)

]
. (2.34)

Value functions satisfy the Bellman Expectation Equation [1]:

Vπ(s) = Eπ

[
R(st)+ γVπ(st+1)|st = s

]
(2.35)

Qπ(s,a) = Eπ

[
R(st ,at)+ γQπ(st+1,at+1)|st = s,at = a

]
(2.36)

and there exists a relation between Vπ(s) and Qπ(s,a):

Vπ(s) = Ea∈π(·|s)Qπ(s,a) = ∑
a∈A

π(a|s)Qπ(s,a) . (2.37)

The goal of the agent is to find the optimal policy π∗ that maximizes the value

function of each state:

π
∗ = argmax

π∈Π
Vπ(s) ∀s ∈S (2.38)

where Π is the set of stationary policies.
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The theorem stated below guarantees the optimal policy π∗ always exits for a

given MDP.

Theorem 7. [41] For any Markov Decision Process (MDP), there exists at least one

optimal policy π∗ whose value is better than or equal to all other policies

Vπ∗ = sup
π∈Π

Vπ(s), ∀s ∈S (2.39)

Qπ∗ = sup
π∈Π

Qπ(s,a), ∀(s,a) ∈S ×A (2.40)

Where Vπ∗ and Qπ∗ are value functions of the optimal policy.

The value functions, Vπ∗ and Qπ∗ , satisfy the Bellman Optimality Equation:

Vπ∗(s) = Eπ

[
R(s)+ γVπ∗(st+1)|st = s

]
(2.41)

Qπ∗(s,a) = Eπ

[
R(s,a)+ γ max

a∈A
Qπ∗(st+1,a)|st = s,at = a

]
(2.42)

There exists a close relationship between Vπ∗(s) and Qπ∗(s,a):

Vπ∗(s) = max
a∈A

Qπ∗(s,a) (2.43)

In most RL problems, we either concern finding the optimal policy (control) or

evaluating the value of a predefined policy (prediction).

2.2.1 Prediction

In prediction (also called policy evaluation) problem, we aim to compute the value

functions, Vπ and Qπ , of a prescribed policy π . Recall the Bellman Expectation Equa-

tions Eq. (2.35), which provide a recursive relation between consecutive states/state-

actions, and can be leveraged for policy evaluation.

Vπ(s) = Eπ

[
R(st)+ γVπ(st+1)|st = s

]
(2.44)

Qπ(s,a) = Eπ

[
R(st ,at)+ γQπ(st+1,at+1)|st = s,at = a

]
(2.45)
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Algorithm 7: Iterative Policy Evaluation [1]
Input :An MDP M : (S ,A ,P,R,γ); a fixed policy π

Initialization: k = 0;
V (k)(s) = 0, ∀s ∈S ;
Q(k)(s,a) = 0, ∀s,a ∈S ×A ;

for k ∈ [1,∞) do
1. update state value for each s ∈S following:

V (k+1)(s)← ∑
a∈A

π(a|s)
[

r(s,a)+∑
s′

P(s′|s)V (k)(s′)
]

(2.48)

2. or update value of each state-action pair (s,a) ∈S ×A :

Q(k+1)(s,a)← r(s,a)+ γ ∑
s′∈S

P(s′|s,a) ∑
a′A

π(a′|s′)Q(k)(s′,a′) (2.49)

end
Output : limk→∞V (k)→Vπ ; limk→∞ Q(k)→ Qπ

Based on the Bellman Expectation Equation, we can introduce the Bellman ex-

pectation operator T π : V → V where V is the real-valued functions with support

S .

(T π f )(s) = ∑
a∈A

π(s,a)
[

r(s)+ γ ∑
s′

P(s′|s,a) f (s′)
]
, ∀ f ∈ V (2.46)

Similarly, we can define the Bellman operator for Qπ .

(T π f )(s,a) = r(s,a)+ γ ∑
s′

P(s′|s,a) ∑
a′∈A

π(a′|s′) f (s′,a′), ∀ f ∈Q (2.47)

where Q is the set of real-valued function with support state-action space S ×A .

It was proven [42] that there is an unique fixed point of the operators which are

the value functions Vπ and Qπ , respectively. This suggests that the value function

can be computed by iterative solving methods. Specifically, we turn the Bellman

Expectation Operators into an iterative updated rules. A specified algorithm is shown

in Algorithm 7.
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Algorithm 8: Policy Iteration [1]
Input :An MDP M : (S ,A ,P,R,γ)
Initialization: k = 0;
Q(k)(s,a) = 0, ∀s,a ∈S ×A ;
π(k)(s) ∈A randomly.

while Q(k+1) ̸= Q(k) do
1. Policy Evaluation: update value of each state-action pair (s,a) ∈S ×A .

Q(k+1)(s,a)← r(s,a)+ γ ∑
s′∈S

P(s′|s,a) ∑
a′A

π
(k)(a′|s′)Q(k)(s′,a′) (2.50)

2. Policy Improvement: update policy for each state s ∈S .

π
(k+1)(s) = argmax

a∈A
Q(k)(s,a), ∀s ∈S (2.51)

end
Output : limk→∞ Q(k)→ Qπ∗ and limk→∞ πk→ π∗.

2.2.2 Control

Now, we move our attention to the control problem: how does the agent learn the

optimal policy for an MDP? To achieve this, we first tackle the challenge of how to

improve the policy given an arbitrary policy π and the associated value function Qπ .

Theorem 8 answers the question saying that the greedy policy with respect to Qπ is

guaranteed to be a better policy.

Theorem 8. (Greedy Policy Improvement) [1] Given a MDP M = (S ,A ,P,R,γ)

and a policy π and value function Qπ . Define a policy π ′ which is obtained by acting

greedily with respect to π . Formally,

π
′(s) = argmax

a∈A
Qπ(s,a), ∀s ∈S . (2.52)

We have the guarantee that π ′ is an improvement over π . Namely,

Qπ ′(s,a)≥ Qπ(s,a), ∀(s,a) ∈S ×A . (2.53)

Theorem 8 suggests that if we know the optimal value function Q∗, we can
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Algorithm 9: Q-Learning [43]
Input :An MDP M : (S ,A ,P,R,γ);

A behaviour policy π;
Learning rate: α;

Initialization: Q̂(s,a), ∀(s,a) ∈S ×A arbitrarily.

for each episode do
for for each step t within episode do

1. Take an action at ∼ π(st).

2. Receive a reward rt and next state st+1.

3. Compute TD error δt+1 = rt + γ maxa∈A Q̂(st ,a)− Q̂(st ,at).

4. Update Q̂(st ,at)← Q̂(st ,at)+α(rt + γ maxa∈A Q̂(st ,a)− Q̂(st ,at)).

end
end
Output :Q̂(s,a) ∀(s,a) ∈S ×A

obtain an optimal policy π∗ by acting greedily according to Q∗:

π
∗(s) = argmax

a∈A
Q∗(s,a), ∀s ∈S . (2.54)

The next question is how to compute the optimal value function. We can follow

the method called Policy Iteration which contains two steps: (1) Policy evaluation:

evaluate the current policy Qπ(s,a); (2) Policy improvement: improve the policy to

π ′ by acting greedily according to Qπ . Algorithm 8 shows a complete algorithm of

policy iteration.

In the above discussions, we assume a full knowledge of the MDP, in particular,

the transition probability P and reward function R. However, this is rarely the case

in real-world problems. In standard RL settings, the agent has no access to such

knowledge. Instead, the agent has to interact with the environment and generate

experiences (trajectories) to solve prediction or control problems. In the next section,

we present some foundational methods for solving RL problems only based on

interaction experiences.
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Q-Learning

In this section, we describe an algorithm (Q-Learning [43] [44]), which aims

to estimate the optimal action-value function Q∗ from the collected trajectories1.

The intuition behind is that if the estimated action-value function Q̂ is close to Q∗,

acting greedily over Q̂ will generate a policy close to optimal. Q-Learning can be

viewed as a stochastic and approximated version of Policy Iteration (Algorithm 8).

Q-Learning leverages on the Bellman Optimility Operator as an iterative update

rule, which is guaranteed to converge to the optimal value function when the time

horizon tends to infinity. Specifically, for a given MDP M = (S ,A ,P,R,γ),

Q-Learning maintains an estimation of action-value Q̂(s,a) of each state-action

pair (s,a) ∈S ×A . The update rule is defined as:

Q̂(st ,at)← Q̂(st ,at)+α[rt + γ max
a∈A

Q̂(st ,a)− Q̂(st ,at)] (2.55)

where α ∈ R is the learning rate and δt+1 = rt + γ maxa∈A Q̂(st+1,a)− Q̂(st ,at) is

the learning target, called TD-error. The full algorithm of Q-Learning is shown in

Algorithm 10.

Q-Learning aims to minimize the TD error over all state-action pairs. At

convergence, one has δt+1(s,a) = 0, ∀(s,a) ∈S ×A , which is equivalent to say

that Q̂(st ,at) = r+γ maxa∈A Q̂(st+1,a). This implies that the estimated action-value

function Q̂ satisfies the Bellman Optimality Operator. As the operator has an unique

fixed point Q∗, it implies Q̂ = Q∗. More details on the behaviour policy π , learning

rate α and the proof of convergence can be found in [42].

2.2.3 Function Approximation

In previous sections, we assume that we can enumerate the state-action pairs (s,a) ∈

S ×A and maintain/compute the value of each state-action pair explicitly. In case of

large or continuous state/action space, it is infeasible to maintain a lookup table and

1Other works aim at learning the MDP transitions (i.e., the model) [45] or directly the policy [46].
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typically resort to approximate the value functions through function approximation.

Vπ(s) = fθ (s) or Qπ(s,a) = fθ (s,a) (2.56)

where θ is a set of parameters that parametrizes unknown functions.

We aim at learning θ based on the interaction experiences of the agent, such

that fθ approximates the value function Vπ or Qπ as accurate as possible. A com-

monly used approach is to parameterize the value functions as a linear function of

representation:

V (s)≈ φ(s)T
θ , or Q(s,a)≈ φ(s,a)T

θ (2.57)

where φ(·) ∈ Rd is representations.

In the following, we discuss several algorithms that aim at solving the RL

control problem using function approximation and following the Policy Iteration

procedure.

Fitted Q-Iteration

Fitted Q-Iteration (FQI) [47] is an extension of Q-Learning to function approx-

imation. In FQI, the agent is access to a set of interaction experiences D , called

sample set. Each element of D is a tuple of interactions (st ,at ,rt ,st+1). FQI aims

to learn the optimal action-value Q∗ which is parameterized by a function fθ . With

each sample experience, FQI updates the parameter θ by minimizing an objective

defined as below:

δt = ( fθ (st ,at)− (rt + γ max
a∈A

fθ (st+1,a))2 (2.58)

DQN

Deep Q-Net (DQN), introduced in [3], employs Neural-Network as a powerful ap-

proximator to approximate the optimal action-value function Q∗. Similar to FQI,

the optimal value function is modeled as a parameterized function fθ ≈ Q∗. In DQN,
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Algorithm 10: Fitted Q-Iteration [47]
Input :An MDP M : (S ,A ,P,R,γ);

A sample set D
Initialization: fθ (·, ·)
while Not Converge do

1. Take an experience tuple (s,a,r,s′)

2. Compute value estimation fθ (s,a).

3. Compute value target r+ γ maxa∈A fθ (s′,a)

4. Update the parameter θ via minimizing the objective(
fθ (s,a)− (rt + γ max

a∈A
fθ (s′,a)

)2

(2.59)

end
Output : fθ (·, ·)

θ is the weights of neural-network which is updated according to

θ
′
← θ +α

(
rt + γ max

a∈A
f
θ̄
(st ,a)− fθ (st ,at)

)
(2.60)

where f
θ̄

is output by a target network (with weights θ̄ ). The target network is

updated periodically and less frequent than fθ and it is used to improve the stability

of training. DQN maintains a replay buffer D to contain interaction experiences.

The buffer has a fixed size where old experiences are gradually replaced by new

coming experiences. At each update steps, a mini-batch of experiences are randomly

sampled from D , and then networks are updated following Eq. (2.60).

Since its introduction, DQN has sparked a large amount of work combining

RL algorithms with deep neural networks and demonstrating impressive ability in

solving complex tasks.

Actor-Critic

In the previous section, we rely on value functions to obtain the optimal policy

(acting greedily). An alternative approach is to parameterize the policy directly

πθ (a|s) and optimize the parameters with respect to a performance objective J(πθ ).

Such approaches are called policy-gradient algorithms [1].
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Figure 2.2: The Actor-Critic Architecture

The performance objective J(πθ ) is defined to measure the goodness of the

policy πθ . Various definitions exist in the literature for such objective function [1].

For example, in episodic RL, the agent starts from an initial state s0 at the beginning

of each episode and J(πθ ) is defined as the return of s0:

J(πθ ) =Vπθ
(s0) (2.61)

Given J(πθ ), finding the optimal policy is an optimization problem: searching the

θ that maximizes J(πθ ). This can be solved by gradient-ascent searching for local

optimum points. For this, the gradient of θ with respect to the objective J(πθ ) is

needed:

∆θ = α▽θ J(θ) (2.62)

where▽θ J(θ) is the policy gradient, α is learning rate.

In the following, we present how to compute the policy gradient ▽θ J(θ).

Assume the policy πθ is differentiable and denote the gradient as▽θ πθ (s,a). The

likelihood ratio is defined as

▽θ πθ (s,a) = πθ (s,a)
▽θ πθ (s,a)

πθ (s,a)
= πθ ▽θ logπθ (s,a) (2.63)

where▽θ logπθ (s,a) is called score function.

Theorem 9. (Policy Gradient Theorem)[48] For any differentiable policy πθ (s,a),
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Algorithm 11: Actor-Critic [49]
Input :An MDP M : (S ,A ,P,R,γ);

Learning rates α , β ;
Initialization: πθ (·) and fw(·, ·).
for each episode do

for each step t do
1. take action at ∼ πθ (st) and receive rt and st+1.

2. sample action at+1 ∼ πθ (st+1)

3. compute value function error: δt = rt + γ fw(st+1,at+1)− fw(st ,at).

4. update fw:w← w+αδt▽w fw(st ,at).

5. update πθ : θ ← θ +β fw(st ,at)▽θ logπθ (st).

end
end
Output : fw(·, ·) and πθ (·)

for the policy objective function defined above, the policy gradient is

▽θ J(θ) = Eπθ

[
Qπθ

(s,a)▽θ logπθ (s,a)
]
. (2.64)

Theorem 9 leads to the following update rule for θ for each transition

(st ,at ,st+1),

θ
′← θ +αQπθ

(st ,at)▽θ logπθ (st ,at) . (2.65)

However, there is an issue that is the knowledge of Qπθ
(st ,at). As discussed in the

previous sections, we can use function approximation to estimate the action value

function fw(st ,at) ≈ Qπθ
(st ,at). This approach is called Actor-Critic in the

literature.

Actor-Critic (Algorithm 11) is an instantiate algorithm of Generalized

Policy Iteration. Recall that Generalized Policy Iteration involves two alternative

steps: policy evaluation and policy improvement. In Actor-Critic, the critic

fw(·, ·) aims to estimate the value function of behavioural policy, while the actor πθ (·)

is responsible to generate an improved policy given the estimated value function

from critic. Fig 2.2 shows a typical architecture of Actor-Critic algorithm.
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2.2.4 Representation Learning

In most real-life RL tasks, the state-action space is too large to allow a tabular

representation for the value of each state-action pair, thus one must resort to function

approximation. A function approximator, e.g., Neural-Network, takes as input the

observation of the environment and outputs the estimated value or policy. Under the

assumption of MDP, the observation represents the current state of the environment

upon which the agent is required to make decisions. However, many RL tasks present

raw, high-dimensional observations to agents (e.g., video games), which usually

contain redundant and distracting information. Such observations posit a challenge

for the agent as it needs to first extract relevant information and then acts accordingly.

For example, in autonomous vehicle applications, the agent makes decisions upon

observations of outdoor environment, which might contain irrelevant and distracting

information such as cloud shape, colour of trees and details of buildings.

Therefore, the data efficiency of RL algorithms (agent) heavily relies on its

ability in learning compact representations, which serves to approximate the value

function and extract a new policy. To achieve this, representation learning techniques

have been leveraged as a key component in modern RL algorithms. Representa-

tion learning aims to summarize the observation into a small/compact vectored

representation, which are more suitable of solving the RL task, as shown in Fig 2.3.

Denote the observation of state as o(s) ∈ Rk, ∀s ∈ S which could lie in a

high-dimensional observation space O (e.g., pixels). We assume there exists a low-

dimensional space Φ containing all the relevant information required to solve the

RL task, in which the state representation is denoted as φ(s) ∈ Rd where d << k.

Under the function approximation, value functions are modelled as function over

state/state-action representations. Formally,

V (s)≈ fθ (φ(s)), or Q(s,a)≈ fθ (φ(s,a)) (2.66)

where θ are learnable weights, φ(·) ∈ Rd is representation. In deep reinforcement

learning (e.g. DQN [3]), φ and θ are jointly learned via neural network where φ can

be viewed as the output of the penultimate layer and θ is the weights of the final
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Figure 2.3: The role of representation learning in RL.

layer.

Representation Learning concerns learning the mapping ε from the observa-

tion space to the representation space. Namely, ε : O → Φ. The value function

approximations can be rewritten as

V (s)≈ fθ (ε(o(s))), or Q(s,a)≈ fθ (ε(o(s,a))) (2.67)

where φ(s) = ε(o(s)) and φ(s,a) = ε(o(s,a)).

Due to the importance of representation learning in RL, many effort have been

devoted resulting in a variety of approaches. Some work argue that representations

should be expressive for all possible value functions [50] or value functions induced

by the agent’s policies [51]. Others believe that representations should be expressive

for reward function [52], environment dynamic [53] [54] or state reconstruction [55].

The field of representation learning in RL is experiencing a fast growth. Most of

work in RL representation learning take a form of Auxiliary tasks. The agent, besides

the primary RL task (learning an optimal policy), is required to learn other aspects

of the task. Most works demonstrate empirically the benefits of Auxiliary tasks on

the performance of agents. While there is a limited theoretical understanding on the

effectiveness of auxiliary tasks [56], a common view is that auxiliary tasks could

improve the learning efficiency by shaping the representation in more semantically
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aware ways [52]. Despite enormous amount of works existing in the literature, there

is still a lack of consensus on the notion of what is a good representation for RL. In

this thesis (Chapter 7), we contribute in improving the representation learning for RL

by proposing a theoretical justified approach and argue that a good representation

should capture the intrinsic structure of value functions.

In this first part of the thesis, we present the main relevant background knowl-

edge about MAB and RL problems. This poses the basis for establishing the im-

portant concepts and for better understanding the contributions done in this PhD

thesis.



Chapter 3

Laplacian-Regularized Graph

Bandits: Algorithms and Theoretical

Analysis

In this part of the thesis, we focus on stochastic linear bandit problems with multiple

users, where the relationship between users is captured by an underlying graph

and user preferences are represented as smooth signals on the graph. We introduce

a novel bandit algorithm where the smoothness prior is imposed via the random-

walk graph Laplacian, which leads to a single-user cumulative regret scaling as

Õ(Ψd
√

T ′) with single-user time horizon T ′, feature dimensionality d, and the

scalar parameter Ψ ∈ (0,1) that depends on the graph connectivity. This is an

improvement over Õ(d
√

T ′) in LinUCB [35], where user relationship is not taken

into account. In terms of network regret (sum of cumulative regret over n users),

the proposed algorithm leads to a scaling as Õ(Ψnd
√

T ′), which is an improvement

over Õ(nd
√

T ′) in the baseline algorithm Gob.Lin [57]. To improve scalability,

we further propose a simplified algorithm with a linear computational complexity

with respect to the number of users, while maintaining the same regret. Finally,

we present a finite-time analysis on the proposed algorithms, and demonstrate their

advantage in comparison with state-of-the-art graph-based bandit algorithms on both

synthetic and real-world data.
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3.1 Introduction

In the classical multi-armed bandit (MAB) problem, an agent takes sequential actions,

choosing one arm out of the K available ones and it receives an instantaneous payoff

upon the chosen arm. The goal is to learn a policy such that maximizes the cumulative

payoff over a course of T rounds [17]. MAB problems formalize a trade-off between

exploration and exploitation, and a particular solution is imposing the principle of

optimism in face of uncertainty. Specifically, the agent assigns each arm with an

index called the upper confidence bound (UCB) that with high probability is an

overestimate of the unknown payoff, and then selects the arm with the highest index.

Many variants of the basic MAB problem have been intensively studied, moti-

vated by real-world applications such as ads placement and recommender systems.

In the stochastic linear bandit [15], at each round, the agent receives a hint before

taking the decision. Specifically, before choosing an arm, the agent is informed

with a feature vector x ∈ Rd associated with each arm, referred to as the ‘context’.

The payoff associated with each arm is modelled as a linear function of x and an

unknown coefficient vector θ ∈ Rd perturbed by a noise term η , i.e, y = xT θ +η .

This problem has been well understood in the literature and many studies have al-

ready proposed asymptotically optimal algorithms [15, 34, 26, 58, 59]. The problem

is less understood in the case of multiple users, as opposed to a single user, where

we assume a central agent selects arms for multiple users in a sequential fashion.

In the chapter, we are interested in the setting where there are n users to be served

by the recommender system. In essence, the agent faces a set of n bandit instance

with each one characterized by the unknown coefficients θ i, i ∈ {1,2, ...,n}. At each

round, one user out of [n] is selected uniformly at random. The agent needs to

select one arm from A for the user and receives an instantaneous payoff associated

with the selected arm and the user. The overall goal is to minimize the cumulative

regret (or equivalently, maximize the cumulative payoffs), which is the summation

of instantaneous regret over a finite time horizon T .

Naively implementing bandit algorithms (e.g., LinUCB) on each user indepen-

dently will result in a cumulative regret scaling linearly with the number of users n.
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Specifically, denote the single-user time horizon as T ′ = T/n, following LinUCB,

the regret is O(d
√

T ′) for a single user. Therefore, the total regret will be O(nd
√

T ′),

which scales linearly with respect to the number of users n. This is infeasible in

case of a large number of users. In many cases, however, the users are related in

some way, and this can be represented by a network (or graph) that encapsulates

important additional source of information, such as similarities among users in terms

of their preferences (user feature vectors). Intuitively, exploiting such relationship

can mitigate the scalability problem. The key setup is therefore to construct a graph

where each node represents a user and the edges identify the affinity between users.

In real-world applications, such a graph can be a social network of users. This idea

leads to a series of work on the so-called graph-based bandit problem [57, 60, 61, 62].

Despite previous effort, several important limitations remain to be addressed.

First, the graph Laplacian matrix is commonly used in graph-based algorithms, but

the justification of its usage remains insufficient (and as to which version of the graph

Laplacian leads to optimal policies). Consequently, the advantage of graph-based

bandit is largely shown empirically in previous works, without rigorous theoretical

analysis. Furthermore, scalability remains a serious limitation of such algorithms.

Involving user graph into bandit algorithms typically results in a computational

complexity that scales with the number of users, which is infeasible in case of large

number of users. In this chapter, we address the above limitations with the following

main contributions:

• We propose a bandit algorithm GraphUCB based on the random-walk graph

Laplacian, and show its theoretical advantages over other graph Laplacian

matrices in reducing cumulative regret. We demonstrate empirically that

GraphUCB outperforms state-of-the-art graph-based bandit algorithms in

terms of cumulative regret.

• As a key ingredient of the proposed algorithm, we derive a novel UCB rep-

resenting the single-user bound while embedding the graph structure, which

reduces the size of the confidence set, in turn leading to lower regret;

• To improve scalability, we further propose a simplified algorithm
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GraphUCB-Local whose complexity scales linearly with respect to the

number of users, yet still holding the same regret upper bound as GraphUCB;

• Finally, we derive a finite-time analysis on both algorithms and show a lower

regret upper bound than other state-of-the-art graph-based bandit algorithms.

3.2 Related work
Graph-based bandit algorithms can be roughly categorized as: i) topology-based

bandits, where the graph topology itself is exploited to improve learning performance,

and ii) spectral bandits, where the user feature vectors θ are modelled as signals

defined on the underlying graph, whose characteristics are then exploited in the

graph spectral domain via tools provided by graph signal processing [63] to assist

learning.

In topology-based bandits, the key intuition is to achieve dimensionality reduc-

tion in the user space by exploiting the graph topology. Specifically, users can be

clustered based on the graph topology and a per-cluster feature vector can be learned,

substantially reducing the dimensionality of the problem as opposed to the case in

which one vector is learned per user. For example, [60] clusters users based on the

connected components of the user graph, and [64] generalizes it to consider both

the user graph and item graph. On the other hand, [65] makes use of community

detection techniques on graphs to find user clusters. More broadly, in the spirit

of dimensionality reduction, even without constructing an explicit user graph, the

work in [66] proposes a distributed clustering algorithm while [67] applies k-means

clustering to the user features. Despite the differences in the proposed techniques,

these studies share two common drawbacks: 1) the learning performance depends

on the clustering algorithm being used, which tends to be expensive for large-scale

graphs; 2) learning a per-cluster (and not per-user) feature vector means ignoring

the subtle difference between users within the same cluster. In short, clustering can

reduce the dimensionality of the user space, but it does not necessarily preserve

key users’ characteristics. To achieve both goals simultaneously, there is a need

for a proper mathematical framework able to incorporate the user relationship into
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learning in a more direct way.

On the spectral bandit side, the strong assumption that users can be grouped

into clusters is relaxed; users are assumed to be similar with their neighbors in the

graph and such similarity is reflected by the weight of graph edges. [68] employs

a graph Laplacian-regularized estimator, which promotes similar feature vectors

for users connected in the graph. In their setting, however, each arm is selected

by all users jointly. This work results in a network regret scaling with Õ(dn
√

T ′).

[62] casts the same estimator as GMRF (Gaussian Markov Random Filed) and

proposes a Thompson sampling algorithm, leading to a much simpler algorithmic

implementation without a UCB evaluation. However, the regret bound remains

Õ(dn
√

T ′). To the best of our knowledge, an efficient algorithm able to address the

multi-user MAB problem with a sub-linear regret bound is still missing.

A proper bound and mathematical derivation of spectral MAB are provided in

[69], which represents the payoffs of arms as smooth signals on a graph with the

arms being the nodes. Specifically, the arm features x are modeled as eigenvectors

of the graph Laplacian and the sparsity of such eigenvectors is exploited to reduce

the dimensionality of x, to a so-called ‘effective dimension’ term d̃. This work

shows an improved regret bound Õ(d̃
√

T ′) where d̃ is significant less than d in

LinUCB[37]. While interesting, the proposed solution applies to the single-user

with high-dimensional arm set. Whereas, in our setting, the dimensionality issue is

caused by the large number of users, leading to a completely different mathematical

problem.

Among these works on graph bandit, the one that is most similar to our work

in terms of problem definition and proposed solution is [57]. In [57], the graph is

exploited such that each user shares instantaneous payoff with neighbors, which is

promoted by a Laplacian-regularized estimator. This implicitly imposes smoothness

among the feature vectors of users, resulting in the estimate of similar feature vectors

for users connected by edges with strong weights in the graph.

In this chapter, we propose the GraphUCB algorithm that builds on and im-

proves Gob.Lin in a number of important ways:
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• Gob.Lin employs the combinatorial Laplacian as a regularizer, whereas our

algorithm GraphUCB makes use of the random-walk graph Laplacian. We

prove theoretically that the combinatorial Laplacian results in a cumulative

regret scaling with the number of users, which could be large. However,

random-walk graph Laplacian overcomes this serious drawback and yields a

sub-linear regret with the number of users.

• We propose a new UCB that leads to a cumulative regret scaling with

Õ(Ψnd
√

T ′) where Ψ ∈ (0,1).

• The computational complexity of Gob.Lin is quadratic with respect to the

number of users. Our simplified algorithm GraphUCB-Local scales linearly

with the number of users, and at the same time enjoys the same regret bound as

GraphUCB. This significantly improves the scalability of the proposed graph

bandit algorithm.

3.3 Problem Formulation
We consider a linear bandit problem n users. We denote by U the user set with

cardinality |U | = n. Each user is described by a parameter vector θ ∈ Rd , with

d being the dimension of both vectors. The affinity between users is encoded by

an undirected and weighted graph G = (V,E), where V = {1,2, ..,n} represents

the node set for n users and E represents the edge set. The graph G is known a

priori and identified by its adjacency matrix W ∈ Rn×n, where Wi j =Wji captures

the affinity between θ i and θ j. The combinatorial Laplacian of G is defined as

L = D−W , where D is a diagonal matrix with Dii = ∑
n
i=1Wii. The symmetric

normalized Laplacian is defined as L̃ = D−1/2LD−1/2. In addition, the random-walk

graph Laplacian is defined as L = D−1L.

In our setting, the unknown user features Θ = [θ 1,θ 2, ...,θ n]
T ∈ Rn×d are

assumed to be smooth over G . The smoothness of Θ over graph G can then be

quantified using the Laplacian quadratic form of any of the three Laplacian defined

above. In this chapter, we choose the random-walk graph Laplacian L because of

its two unique properties Lii = 1 and ∑ j ̸=i Li j =−1. The benefit of these properties
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will be clear after the introduction of our proposed bandit algorithm. Mathematically,

the Laplacian quadratic form based on L is (see Appendix A.8 for the derivation)

tr(ΘT L Θ) =
1
4

d

∑
k=1

∑
i∼ j

(
Wi j

Dii
+

Wji

D j j

)(
Θik−Θ jk

)2 (3.1)

where Θik is the (i,k)-th element of Θ. The more the graph G reflects the similarity

between users correctly, the smaller the quadratic term tr(ΘT L Θ). Specifically,

tr(ΘT L Θ) is small when Θik and Θ jk are similar given a large weight Wi j
Dii

+
W ji
D j j

.

Equipped with the above notation, we now introduce the multi-user bandit

problem. At each time step t = 1, . . . ,T , the agent receives a user index it , which

is assumed to be sampled uniformly from user set U , and a set of arm vectors

At = {x1,t ,x2,t , ...,x|At |,t} ∈ Rd . No assumptions are posed on the generation of arm

set At and its size |At |, which can be generated arbitrarily dependent on the past

selections made by the agent. The agent needs to select one arm from At to user it .

Upon this selection, the agent observes a payoff yt , which is assumed to be generated

by noisy version of linear function. Namely,

yt = xT
t θ it +ηt (3.2)

where the noise ηt is assumed to be σ -sub-Gaussian for any t.

The agent is informed about the graph G . The bandit parameters Θ is unknown

and needs to be inferred. The goal of the agent is to learn a selection strategy that

minimizes the cumulative regret with respect to an optimal strategy, which always

selects the optimal arm for each user. Formally, after a time horizon T , the cumulative

(pseudo) regret is defined as:

RT =
T

∑
t=1

(
(x∗t )

T
θ it − xT

t θ it

)
(3.3)

where xt and x∗t are the arm selected by the agent and the optimal strategy at t,

respectively. Note that the optimal choice depends on t as well as on the user it . For

notation convenience in the rest of the paper, at each time step t, we use i to generally
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refer to the user appeared and xt to represent the feature vector of the arm selected.

Remark 3. In previous version of this Chapter, the arm set A is fixed with |A |= m

arms. Each arm is represented by a feature vector x ∈ Rd . This setting is different

from that in Gob.Lin [57] where x is sampled from Rd and no assumptions are

made on the arm set A .

In the current version, we adapt the same setting as Gob.Lin [57]. As we

notice that our proposed algorithms do not exploit the setting of a fixed and finite

arm set. The proposed algorithm is completely applicable to the setting defined in

Gob.Lin [57].

3.4 Laplacian-Regularized Estimator

To estimate the user parameter Θ at time t, we make use of the Laplacian-regularized

estimator:

Θ̂t = arg min
Θ∈Rn×d

n

∑
i=1

∑
τ∈Ti,t

(xT
τ θ i− yτ)

2 +α tr(ΘT L Θ) (3.4)

where θ i is the i-th row of Θ, Ti,t is the set of time steps at which user i is served

up to time t. xτ is the feature of arm selected by the learner, yτ is the payoff from

user i at time τ , and α is the regularization parameter. Eq. (3.4) is convex and can be

solved via convex optimization techniques. Specifically, it has a closed form solution

[70]:

vec(Θ̂t) = (ΦtΦ
T
t +αL ⊗ I)−1

ΦtY t (3.5)

where⊗ is the Kronecker product, vec(Θ̂t)∈Rnd is the concatenation of the columns

of Θ̂t , I ∈ Rd×d is the identity matrix, and Y t = [y1,y2, ...,yt ]
T ∈ Rt is the collection

of all payoffs. Finally, Φt = [φ 1,φ 2, ...,φ t ]∈Rnd×t , where φ t ∈Rnd , is a long sparse

vector indicating that the arm with feature xt is selected for user i. Formally,

φ
T
t = ( 0, ...,0︸ ︷︷ ︸

(i−1)×d times

,xT
t , 0, ...0︸ ︷︷ ︸

(n−i)×d times

) . (3.6)
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While Eq. (3.4) provides the estimate of feature vectors of all users at t, i.e., Θ̂t , the

agent is interested in the estimation of each single-user feature vector θ̂ i,t . Math-

ematically, θ̂ i,t can be obtained by decoupling users in Eq. (3.5). This however is

highly complex due to the inversion (ΦtΦ
T
t +αL ⊗ I)−1, which the agent needs to

perform at each time step (we recall that the Laplacian is high-dimensional). We

notice that the close-form solution of θ̂ i,t can be closely approximated via a Taylor

expansion of (ΦtΦ
T
t +αL ⊗ I)−1, as stated in Lemma 1 and further commented

and tested empirically in Appendix A.1.

Lemma 1. Θ̂t is obtained from Eq. (3.5), let θ̂ i,t be the i-th row of Θ̂t which is the

estimate of θ i. θ̂ i,t can be approximated by1:

θ̂ i,t ≈ A−1
i,t X i,tY i,t−αA−1

i,t

n

∑
j=1

Li jA−1
j,t X j,tY j,t (3.7)

where Ai,t = ∑τ∈Ti,t xτxT
τ ∈ Rd×d is the Gram matrix related to the choices made

by user i, Ti,t is the set of time at which user i is served up to time t, and Li j is

the (i, j)-th element in L . X i,t ∈ Rd×|Ti,t | is the collection of features of arms that

are selected for user i up to time t with {xτ},τ ∈ Ti,t as columns. Y i,t ∈ R|Ti,t | is

the collection of payoffs associated with user i up to time t, whose elements are

{yτ},τ ∈Ti,t .

Proof. See Appendix A.1.

In solving bandit problems, the agent needs to estimate θ̂ i,t and the uncer-

tainty of this estimate as well. Learning such uncertainty translates into learning a

confidence set on θ̂ i,t .

3.4.1 Construction of Confidence Set

To balance exploration and exploration, we need to quantify the uncertainty over the

estimation of θ̂ i,t . This is possible by defining a confidence set around θ̂ i,t based

on Mahalanobis distance using its precision matrix, as commonly adopted in bandit

1Ai,t(and A j,t) is not full-rank when |Ti,t |< d. To guarantee inversion, in practice we set Ai,t =

∑τ∈Ti,t xτ xT
τ +λ Id with λ = 0.01.
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literature [71]. Let Λi,t ∈ Rd×d be the precision matrix of θ̂ i,t , the confidence set is

formally defined as

Ci,t = {θ i,t : ||θ̂ i,t−θ i||Λi,t ≤ βi,t} (3.8)

where βi,t is the upper bound of ||θ̂ i,t−θ i||Λi,t which is what we are interested in for

the bandit algorithm. With this goal in mind, we seek an expression for Λi,t . Let

Λt ∈ Rnd×nd denote the precision matrix of vec(Θ̂t) ∈ Rnd , where Λi,t ∈ Rd×d is the

i-th block matrix along the diagonal of Λt . Defining the precision matrix of vec(Θ̂t)

as

Λt = MtA−1
t Mt (3.9)

with At = ΦtΦ
T
t , L ⊗ = L ⊗ I, and Mt = At +αL ⊗, we have

Λi,t = Ai,t +2αLiiI +α
2

n

∑
j=1

L 2
i jA
−1
j,t (3.10)

where Ai,t and A j,t are defined in Lemma 1, and Li j is the (i, j)-th element in L . A

detailed derivation of Eq. (3.10) is presented in Appendix A.2 and Appendix A.3.

Given Eq. (3.10), we can upper bound the size of the confidence set, which provides

the value of βi,t .

Lemma 2. Let V i,t = Ai,t +αLiiI, and I ∈ Rd×d the identity matrix. Given a scalar

δ ∈ [0,1], and by defining ∆i = ∑
n
j=1 Li jθ j, the size of the confidence set defined in

Eq. (3.8) is upper bounded with probability 1−δ by βi,t:

βi,t = σ

√
2log

|V i,t |1/2

δ |αI|1/2 +
√

α||∆i||2 (3.11)

Proof. See Appendix A.4

Remark 4. Note that the random-walk graph Laplacian L = D−1L has two proper-

ties: Lii = 1 and ∑ j ̸=i Li j =−1. Then, The term ∆i = ∑
n
j=1 Li jθ j can be rewritten

as follows:

∆i = θi−∑
j ̸=i
−L jiθ j (3.12)

Denote −Li j as wi j, the second term ∑ j ̸=i−L jiθ j will be ∑ j ̸=i wi jθ j. As
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∑ j ̸=i−Li, j = 1, we have ∑ j ̸=i wi j = 1. Hence, ∑ j ̸=i wi jθ j is the convex combination

of θ j, j ̸= i. i.e., the weighted average of neighbors.

If we further denote θ̃i = ∑ j ̸=i wi jθ j. The term ∆i = θi− θ̃i essentially measures

the difference between θi and the weighted average of it neighbors θ j, j ̸= i where

weights are corresponds to Li j which encodes the similarity between i and j. In the

following, we can bound the term ||∆i||:

||∆i||= ||θi−∑
j ̸=

wi jθ j|| ≤ ||θi||+ ||∑
j ̸=

wi jθ j|| (3.13)

Assume ||θ || ≤ 1 and thanks to ∑ j ̸=wi j = 1 (a.k.a, ∑ j ̸=i Li j =−1) we have

||θi||+ ||∑
j ̸=

wi jθ j|| ≤ 2 (3.14)

Finally, notice that these two properties: Lii = 1 and ∑ j ̸=i Li j =−1 are not observed

in either combinatorial Laplacian or Normalized Laplacian. The above upper bound

of ||∆i|| can not be obtained for either combinatorial Laplacian or Normalized

Laplacian..

To show the effect of ∆i on the confidence bound, we consider two extreme

cases: a) an empty graph2 where Lii = 1 and Li j = 0. In this case, ∆i = θ i, which

recovers the confidence set used in LinUCB [37]; b) a fully connected graph with

Wi j = 1 where Lii = 1, Li j =
1

n−1 and θ i = θ j. In this case, ∆i = θ i− n−1
n−1θ i = 0

leading to a much lower bound than the one in a). In between, ∆i depends on

the similarity between θ i and its neighbors θ j, j ̸= i. In general, the smoother the

signal is on the graph, the lower the ||∆i||2. This has been empirically shown in

Fig 3.1(a), where we depict ||∆i||2 as a function of the level of smoothness quantified

by tr(ΘT L Θ) .

3.5 Algorithms
We now introduce the proposed GraphUCB bandit algorithm, sketched in Algo-

rithm 12. GraphUCB leverages the Laplacian-regularized estimator Eq. (3.4) and
2For isolated node, we set Lii = 1.
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Algorithm 12: GraphUCB
Input : α , T , L , δ

Initialization : For any i ∈ {1,2, ...,n} θ̂ 0,i = 0 ∈ Rd , Λ0,i = 0 ∈ Rd×d ,
A0,i = 0 ∈ Rd×d , βi,t = 0.

for t ∈ [1,T ] do
User index i is selected

1. Ai,t ← Ai,t−1 + xt−1xT
t−1.

2. A j,t ← A j,t−1, ∀ j ̸= i.

3. Select xt via Eq. (3.15)
where βi,t is defined in Eq. (3.11)

4. Receive the payoff yt .

5. Update Θ̂t via Eq. (3.4).

6. Update Λi,t via Eq. (3.10).

end

the arm index defined in Eq. (3.15).

xt = argmax
x∈At

(
xT

θ̂ i,t +βi,t ||x||Λ−1
i,t

)
(3.15)

Formally, at each time t, a user index i is selected randomly from the user set U .

It selects the arm xt from the arm set At following Eq. (3.15). Upon receiving the

instantaneous payoff yt , it updates the features of all users Θ̂t by solving Eq. (3.4) and

Λi,t according to Eq. (3.10). In practice, ∆i is replaced by its empirical counterpart

∆̂i = ∑
n
i=1 Li jθ̂ i,t where θ̂ i,t is the i-th row of Θ̂t .

One limitation of GraphUCB is its high computational complexity. Specifically,

in solving Eq. (3.4), the running time is dominated by the inversion of (ΦtΦ
T
t +

αL ⊗ I)−1 ∈ Rnd×nd , which could be impractical when the user number n is large.

As we known, the proved lower bound on matrix inversion computational complexity

is, given by [72], O((nd)2 log(nd)) for matrix with size nd×nd.

We notice that only one user is selected at each time t. Thus, it suffices to

only update θ̂ i,t (i.e., a local rather than global update). Therefore, we propose to

make use of Lemma 1 instead of Eq. (3.4) to update θ̂ i,t . This leads to a significant
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reduction in terms of computational complexity.

Leveraging Lemma 1, GraphUCB-Local serves as a simplified version of

GraphUCB. The only difference lies in the number of users updated at each round.

GraphUCB updates all users Θ̂t via Eq. (3.4) (closed-form solution). By contrast,

GraphUCB-Local updates one user θ̂ i,t . Pseudocode of GraphUCB-Local is

presented in Appendix A.5.

3.6 Analysis
Before providing the regret analysis of the proposed algorithms, we first define

Ψi,T =
∑τ∈Ti,T ||xτ ||2

Λ
−1
i,τ

∑τ∈Ti,T ||xτ ||2V−1
i,τ

(3.16)

where Ti,T is the set of time steps in which user i is served up to time T , Ai,τ =

∑ℓ∈Ti,τ xℓxT
ℓ , V i,τ = Ai,τ +αLiiI and Λi,τ is defined as in Eq. (3.10). Note that

||xτ ||2
Λ
−1
i,τ

and ||xτ ||2V−1
i,τ

quantify the uncertainty of predicted payoff ŷτ = θ̂
T
i,τxτ in the

cases where the graph structured is exploited or ignored, respectively.

Lemma 3. Let Ψi,T be as defined in Eq. (3.16) and ||xτ ||2 ≤ 1 for any τ ≤ T , then

Ψi,T ∈ (0,1)

and as T → ∞, Ψi,T → 1. This implies

∑
τ∈Ti,T

||xτ ||2
Λ
−1
i,τ
≤ ∑

τ∈Ti,T

||xτ ||2V−1
i,τ
.

See proof in Appendix A.6.

This Lemma highlights the benefit of taking into account the graph structure,

showing that the uncertainty of ŷτ is reduced when the graph structure is exploited.

It also shows that this effect diminishes with time: In Fig. 3.1(b), we see that as more

data are collected, the graph-based estimator approaches the estimator in which users

parameters are estimated independently (when Ψi,T → 1).
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Figure 3.1: (a) ||∆i||2 vs. smoothness (tr(ΘT L Θ)), (b) Ψi,T vs. time.

3.6.1 Regret Upper Bound

We now present the cumulative regret upper bounds satisfied by both GraphUCB

and GraphUCB-Local.

Theorem 10. Ψi,T is defined in Eq. (3.16), Λi,T defined in Eq. (3.10) and ∆i =

∑
n
j=1 Li jθ j. Without loss of generality, assume ||θ i||2 ≤ 1 for any i ∈ {1,2, ...,n}

and ||xτ ||2 ≤ 1 for any τ ≤ T . Then, for δ ∈ [0,1], for any user i ∈ {1,2, ...,n}

the cumulative regret over time horizon T satisfies the following upper bound with

probability 1−δ

Ri,T = ∑
τ∈Ti,T

rτ = O

((√
d log(|Ti,T |)+

√
α||∆i||2

)
×

Ψi,T

√
d|Ti,T | log(|Ti,T |)

) (3.17)

Assuming that users are served uniformly up to time horizon T , i.e., |Ti,T |= T/n,

the network regret (the total cumulative regret experienced by all users) satisfies the

following upper bound with probability 1−δ :

RT =
n

∑
i=1

Ri,T =
n

∑
i=1

Õ

(
Ψi,T d

√
T/n

)
= Õ

(
d
√

T nmax
i∈U

Ψi,T

) (3.18)

Proof. See proof in Appendix A.7
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Remark 5. Both GraphUCB and GraphUCB-Local satisfy Theorem 10.

The above remark is deduced from the observation that GraphUCB and

GraphUCB-Local differ only in the estimation of θ̂ i,t . However, the regret bound

is derived based on the ground-truth θ i, which is the same in both algorithms.

3.6.2 Comparison with LinUCB and Gob.Lin

Under the same setting, the single-user regret upper bound of LinUCB [35] is

Ri,T = O

((√
d log(|Ti,T |)+

√
α||θ i||2

)
×√

d|Ti,T | log(|Ti,T |)
) (3.19)

Since ||∆i||2 ≤ ||θ i||2 and Ψi,T ∈ (0,1) (Lemma 2 and Lemma 3), GraphUCB

(and GraphUCB-Local) leads to a lower regret −Eq. (3.17)− than LinUCB

−Eq. (3.19).

For user i and item x, define the compound descriptor of the pair (i,x) as

φi(x)T ∈ Rnd:

φi(x) = (0, ...,0,xT ,0, ...,0) (3.20)

Let L be the Laplacian matrix of graph G , define A = In +L and A⊗ = A⊗ Id is

the Kronecker product of matrix A and Id . Next, define

φ̃i(x) = A−1/2
⊗ φi(x) (3.21)

Then

MT =
T

∑
t=1

φ̃t(xt)φ̃t(xt)
T (3.22)

The cumulative regret upper bound of Gob.Lin in [57] is shown as

RT = 2

√
T (σ2 ln

|Mt |
δ

+L(θ)) ln |Mt | (3.23)

where

L(θ) =
n

∑
i=1
||θ i||2 + ∑

(i, j)∈E
||θ i−θ j||2 (3.24)
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As stated in Gob.Lin [57], we have

ln |MT | ≤ dn ln(1+2T/(dn(n+1))) (3.25)

Then,

RT ≤ Õ(nd
√

T +
√

L(θ)T nd) (3.26)

Next, we need to bound L(θ).

The author [57] claimed that this term ∑(i, j)∈E ||θ i−θ j||2 is small under the working

assumption that connected nodes share similar θ .

Let’s take this assumption to the extreme case that θi = θ j if they are connected.

Then, ||θi−θ j||2 = 0 and assume ||θi||2 ≤ 1. We have

L(θ)≤ n (3.27)

The regret can be bounded as

RT ≤ Õ(nd
√

T +
√

T n2d)≤ Õ(nd
√

T ) (3.28)

The cumulative regret achieved by GraphUCB in Eq. (3.18) is less than that in

Eq. (3.28) by an order of Õ(
√

n).

3.7 Experiment Results

We evaluate the proposed algorithms and compare them to LinUCB (no graph

information exploited in the bandit), Gob.Lin (graph exploited in the features

estimation) and CLUB (graph exploited to cluster users). All results reported are

averaged across 20 runs. In all experiments, we set confidence probability param-

eter δ = 0.01, noise variance σ = 0.01, and regularization parameter α = 1. For

Gob.Lin, we use βi,t = λ
√

log(t +1), and λ is set using the best value in range

[0,1]. For CLUB, the edge deletion parameter α2 is tuned to its best value.
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Figure 3.2: Cumulative regret vs. time for different type of graphs (ER and RBF) consis-
tently generated with the same level of smoothness and sparsity between graphs.

3.7.1 Experiments on Synthetic Data

In the synthetic simulations, we first generate a graph G and then generate a smooth

Θ via Eq. (3.29) which is proposed in [73]:

Θ = arg min
Θ∈Rn×d

||Θ−Θ0||2F + γtr(ΘT L Θ) (3.29)

where Θ0 ∈ Rn×d is a randomly initialized matrix, and L is the random-walk

graph Laplacian of G . The second term in Eq. (3.29) promotes the smoothness

of Θ: the larger the γ , the smoother the Θ over the graph3. In all experiments,

n = 20,d = 5. To simulate G , we follow two random graph models commonly

used in the network science community: 1) Radial basis function (RBF) model, a

weighted fully connected graph, with edge weights Wi j = exp(−ρ||θi−θ j||2); 2)

Erdős Rényi (ER) model, an unweighted graph, in which each edge is generated

independently and randomly with probability p.

In Fig 3.2, we depict the cumulative per-user regret as a function of time

for both RBF and ER graphs for both our proposed algorithms and competitors.

The regret is averaged over all users and over all runs. Under all graph models,

GraphUCB outperforms its competitors consistently with a large margin. Also

GraphUCB-Local consistently outperform competitor algorithms, with however

3The regularization parameter γ in Eq. (3.29) is used to generate a smooth function in the synthetic
settings, while the parameter α in Eq. (3.4) is used in the bandit algorithm to infer the smooth prior
when estimating user features.
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Figure 3.3: Cumulative regret for RBF graphs with different level of smoothness (a) and
sparsity (b).

slightly degradated performance with respect to GraphUCB. This is due to the

approximation introduced by Eq. (3.7). Gob.Lin is a close runner since it is also

based on the Laplacian regularized estimator, but it performs worse than the proposed

algorithms, as already explained in the previous section. CLUB performs relative

poor since there is no clear clusters in the graph. Nevertheless, it still outperforms

LinUCB by grouping users into clusters in the early stage which speeds up the

learning process. It is worth noting that the two subfigures depict the same algorithm

for two different graph models (RBF and ER) with the same level of smoothness

and sparsity. The trend of the cumulative regret is the same, highlighting that

the algorithm is not affected by the graph model. This behaviour is reinforced in

Appendix A.10 where we provide further results.

We are now interested in evaluating the performance of the proposed algorithms

against different graph topologies, by varying signal smoothness and sparsity of

graph (edge density) as follows

Smoothness [γ]: We first generate a RBF graph. To control the smoothness, we vary

γ ∈ [0,10].

Sparsity [s]: We first generate a RBF graph, then generate a smooth Θ via Eq. (3.29).

To control the sparsity, we set a threshold s ∈ [0,1] on edge weights Wi j such that

Wi j less than s are removed.

Fig 3.3, depicts the cumulative regret for different level of smoothness and
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Figure 3.4: Performance on Real-World data.

sparsity of G . GraphUCB and GraphUCB-Local show similar patterns (with

GraphUCB-Local leading to higher regret due to the already commented ap-

proximation): (i) the smoother Θ the lower is regret, which is consistent with the

Laplacian-regualrized estimator Eq. (3.4); (ii) denser graphs lead to lower regret

since more connectivity provides more graph information which speeds up the

learning process.

3.7.2 Experiments on Real-World Data

We then carry out experiments on two real-world datasets : Movielens [74] and

Netflix [75]. We follow the data pre-processing steps in [69], described in details in

Appendix A.10.

The cumulative regret over time is depicts in Fig 3.4 for both datasets. Both

GraphUCB and GraphUCB-Local outperform baseline algorithms in all cases.

Similarly to the synthetic experiments, LinUCB performs poorly, while GOB shows

a regret behaviour more similar to the proposed algorithms. In the case of Movielens,

CLUB outperforms GOB. A close inspection of the data reveals that ratings provided

by all users are highly concentrated. It means most users like a few sets of movies.

This is a good model for the clustering algorithm implemented in CLUB, hence the

gain.
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3.8 Conclusion
In this chapter, we propose a graph-based bandit algorithm GraphUCB and its

scalable version GraphUCB-Local, both of which outperform the state-of-art

bandit algorithms in terms of cumulative regret. On the theoretical side, we introduce

a novel UCB embedding the graph structure in a natural way and show clearly that

exploring the graph prior could reduce the cumulative regret. We demonstrate that

the graph structure helps reduce the size of confidence set of the estimation of user

features and the uncertainty of predicted payoff. As for future research directions,

one possibility is to relax the assumption that the user graph is available and infer

the graph from the data, ideally in a dynamic fashion.



Chapter 4

Error Analysis on Graph Laplacian

Regularized Estimator

In the multi-task bandit problem introduced in the previous chapter, we utilize the

graph Laplacian regularized estimator to estimate the unknown bandit coefficients.

This type of estimator has recently received considerable attention due to its ca-

pability in incorporating underlying topological graph structure into the learning

process. While the estimation problem can be solved efficiently by state-of-the-art

optimization techniques, its statistical consistency properties have been largely over-

looked. In this chapter, we develop a non-asymptotic bound of estimation error

under the classical statistical setting, where sample size is larger than the ambient

dimension of the latent variables. This bound illustrates theoretically the impact of

the alignment between the data and the graph structure as well as the graph spectrum

on the estimation accuracy. It also provides theoretical evidence of the advantage,

in terms of convergence rate, of the graph Laplacian regularized estimator over

classical ones (that ignore the graph structure) in case of a smoothness prior. Finally,

we provide empirical results of the estimation error to corroborate the theoretical

analysis.

4.1 Introduction
The aim of representation learning is usually to estimate the latent variables (i.e., the

design matrix) Θ and the coefficient matrix X that explain the intrinsic characteristics
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of the observations. This is usually solved by iterating between estimation of the

design matrix and estimation of the coefficient matrix. In this work, we focus on

the estimation of the design matrix Θ in Y = ΘX , where the coefficient matrix X

and the observations Y are assumed to be known, corresponding to one estimation

step in representation learning. While there exists error analyses on ridge regression

based estimator for the coefficient matrix, there has been little effort devoted to such

analysis on the estimator for the design matrix. To provide a better understanding of

the uncertainty of estimation in representation learning, it is therefore essential to

derive a theoretical error analysis on the estimator for the design matrix, which is the

goal of this chapter.

Estimating the design matrix given the observation and the coefficient matrix

is a learning problem that appears naturally and frequently in applications across

many fields such as image denoising, compress sensing, dictionary learning, and

collaborative filtering (CF). In CF [76], the goal is to estimate users’ preferences

Θ through item features X based on users’ responses Y (e.g., ratings). Dictionary

learning [73] also shares a similar formulation, where Θ and X are referred to dic-

tionary atoms and coding coefficient matrix. In this case, our model corresponds

to the case when the coding coefficient matrix X is known. Another closely related

application is image denoising [77], where Θ corresponds to a collection of basis

functions (e.g., wavelets, cosine waves) modeling the image signal as a linear com-

bination of these basis functions with X being the coefficients. Due to the wide

applicability of representation learning problems, the development of estimators for

representation learning has recently received a substantial attention. A key type of

estimators is regularized least squares estimators, which poses structural constraints

on the unknown coefficient matrix X . For example, the Lasso formulation [78]

poses a sparsity constraint on the number of non-zero entry in Θ. The work of [79]

introduces nuclear/trace norm based regularizers aiming to find a low rank solution

while fitting the data. Other examples include [80] and [81] that are based on various

structural constraints. Compared to estimating the coefficient matrix, however, much

less work has been devoted to the estimation of the design matrix, and in particular
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error analysis associated with the uncertainty in such estimation.

In this chapter, we study the estimation of the design matrix in representation

learning, where the estimator involves a graph based regularizer. Such a regularizer

helps incorporating the underlying geometric structure of the data into the learning

process. For example, in recommender systems [82], one might get access to users’

social network. Incorporating such information may lead to a better understanding of

users’ preference (Θ), which may in turn improve the recommendation performance

(Y ). We focus on the graph Laplacian based regularizer, which has been widely

adopted in the literature [83, 76, 84, 73] thanks to its mathematical regularity (e.g.,

convexity and differentiability). In particular, the least squares estimation regularized

by tr(ΘT LΘ) is a convex program, and Θ can be computed by the well-known

Bartels-Stewart algorithm [85] or more efficient algorithms developed recently [76,

86]. Rather than focusing on solving methods for the estimation problem, our

goal is rather to study its statistical consistency guarantee, and to gain insights

about the impact of L on its convergence rate. We aim to provide a bound on the

estimation error,△= Θ̂−Θ∗, defined as the difference between any estimation Θ̂

and the unknown ground-truth latent variables Θ∗. More formally, we derive a non-

asymptotic upper bound on ||△ ||F = ||Θ̂−Θ∗||F that holds with high probability,

where || · ||F is the Frobenius norm. To the best of our knowledge, this theoretical

analysis is absent in the literature.

The main contributions of the chapter are as follows:

• we obtain an error bound for the graph Laplacian regularized estimator, which

illustrates the effect of graph structure as well as its alignment with data on

estimation accuracy;

• we show the impact of the graph spectrum (i.e., eigenvalues of the graph

Laplacian) on the estimation accuracy;

• we compare with the classical ridge estimator to prove theoretically advantages

brought by incorporating graph structure into the estimator and we validate

our claims empirically by simulations results.
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In summary, we study analytically the estimation of the design matrix to understand

the associated uncertainty. This is a key component to understand the effectiveness

of representation learning algorithms, and to understand the effect of the topological

structure G on the estimation uncertainty.

The reminder of the paper is organized as follows. Section 2 presents related

work and in particular existing studies on the theoretical analysis of representation

learning. Section 3 introduces the basic definition related to the graph Laplacian

regularized estimator and formulates the estimation problem. Section 4 and 5 present

the main results of error analysis on the estimator and the corresponding proofs,

respectively. Section 6 shows empirical results and Section 7 summarizes the paper.

Notations: Let A = [Ai j] ∈ Rn×k and B = [Bi j] ∈ Rn×k be two n×m matrices.

The scalar product ⟨A,B⟩= tr(AT B), where tr(·) is the trace operator. The Frobenius

norm is defined as ||A||F = (∑i j A2
i j)

1
2 and the infinity norm as ||A||∞ = maxi j |Ai j|.

The nuclear norm is defined as ||A||∗ = tr(
√

AT A), with AT being the transpose of A.

Let x = [x1, ...,xd]
T ∈ Rd be a d-dimensional vector, where its L1 and L2 norms are

defined as ||x||1 = ∑
d
i=1 |xi| and ||x||2 = (∑d

i=1 x2
i )

1
2 , respectively.

4.2 Related work

In many applications, data come with an underlying geometric structure, typically in

the form of a graph, which should be considered in the learning process. There has

been an increasing amount of interest in representation learning, where topological

graph structures are embedded into estimators to promote desirable properties of the

solution. For example, [87] introduces a measure of smoothness of the data with

respect to a graph topology, in the form of the so-called Laplacian quadratic form

tr(ΘT LΘ). Employing this term as a regularizer in the estimators thus finds a solution

Θ̂ that is smooth on the graph. Alternatively, [88] introduces total variation and

graph total variation estimation. Following works show empirically the effectiveness

of such regularizers [89, 76, 90]. Other graph-based regularizers include edge Lasso

[91], network Lasso [92], and graph trend filtering [93].

In this work, we study a graph Laplacian regularized least squares estimator
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for the design matrix Θ. To the best of our knowledge, there is no prior work on

the theoretical understanding of a consistency guarantee of this estimator, either

in high-dimensional (n < p, or n≪ p) or in classical statistical setting (n ≥ p).

Nevertheless, there has been a few theoretical studies on the graph regularized

estimators. For example, total variation regularized estimators [88] are proven to

be similar to graph Laplacian regularized estimators [89] and promote piece-wise

constant solutions, while the Laplacian regularized estimators lead to piece-wise

smooth solutions. The work of [94] provides optimal rate analysis of the total

variation regularized estimator. The work of [76] derives statistical consistency

guarantees of the Laplacian regularized estimator in the application of collaborative

filtering. A key difference from their paper is that, in our work, we consider the

unknown coefficient matrix Θ as the graph signals.

Another difference is that, they derive a bound on the prediction error in the

measurements ||Ŷ −Y ∗||F , while we develop a bound on the estimation error in the

design matrix ||Θ̂−Θ∗||F . Finally, the work of [95] provides theoretical consistency

guarantees on a graph regularized estimator in linear regression, which is formulated

using a combination of graph Laplacian, total variation, and edge Lasso. Instead, we

focus on such theoretical properties using only graph Laplacian based regularizer.

4.3 Graph Laplacian regularized estimator
In this section, we introduce our estimation problem in representation learning. We

first provide some background on signals on graphs, and then introduce the graph

Laplacian regularized estimator and the associated estimation problem.

4.3.1 Graph Laplacian and graph signal

Consider a weighted and undirected graph G = (V,E,W ) of m vertices, where V

is the finite set of vertices and E the finite set of edges, and W = [Wi j] ∈ Rm×m

denotes the weighted adjacency matrix. The entry Wi j represents the edge weight

between vertex vi and v j. Wi j = 0 if vi, v j are not directly connected, and Wi j > 0 if

connected. Moreover, Wi j =Wji for weighted undirected graph. The graph degree

matrix is D = [Dii] ∈ Rm×m, where Dii = ∑ j Wi j represents the degree of vertex vi.
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The combinatorial graph Laplacian L is defined to be L = D−W .

A graph signal is referred as a function f : V → Rm that assigns a real value to

each graph vertex. In this paper, we consider smooth signals over graphs. With the

Laplacian matrix L, the smoothness of signal f over graph G can be quantified as a

quadratic form of L [87]:

f T L f =
1
2 ∑

i∼ j
Wi j( f (i)− f ( j))2 (4.1)

which is a weighted sum of the squared signal difference between connected vertices,

where weights are corresponding edge weights.

4.3.2 The estimation problem

We now state the estimation problem to be addressed in this paper, which is the

estimation of the design matrix Θ, in a linear model with a graph Laplacian regu-

larizer. We first introduce the linear model, and then describe the graph Laplacian

regularized estimator.

We consider the problem of representation learning under a general noisy setting.

The aim of this problem is to learn the design matrix Θ ∈ Rm×k that explains the

observations Y ∈ Rm×n with the coefficient matrix X ∈ Rk×n. Formally, we consider

a linear model in the form of

Y = ΘX +Ω (4.2)

where Y ∈ Rm×n denotes the observation matrix, X ∈ Rk×n is the coefficient matrix

following the standard regularity assumption that columns are independent, and

Θ ∈ Rm×k represents the design matrix. Let us denote the noise matrix by Ω =

[Ωi j] ∈ Rm×n with entries Ωi j ∼N (0,σ2) being Gaussian noise. We now consider

an estimator arising frequently in the literature, which assumes Θ to be smooth with

respect to an underlying graph structure G .

To estimate Θ under the prior of smoothness on G , we consider a graph Lapla-

cian regularized estimator. Formally,

Θ̂ = arg min
Θ∈Rm×k

1
2n
||Y −ΘX ||2F +α tr(ΘT LΘ) (4.3)
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where α ≥ 0 is a regularization parameter. The regularization term tr(ΘT LΘ) is

known to promote smoothness of Θ with respect to the underlying graph G . From

the perspective of statistical models, the regularizer in Eq. (4.3) assumes that Θ

follows a degenerate multivariate Gaussian distribution, where the graph Laplacian

L acts as the precision matrix. Such an estimator has been adopted in applications

such as graph-structured matrix factorization [89, 83] and signal denoising [96].

It is instructive to compare Eq. (4.3) with a simpler estimator which applies the

standard ridge estimator to the representation learning problem Eq. (4.2), solving

Θ̂ = arg min
Θ∈Rm×k

1
2n
||Y −ΘX ||2F +α tr(ΘT ImΘ) (4.4)

where Im is a m×m identity matrix. It is worth noting that the estimator Eq. (4.4)

is a degenerative version of Eq. (4.3) when L = Im, i.e., when the graph structure is

ignored. Therefore, the estimator in Eq. (4.4) is a desirable baseline for understand-

ing the property of the graph Laplacian regularized estimator in Eq. (4.3). In the

following sections, we provide a deep analysis on Eq. (4.3) as well as a comparison

with Eq. (4.4).

4.4 Estimation error analysis
The central focus of this chapter is the error analysis on Θ̂, i.e., providing a bound

on the estimation error△= Θ̂−Θ∗, where Θ∗ is the unknown ground-truth latent

variables matrix. To derive this bound, we generally follow the unified analysis

framework of [97], properly adjusted to our problem. We first develop some key

notations of the graph Laplacian regularized estimator in Eq. (4.3). Next, we describe

an important ingredient of our main result: the strong convexity condition. Finally,

we present our main results and their interpretation.

4.4.1 Key notations

The graph Laplacian regularized estimator Eq. (4.3) can be rewritten into the follow-

ing form:

Θ̂ = arg min
Θ∈Rm×k

L (Θ)+αR(Θ) (4.5)
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where L (Θ) = 1
2n ||Y −ΘX |2F is the loss function assigning a cost to any Θ ∈ Rm×k

given a pair of {X ,Y}, and R(Θ) = tr(ΘT LΘ) denotes the Laplacian regularizer.

The first order Taylor expansion of the loss function at Θ∗ in the direction△= Θ̂−Θ∗

is expressed as

L (Θ∗+△) = L (Θ∗)+ ⟨▽L (Θ∗),△⟩ (4.6)

thus, the error of the first Taylor expansion δL (Θ∗) is defined as

δL (Θ∗) = L (Θ∗+△)−L (Θ∗)−⟨▽L (Θ∗),△⟩ (4.7)

After some algebraic steps (proved in Appendix B.1), we can also observe that

▽L (Θ∗) =
1
n

ΩXT (4.8)

δL (Θ∗) =
1

2n
||△X ||2F (4.9)

where Ω = Θ∗X−Y .

4.4.2 Strong convexity

We now pose a technical condition on the error of the Taylor expansion, δL (Θ∗),

which provides a desirable control of the error magnitude. This bound is based on

the strong convexity condition [98], formally expressed as follows

δL (Θ∗)≥ κ||△ ||2F , for△ around Θ
∗ (4.10)

where κ > 0 is a positive constant. Intuitively, Eq. (4.10) requires the loss function

L is sharply curved around its optimal solution Θ̂ by setting a lower bound on its

gradient. The necessity of this requirement can be interpreted as follows. Consider

the difference loss L (Θ̂)−L (Θ∗), it is expected that small L (Θ̂)−L (Θ∗) in-

dicates small△= Θ̂−Θ∗. However, this assumption is reasonable only when L

sharply curves at Θ̂. For example, to illustrate this point, if L is relative flat curved,

a large△= Θ̂−Θ∗ might also leads to small L (Θ̂)−L (Θ∗). Therefore, to avoid

the curve of L is too flat, we pose a strong convexity Eq. (4.10) constraint on it ,
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which provides a desirable control of the magnitude of the error△ in turn.

Note that in [99] a similar notion named restricted strong convexity is introduced.

The term “restricted" means a constraint on the set of △, which is necessary in

high-dimensional statistical inference, in settings in which the ambient dimension

k is larger than the sample size n (i.e, k ≥ n or k≫ n). In such settings, the global

strong convexity is not always ensured, thus it is necessary to restrict△ into a set

where the strong convexity holds (hence the restricted strong convexity). In contrast,

in this paper we consider the standard setting, n > k, where it is natural to assume

the loss function is strongly convex at a global scale under mild conditions. Another

analogous condition known as “restricted eigenvalues” (RE) is introduced in [100].

4.4.3 Main results

Equipped with the above notations and assumptions, we are ready to state our

main result: a deterministic upper bound on the estimation error of the Laplacian

regularized estimator Eq. (4.3), which holds with high probability and it is defined

in the following theorem.

Theorem 11. Consider the linear model Eq. (4.2), where the strong convexity

condition Eq. (4.10) holds and the regularization parameter α ≥ 8σ
√

D
√

m+k
mn with

any constant D≥ 2. Imposing rank(△)≤ r, then the optimal solution Θ̂ obtained

by Eq. (4.3) satisfies the following error bound:

||Θ̂−Θ
∗||F ≤

α(
√

r+2||LΘ∗||F)
κ +αλ2

(4.11)

with high probability. where λ2 is the second smallest eigenvalue of the graph

Laplacian L.

The sketched proof of Theorem 11 is presented in the next section, while

detailed proof is postponed to Appendix B.2. In the following, we provide key

interpretations of Theorem 11.

(a) Note that Theorem 11 is a non-asymptotic bound on the optimas of Eq. (4.3)

given a fixed regularization parameter α . When applied to particular models,
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the strong convexity condition and the assumption α ≥ ||▽L (Θ∗)||∞ are

required to be satisfied.

(b) The term ||LΘ∗||F quantifies the alignment between Θ∗ and graph information

L. Suppose there exists a groundtruth L∗ over which Θ∗ is smooth. It can

be verified that any deviation of L from L∗ would lead to a larger value of

||LΘ∗||F than ||L∗Θ∗||F . In other words, deviations of Θ∗ from the smoothness

assumption leads to a larger estimation error.

(c) The term λ2 illustrates the impact of the density of graph on the estimation

accuracy. By comparing the eigenvalue profiles of two graphs, it can be

seen that λ2 of a dense graph is typically larger than that of a sparse graph.

Therefore, from Eq. (4.11), we can deduce that dense graph leads to lower

error, if it indeed aligns with Θ∗, because that a dense graph indicates more

correlated rows of Θ∗, with the help of L, the Laplacian regularized estimator

is expected to result in more accurate estimation.

The following corollary provides a bound applied to Eq. (4.3), with the detailed

proof provided in Appendix B.3.

Corollary 1. Consider the linear model Eq. (4.2), where the strong convexity condi-

tion Eq. (4.10) holds and the regularization parameter α ≥ 8σ
√

D
√

m+k
mn with any

constant D≥ 2. If the rank of△= Θ̂−Θ∗ is at most r. Then the optimal solution Θ̂

obtained by the ridge estimator Eq. (4.4) satisfies the following error bound:

||Θ̂−Θ
∗||F ≤

α(
√

r+2||Θ∗||F)
κ +α

(4.12)

with high probability.

Corollary 1 takes a simpler form than Theorem 11 since L is ignored and

λ2(Im) = 1.
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4.5 Proofs
In this section, we sketch the proofs of Theorem 11, while more detailed proof is

provided in Appendix B.2. We first present some Lemmas used in the proof.

4.5.1 Assumption and Lemmas

Assumption 1. Given the definition△= Θ̂−Θ∗, we assume△ satisfies the following

property
k

∑
j=1

m

∑
i=1
△2

ji≫
1
m

k

∑
j=1

(
m

∑
i=1
△ ji)

2 (4.13)

See Appendix B.4 for detailed reasoning.

Lemma 4. Let the eigenvalues of the graph Laplacian L be denoted by 0 = λ1 ≤

λ2 ≤ ... ≤ λm. Suppose △ satisfies Assumption 1, then tr(△T L△) satisfies the

following lower bound

tr(△T L△)≥ λ2||△ ||2F (4.14)

The detailed proof is provided in next section.

Lemma 5. [100]. Let entries of Ω = [Ωi j] be i.i.d. N (0,σ2) random variables,

where Ω ∈ Rm×n. X ∈ Rk×n follows standard statistical regularity with independent

columns. Then, for any D≥ 2,

1
n
||ΩXT ||∞ ≤ 8σ

√
D
√

m+ k
mn

(4.15)

with probability at least 1−2exp(−(D− log5)(m+ k).

Lemma 6. [99]. Let X ∈ Rk×n be a random matrix with i.i.d. columns sampled

from a k-variate N (0,Σ). Then for n≥ k, we have

P[σmin(
1
n

XXT )≥ σmin(Σ)

9
,σmax(

1
n
(XXT )≤ 9σmax(Σ)]≥ 1−4exp(−n/2) (4.16)

4.5.2 Sketch proof of Theorem 11

Due to the optimality of Θ̂ for Eq. (4.5), we have

L (Θ̂)+αR(Θ̂)≤L (Θ∗)+αR(Θ∗) (4.17)
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Substituting Θ̂ = Θ∗+△ and R(Θ) = tr(ΘT LΘ) yields

L (Θ∗+△)−L (Θ∗)+α(2tr((Θ∗)T L△)+ tr(△T L△))≤ 0 (4.18)

By the definition of scalar product and its property, we have

tr((Θ∗)T L△) = ⟨LΘ
∗,△⟩ ≥−|⟨LΘ

∗,△⟩| (4.19)

Combining this with Eq. (4.7) the definition of δL (Θ∗) and ⟨▽L (Θ∗),△⟩ ≥

−|⟨▽L (Θ∗),△⟩|, we know that

−|⟨▽L (Θ∗),△⟩|+δL (Θ∗)+α(−2|⟨LΘ
∗,△⟩|+ tr(△T L△))≤ 0 (4.20)

Applying the Hölder Inequality [101], we have |⟨▽L (Θ∗),△⟩|≤ ||▽L (Θ∗)||∞||△

||∗ and |⟨LΘ∗,△⟩| ≤ ||LΘ∗||F ||△ ||F . Thus

δL (Θ∗,△)+αtr(△T L△)≤ ||▽L (△,Θ∗)||∞||△ ||∗+2α||LΘ
∗||F ||△ ||F

(4.21)

Imposing the strong convexity condition δL (Θ∗) ≥ κ||△ ||2F . Assume α ≥ ||▽

L (Θ∗)||∞. Note the fact that if rank(△)≤ r, then ||△ |∗ ≤
√

r||△ ||F , we have

κ||△ ||2F +αtr(△T L△)≤ α
√

r||△ ||F +2α||LΘ
∗||F ||△ ||F (4.22)

The remaining is to lower bound tr(△T L△). Lemma 4 provides a proper lower

bound on this.

Substituting Eq. (4.14) into Eq. (4.22) and dividing both sides with ||△ ||F yields

||△ ||F ≤
α(
√

r+2||LΘ∗||F)
κ +αλ2

(4.23)

The remained issue is to choose valid values for the regularization parameter α and

the positive constant κ such that bound Eq. (4.23) holds in high probability. For
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the value of α , we follow Lemma 5, from [100], which provides a upper bound on

||▽L (Θ∗)||∞. For the choice of κ , Lemma 6, obtained from [99], provides a lower

bound on δL (Θ∗). Interested readers are referred to proofs in their original work.

More specifically, to decide a proper choice of α , we need to upper bound

|| ▽L (θ ∗)||∞ since we assume α ≥ ||▽L (θ ∗)||∞. Recall Eq. (4.8), we have

|| ▽L (Θ∗)||∞ = 1
n ||ΩXT ||∞. From Lemma 5, it can be seen that the choice

α ≥ 8σ
√

D
√

m+k
mn is suffice to ensure α ≥ ||▽L (Θ∗)||∞ holds in high probability.

To establish the strong convexity condition defined in Eq. (4.10), it is required

to build a lower bound on δL (Θ∗) = 1
2n ||△X ||2F . As can be seen, similar to [99],

1
2n
||△X ||2F ≥

σmin(XXT )

2n
||△ ||2F (4.24)

where σmin refers to the minimum singular value of the matrix XXT . Lemma 6

introduces a lower bound on σmin(XXT )
n . From Lemma 6, we can see σmin(XXT )

2n ≥
σmin(Σ)

18 with probability 1−4exp(−n). Therefore, κ = σmin(Σ)
18 could guarantee that

the condition δL (Θ∗)≥ κ||△ ||2F holds with high probability.

With the above valid choice of α and κ , Theorem 11 holds with high probability.

4.5.3 Sketch proof of Lemma 4

Let the eigendecomposition of the graph Laplacian L is L=QΛQT . Define u=QT△,

where u j = QT△ j and △ j denotes the j-th column of u and △, respectively. It is

straightforward to show that

tr(△T L△) =
k

∑
j=1
△T

j L△ j =
k

∑
j=1

m

∑
i=1

λiu2
ji (4.25)

Where λi denotes the i-th eigenvalue of L, and u ji denotes the i-th entry of the j-th

column of u.

Given L is a symmetric positive semidefinite matrix, its eigenvalues are real and

nonnegative. Moreover, we assume that the graph G is a connected component,
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hence λ1 = 0. If we denote its eigenvalues as 0 = λ1 ≤ λ2 ≤ ...≤ λm, we have

m

∑
i=1

λiu2
ji =

m

∑
i=2

λiu2
ji ≥

m

∑
i=2

λ2u2
ji = (

m

∑
i=1

λ2u2
ji)−λ2u2

j1 = λ2||△ j ||22−λ2u2
j1 (4.26)

The first inequality is due to λ1 = 0. Substituting Eq. (4.26) into Eq. (4.25) yields

tr(△T L△)≥
k

∑
j=1

(λ2||△ j ||22−λ2u2
j1) = λ2||△ ||2F −λ2||QT

1 △||22 (4.27)

Where QT
1 = [1/

√
m,1/

√
m, ...,1/

√
m]T is the first eigenvector of L. Therefore,

||QT
1 △ ||22 = ∑

k
j=1

1
m(∑

m
i=1△ ji)

2. Also note that || △ ||2F = ∑
k
j=1 ∑

m
i=1△2

ji, So

Eq. (4.27) turns to

tr(△T L△)≥ λ2||△ ||2F −λ2||QT
1 △||22

= λ2

k

∑
j=1

m

∑
i=1
△2

ji−λ2

k

∑
j=1

1
m
(

m

∑
i=1
△ ji)

2
(4.28)

According to Assumption 1, at the right hand side of Eq. (4.28), the term

λ2 ∑
k
j=1

1
m(∑

m
1=1△ ji)

2 can be dropped. Hence,

tr(△T L△)≥ λ2||△ ||2F (4.29)

4.6 Experimental validation

Experiment Setting We carry out experiments over various Laplacian and graph

typologies. In the literature, there exists several definitions of Laplacian. Namely,

Combinatorial Laplacian L = D−W , Normalized Laplacian L = I−D1/2WD1/2

and Random-Walk Laplacain L = I−D−1W . On the topology side, we consider

four commonly used graph topologies in the literature are shown in Fig 4.1. 1)

Erdős Rényi (ER) model, an unweighted graph, in which each edge is generated

independently and randomly with probability p; 2) Barabási-Albert (BA) model,

an unweighted graph initialized with a connected graph with m nodes. Then, a new

node is added to the graph sequentially with m edges connected to existing nodes
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(a) ER (b) BA (c) SBM (d) WS

Figure 4.1: Graph Topologies

following the rule of preferential attachment where existing nodes with more edges

has more probability to be connected by the new node; 3) Stochastic Block Model

(SBM) is a generative model which tends to generate graph containing communities.

Edges are denser within communities than between communities; 4) Watts-Strogatz

(WS) model, an unweighted graph, which is a m-regular graph with edges randomly

rewired with probability p.

The impact of ||LΘ||F , λ2 and α

Theorem 11 contains three important terms ||LΘ||F , λ2 and α . In this section, we

examine the impact of these terms, respectively. To conduct following experiments,

we need a method to control the smoothness between Θ and the graph identified by

L. To do this, we resort to Eq. (4.30)

Θ = exp(−tL)Θ0 (4.30)

Given a fixed graph with Laplacian L, we first generate Θ0 ∈ Rn×d a random matrix

with normalized columns. Next, we obtain smooth Θ on the basis of Θ0 and L

through Eq. (4.30). The parameter t ∈ (0,∞) controls the level of smoothness.

Larger t results in smoother Θ.

The term ||LΘ||F , similar to Laplacain quadratic term Tr(ΘT LΘ), measures

the smoothness between the graph L and Θ. In Fig 4.2, we show that the value

of ||LΘ||F and Tr(ΘT LΘ) decreases as t increases under different Laplacians. It

means that both ||LΘ||F and Tr(ΘT LΘ) measures the smoothness where lower value

corresponding to higher smoothness between Θ and L. This is hold for all Lapalcians

shown in Fig 4.2. Moreover, Theorem 11 indicates that the smaller ||LΘ||F the lower

the estimation error (hence the more accurate the estimate). In Fig 4.4(a), we confirm
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(a) L = I−D−1W (b) L = D−W (c) L = I−D1/2WD1/2

Figure 4.2: ||LΘ||F and Smoothness with different Laplacian: Random Walk Laplacian
L = I−D−1W ; Combinatorial Laplacian L = D−W ; Normalized Laplacian
L = I−D1/2WD1/2

(a) L = I−D−1W (b) L = D−W (c) L = I−D1/2WD1/2

Figure 4.3: λ2 and graph connectivity (edge number): Random Walk Laplacian L = I−
D−1W ; Combinatorial Laplacian L = D−W ; Normalized Laplacian L = I−
D1/2WD1/2

this by showing the error curves under different values of ||LΘ||F (different level of

smoothness).

The term λ2, the second smallest eigenvalue of L, is a measurement of the graph

connectivity [102] where a denser connected graph typically has a higher value of

λ2. To confirm this, we first generate a fully connected graph and then remove edges

gradually. Fig 4.3 confirms that larger value of λ2 corresponds to denser connected

graph (more edge numbers). This pattern is consistent across different Laplacian.

In addition, Theorem 11 suggests that the larger λ2 (denser connected) the lower

estimation error. In Fig 4.4(b), we show learning curves under different value of λ2

(various connectivity). It can be seen that in general, denser connected graph leads

to lower estimation error (more accurate estimation).

The term α is a hyper-parameter, controlling the balance between fidelity term

and Laplacian quadratic term. To test its impact, we fixed the graph L, Θ and the

smoothness via t. For each level of smoothness t, we test the estimation error under

different values of α . Fig 4.5 shows that given a smooth Θ (e.g., t = 1 or t = 3),
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(a) (b)

Figure 4.4: The impact of ||LΘ||F and λ2 on estimation error: m denotes the edge number, t
is the parameter in Eq. (4.30) controlling the smoothness

(a) t = 0 (b) t = 1 (c) t = 3

Figure 4.5: The impact of α under different t (different smooth level)

larger value of α results in lower estimation error. However, Fig 4.5(c) shows that

the Laplacian quadratic regularizer Tr(ΘT LΘ) has no impact on estimation error

when Θ is no smooth with respect to L (when t = 1).

Results presented in Fig 4.4 and Fig 4.5 is built on combinatorial Laplacian

L = D−W and ER graph topology. Results of other Laplacian and topology have

similar and consistent patterns.
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4.7 Conclusion
In this chapter, we have analyzed the graph Laplacian regularized estimator, obtaining

a non-asymptotic error bound on the Frobenius norm of estimation error. We derive

the error bound in the main theorem, which provides a clear interpretation of the

impact of both the graph structure and the smoothness prior on the estimation

accuracy. Finally, we provide empirical evidence to confirm our theoretical analysis.



Chapter 5

Differentiable Linear Bandit

Previous chapters have investigated the bandit problems, mainly adopting UCB

strategies. This is because Upper Confidence Bound (UCB) is among the most

commonly used methods for linear Multi-armed bandit problems. However, while

conceptually and computationally simple, this method highly relies on the evaluation

of the confidence bounds, failing to strike the optimal exploration-exploitation if

these bounds are not properly set. In the literature, confidence bounds are typically

derived from concentration inequalities based on assumptions on the reward and

noise distribution. The validity of these assumptions however is unknown in practice.

In this chapter, we aim at learning the confidence bound in a data-driven fashion,

making it adaptive to the actual problem structure. Noting that existing UCB-based

algorithms are non-differentiable with respect to confidence bound, we first propose

a novel UCB-based differentiable linear bandit algorithm. Then, we introduce a

gradient estimator, which allows us to learn the confidence bound via iterative

gradient ascent. Moreover, we provide an upper bound on the cumulative regret of

the proposed algorithm. Empirical results show that the learned confidence bound is

significantly smaller than its theoretical upper bound and that the proposed algorithm

outperforms baseline ones on both synthetic and real-world datasets.

5.1 Introduction
Multi-armed Bandit (MAB) [103] is an online decision-making problem, in which

an agent selects arms sequentially and observes stochastic rewards as feedback. The
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goal of the agent is to maximize the expected cumulative reward over trials. The

expected reward of each arm is unknown a priori and it is learned from experience

by the agent. As a consequence, the agent needs to balance the selection of arms to

improve its knowledge (exploration) and the selection of the highest rewarding arm

given the knowledge acquired till thus far (exploitation). This is formalized as the

so-called exploration-exploitation trade-off. Bandit algorithms are designed to strike

this trade-off. One class of MAB problems is the linear MAB [36], in which each

arm is described by a feature vector and the expected reward follows a linear model

over its feature vector and an unknown parameter vector. Each arm’s feature vector

is known a priori by the agent and it is considered as a hint on the arm reward. The

learning problem boils down to the agent inferring the unknown parameter vector,

based on the history (selected arms and received rewards) and then selecting arms

accordingly.

In most existing works, confidence bounds are derived from concentration

inequalities [37] [22] [104] given a priori assumptions on the reward distribution

(e.g., sub-Gaussinaity). These bounds achieve strong minimax theoretical guarantees,

outperforming competitor algorithms such as LinTS [26]. While these bounds are

essential for a theoretical analysis, they do not necessarily translate into practice.

In fact, these constructed confidence bounds are typically conservative in practice,

as noted in [105] [106]. This is because concentration inequalities are usually built

based on given reward distributions instead of the actual data (or problem structure).

This results in non-adaptive and potentially wide confidence bounds which in turn

leads to suboptimal performance in practice.

Alternatively, in this work we aim to learn the confidence bound in a data-driven

fashion making it adaptive to the actual problem structure. Inspired by [107], we aim

at having a parametrized and differentiable cumulative reward function with respect

to the confidence bound, which can then be optimized. The key challenge is that

existing UCB-typed algorithms are non-differentiable with respect to the confidence

bound, mainly due to maximization of the UCB index (i.e., due to the presence of

the argmax operator in the OFUL [37], LinUCB [36]). To address this, we propose
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a novel differentiable UCB-typed linear bandit algorithm and introduce a gradient

estimator which enables the confidence bound to be learned via gradient ascent.

Our proposed algorithm contains two core components. First, a novel UCB-

based index not only summarizes the history of each arm but also differentiates

arms to be suboptimal arms and non-suboptimal arms. Second, we utilize a softmax

function to transform indexes into a probability distribution, where as a result of the

novel index the probability for each suboptimal arm to be selected is arbitrary small.

The key idea is that the exploration is conducted by selecting arms with large index,

while the exploitation is achieved by soft-eliminating suboptimal arms (arbitrary

small probability to be selected). The softmax function ensures the differentiability

of the reward function, paving the way to learn confidence bound via gradient ascent.

In addition, we provide a theoretical analysis on the cumulative regret upper bound.

In summary, our contributions can be listed as follows:

• We propose a novel UCB-typed linear bandit algorithm where the expected

cumulative reward is a differentiable function of the confidence bound.

• We introduce a gradient estimator and show how the confidence bound can be

learned via gradient ascent.

• Theoretically, we prove an upper bound of cumulative regret of the proposed

algorithm.

• Empirically, we show the learned confidence bound is significantly smaller

than its theoretical counterpart, leading to substantially lower cumulative

regrets with respect to state-of-the-art baselines on both synthetic and real-

world datasets.

Notation: [K] denotes {1,2, ...,K}. Arm is indexed by i, j ∈A . We use lower

letter, e.g., x, to denote vector and upper letter. e.g., M, to denote matrix. For a

positive definite matrix M ∈ Rd×d and a vector x ∈ Rd , we denote the weighted

2-norm by ||x||M =
√

xT Mx. Each arm k is represented by the feature vector xk ∈Rd .

We denote by P and E the probability distribution and the expectation operator,

respectively.
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5.2 Related work

Our work is inspired by [107], which was the first attempt in addressing policy-

gradient optimization of bandit policies via differentiable bandit algorithm. However,

there are fundamental differences between [107] and our work. First, authors pro-

posed a differential bandit framework for Bayesian MAB problem, which is not

directly applicable to linear MAB problems. Second, the main goal of [107] is

to learn the learning rate (coldness-parameter) of the softmax function, while our

algorithm aims at learning the size of the confidence bound. Third, we propose

algorithms for both offline and online settings, while [107] covered the offline setting

only.

Another work focused on data-dependent UCB is [108]. Authors proposed an al-

gorithm called bootstrapedUCB. In [108], the stochastic reward is assumed to be

sub-Weibull random variable. Multiplier bootstrap was employed to approximate the

reward distribution. The bootstrapped quantile acted as UCB to facilities exploration.

Their algorithm was deployed on both MAB and linear MAB problems, while regret

analysis covered MAB only. Similar to this work, other bootstrap techniques were

employed [109] [110] [111]. Although aiming to the same goal (data-dependent

UCB), these works are fundamentally different from our approach. Our algorithm is

a differentiable bandit algorithm where we rely on gradient estimator to learn UCB.

Their algorithm is non-differentiable, relying on the bootstrapped quantile of the

assumed reward distribution to construct UCB.

Bootstrap techniques were used also for Thompson Sampling exploration in

[105], in which author proposed the BoostrapThompson algoritihm for MAB.

Bootstrap techniques were used to sample observations from historical and pseudo-

observations to approximate the posterior distribution which was then used to en-

courage exploration. As an extension, [112] generalized this technique to Gaussian

reward MAB, while [113] and [106] proposed an extension to contextual linear

bandit, achieving the same regret bound of LinTS [26]. The problem they aimed

to address was the computational infeasibility of inferring posterior distribution

when reward follows nonlinear models. This departs from our goal, which is rather
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learning the confidence bound from data.

Our work can be viewed as a subtle combination of EXP3 [103] and Phased

Elimination1 [71]. EXP3 was designed for MAB, where arms with higher em-

pirical averaged reward are signed with larger probability by softmax function. The

coldness-parameter of softmax function is a tuneable hype-parameter chosen by the

user. In our work, we propose a novel scheme to set this parameter automatically in

a data-driven fashion. Moreover, although Exp3 is a differentiable bandit algorithm,

it is not an UCB-typed algorithm. Phased Elimination eliminates suboptimal

arms based on the same index as ours and selects non-suboptimal arms uniformly

(pure exploration). There are several fundamental differences between this approach

and our work: i) the confidence bound in our work is learned from data and not from

concentration inequalities; ii) Phased Elimination is a non-differentiable al-

gorithm; iii) Phased Elimination achieves optimality in a worst case scenario

(minmax regret) while our algorithm get an empirical gain being data dependent.

In summary, to the best of our knowledge, our work is the first differentiable

UCB-typed linear bandit algorithm which enables confidence bound to be learned

purely from data without relying on concentration inequalities and assumptions on

the form of reward distribution.

5.3 Problem setting
We consider the stochastic linear bandit with an arm set A and a time horizon of

T -rounds. The arm set contains K arms, i.e., |A | = K, where K could be large.

Each arm i ∈A is associated with a known feature vector xi ∈ Rd . The expected

reward of each arm µi = xT
i θ follows a linear relationship over xi and an unknown

parameter vector θ . Similarly to other works in the bandit literature, we assume

that arm feature and parameter vector are bounded ||x||2 ≤ L and ||θ ||2 ≤C, where

L > 0 and C > 0. At each decision opportunity t ∈ [T ], the learning agent selects

one arm i ∈A out of A . Upon this selection, the agent observes the instantaneous

reward yt ∈ [0,1], which is drawn independently from a distribution with unknown

1Algorithm: Phased elimination with G-optimal exploration page. 258 [71]
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mean µi = xT
i θ . The agent aims to maximize the expected cumulative reward over

the time horizon T . Namely,

YT =
T

∑
t=1

E[yt ] (5.1)

This is equivalent to minimize the expected cumulative regret which measures the

difference between the expected cumulative reward if the optimal arm were always

selected and the agent’s expected cumulative reward. Denoting by µ∗ = maxi∈A xT
i θ

the expected reward of the optimal arm, we get

RT = T µ∗−
T

∑
t=1

E[yt ] . (5.2)

Upper Confidence Bound (UCB) in linear bandit problems has been introduced

in Chapter 1, we restate the key concept here for the ease of reading. The upper

confidence bound algorithm, e.g., OFUL [37], is designed based on the Optimism in

Face of Uncertainty principle. The key aspect is to construct a confidence bound of

the estimated reward of each arm. Formally, at each round t, the confidence bound is

defined as

|µ̂i,t−µi| ≤ β ||xi||V−1
t
, ∀i ∈A (5.3)

where µ̂i,t is the estimate of the reward of arm i at round t and Vt = ∑
T
t=1 xtxT

t is the

Gram matrix up to round t. Then, the agent selects the arm with the highest upper

confidence bound as follows

it = argmax
i∈A

µ̂i,t +β ||xi||V−1
t

(5.4)

It is well known that the tighter the bound in Eq. (5.3), the better the balance between

exploration and exploitation [59]. Most existing confidence bounds are established

based on concentration inequalities. e.g., Hoeffding inequality [22], self-normalized

[37], Azuma Inequality [71], Bernstein inequality [104]. As a specific example,

under the assumption of the stochastic reward to be a R-sub-Gaussian variable, one

of the state-of-the-art high probability upper bound of β , derived based on properties
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Algorithm 13: SoftUCB
Input :β , A , K, T , α .

Initialization : V0 = αI ∈ Rd×d , b0 = 0 ∈ Rd , θ̂0 = 0 ∈ Rd , γ0 = 0.
for t ∈ [1,T ] do

1. Find Si,t ,∀i ∈A via Eq. (5.7) with β .

2. Find πt via Eq. (5.8) with γt−1.

3. Select arm it ∈A randomly following πt and receive payoff yt .

4. Update Vt ←Vt + xtxT
t , bt ← bt−1 + xtyt and θ̂t =V−1

t bt .

5. Update γt via Lemma 8.

end

of self-normalized martingale, was given by [37]:

β ≤ R

√
2log

(
1
δ

)
+d log

(
1+

T
d

)
+
√

αC (5.5)

where α is a regularizer parameter of least-square estimator, 1−δ is the probability

of which Eq. (5.3) holds and ||θ ||2 ≤C. The tightness of these bounds rely on the

validity of assumptions on the reward distribution, which are unfortunately unknown

in practice. Alternatively, we aim at learning the confidence bound, i.e., β , in a data-

driven fashion without any a priori assumption on the unknown reward distribution

except the linearity function of the mean reward, i.e., is µi = xT
i θ ,∀i ∈A .

5.4 Algorithms
In this section, we first present a novel UCB-based index. Then, we provide a

gradient estimator of the expected cumulative regret with respect to confidence

bound. Next, we propose bandit algorithm. Finally, we prove a theoretical regret

upper bound.

5.4.1 Differentiable Algorithm

Our proposed algorithm named SoftUCB is shown in Algorithm 13. SoftUCB

contains two core components: an UCB-based index Si,t and an arm selection policy
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πt . Formally, for i ∈ A , µ̂i,t = xT
i θ̂t where θ̂t = V−1

t ∑
t
s=1 xsys is the least-square

estimator and V−1
t = ∑

t
s=1 xsxT

s is the Gram matrix up to round t. Let denote by

i∗ = argmaxi∈A µ̂i,t−β ||xi||V−1
t

the arm with the largest lower confidence bound at

round t. Let us also define

φi,t = ||xi||V−1
t

+ ||xi∗||V−1
t

and ∆̂i,t = µ̂i∗,t− µ̂i,t (5.6)

where β is the confidence bound defined in Eq. (5.3) and ∆̂i,t is the estimated reward

gap between i∗ and i. We introduce the UCB-based index Si,t defined as

Si,t = βφi,t− ∆̂i,t . (5.7)

Lemma 7. If Si,t < 0, arm i is a suboptimal arm, i.e., µ∗−µi > 0. If Si,t ≥ S j,t ≥ 0,

then the upper confidence bound µ̂i,t +β ||xi||V−1
t
≥ µ̂ j,t +β ||x j||V−1

t
.

The proof is provided in Appendix C.1

The index Si,t has two key properties: i), Si,t differentiates arms into suboptimal

arms and non-suboptimal arms. Specifically, Si,t < 0 identifies arms which are

suboptimal and therefore could be eliminated (i.e., not selected by the agent); ii),

Si,t ≥ S j,t ≥ 0 implies that the upper confidence bound µ̂i,t + β |xi||V−1
t
≥ µ̂ j,t +

β ||x j||V−1
t

and therefore arm i is more likely to be selected, in line with the Optimism

in Face of Uncertainty principle.

We now describe the arm selection strategy. At each round t ∈ [T ], the probabil-

ity for arm i to be selected is defined as

pi,t =
exp(γtSi,t)

∑
K
j=1 exp(γtS j,t)

(5.8)

where γt > 0 is the coldness-parameter controlling the concentration of the arm

probability (policy).

Lemma 8. At any round t ∈ [T ], for any δ ∈ (0,1), setting

γt ≥ log(
δ |Lt |
1−δ

)/S̃max,t (5.9)
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guarantees that pUt = ∑i∈Ut pi,t ≥ δ and pLt = ∑i∈Lt pi,t < 1−δ .

The proof is provided in Appendix C.2.

At each round t, the arm set A is divided into two subsets Ut and Lt with

Ut ∪Lt = A and Ut ∩Lt = /0. Namely, Lt is the set of suboptimal arms (i.e.,

i ∈Lt if Si,t < 0) and Ut is the set of non-suboptimal arms (i.e., i ∈Ut if Si,t ≥ 0).

S̃max,t = maxi∈Ut Si,t , |Lt | is the cardinality of Lt and δ is a probability hyper-

parameter explained in the following Lemma. Lemma 8 guarantees that suboptimal

arms (i ∈Lt) are selected with an arbitrary small probability (i.e., pLt < 1−δ ≈ 0

when δ ≈ 1). Furthermore, a positive γt guarantees pi,t ≥ p j,t if Si,t ≥ S j,t ≥ 0,

∀i, j ∈Ut which obeys the Optimism in Face of Uncertainty principle.

Overall, SoftUCB (soft-) eliminates suboptimal arms and selects non-

suboptimal arms according to the index in Eq. (5.7) which favours the selection of

arms with either high estimated reward or high uncertainty.

5.4.2 Gradient Estimator of β

We now show that the expected cumulative reward of SoftUCB is a differentiable

function over β and we introduce a gradient estimator. Formally, given the expected

cumulative reward defined in Eq. (5.1) and SoftUCB described above, we have the

optimization objective defined as

max
β

T

∑
t=1

E[yt ] = max
β

T

∑
t=1

K

∑
i=1

pi,t µi, s.t. |µi− µ̂i,t | ≤ β ||xi||V−1
t
, ∀i ∈A , t ∈ [T ]

(5.10)

The imposed constraint ensures that β ||xi||V−1
t

is indeed an actual upper confidence

bound (UCB) at any round t ∈ [T ] for any arm i ∈ A . Applying the Lagrange

multipliers gives the new objective:

max
β

T

∑
t=1

K

∑
i=1

pi,t µi−η(|µi− µ̂i,t |−β ||xi||V−1
t
), s.t. η > 0 (5.11)
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The gradient of β , denoted as g(β ), can be derived as (proof in Appendix C.3):

g(β ) =
T

∑
t=1

K

∑
i=1

pi,t µi

(
γtφi,t−

∑
K
j=1 γtφ j,t exp(γtS j,t)

∑
K
j=1 exp(γtS j,t)

)
+η ||xi||V−1

t
(5.12)

Note that µi is unknown in practice and it is therefore replaced by its empirical

estimate µ̂i,t , leading to the following gradient estimator

ĝ(β ) =
T

∑
t=1

K

∑
i=1

pi,t µ̂i,t

(
γtφi,t−

∑
K
j=1 γtφ j,t exp(γtS j,t)

∑
K
j=1 exp(γtS j,t)

)
+η ||xi||V−1

t
(5.13)

The gradient estimator ĝ(β ) in Eq. (5.13) enables β to be learned via gradient ascent.

As a stochastic gradient method, under standard condition of learning rate, e.g., RM

[114], it is expected that β̂ converges to local optimum.

max
β

T

∑
t=1

E[yt ] = max
β

T

∑
t=1

K

∑
i=1

pi,t µi, (5.14)

g(β ) =
T

∑
t=1

K

∑
i=1

pi,t µi

(
γtφi,t−

∑
K
j=1 γtφ j,t exp(γtS j,t)

∑
K
j=1 exp(γtS j,t)

)
(5.15)

Remark 6. Due to limits of knowledge in the area of convexity analysis, the author

leave the analysis and discussion on the convexity of the problem as a future work.

5.4.3 Training Settings

Equipped with the gradient estimator ĝ(β )(Eq. (5.13)), we now show how to learn

β in offline and online settings. The corresponding algorithms named SoftUCB

offline and SoftUCB online are presented in Appendix C.5.

Offline setting. In this setting, multiple T -rounds trajectories of the bandit

problem with the same arm set A are used to train β , which is refined after each

T -rounds trajectory. The key steps are to initialize β̂0 and run SoftUCB on A for

N training trajectories – each trajectory containing T -rounds. After each trajectory

n ∈ [N], update β̂n← β̂n−1 +λ ĝ(β ) via Eq. (5.13) where λ is the learning step. At

the end of the training, run SoftUCB on A with β̂ = β̂N .

As a result of the training, the value of β̂ is optimized in such a way that it
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maximizes the expected cumulative reward of arm set A . Empirically, the β̂ to which

the algorithm converges is substantial less than its theoretical upper bound Eq. (5.5).

This translates into a significant regret reduction. In the following subsection we

provide a theoretical regret upper bound of SoftUCB offline

While the above method is fully adaptive to the structure of A , it provides a

burden on the computational complexity. Specifically, the computational complexity

SoftUCB offline is O(NKT ), since we run SoftUCB N trajectories with K

arms and T rounds in each trajectory. This is much higher than other linear algorithms

such as LinUCB [37] and LinTS [26]. To mitigate this issue, we propose SoftUCB

online which learns β within one trajectory in an online fashion.

Online setting. In this setting, β̂ is updated online during one T -rounds

trajectory. Specifically, β̂0 is initialized and SoftUCB on A is run for T rounds. At

the end of each round t ∈ [T ], update β̂t ← β̂t−1 +λ ĝt(β ) where λ is the learning

step and ĝt(β ) is the gradient estimator (Eq. (5.17) defined blow). This reduces

the computationally complexity to O(KT ) since it does not require the N-training

trajectories, which is at the same level of OFUL [37], LinUCB [36] and LinTS [26].

In this setting, YT = ∑
T
t=1E[yt ], the objective function we aim at maximizing, is

not available before the end of the trajectory. To obviate to this problem, similarly to

policy gradient methods for non-episodic reinforcement learning problems [1], we

update β̂ to maximizes the average reward per round Ŷt . Formally, at each round t, Ŷt

consists of two parts: the observed cumulative reward up to round t and bootstrapped

future reward under the current policy πt = [p1,t , p2,t , ..., pK,t ]. This translates in the

following problem formulation

max
β

Ŷt = max
β

(
t

∑
s=1

K

∑
i=1

pi,sµ̂i,s +(T − t)
K

∑
i=1

pi,t µ̂i,t

)
/T

s.t. |µ̂i,t−µi,t | ≤ β ||xi||V−1
t
,∀i ∈A

(5.16)

The gradient estimator ĝt(β ) at round t can be derived as

ĝt(β ) =
1
T

( t

∑
s=1

K

∑
i=1

µ̂i,s▽β pi,s +(T − t)
K

∑
i=1

µ̂i,t▽β pi,t +η ||xi||V−1
t

)
(5.17)
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It is worth noting that, at the end of trajectory t = T , the Ŷt converges to. YT in the

offline setting.

5.4.4 Theoretical Analysis

Theorem 12. Define E[rt ] = E[µ∗−∑
K
i=1 pi,t µi] be the expected regret at round

t ∈ [T ]. Let β̂ = βN be the confidence bound learned from the offline training setting

after N T -rounds trajectories. Let assume that γt follows Lemma 8 and δ ≈ 1. The

cumulative regret of SoftUCB is bounded as

RT =
T

∑
t=1

E[rt ]≤ 4
√

2β̂ δ

√
T d log

(
α +

T
d

)
= Õ

(
β̂

√
dT log

(
1+

T
d

))
(5.18)

where Õ(·) hides absolute constant. The proof is contained in Appendix C.4.

Theorem 12 provides a regret upper bound of SoftUCB in the offline setting.

To compare the regret bound with that of other algorithms, we show β̂ explicitly in the

upper bound. Our regret bound scales with d and T as the regret bound O(β
√

dT ) of

existing UCB-typed algorithms, e.g., OFUL [37], LinUCB [36], Giro [113]. Since

we make no assumption on the reward distribution, we cannot derive a theoretical

upper bound on β̂ . However, it is worth to noting that empirical results (in next

section) show that β̂ is significantly smaller than its theoretical upper bound Eq. (5.5).

The theoretical analysis for the online setting is left for future works.

5.5 Experiments
Our experimental evaluation aims to answer the following questions: (1) Does the

learning curve of β̂ converge in offline and online settings? (2) Is β̂ lower than its

theoretical counterpart? (3) How do our proposed algorithms perform compare to

baseline ones?

To address the above questions, we carried out simulations with both synthetic

and real-world datasets. In the former ones, we consider K = 50 arms, each one

with a representative feature vector xi ∈ Rd , with d = 10 and 20. Each entry of the

feature vector is drawn uniformly at random in the [−1,1] range. Arm feature vectors

are then normalized to be unit vectors. The parameter vector θ is generated as a
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Table 5.1: The comparison between β̂ (offline) and theoretical bound β̃

.
d = 5,T = 28 d = 5,T = 29 d = 5,T = 210 d = 10,T = 210 d = 15,T = 210

β̂ = 0.5 β̂ = 0.6 β̂ = 0.9 β̂ = 1.1 β̂ = 1.2
β̃ = 2.56 β̃ = 2.66 β̃ = 2.76 β̃ = 3.25 β̃ = 3.61

(a) β̂ (offline) (b) RT (offline) (c) β̂ (online) (d) RT (online)

Figure 5.1: Learning curves of SoftUCB offline and SoftUCB online

random unit vector. The noise variance is set as 0.5 and the regularizer parameter is

α = 1. For the real-world datasets we used Jester [115] and Movielens [74] datasets

(see Appendix C.7 for more details). The proposed algorithms is compared against

baseline ones, namely LinUCB [37], LinTS [26] and ε-greedy [1]. In LinUCB,

the β is given by Eq. (5.5), LinTS follows [26], and in ε-greedy ε = 0.05.

Fig. 5.1 depicts the learning curves of β̂ and the corresponding RT in both

offline and online settings for the synthetic datasets with d = 10. Note that in offline

setting, β̂ is optimized to maxmize the expected cumulative reward Eq. (5.14), while

in online setting, β̂ is optimized to maximize the average reward per round Eq. (5.16).

It is worth noting that in both settings the gradient ascendant algorithm converges,

i.e., β̂ and RT achieve convergence. In more details, in Table 5.1, we compare β̂

to which the offline training convergences too and its theoretical value β̃ given by

Eq. (5.5). Clearly, β̂ is significantly less than β̃ consistently in all cases. This is

because β̂ is adaptive to the structure of A , while β̃ is derived based on worst-case

(minimax analysis). This leads to β̂ being much less conservative (i.e., reaching

lower values) than β̃ , which aims at respective a set of problems instead of specific

ones. The corresponding learning curves are depicted in Appendix C.6.

In Fig. 5.2 the expected cumulative regret is depicted over time for different
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(a) d = 10 (b) d = 20 (c) MovieLens (d) Jester

Figure 5.2: Performance of algorithms on synthetic and real-world datasets

bandit algorithms and across different datasets. We note that the proposed SoftUCB

algorithms converge to lower cumulative regret with respect to baselines. This is

mainly motivated by the fact that i) the confidence bound β̂ is tailored to each

dataset (limiting the exploration when not necessarily needed), ii) the proposed

algorithm eliminates (softly) suboptimal arms, limiting the suboptimality of the

agent’s actions. Worth a discussion is the beahvior of SoftUCB online, which

encours into a large regret at the initial phase. This is mainly because γ0 = 0, and

|Lt | = 0. Those initialized values lead to the SoftUCB online selecting arms

uniformly at random, resulting in large regret. Later, when suboptimal arms are

identified, i.e., |Lt |> 0, γt > 0, non-suboptimal arms are selected following index

Eq. (5.7) which controls the regret.

Finally, during our experiments, we noticed that the convergence of β̂ in both

offline and online setting is sensitive to the Lagrange multiplier η . With large η , the

gradient ascent algorithm fails in converging, this is because the gradient estimator

Eq. (5.17) is dominated by η ||xi||V−1
t

. On the other hand, too small η does not ensure

the key constraint |µ̂i,t−µi| ≤ β ||xi||V−1
t

. This can lead to erroneously eliminating

the optimal arm. Therefore, the hyper-parameter η needs to be tuned carefully during

experiments.

5.6 Conclusion

We propose SoftUCB, a novel UCB-typed linear bandit algorithm based on an

adaptive confidence bound, resulting in a less conservative algorithm respect to
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UCB-typed algorithms with constructed confidence bounds. The key novelty is to

propose an expected cumulative reward which is a differentiable function of the

confidence bound, and derive a gradient estimator, which enables confidence bound

to be learned via gradient ascent. The estimated confidence bound β̂ can be updated

under offline/online training settings with the proposed SoftUCB offline and

SoftUCB online, respectively. Theoretically, we provide a Õ(β̂
√

dT ) regret

upper bound of SoftUCB in the offline setting. Empirically, we show that β̂

is significantly less that its theoretical counterpart leading to a reduction of the

cumulative regret compared to state-of-the-art baselines.

There are several directions for future work. First, this chapter work can be

combined with meta-learning algorithms, e.g., MAML [116], to learn a confidence

bound which is adaptive to the common structure of a set of bandit tasks. Second,

we believe this work can be generalized to reinforcement learning (RL) tasks where

exploration and exploitation trade-off is a long-standing challenge.



Chapter 6

Learn Diffusion-Distance Induced

State Representations

While the above works have been focused on the exploration-exploitation dilemma.

We now focus on the problem of representation learning in Reinforcement Learning

(RL). As already mentioned in Chapter 1, representation learning is critical for

the sample efficiency of solving RL problems. In this chapter, we address this

problem by learning state representations which follows the intrinsic structure of

value function. In this chapter, we first identify that value functions are Lipschitz

continuous over a diffusion-distance metric induced by rewarding states. Then

we propose a sample-based approach to learn such metric and an auxiliary loss,

which utilizes the learned metric to shape state representations. Empirical results

demonstrate that the proposed auxiliary loss leads to the learning of informative and

structural representations, and improves the control performance in comparison with

state-of-the-art baselines methods that still exploit behavioural-based representation

learning strategies. In addition, we theoretically compare with existing metrics to

reveal advantages in terms of value function approximation bound and performance

bounds.

6.1 Introduction
Many Reinforcement Learning (RL) tasks present raw, high-dimensional observa-

tions to agents, which usually contains redundant and distracting information. The
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sample efficiency of RL algorithms heavily relies on the ability to learn from the

redundant observation a compact state representation, which is then used to approx-

imate the value function and enact new policies. To achieve this, representation

learning techniques have arose as a key component in modern RL algorithms.

The majority of the works focused on representation learning in RL take a form

of Auxiliary tasks. The agent, besides solving the primary RL task (learning an

optimal policy), is required to learn other aspects of the task. Examples includes

predicting the value function of other reward functions [52] or other policies [117],

reconstructing the observation [55], and predicting the immediate reward [54] or

next observation [53]. Most of such works demonstrate empirically the benefits of

Auxiliary tasks on the performance of agents. While there is a limited theoretical

understanding on the effectiveness of auxiliary tasks [56], a common view is that

auxiliary tasks could improve the learning efficiency by shaping the representation

in more semantic ways [52].

In this work, we aim at improving the sample efficiency of RL agents via

learning a state representation able to reflect behavioral properties of the agent.

Specifically, we focus on learning a representation able to encapsulate the distance

between states, with the state distance reflecting the value function. Specifically,

we first observe that the value difference between states pair is determined by their

diffusion-distance with respect to rewarding states. The diffusion-distance refers to

the pair-wise Successor Representation [118]. Based on this observation, we intro-

duce a state distance metric, which is a weighted aggregation of the diffusion-distance

from each rewarding state. We prove that value functions are Lipschitz continuous

over the metric. We then derive theoretically the value function approximation error

bound, showing the theoretical gain with respect to existing metrics. We then propose

a novel representation learning strategies for the agent to learn a representation able

to reflect such diffusion-distance metric. First, we learn the metric from transition

data. Then, we propose a novel auxiliary loss, named DDSR, which utilizes the

learned metric to shape state representations such that value functions are continuous

with respect to the learned representations. The underpinning hypothesis is that such
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representation learning that mimics the diffusion-distance (hence respect continuity

of the value function) learns a value function approximation able to generalize to

unseen states. Empirically, we demonstrate the gain of the proposed auxiliary loss

by showing that i) it leads to structural and informative representation, and ii) it

improves the control performance in comparison with baseline algorithms.

A similar line of work in RL representation learning [119][120][121] are based

on bisimulation-metrics [122], which quantify the “behaviour” similarity between

states, and declares two states to be bisimilar if both their immediate rewards and the

transition dynamics are similar. These works first estimate the bisimulation metrics

from transition data and then shape the representation accordingly. Specifically,

states have similar behaviours (low value of bisimulation-metric) are associated with

similar representations. Meanwhile, states have dissimilar behaviours (high value of

bisimulation-metric) are associated with dissimilar representations. However, we

argue that states could have similar values even they are behaviourally dissimilar

(large value of bisimulation metric and should associated with similar representations.

Empirically, in Fig 6.1 we compare the ground-truth state value distance (a) with

π−bisimulation (b) and bisimulation metrics (c), showing that these metrics are an

upper bound of the actual value function. Specifically, it shows that some states have

similar values (in blue (a)) are associated with large value of bisimulation metrics

(in red (b-c)).

Alternative methods leverage on the dynamic/temporal structure of the Markov

Decision Process (MDP) as state representations. For example, SR [118] and Deep

successor feature (DSF) [123] use successor representation and successor feature,

respectively, as state representation, which measure the future state/state-feature

discounted occupancy. PVF [124] use the eigenvectors of Laplacian of the state

transition matrix as representations, which encodes the geometry of state space.

However, these works are focused on reflecting the agent behavior or MDP structure.

In this work, we claim that a state representation should aim at guaranteeing the con-

tinuity property of value function over their representation. This is mainly motivated

by theoretical works [125], showing that continuity leads to better regret bound – i.e.,
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Figure 6.1: Compare the intrinsic structure of state values and structures induced by methods
including π-bisumaltion, bisimulation, successor representation (SR), proto-
value functions (PVF) and DDSR (this work).

more data-efficiency during exploration. Specifically, continuity guarantee means

that states with similar representations have similar values. When this is not the case:

a) states with similar representations have different values. It would be challenging

for the RL agent to differentiate them; b) states with dissimilar representations have

similar values. This will burden the RL agent to learn redundant mapping. Both

cases hinder the sample efficiency. In addition, SR, DF, and PVF representations

are reward-agnostic, which might result in the good behaviour of generalizing under

different reward settings. However, this comes at the price of a less informative rep-

resentation as value functions are jointly determined by MDP dynamic and rewards.

As an empirical illustration, Fig 6.1 shows the induced topology of SR (d) and PVFs

(e). A noticeable inconsistency with the value function topology (a) and (d-e) can be

observed. In addition, Fig 6.1 (f) also shows the proposed metric (this work), named

DDSR, which demonstrates a high consistency with the value function topology (a).

In summary, this work has several contributions: (1) to define a diffusion-

distance metric between states; (2) to prove the Lipschitz continuity of value function

over a diffusion-distance metric; (3) to propose a sample-based approach to learn

the metric from transition data; (4) to propose an auxiliary loss which leverages

the learned metric to generate metric-respect representations; (5) to empirically

demonstrate that the proposed auxiliary loss results in an informative and structural

representation, leading to improve the control performance in comparison with

baseline algorithms.
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6.2 Related Work

Auxiliary Task Representation Learning

Auxiliary task was first introduced in [52]. Later, various auxiliary tasks were

proposed to improve the representation learning in RL. The main motivation behind

auxiliary task is encouraging the learned representation to encode diverse aspects

of the underlying MDP. Some recent examples include estimate the return under

other rewards [52], policies [117] or discount factor [126], reconstruct the current

observation [55], predict the reward function [54] or future observation [53] [8].

Contrastive learning [127] is also used as a form of auxiliary task. The temporal

structure [128, 129] , spatial structure [130] and image augmentation [131] have been

leveraged to shape representations as contrastive losses. Most works demonstrate

the empirical benefits of Auxiliary tasks on the performance of RL agents, while the

theoretical understanding on the effectiveness of auxiliary tasks is still overlooked

[56, 132, 133].

In contrast, this work is built on a clear theoretical interpretation. We introduce

a state distance metric upon which value functions are provable Lipschitz continuous

and then shape representation according to the metric.

Dynamic-Based Representation Learning

Many works aim to adapt the representation to the dynamic structure of the underly-

ing MDP. Successor representation (SR) [118] and successor feature [123] are used

as state representation, which measure the future state/state-feature discounted occu-

pancy. PVF [124] used the eigenvectors of the normalized Laplacian of a undirected

graph form by state transitions as representations, which encodes the geometry of

state space. Similarly, [134] uses the eigenvector of symmetrized transition matrix

and [135] utilizes the singular vectors of transition matrix as representations. These

works are reward-agnostic and lack theoretical guarantees on the continuity property

of value function over their representations. As already clarified in the introduction,

this represents major limitations for the representation learning algorithms. Inter-

estingly, our diffusion-metric distance is derived from SR and yet it captures a very

different behavior – Fig 6.1 (d) and (f).
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Bisimulation-Based Representation Learning

Bisimulation-metric [136][122], which measures the “behaviour” similarity of states

in MDP, was defined as the difference in terms of immediate reward and next state

transition distribution. It was used as state abstraction [137] (state aggregation [138])

to reduce the state space by grouping together states that are behaviourally similar.

Bisimualtion-metric is expensive to compute, requiring a fully enumeration over state

space [139] [140]. To tackle the computation issue, π−bisimilation metric [139]

was proposed along with a sample-based approximate approach. Recent works [119]

[120] [121] [141][142] employed the π-bisimulation metric (and its variants) for RL

representation learning. The common intuition behind is to learn a representation

able to map states close in the latent space if they are behaviourally similar under

bisimulation metrics. This could reduce the state space and improve the learning

efficiency. However, from the perspective of value function approximation, we argue

that states that “behave” dissimilarly (different immediate reward and next state

transition) could still have similar values. In this case, states will have large value

of bisimulation-metrics and be wrongly assigned to dissimilar representations. This

may hinder the learning efficiency in value function approximation and then policy

learning. Rather than relying on the “behaviour” similarity metrics, this work is built

on a novel state distance metric which characterises the intrinsic structure of value

functions. We provide theoretical guarantees that under the diffusion-distance metric,

two states close/far-apart to each other have similar/dissimilar values, respectively.

6.3 Preliminaries

We consider the standard Reinforcement Learning (RL) setting where an agent

interacts with the environment which is modelled as a Markov Decision Process

(MDP). An MDP is described as a five-tuple (S ,A ,P,r,γ) where S is a finite set

of states, A is a finite set of actions, P is the transition function with P(s′|s,a)

denoting the distribution of next state s′ given action a is taken in state s. r is the

reward function where the expected reward obtained if action a is taken in state s is

denoted as r(s,a); and γ ∈ [0,1) is a discount factor.
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A policy π is a mapping from states to actions: S → A . The state value

function Vπ(s) under a policy π is defined as the expected discounted cumulative

reward received by executing π from state s. Similarly, the state-action value function

Qπ(s,a) is the expected cumulative reward received by taking action a in state s and

following π afterward.

Vπ(s) = E[
∞

∑
t=1

γ
tr(st ,at)|s0 = s,at ∼ π(·|st)] (6.1)

Qπ(s,a) = r(s,a)+ γ ∑
s′

P(s′|s,a)Vπ(s′) (6.2)

An agent attempts to learn an optimal policy π∗ whose value functions are denoted

by Vπ∗(s) and Qπ∗(s), respectively, where Vπ∗ = maxπ Vπ and Qπ∗ = maxπ Qπ .

The Q-learning algorithm [43] [44] updates the Q-value in a lookup table

iteratively, using the following rule:

Qt+1(st ,at)← Qt(st ,at)+α[rt+1 + γ max
a

Qt(at ,a)−Qt(st ,at)] (6.3)

In case of large or continuous state/action space, it is infeasible to maintain a

lookup table and typically resort to approximate the value functions through function

approximation. A common approach is to parameterize the value functions as a

linear function of representation:

V (s)≈ φ(s)T
θ , or Q(s,a)≈ φ(s,a)T

θ (6.4)

where θ are learnable weights, φ(·) ∈ Rd is representation. In deep reinforcement

learning (e.g. DQN [3]), φ and θ are jointly learned via neural network where φ can

be viewed as the output of the penultimate layer and θ is the weights of the final

layer.

In this work, we aim at learning the representation φ(·). In later sections, we

first investigate the continuity property of value functions and identify a state distance

metric upon which value functions are provable Lipschitz continuous. We believe

that the metric captures the value function intrinsic structure and then utilizes it to
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guide the representation learning and the agent behaviour.

6.4 Value Functions Continuity Property
In this section, we carry out the theoretical characterization of the Lipschitz continuity

property of value functions. Then, in the next section, we build on this result to

propose a practical method for representation learning.

The Successor Representation (SR) [118] provides us a neat tool to analyze the

properties of state value functions. For simplicity, we first focus on the tabular case

and then move to continuous state setting. Suppose a MDP M = (S ,A ,P,r,γ)

with |S |= n discrete states. Given the state transtion matrix Pπ ∈ Rn×n and state

rewards r ∈ Rn, the state values Vπ ∈ Rn can be written as:

Vπ = r+ γPπVπ = (I− γPπ)
−1r = Mπr (6.5)

Where Mπ = (I− γPπ)
−1 is the successor representation (SR).

Let Mπ(x) denote the x-th row of Mπ . The value of state x ∈S can be written

as:

Vπ(x) = Mπ(x)T r =
n

∑
k=1

r(k)Mπ(x,k) (6.6)

where Mπ(x,k) is the pair-wise SR, called diffusion-distance, between state pair

(x,k) ∈S :

Mπ(x,k) = E[
∞

∑
t=0

γ
tI{st = k}|s0 = x] =

∞

∑
t=0

γ
tPt

π(x,k) (6.7)

Note that diffusion-distance is not invariant with respects to its arguments: Mπ(x,k) ̸=

Mπ(k,x).

Vπ(x) = r(x)+ γ ∑
x′

Pπ(x,x′)Vπ(x′) (6.8)

An alternative expression of state value Vπ(x) is defined in Eq. (6.8). Although

mathematically equivalently (proof in the Appendix D.1), we emphasise that Eq. (6.6)

illustrates clearly the contribution of each reward r(k) to Vπ(x). Formally, the term
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Figure 6.2: Decomposition of value function structure: A toy MDP with |S |= 20 states.
There are 3 rewarding states and 17 no-rewarding states. Denote rewarding
states as i, j,h. (a): the heatmap of pair-wise value distance |Vπ(x)−Vπ(y)|. (b):
The heatmap of di

π(x,y) = |Mπ(x, i)−Mπ(y, i)|. (c): The heatmap of d j
π(x,y) =

|Mπ(x, j)−Mπ(y, j)|. (d): The heatmap of dh
π(x,y) = |Mπ(x,h)−Mπ(y,h)|. (d):

The heatmap of dπ(x,y) = |∑k∈{i,, j,h}α(k)(Mπ(x,k)−Mπ(y,k))|.

Mπ(x,k) quantifies the discounted state occupancy of k starting from state x. The

term Mπ(x,k) essentially measures the diffusion-distance from k to x. Hence, the

term r(k)Mπ(x,k) is the strength of reward r(k) after diffusing from state k to state x.

Note the close resemblance to the procedure of computing state value in temporal-

difference methods (e.g., TD(0)), where rewards are back-propagated (discounted at

each step) from rewarding states k to other states x ∈S .

From Eq. (6.6), the value difference between states pair (x,y) ∈ S can be

written as

Vπ(x)−Vπ(y) = ∑
k∈Sr

r(k)
(

Mπ(x,k)−Mπ(y,k)
)

(6.9)

where Sr ⊂S is the set of rewarding states Sr := {k : r(k) ̸= 0,∀k ∈S }. Note

that non-rewarding states r(k) = 0 are ignored in Eq. (6.9) as r(k)Mπ(x,k) = 0.

In Definition 1, we define a state distance to characterize the value distance.

Lemma 9 establishes the continuity property of state value function with respect to

the defined distance.

Definition 1. (State distance) Under a MDP M = (S ,A ,P,R,γ) and a policy π .

Suppose r ∈ [0,rmax]. Denote Mπ(x,k) be the diffusion-distance between state pair

(x,k) ∈S . Denote Sr as the set of rewarding states. Define αk = r(k)/rmax. Given

a state-pair (x,y) ∈S , we define a pseudo-metric as:

dπ(x,y) = | ∑
k∈Sr

αkMπ(x,k)− ∑
k∈Sr

αkMπ(y,k)| (6.10)
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Definition 2. A pseudo-metric on S is a map d : S ×S ∈ [0,∞) such that for all

s,s′,s′′ ∈S :

1. s = s′ =⇒ d(s,s′) = 0

2. d(s,s′) = d(s′,s)

3. d(s,s′′)≤ d(s,s′)+d(s′,s′′)

The first two conditions are trivial to prove. We focus on the third condition.

Proof.

dπ(x,z) = | ∑
k∈Sr

αkMπ(x,k)− ∑
k∈Sr

αkMπ(z,k)|

= | ∑
k∈Sr

αk

(
Mπ(x,k)−Mπ(z,k)

)
|

= | ∑
k∈Sr

αk

(
Mπ(x,k)−Mπ(y,k)+Mπ(y,k)−Mπ(z,k)

)
|

≤ | ∑
k∈Sr

αk(Mπ(x,k)−Mπ(y,k))|+ | ∑
k∈Sr

αk(Mπ(y,k)−Mπ(z,k))|

= dπ(x,y)+dπ(y,z)

(6.11)

Therefore, dπ(x,y) is a pseudo-metric.

Lemma 9. (Lipschitz continuity of V-value function). Under the same setting as

in Definition 1 and denote c = rmax, the V-value functions satisfies the following

Lipschitz continuity property:

|Vπ(x)−Vπ(y)| ≤ cdπ(x,y) (6.12)

See proof in Appendix D.2.

This result establishes a distance metric dπ(x,y) under which two states close

to each other have similar values. Knowing the continuity property of the value

function under the metric allows us to inform how well we can interpolate the value

of other states given Vπ(x). This is essential the generalization ability of the value
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function [143]. Lemma 9 should be distinguished from other works in the literature

that assume the Lipschitz continuity of the value function [144] [145] [146] [54],

without giving a specific form of dπ(x,y).

In other words, Lemma 1 implies that the topology of the value function is

the aggregation of topology induced by each reward. As an empirical illustration,

in Fig 6.2, we compare the topology of |Vπ(x)−Vπ(y)| with the topology induced

by each rewarding state dk
π(x,y) = |Mπ(x,k)−Mπ(y,k)|,k ∈Sr and the weighted

aggregated topology dπ(x,y). It shows clearly the topology of value function can be

decomposed into the topology induced by each rewarding state, Fig 6.2 (b-d).

Similarly, pair-wise SR for state-action pair (x,a) is defined as the expected

discounted future state occupancy: Mπ(x,a;k) = E[∑∞
t=0 γ tI{st = k}|s0 = x,a0 = a].

Upon this, we define a state-action distance as:

dπ(x,a;y,b) = | ∑
k∈S r

αkMπ(x,a;k)− ∑
k∈S r

αkMπ(y,b;k)| (6.13)

Lemma 10. (Lipschitz continuity of Q-value function). Denote c = rmax, the Q-value

function satisfies the following Lipschitz continuity property:

|Qπ(x,a)−Qπ(y,b)| ≤ cdπ(x,a;y,b) (6.14)

See proof in Appendix D.2.

The Lipschitz continuity of value function Vπ(x) with respect to dπ(x,y) results

in the following value function approximation guarantee.

Lemma 11. (Value function approximate bound) Under state aggregation, given

the metric dπ(x,y), the value function approximation is upper bound as follows:

|Vπ(x)−V̂π(x)| ≤ 2cdπ(x,y) (6.15)

Assume value function is linearly realization V (x) = φ(x)T θ and ||φ(x)−φ(y)||2 =
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dπ(x,y). Denote |θ |= ℓ. We have

|Vπ(x)−V̂π(x)|= (c+ ℓ)dπ(x,y) (6.16)

See proof in Appendix D.3

This Lemma indicates the value function approximation error is determined by

the Lipschitz constant c and the metric dπ(x,y).

6.5 DDSR: Diffusion-Distance induced State Repre-

sentation

In the previous section, we establish the continuity property of value functions over

the metric dπ(x,y), which captures the intrinsic structure of value functions. In this

section, we aim to shape the representation according to dπ(x,y). In particular, we

first introduce a sampled-based approach to learn the metric from the transition data.

Next, we propose a novel loss to shape state representations utilizing the learned

metric.

6.5.1 Metric Learning

In tabular setting, the diffusion-distance, Mπ(x,k), can be learned following the

recursive rule:

Mπ(x,k) = I{x = k}+ γMπ(x′,k) (6.17)

where I{·} is the indicator function, x′ is the next state after x following policy π .

In continuous state setting, we leverage neural network to approximate the

diffusion-distance. Let fw(·) : S ×S → R be a neural network parameterized by

w, which takes as input a state observations pair, written (o(x),o(k)) ∈S ×S , and

outputs the estimated diffusion-distance. Namely,

Mπ(x,k)≈ fw
(
o(x),o(k)

)
(6.18)
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Figure 6.3: The learning of diffusion-distance Mπ(x,y) and dπ(x,y)

The loss function used to train fw(·, ·), derived from the recursive rule Eq (6.17), is

LSR = ∑
(x,k)∈S×S

(
fw
(
o(x),o(k)

)
− I{o(x) = o(k)}− γ fw̄

(
o(x′),o(k)

))2

(6.19)

The policy dependency of the diffusion-distance Mπ(x,y) suggests that a rapidly

change of policy results in rapid change of Mπ(x,y). To alleviate the instability of

learning Mπ(x,y), we use a delayed target network, a commonly adopted technique

in model-free algorithms [3]. In particular, we use the target network in calculating

the bootstrapped target with the parameters w̄ which is updated periodically.

Given a trained fw(·), the state distance metric can be approximately measured

as

d̂π(x,y) = | ∑
k∈S r

α(k) fw̄(x,k)− ∑
k∈S r

α(k) fw̄(y,k)| (6.20)

where α(k)= r(k)/rmax and r(k) is the observed reward of state k. If rmax is unknown,

we use the observed maximum reward. It is worth noting that dπ(x,y) is only

dependent on rewarding states k∈Sr, this is because we motivated the value function

being a composition of only the diffused rewarding states. In practice, we maintain

a replay buffer, denoted as Dr, which contains only rewarding transitions. At each

training iteration, we sample a mini-batch Br ∈Dr to estimate dπ(x,y) following

Eq. (6.20). The sampled mini-batch Br might contain duplicated rewarding states,

which would lead to incorrect estimation of dπ(x,y). To circumvent this issue,

duplicated states in Br, are filtered out and keep only one instance for each state.

To demonstrate the validation of the learning procedure. Fig. 6.3 (left) shows the
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learning curve of diffusion-distance which presents the estimation error | fw(x,y)−

Mπ(x,y)|. Fig 6.3 (right) compare the ground-truth state value distance |Vπ(x)−

Vπ(y)| (heatmap) and d̂π(x,y) learned via Eq (6.20). It shows that d̂π(x,y) indeed

captures the intrinsic structure of value function.

In this section, we have introduced a sample-based approach to learn the

diffusion-distance which is then used to estimated state distance metric dπ(x,y).

Next, we show how to utilizes the learned metric for representation learning.

6.5.2 The DDSR Loss

We now present a novel loss to embed the distance metric d̂π(x,y) into the represen-

tation space, which can be incorporated with RL agents so as to improve the learning.

We first convert the learned distance d̂π(x,y) to a similarity measure Γπ(x,y) ∈ [0,1]

by using the Gaussian kernel Γπ(x,y) = exp(−d̂π(x,y)/σ) with σ > 0 be a positive

scale parameter controlling the kernel bandwidth. Let φ(x),φ(y) denote the repre-

sentation states pair (x,y) ∈S . We define a loss function to shape representations,

named LDDSR, as follows:

LDDSR = argmin
φ

∑
(x,y)∈S

(
CosSim(φ(x),φ(y))−Γπ(x,y)

)2

(6.21)

where CosSim(φ(x),φ(y)) is the cosine similarity between representations.

Intuitively, LDDSR aims to match the cosine similarity between state represen-

tations with the similarity Γπ(x,y) provided by the distance metric dπ(x,y). We

can adapt LDDSR as an auxiliary loss in combination with RL agent to learn rep-

resentation with meaningful semantics. The composite loss function is defined

as:

L = LT D +αLDDSR (6.22)

where α is a hyperparameter and

LT D = argmin
θ ,φ

∑
(st ,,at ,r,st+1)∈D

(
r(st ,at)+ γ max

a
Q̂θ (φ(st+1),a)− Q̂θ (φ(st),at)

)2

(6.23)
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Figure 6.4: Overall Architect

In principle, LDDSR can be used in combination with any RL agents including

value-based and policy-gradient algorithms. Fig 6.4 shows the overall architect and

Algorithm 14 contains the pseudocode.

The encoder is trained jointly by LDDSR and LT D. At each training step, the

agent interacts with the MDP and collects transitions in a replay buffer D . A batch

is randomly sampled from the replay buffer. To compute LDDSR, we permute the

batch to form a batch of state pairs, and minimize the loss defined in Eq. (6.21).

6.6 Experiments
We now study the proposed representation learning strategy from an empirical

perspective. We are interested in showing if the proposed auxiliary loss LDDSR

leads to informative representations and improves the learning efficiency of RL

agents. In the following experiments, we first test the value function approximation

performance. Next, we visualize the learnt representations. Finally, we test its

control performance.

6.6.1 Baseline Algorithms

Here, we provide the details of baseline algorithms we used alongside the pro-

posed algorithm in experiments. Baseline algorithms including DQN, DSF, PVF,

DBC and MICO. Specifically, DSF[123] refers the deep successor representation.
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Algorithm 14: DDSR Algorithm (Value-Based)
Input :discount factor: γ; hyper-parameter: α

Initialization: the encoder φ(·), SR module fw(·, ·), value module fθ (·), replay
buffer D.

for each step do
1. Running the current policy and collect transition samples.

2. Store transition samples to replay buffer D.

3. Draw a mini-batch of transition samples B from replay buffer D.

4. Calculate the SR loss LSR in Eq. (6.19).

5. Update the parameters of SR module fw(·, ·).

6. Estimate the state distance d̂π(x,y) in Eq. (6.20).

7. Calculate the DDSR loss LDDSR in Eq. (6.21).

8. Calculate the Value loss LT D.

9. Update the parameters of encoder φ(·) and value module fθ (·) via minimizing the
compound loss:

L = LT D +αLDDSR

end

PVF [124] refers to the proto-value functions which is the eigenvectors of the

normalized Laplacian of the state transition matrix P. DBC [119] and MICO

[120] are algorithms designed on the notion of bisimulation metric [122]. DBC

learns a dynamic model P̂ to predict the next state distribution. The state dis-

tance is defined as the sum of the difference in immediate rewards and next

state distribution: ddbc
π (x,y) = |rπ(x)− rπ(y)|+ γW2(P̂(·|x),P̂(·|y)). Similarly,

MICO parameterises the bisimulation metric as a function of state representation:

dmico
π (x,y) = (||φ(x)||2 + ||φ(y)||2)/2+βη(φ(x),φ(y))) where η(·, ·) is the angel

between vectors.

In the following, we compare these benchmarking solutions with the one pro-

posed in this work. First the evaluation is conducted on the Granet MDPs [147],

which allows us to know the ground truth value function, for comparison purposing.

We then expand out results to a well-known and deeply used environment, MiniGrid,

to validate the proposed method in control settings.
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(a) |Vπ(x)−V̂π(x)| (b) |Qπ(x,a)− Q̂π(x,a)|

Figure 6.5: Prediction Errors

Figure 6.6: Visualization of learned representations

6.6.2 Experiments on Value Function Approximation

In this section, we test algorithms on their performance on value function approxima-

tion (policy-evaluation). Experiments are conducted on Granet MDPs [147] where

we can compute the exact state values. It allows us to measure the value approxima-

tion error. For a fair comparison, all algorithms are trained by the same mini-batches

B sampled from a shared relay buffer D . The replay buffer is filled with transition

samples generated by running a fixed random policy π . All algorithms differ only

in their auxiliary loss while keeping all other parts the same. They share the same

backbone algorithm (DQN, here) and hyper-parameter α . For PVF, the proto-value

functions are obtained from the ground-truth state transition matrix, which is used as

state representations directly without the need to learn representations.

We depict results as the average error of 10 independent generated Random

MDPs and 10 random policies for each. Fig. 6.5 (a-b) shows the approximation error

of V-value and Q-value, respectively, from which we can see DDSR provides lower

error and faster convergence rate.

In Fig. 6.6, we visualize the learned state representations by projecting them
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(a) Four-Rooms Maze (b) Dynamic Obstacle

Figure 6.7: Mini-Grid Environments

(a) Four-Room Maze (b) Dynamic-Obstacles

Figure 6.8: MiniGrid Environment

into 2D dimension space through UMAP [148]. Each dot stands for a state and color

represents the corresponding V-value. We can see that with the help of LDDSR, states

have similar/dissimilar values are associated with similar/dissimilar representations.

In contrast, this is not observed in the learnt representation from other algorithms.

6.6.3 Experiments on Control

In this section, we examine the proposed algorithm on its control performance. We

test algorithms on two environments from Gym-MiniGrid library [149] where agents

are required to first learn a compact state representation based on pixel observations

and based which approximate the value function and learn new polices.

Fig. 6.7(a) shows the four-room navigation task in which the agent aims to

reach the goal (green spot) and receives a single reward (r = 1) upon success. The

four-room maze environment represents the spare-reward scenario where a single

reward can be obtained only if the agent arrives the goal spot within the maximum

step number limitation. Fig. 6.7(b) shows the dynamic-obstacle navigation task
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where the agent receives a reward (r = 1) if reach the goal (green spot). If the agent

collides with a moving obstacle, it receives a penalty r =−1 and the episode finishes.

In both environments, DDSR is the most performant algorithm. DDSR employs

DQN as its base algorithm, which means the only difference is auxiliary loss. Results

show a clear boost of performance demonstrating the benefit of the proposed auxiliary

loss. In sparse-reward setting (Four-room maze), MICO and DBC show worse

performance compared with DQN and DDSR. Both MICO and DBC assign states

with similar/dissimilar representations if these states behave similarly/dis-similarly

measures by bisimulation metrics. As mentioned previously, similar valued states

behave differently and yet they are associated with similar representations. We

conjecture this could be particular true in spare-reward setting. DSF fails in spare-

reward environment. DSF first learns a state feature linearly support the immediate

reward and then learn successor feature (SF) on the basis of such state features,

which is used to fit state value function linearly. In spare-reward setting, most

immediate rewards are zero which challenges DSF to learn meaningful state feature

and therefore hinder the learning of SF.

6.7 Conclusion
In this work, we have introduced a novel algorithm DDSR for representation learning

in RL, which is built on a metric-based auxiliary loss to facilitate the representation

learning. The auxiliary loss is theoretically justified where state representations

are encouraged to reflect the intrinsic structure of value function. Such structure

is encoded by the distance metric dπ(x,y). Experimental results demonstrate the

superior performance in term of representation learning, policy evaluation and

control.



Chapter 7

Graph-Based Recommendation

System

After presenting theories and methodologies to address sequential decision mak-

ing problems, we now provide a use-case application of recommender systems.

Similar to previous chapters, we achieve data-efficiency by exploiting structural

prior knowledge while learning. In this chapter, we study a recommender system

which is modelled as contextual multi-armed bandit (MAB) problem. We propose a

graph-based algorithm which learns and exploits clusters of users which are obtained

through graph-clustering techniques. To study the impact of graph sparsity and

cluster size on the recommendation performance, we conduct exhaustive simulations

on both synthetic and in real-world dataset.

7.1 Introduction
Recommending products to users have been an essential function of commercial

stores like Amazon and Netflix, etc. [150]. The goal of a recommender system

is to propose products based on users’ preference. The challenge lies in the fact

that the knowledge about users’ preference is usually unknown and need to be

accumulated by trial and error based on feedbacks of users. This learning process

can be formalised as multi-armed bandit (MAB) problem [151, 152, 153, 154]. As

already mentioned in the Chapter 1 the performance of MAB learning strategies

scales with the ambient dimension, either linearly or as a square root [19], which
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makes the problem intractable in scenarios with infinitely large strategy sets, as in

recommender system.

To overcome the dimensionality limitation, clustering techniques have been

proposed to properly quantize the user space [155]. Users’ preference relationships

can be encoded as a graph, where adjacent nodes represents users with similar

preferences [156, 157]. This graph may be known a-priori or be inferred based

on user behaviour data. We are interested in the latter case. In recent works, the

geometrical and irregular structure of user space have been considered in designing

recommender algorithms [157, 158, 159, 57, 160, 64, 66, 161]. For example, [158]

proposed CLUB, an online clustering strategy where m clusters are optimized for

n (>> m) users. In [64], a similar idea has been implemented on both user and

product space results in COFIBA. In both CLUB and COFIBA, an iterative graph

learning process is implemented starting from a fully connected graph. At each

time step, edges are deleted if adjacent users show a sufficient difference in terms

of their preference. User clusters are then constructed by connected components

of the updated graph. This leads to an effective MAB algorithm, but with several

limitations: i) irreversible edge deletion (edges can only be deleted and cannot be

added); ii) the number of clusters rapidly increasing with time, which we show not

to be the best trend for MABs. In contrast, DYnUCB [67] utilizes K-means to group

users dynamically into clusters. However, it requires a pre-defined cluster number K.

While in theory K can be optimized with iterative solutions (e.g., elbow method), an

appropriate cluster number is typically unknown in practice, hard to guess, and may

change dynamically over time.

To overcome those limitations, we propose SCLUB-CD, a novel graph-based

MAB algorithm that learns and exploits the geometry of user space. Specifically,

at each time step, a user graph is constructed based on estimated users’ preference.

Then, clusters are constructed by applying community detection algorithm [162] on

the graph. In summary, this work makes following contributions:

• We adopt graph clustering techniques to form dynamic user clustering for

recommender system.
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• We show the proposed algorithm maintains a better control over the cluster

number, an opposite behaviour with respect to CLUB.

• We test the proposed algorithm in both synthetic and real-world datasets,

showing an improved performance over baselines.

7.2 Problem Setting
We now describe the foundation of recommender system and how it can be formalized

as a MAB problem . We denote the user set and item (product) set as U . Suppose

there are |U |= n users. Each user u ∈U is associated with an unknown preference

vector θu ∈Rd . The recommender system is operated by an agent which selects item

for users in order to fulfill their preferences. Concretely, at each time step t ∈ [T ],

the agent receives an user index it , which is assumed to be uniformly sampled form

U , and an item set At = {x1,t ,x2,t , ...,x|A |t ,t} ∈ Rd . No assumptions are made on

how At and its size |At | are generated. The agent recommends an item at from At

to user u, and receives a payoff yt which is defined as a linear function of θu and xat .

Namely,

yt = θ
T
u xat + εt (7.1)

Where εt is a noise term following a Gaussian distribution. εt ∼N (0,σε).

Next, we formalize the recommendation task as a Multi-Armed Bandit (MAB)

problem. Specifically, the goal of the agent is to maximize the cumulative payoff

over the time horizon T . Or equivalently to minimize the cumulative regret with

respect to the optimal item selection strategy which always selects the item with the

highest payoff for each user. Formally, the agent aims to minimise the cumulative

regret RT over the time horizon T .

RT =
T

∑
t=1

rt (7.2)

where rt = maxa∈At (θ
T
u xa−θ T

u xat ).

To solve this problem efficiently, we assume users can be formed into K non-

overlapping clusters according to their preference vectors. We suppose the number
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of cluster K is unknown. Denote Vk, k ∈ [K] as the kth user cluster. Intuitively, users

belong to the same cluster share similar preference. For example, ||θu− θu′|| ≤

||θu−θu′′ || if (u,u′) ∈Vk and u′′ ̸∈Vk.

Due to the linearity assumption of payoff, users belonging to the same cluster

share similar payoffs to a given item. It follows that rather than learning a preference

vector for each user, the agent can learn a preference vector for each cluster. Conse-

quently, the agent only needs to learn K rather than n preference vectors. We denote

θk,k ∈ [K] as the unknown preference vector of cluster Vk.

To solve the bandit problem, we utilize the well-known upper-confidence-bound

(UCB) method to balance the exploration and exploitation trade-off. In the next

section, we describe the proposed algorithm in detail.

7.3 Graph-Based MAB Algorithm
We now describe the proposed SCLUB-CD algorithm, depicted in Algorithm 15. At

each time t, the agent recommends an item at to user u and receives a payoff yt . The

agent estimates θu via least-squared estimator. Formally,

θ̂u = (Au +αI)−1Bu (7.3)

where Au = ∑{t:ut=u} xat x
T
at

, Bu = ∑{t:ut=u} ytxat , and I is the identity matrix.

In addition, at each time step t, the algorithm constructs a user graph Gt =

(Vt ,Et) on the basis of estimated preference vectors of all users θ̂u,u ∈U . The node

set Vt corresponds to the user set U . The edge set Et encodes the similarity between

users’ preference. The graph Gt is obtained by following a 3-step procedure:

STEP 1. Given {θ̂u,u ∈U }, the edge wt(u,u′) is calculated via Gaussian RBF

kernel. Precisely,

wt(u,u′) =
−||θ̂u− θ̂u′||2

w
(7.4)

where w is the bandwidth of the Gaussian kernel.

STEP 2. The edge weight wt(u,u′) is then converted into a binary value 1 or

0 in the following way. For each user u, only the edges that connect to top s most
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similar neighbors are kept, and the corresponding edge weights are set as 1. The rest

edges are set as 0. As a result, each node (user) is only directly connected to s other

nodes (users) on graph Gt .

Note that we control the sparsity via setting the number of edges rather than

eliminating edges below a pre-defined edge weight threshold. We believe this way

provides a better control over the number of clusters which needs to remain low for

an efficient learning. In addition, we also believe the binary edge weight is more

robust to the estimation error of θ̂u. Both aspects will be discussed in the experiment

section.

STEP 3. Given the constructed graph Gt , user clusters are formed by applying

community detection (Louvain Method [162]) to Gt . Specifically, Louvain Method

takes Gt as an input and outputs a set of non-overlapping clusters {V1, ..,Vk}.

Now, we are ready to introduce the item selection strategy of SCLUB-CD. At

each time step t, a random user u∼U appears to be served, which belongs to cluster

Vk. The agent selects an item at for this user following the rule below:

at = argmax
a∈At

θ̂
T
Vk

xa +β ||xa||M−1
k

(7.5)

where Mk = ∑u:u∈Vk
Au and β is a constant controls the degree of exploration.

The term θ̂Vk is the estimated preference of cluster k which is obtained by

θ̂Vk = (Mk +αI)−1Bk (7.6)

where Bk = ∑t:ut∈Vk
ytxt .

Remark 7. In this work, user clusters are obtained by Louvain Method which detects

communities from the user graph. We note that other clustering techniques can also

be used. For example, spectral clustering [163]. Viewing users within the same

cluster as a single user (as this work) might lose the distinction between users.

Instead of grouping users into clusters, the constructed graph structure Gt can also

be exploited by Laplacian-regularized estimator as shown in Chapter 3. We left this

extension as a future work.
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Algorithm 15: SCLUB-CD Algorithm
Initial:

1. Bu = 0 ∈ Rd , Au = 0 ∈ Rd×d for u ∈U

2. G0 a empty graph.

Input: edge deletion parameter s.
for t = 1,2, ...,T do

1. A random user u ∈U to serve.

2. Find the user clustering u ∈Vk via applying Louvian-method on Gt .

3. Calculate θ̂Vk via Eq. 7.6.

4. Select the item at according to Eq. 7.5.

5. Receive the payoff yt .

6. Update Au, Bu and θ̂u via Eq. 7.3

7. Update Gt via Eq. 7.4.

end

7.4 Experiments
We carried out experiments on both synthetic and real-world datasets. The synthetic

dataset allows us to simulate scenarios where we can control the similarity among

users (user graph structure). The real-world datasets are tested to validate the

proposed algorithm in realistic scenarios.

In the synthetic case, n= 100 users are clustered in K = 5 clusters and m= 1000

products are considered. We set the dimensionality as d = 25. To control the

similarity among users within a cluster, an intra-cluster noise σk is introduced. For

each cluster Vk, we first generate θk. For each user u ∈Vk, the preference vector θu is

generated by perturbing the θk with a white noise vector whose elements are drawn

independently from N (0,σk). Smaller σk means more compact cluster. Regarding

the payoff, the noise term is sampled from ε ∈N (0,σε).

In realistic scenarios, we consider LastFM dataset which contains tags of

artists and listening records of users. Delicious dataset contains URLs bookmarked

and tags provided by users [164]. LastFM dataset represents “few-hits" scenario
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Figure 7.1: Cumulative regret for the synthetic dataset

where users’ preference are coherent (therefore it is reasonable to assume that

users can be clustered). Delicious dataset represents a “many-hits" scenario where

users’ preferences are diverse (therefore the clustering is a strong approximation).

Simulation results are averaged over 10 runs.

LastFM and Delicious were processed following the same procedure as in [57].

First, tags contained in datasets were breakdown into single words by removing

underscore, hyphens and apexes. Second, tags that appear less than 10 times were

removed. Third, all tags related to each item was formed as a TF-IDF vector to

represent the item. To reduce the dimension, PCA was applied to TF-IDF vectors

retaining the top 25 principal components.

The proposed SCLUB-CD is compared to several baselines, namely LinUCB

[35], CLUB[158]. In the synthetic dataset, we also provide results for the SCLUB-CD

where the ground-truth user clusters is known. We label this algorithm as

SCLUB-CD-Correct which represents a lower bound in terms of cumulative

regret. To study the effect of the weighted edge and sparsity, we provide results

for two other variants of SCLUB-CD: SCLUB-CD-Weight keeps all edges and

weights. SCLUB-CD-Weight-Sparse keeps only the top s edges and their

weights.

Fig. 7.1 shows the cumulative regret in the case of synthetic dataset under

various levels of reward noise and intra-cluster noise. SCLUB-CD outperforms its

competitors consistently over all scenarios, with a substantial gap under low intra-

cluster noise (σk = 0.25), (Fig. 7.1(a) and Fig. 7.1(b)). It is interesting to observe

that under a high intra-cluster noise (Fig. 7.1(c) and Fig. 7.1(d)), SCLUB-CD still

enjoy a better performance comparing to LinUCB, which does not group users into
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Figure 7.2: Cumulative regret and cluster number for the real-world dataset

clusters.

Comparing to CLUB, the gain is owing to i) user clusters are formed by com-

munity detection rather than connected components; ii) the binary and sparse graph

structure. In Fig. 7.1(c), LinUCB might outperform SCLUB-CD for longer time

horizon.

Finally, the difference between SCLUB-CD and SCLUB-CD-Correct shows

a potential room for improvement. The comparison with SCLUB-CD-Weight and

SCLUB-CD-Weight-Sparse shows the benefit of controlling the sparsity level

(and therefore number of clusters) in the proposed algorithm.

Fig. 7.2 shows results on real-world datasets. With LastFM, SCLUB-CD main-

tains a leading margin. We believe this is due to a better clustering methodology. In

particular, CLUB tends to group users into many clusters, while SCLUB-CD groups

into fewer number of clusters, as shown in Fig. 7.2. This suggests that the proposed

approach is able to find a better trade-off between dimensionality reduction and

approximation owing to grouping users into clusters.

Under Delicious dataset, SCLUB-CD again outperforms baselines with a small

margin. It shows that K = 11 user clusters are formed for n = 700 users. Delicious

dataset represents the “many-hits" scenario, in which each user is interested in a

few and similar websites. This means that each user will select few website only,

therefore the agent can only gather a few feedbacks per user, which translates into a

limited training dataset. Clustering users together allows us to estimate K vectors

rather than n vectors. Hence, SCLUB-CD outperforms LinUCB and CLUB.
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7.5 Conclusion
In this work, we present a graph-based bandit algorithm, which encodes users

preference into a graph, and groups users into clusters. The key aspects of the

proposed algorithm are that i) it utilizes graph-based clustering to extract meaningful

clusters; ii) we form an unweighted graph to improve robustness to estimation

errors; iii) the proposed method maintains a meaningful cluster number. All these

components lead to an overall gain in terms of cumulative regret compared with

baselines. These results also open new questions such as “What is the sensitivity of

the proposed algorithm to the cluster size?", “Could we adopt graph signal processing

to further improve the graph knowledge (exploiting also the smoothness of the reward

function on the user graph)?". This work has been followed up during my internship

at BBC, where the user historical behaviours have been modelled as a random walk

process over item graph. We aim to predict the next interested item given past

random walk paths. Being still under no-disclosure agreement, I will not be able

to release information, but we will soon make the dataset and the novel algorithm

publicly accessible.



Chapter 8

Conclusion and Future Work

In this thesis, we made several efforts toward data-efficient sequential decision

strategies. We focus on two main open problems, namely the exploration-exploitation

dilemma and the representation learning problem, which have critical impacts on

learning efficiency.

8.1 Summary of Contributions
The first part of the thesis tackled the exploration-exploitation dilemma under the

framework of MAB. In Chapter 3, we designed a novel algorithm for multi-task

linear bandits, by leveraging on the existing similarity between bandit problems.

Our algorithm provided much tighter confidence bound which than baselines, strik-

ing a better balance between exploration and exploitation and resulting in lower

regret bounds. We proved this gain theoretically and empirically. In Chapter 4, we

theoretically analyzed the error bound of the Laplacian-regularized estimator, the

core technique used in Chapter 3, and illustrated clearly the benefit of incorporating

underlying topological graph structure into the learning process. In Chapter 5, we

proposed to learn upper confidence bound (UCB) in a data-driven fashion, which

was previously derived based from assumptions on reward and noise process. This

avoided potential mismatch between assumptions and reality.

In the second part of this thesis, we addressed the data efficiency in RL from the

representation learning lens. We identified a topological structure induced by rewards

diffusion process and showed that a distance metric reflects such structure . Upon
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this insight, we proposed an auxiliary loss to shape state representations exploiting

such topology and demonstrated an improved performance in both prediction and

control problems.

8.2 Future Works

The research contained in this thesis is an effort toward more data-efficient online

sequential learning algorithms, under the reinforcement learning paradigm. Collec-

tively, contributions in the thesis bring us to a point with various promising research

directions.

Settings without a prior knowledge

In this thesis, we assume that the structural knowledge is known a priori. For example,

in Chapter 4, we assume the similarity relationship between bandit problems is

known and leverage such structure in designing algorithms. However, in many

practical problems, such structural knowledge is not always available. Thus, it

is desirable to infer and learn structures from data. For instance, as shown in

[165] graph-topology can be inferred from data under smooth assumption. In RL,

arguably the most important structure is the state/state-action topology upon which

value functions/polices satisfying certain continuity properties. Identifying and

learning such structure provide a promising direction in designing data-efficient RL

algorithms. Furthermore, another research direction is to investigate whether the

structure and downstream tasks (value prediction or control) can be learned jointly.

Representation beyond value function approximation

In the effort of improving representation learning in RL, we exploit the intrinsic struc-

ture of value functions to shape representations. However, representations are not

only used for value function approximation but also to generate new policies. A nat-

ural question is that whether representations learnt for value function approximation

(prediction) are suitable for learning new policies (control)? Indeed, as pointed out

in [166], more information is required for value function approximation than to learn

the optimal policy. A theoretical understanding on the requirement of representation

for prediction and control, respectively, worth a further investigation. Considering
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the fact that there is a lack of consensus on the notion of optimal representation

for RL, there is a compelling need to design data-efficient RL algorithms able to

achieve optimality under different criteria such as value function approximation error,

sampling complexity, convergence rate to optimal policy and exploration.

Modelling users’ temporal/sequential behaviour in recommender systems

In this thesis, we have designed graph-based algorithms for recommender systems,

where we treated users’ relationships as static graph. However, in practice, such

relationships are constantly changing due to the release of new items, social events,

etc. In addition, also the item catalogues are constantly updated by the system

provider, leading to a dynamic item graph as well. This open the door to a new

line of research on learning the intrinsic temporal/sequential and spatial structure

embedded in such dynamic processing to favour better recommendations.



Appendix A

Appendix of Chapter 3

A.1 Proof of Lemma 1

Proof.

vec(Θ̂t) = (At +αL⊗)
−1

ΦtYt (A.1)

Let Mt = At +αL⊗ and Bt = ΦtYt , then

vec(Θ̂t) = M−1
t Bt (A.2)

Express Mt and Bt in partitioned form. For instance, if n = 2

M−1
t =

M−1
11,t M−1

12,t

M−1
21,t M−1

22,t

 Bt =

B1,t

B2,t

 (A.3)

Then

θ̂ i,t =
2

∑
j=1

M−1
i j,tB j,t (A.4)

In general case, n≥ 2,

θ̂ i,t =
n

∑
j=1

M−1
i j,tB j,t (A.5)

To obtain the expression of θ̂ i,t , we need the close form of M−1
i j,t . Given Mt =
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At +αL ⊗ we have

M−1
t = (At +αL ⊗)

−1

= (AtA−1
t At +αL ⊗A−1

t At)
−1

=

(
(I+αL ⊗A−1

t )At

)−1

= A−1
t (I+αL ⊗A−1

t )−1

(A.6)

This can be rewritten using Taylor expansion

A−1
t (I+αL ⊗A−1

t )−1

= A−1
t

(
I−αL ⊗A−1

t +(αL ⊗A−1
t )2− ...

)
≈ A−1

t −αA−1
t L ⊗A−1

t (A.7)

The last step keeps the first two terms only. So,

M−1
t ≈ A−1

t −αA−1
t L ⊗A−1

t (A.8)

To obtain the expression of M−1
i j,t , we need the partitioned form of A−1

t and L ⊗.

Since At is a block diagonal matrix, the inversion of it is the inversion of its

block matrix. For instance, if n = 2

A−1
t =

A−1
1,t 0

0 A−1
2,t

 (A.9)

and

L ⊗ =

L11I L12I

L21I L22I

 (A.10)

Given Eq. (A.8), in general case, n≥ 2, it is trivial to show

M−1
i j,t ≈

A−1
i,t −αA−1

i,t LiiA−1
i,t when i = j

−αA−1
i,t Li jA−1

j,t when i ̸= j
(A.11)
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Figure A.1: Approximation accuracy

Finally, we have

θ̂i,t =
n

∑
j=1

M−1
i j,tB j,t

≈ (A−1
i,t −αA−1

i,t LiiA−1
i,t )Bi,t

−αA−1
i,t ∑

j ̸=i
Li jA−1

j,t B j,t

= A−1
i,t Bi,t−αA−1

i,t

n

∑
j=1

Li jA−1
j,t B j,t

(A.12)

We claim the approximation introduced in Eq. (A.12) is small. To see this, tracing

back to Eq. (A.7) where the higher order terms are dropped. These higher orders

terms are negligible when t is large. This is because the Gram matrix At grows

with larger t, in turn A−1
t decreases. In such case, higher order terms would be

incomparable with lower order terms.

To support the tightness of this approximation, we provide an empirical evidence

in Figure A.1. Red curve represents the single-user estimation error of The Laplacian-

regularised estimator Eq. (3.4), while green curve is the estimation error of Lemma

1. Blue curve represents the estimation error of ridge regression, which is included

as a benchmark. Clearly, Lemma 1 is a tight approximation of Eq. (3.4) and both

converge faster than ridge regression due to the smoothness prior.
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A.2 Proof of Eq. (3.9)

Proof. Let At = ΦtΦ
T
t and L ⊗ = L ⊗ I and Mt = At +αL ⊗. ε t = [η1,η2, ...,ηt ]

vec(Θ̂t) = M−1
t ΦtYt (A.13)

The variance Σt is

Σt =Cov(vec(Θ̂t)) =Cov(M−1
t ΦtYt)

= M−1
t ΦtCov(Yt)Φ

T
t M−1

t

= σ
2M−1

t AtM−1
t

(A.14)

where we use Cov(Yt) = σ2I since noise follows N (0,σ2). Therefore, the precision

matrix

Λt = Σ
−1
t =

1
σ2 MtA−1

t Mt (A.15)

For simplicity, we assume σ = 1

Λt = Σ
−1
t = MtA−1

t Mt (A.16)

A.3 Proof of Eq. (3.10)

Proof. Recall

Λt = MtA−1
t Mt (A.17)

and Λi,t ∈ Rd×d is the i-th block matrix along the diagonal of Λt .

To get the expression of Λi,t , we need to express Mt , A−1
t in partitioned form.

For instance, n = 2

Mt =

M11,t M12,t

M21,t M22,t

 , A−1
t =

A−1
1,t 0

0 A−1
2,t

 (A.18)
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In general case n≥ 2, it is straightforward to see

Λi,t =
n

∑
j=1

Mi j,tA−1
i,t Mi j,t

=

(
Mii,tA−1

i,t Mii,t +∑
j ̸=i

Mi j,tA−1
j,t M ji,t

) (A.19)

From Mt = At +αL ⊗, we know

Mii,t = Ai,t +αLiiI (A.20)

Mi j,t = αLi jI (A.21)

Hence,

Λi,t =

(
Ai,t +2αLiiI+α

2
n

∑
j=1

L 2
i jA
−1
j,t

)
(A.22)

A.4 Proof of Lemma 2

Proof.

Ct = {θ i : ||θ̂ i,t−θ i||Λi,t ≤ βi,t} (A.23)

From Lemma 1, we have

θ̂ i,t ≈ A−1
i,t Xi,tYi,t−αA−1

i,t

n

∑
j=1

Li jA−1
j,t X j,tY j,t (A.24)

Note that Yi,t = XT
i,tθ i + ε i,t and Y j,t = XT

j,tθ j + ε j,t where ε i,t = [ηi,1, ...,ηi,Ti,t ] is

the collection of noise associated with user i. Ti,t the set of time user i is selected

during the time period from 1 to t.
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Then we have

θ̂ i,t = A−1
i,t Xi,t(XT

i,tθ i + ε i,t)

−αA−1
i,t

n

∑
j=1

Li jA−1
j,t X j,t(XT

j,tθ j + ε j,t)

= θ i +A−1
i,t Xi,tε i,t−αA−1

i,t

n

∑
j=1

Li jθ j

−αA−1
i,t ∑

j ̸=i
Li jA−1

j,t X j,tε j,t

(A.25)

Hence

θ̂ i,t−θ i = A−1
i,t Xi,tε i,t−αA−1

i,t

n

∑
j=1

Li jθ j

−αA−1
i,t

n

∑
j=1

Li jA−1
j,t X j,tε j,t

(A.26)

Denote ξ i,t = Xi,tε i,t and Vi,t = Ai,t +αLiiI, then,

||θ̂ i,t−θ i||Λi,t ≤ ||αA−1
i,t

n

∑
j=1

Li jθ j||Λi,t

+ ||A−1
i,t ξ i,t−αA−1

i,t

n

∑
j=1

Li jA−1
j,t ξ j,t ||Λi,t

(A.27)

= α||
n

∑
j=1

Li jθ j||A−1
i,t Λi,tA−1

i,t

+ ||ξ i,t−α

n

∑
j=1

Li jA−1
j,t ξ i,t ||A−1

i,t Λi,tA−1
i,t

(A.28)

Here we apply ||A−1
i,t (·)||Λi,t = || · ||A−1

i,t Λi,tA−1
i,t

.

≤ α||
n

∑
j=1

Li jθ j||A−1
i,t
+ ||ξ i,t−α

n

∑
j=1

Li jA−1
j,t ξ i,t ||A−1

i,t
(A.29)
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Here we use || · ||A−1
i,t Λi,tA−1

i,t
≤ || · ||A−1

i,t
.

≤ α||
n

∑
j=1

Li jθ j||V−1
i,t
+ ||ξ i,t−α

n

∑
j=1

Li jA−1
j,t ξ i,t ||V−1

i,t
(A.30)

Here we use || · ||A−1
i,t
≤ || · ||V−1

i,t
.

≤ α||
n

∑
j=1

Li jθ j||V−1
i,t
+ ||ξ i,t ||V−1

i,t
(A.31)

Here we use

||ξ i,t−α

n

∑
j=1

Li jA−1
j,t ξ i,t ||V−1

i,t
≤ ||ξ i,t ||V−1

i,t
(A.32)

To support Eq. (A.32), we provide an empirical evidence in Figure A.2.

Denote ∆i = ∑
n
j=1 Li jθ j, Finally, we have

||θ̂ i−θ i||Λi,t ≤ α||∆i||V−1
i,t
+ ||ξ i,t ||V−1

i,t
(A.33)

According to Theorem 2 in [37], we have the following upper bound holds with

probability 1−δ for δ ∈ [0,1].

||ξ i,t ||V−1
j,t
≤ σ

√
2log

|Vi,t |1/2

δ |αI|1/2 (A.34)

In addition, we known

α||∆i||V−1
i,t
≤
√

α||∆i||2 (A.35)

where we use ||∆i||2V−1
i,t
≤ 1

λmin
(Vi,t)||∆i||22 ≤

1
α
||∆i||2, which means α||∆i||V−1

i,t
≤

α√
α
||∆i||2 =

√
α||∆i||2.

Finally, combine the above two upper bounds, we have the following upper

bound holds with probability 1−δ for δ ∈ [0,1].

||θ̂ i,t−θ i||Λi,t ≤ σ

√
2log

|Vi,t |1/2

δ |αI|1/2 +
√

α||∆i||2 (A.36)
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which means

βi,t = σ

√
2log

|Vi,t |1/2

δ |αI|1/2 +
√

α||∆i||2 (A.37)

Figure A.2: Noise term approximation

The green curve represents the LHS term in Eq. (A.32), while the blue curve

represents the RHS term. Clearly, the blue curve is above the green curve and they

converges together with large t.

A.5 Pseudocode of GraphUCB-Local

A.6 Proof of Lemma 3
Recall Ψi,T =

∑τ∈Ti,T ||xτ ||2
Λ
−1
i,τ

∑τ∈Ti,T ||xτ ||2
V−1

i,τ

, where Ti,T is the set of time user i is served up to time

T , Ai,τ = ∑ℓ∈Ti,τ xℓxT
ℓ , Vi,τ = Ai,τ +αLiiI and Λi,T defined in Eq. (3.10). Without

loss of generality, assume ||xτ ||2 ≤ 1 for any τ ≤ T .

Proof.

∑
τ∈Ti,T

||xτ ||2V−1
i,τ
≤ (1+ max

τ∈Ti,T
||xτ ||2) log |Vi,τ | (A.38)

In the same fashion

∑
τ∈Ti,T

||xτ ||2
Λ
−1
i,τ
≤ (1+ max

τ∈Ti,T
||xτ ||2) log |Λi,τ | (A.39)



A.6. Proof of Lemma 3 148

Algorithm 16: GraphUCB-Local
Input : α , T , L , δ

Initialization : For any i ∈ {1,2, ...,n} θ̂ 0,i = 0 ∈ Rd , Λ0,i = 0 ∈ Rd×d ,
A0,i = 0 ∈ Rd×d , βi,t = 0.

for t ∈ [1,T ] do
User index i is selected

1. Ai,t ← Ai,t−1 +xt−1xT
t−1.

2. A j,t ← A j,t−1, ∀ j ̸= i.

3. Update Λi,t via Eq. (3.10).

4. Select xt via Eq. (3.15)
where βi,t is defined in Eq. (3.11).

5. Receive the payoff yt .

6. Update θ̂ i,t via Lemma. 1 if i = it .

7. θ̂ j,t ← θ̂ j,t−1 ∀ j ̸= it .

end

Since we assume ||xτ ||2 ≤ 1 for any τ ≤ T and

Ψi,T =
∑τ∈Ti,T ||xτ ||2

Λ
−1
i,τ

∑τ∈Ti,T ||xτ ||2V−1
i,τ

(A.40)

Given

1

Vi,τ = Ai,τ +αI

Λi,τ = Ai,τ +2αLiiI+α
2

n

∑
j=1

L 2
i jA
−1
j,τ

(A.41)

Assume2 Ai,τ (and A j,τ ) are positive semi-definite for all τ . we know that Λi,τ > Vi,τ ,

therefore

Λ
−1
i,τ < V−1

i,τ (A.42)

1For isolated node, we set Lii = 1, Li j = 0, j ̸= i.
2This can be ensured trivially by adding λ I to Ai,τ with a small λ .
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holds for any τ ≤ T , which means

||xτ ||Λ−1
i,τ

< ||xτ ||V−1
i,τ

(A.43)

holds for any τ ≤ T .

Thus, we have

∑
τ∈Ti,T

||xτ ||2
Λ
−1
i,τ

< ∑
τ∈Ti,T

||xτ ||2V−1
i,τ

(A.44)

this means

Ψi,T =
∑τ∈Ti,T ||xτ ||2

Λ
−1
i,τ

∑τ∈Ti,T ||xτ ||2V−1
i,τ

< 1 (A.45)

In addition, since ||xτ ||2
Λ
−1
i,τ

> 0 and ||xτ ||2V−1
i,τ

> 0, This must hold

Ψi,T > 0 (A.46)

Combine all together, we have

Ψi,T ∈ (0,1) (A.47)

Furthermore, as A−1
j,τ decreases over time τ , Λi,τ → Ai,τ . It means Ψi,T → 1.

A.7 Proof of Theorem 10
Proof. First, we show the instantaneous regret at time t can be upper bounded by

2βi,t ||xi,t ||Λ−1
i,t

where xt is the arm selected by the learner at time t for user i. xi,∗ is

the optimal arm for user i.

ri,t = xT
i,∗θ i−xtθ i

≤ xT
t θ̂ i,t +βi,t ||xt ||Λ−1

i,t
−xtθ i

≤ xT
t θ̂ i,t +βi,t ||xt ||Λ−1

i,t
−xT

t θ̂ i,t +βi,t ||xt ||Λ−1
i,t

= 2βi,t ||xt ||Λ−1
i,t

(A.48)
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where we use the principle of optimistic

xT
i,∗θ i +βi,t ||xi,∗||Λ−1

i,t
≤ xT

t θ̂ i,t +βi,t ||xt ||Λ−1
i,t

(A.49)

and

xT
t θ̂ i,t ≤ xT

t θ i +βi,t ||xt ||Λ−1
i,t

(A.50)

Next, we drive a upper bound of the cumulative regret of user i up to T

Ri,T = ∑
τ∈Ti,T

ri,τ ≤
√
|Ti,T | ∑

τ∈Ti,T

r2
i,τ

≤
√
|Ti,T | ∑

τ∈Ti,T

4β 2
i,τ ||xτ ||2

Λ
−1
i,τ

≤ 2βi,T

√
|Ti,T | ∑

τ∈Ti,T

||xτ ||2
Λ
−1
i,τ

≤ 2βi,T

√
|Ti,T | ∑

τ∈Ti,T

min(1, ||xτ ||2
Λ
−1
i,τ
)

(A.51)

where we user βi,T ≥ βi,τ since βi,τ is an increasing function over τ and ri,τ ≤ 2

since we assume payoff xT θ i ∈ [−1,1].

According to Lemma 11 in [37], we have

∑
τ∈Ti,T

min(1, ||xτ ||2V−1
i,τ
)≤ 2log

|Vi,T |
|αI|

≤ 2
√

d log(α + |Ti,T |/d)

(A.52)

where Ai,T = ∑τ∈Ti,T xτxT
τ , Vi,T = Ai,T +αLiiI and Lii = 1.

Recall in Lemma 3, we define

Ψi,T =
∑τ∈Ti,T ||xτ ||2

Λ
−1
i,τ

∑τ∈Ti,T ||xτ ||2V−1
i,τ

(A.53)
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Therefore

∑
τ∈Ti,T

min(1, ||xτ ||2
Λ
−1
i,τ
) = Ψi,T ∑

τ∈Ti,T

min(1, ||xτ ||2
Λ
−1
i,τ
)

≤ 2Ψi,T

√
d log(α + |Ti,t |/d)

(A.54)

From Eq. (A.37), we have

βi,T = σ

√
2log

|Vi,T |1/2

δ |αI|1/2 +
√

α||∆i||2 (A.55)

According to Theorem 2 in [37],

σ

√
2log

|Vi,T |1/2

δ |αI|1/2 ≤ σ

√
d log

1+ |Ti,T |/α

δ

≤ O(
√

d log |Ti,T |)

(A.56)

Hence,

βi,t ≤ O(
√

d logTi,T +
√

α||∆i||2) (A.57)

Combine this with Eq. (A.54) and Eq. (A.51), we have

Ri,T ≤ O

((√
d log |Ti,T |+

√
α||∆i||2

)
×

Ψi,T

√
d|Ti,T | log(|Ti,T |)

)
≤ Õ(Ψi,T d

√
|Ti,T |)

(A.58)

where the constant term
√

α||∆i||2 and logarithmic terms are hidden.

Assume users are served uniformly, i.e., Ti,T = T/n. Then, over the time

horizon T , the total cumulative regret experienced by all users satisfies the following
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upper bound with probability 1−δ with δ ∈ [0,1].

RT =
n

∑
i=1

Ri,T =
n

∑
i=1

Õ

(
Ψi,T d

√
|Ti,T |

)
=

n

∑
i=1

Õ

(
Ψi,T d

√
T/n

)
≤ Õ

(
nd
√

T/nmax
i∈U

Ψi,T

)
= Õ

(
d
√

T nmax
i∈U

Ψi,T

)
(A.59)

A.8 The quadratic Laplacian form

Given L = D−1L is the random-walk graph Laplacian, where L = D−W is the

combinatorial Laplacian. Recall Θ = [θ 1,θ 2, ...,θ n] ∈ Rn×d contains user features

θ i ∈ Rd in rows. Then, the quadratic Laplacian form can be expressed in the

following way:

tr(ΘT L Θ) =
d

∑
k=1

∑
i∼ j

1
4
(Wi j

Dii
+

Wji

D j j

)(
Θik−Θ jk

)2 (A.60)

Proof.

tr(ΘT L Θ) =
d

∑
k=1

Θ
T
::kL Θ::k (A.61)

where Θ::k ∈ Rn is the k-th column of Θ.

Note that L = D−1L is an asymmetric matrix with off-diagonal element Li j =

−Wi j
Dii

and L ji =−
W ji
D j j

and on-diagonal element Lii = 1.

From elementary linear algebra, we know that

L =
L +L T

2
+

L −L T

2
(A.62)
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Then

tr(ΘT L Θ) = tr(ΘT (
L +L T

2
+

L −L T

2
)Θ)

= tr(ΘT (
L +L T

2
)Θ)+ tr(ΘT (

L −L T

2
)Θ)

= tr(ΘT (
L +L T

2
)Θ)

(A.63)

where

tr(ΘT (
L −L T

2
)Θ) = 0 (A.64)

To see this

tr(ΘT (
L −L T

2
)Θ) =

d

∑
k=1

Θ
T
::k(

L −L T

2
)Θ::k (A.65)

for any k ∈ {1,2, ..,d}

Θ
T
::k(

L −L T

2
)Θ::k = 0 (A.66)

To see this, assume p = Θ
T
::k(

L−L T

2 )Θ::k, then

p = Θ
T
::k(

L −L T

2
)Θ::k

=

(
Θ

T
::k(

L −L T

2
)Θ::k

)T

=−p

(A.67)

where
(

L−L T

2

)T

=−L T−L
2 . So p = 0.

Then,

tr(ΘT L Θ) = tr(ΘT (
L +L T

2
)Θ) (A.68)

where the off-diagonal element, i ̸= j , of L+L T

2 is 1
2

(Wi j
Dii

+
W ji
D j j

)
and the on-diagonal

element is 1.

Therefore

tr(ΘT L Θ) =
d

∑
k=1

∑
i∼ j

1
4
(Wi j

Dii
+

Wji

D j j

)(
Θik−Θ jk

)2 (A.69)
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(a) RBF (s=0.5) (b) ER (p=0.4) (c) BA (m=5) (d) WS (m=7, p=0.2)

Figure A.3: Performance with respect to Graph Types

Figure A.4: Performance of proposed algorithms on Graph models

To simulate G , we follow two random graph models commonly used in the

network science community: 1) Radial basis function (RBF) model, a weighted fully

connected graph, with edge weights Wi j = exp(−ρ||θi−θ j||2); 2) Erdős Rényi (ER)

model, an unweighted graph, in which each edge is generated independently and

randomly with probability p. 3) Barabási-Albert (BA) model, an unweighted graph

initialized with a connected graph with m nodes. Then, a new node is added to the

graph sequentially with m edges connected to existing nodes following the rule of

preferential attachment where existing nodes with more edges has more probability

to be connected by the new node; 4) Watts-Strogatz (WS) model, an unweighted

graph, which is a m-regular graph with edges randomly rewired with probability p.

For each graph model, different topologies can be generated, leading to different

level of sparsity and smoothness as show in the following

Comparing sub-figures in Fig A.3 shows that with the same level of sparsity and
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(a) RBF (s=0.5) (b) ER (p=0.4) (c) BA (m=5) (d) [WS (m=7, p=0.2)

Figure A.5: Graphs

smoothness the effect of topology of graph performance seems to be unnoticeable.

The generated graphs are shown in Fig A.5. This is also confirmed in Fig A.4, in

which we generate graphs with different topology but with the same level connectivity.

Algorithms are test on smoothness level.

A.9 The performance of the proposed algorithms

We test the performance of the proposed algorithms on the basis of graph properties

such as smoothness, sparsity, p in ER graph, m in BA graph, m and p in WS graph.

Smoothness [γ]: We first generate a RBF graph. To control the smoothness, we

vary γ ∈ [0,10]. The term sm = tr(ΘT L Θ) measures the corresponding smoothness

level. To ensure the comparison is fair, Θ is normalized to be ||Θ||2 = n.

Sparsity [s]: We first generate a RBF graph, then generate a smooth Θ via Eq. (3.29).

To control the sparsity, we set a threshold s ∈ [0,1] on edge weights Wi j such that Wi j

less than s are removed. The term sp = numbero f edges
n(n−1) measures the corresponding

level of sparsity, where n(n−1) is the number of edges of a fully connected graph.

Results are shown in Fig A.6. In sub-figure (a) and (b), graph-based algo-

rithms show similar pattern. Smoother signal leads to less regret because of the

Laplacian-regularier estimator in Eq. (3.4). Sparse graph leads to more regret as less

connectivity provides less graph information. This is also confirmed by sub-figure

(c), p in ER controls the probability of edge. Small p leads to spare graph, in turn

more regret.



A.10. MovieLens and Netflix Data 156

(a) RBF (γ) (b) RBF (s)

(c) ER (p) (d) BA (m)

(e) WS (p, m=4) (f) WS (m, p=0.2)

Figure A.6: Performance on Graph Properties

A.10 MovieLens and Netflix Data
Movilens contains 6k users and their ratings on 40k movies. Since every user does

not give ratings on all movies, there are a large mount of missing ratings. We

factorize the rating matrix via M = UX to fill the missing values where U contain
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(a) MovieLens (b) Netflix

Figure A.7: Histogram of signals in MovieLens (a) and Netflix (b).

users’ latent vectors in rows and X contain movies’ latent features in columns. The

dimension is set as d = 10. Next, we create the user graph G from U via RBF kernel.

Netflix contains rating of 480k users on 18k movies. We process the dataset in the

same way as Movielens. In both datasets, original ratings range from 0 to 5, we

normalize them into [0,1]. After the data pre-processing, we sample 50 users and

test algorithms over T = 1000.

Figure A.7 shows the distribution of ratings in Movielens and Netflix. Ratings

in Movielens are highly concentrated which means a large number of users like a

few set of movies. They show similar performance.
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Appendix of Chapter 4

B.1 Proofs

Proof.

L (Θ∗) =
1

2n
||Y −Θ

∗X ||2F (B.1)

Thus,

▽L (Θ∗) =
1
n
(Θ∗X−Y )XT

=
1
n

ΩXT
(B.2)

where Ω = Θ∗X−Y .

Proof.

δL (Θ∗) = L (Θ∗+△)−L (Θ∗)−⟨▽L (Θ∗),△⟩

=
1

2n
||Y − (Θ∗+△)X ||2F −

1
2n
||Y −Θ

∗X ||2F −
1
n

Tr(XΩ
T△)

(B.3)

First, we expand the term ||Y − (Θ∗+△)X ||2F −||Y −Θ∗X ||2F as

Tr[(Y − (Θ∗+△)X)T (Y − (Θ∗+△)X)]−Tr[(Y −Θ
∗X)T (Y −Θ

∗X)] (B.4)

Which is

Tr[XT △T △X +2XT (Θ∗)T △X−2Y T △X ] (B.5)
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Next, we expand the last term

Tr(XΩ
T△) = Tr(X(Θ∗X−Y )T△)

= Tr(XXT (Θ∗)T △−XY T△)
(B.6)

Then, we have δL (Θ∗) be

1
2n

(Tr(XT△T△X))+
1
n
[Tr(XT (Θ∗)T△X)−Tr(Y T△X)+Tr(XY T△)−Tr(XXT (Θ∗)T△)]

(B.7)

Due to the cyclic property of trace operator, terms are cancelled out except the first

term. Therefore,

δL (Θ∗) =
1

2n
Tr((△X)T (△X)) =

1
2n
||△X ||2F (B.8)

B.2 Proof of Theorem 11

Proof. Due to the optimality of Θ̂,

L (Θ̂)+αR(Θ̂)≤L (Θ∗)+αR(Θ∗) (B.9)

Substituting Θ̂ = Θ∗+△ and arrange the terms, we have

L (Θ∗+△)−L (Θ∗)+α(R(Θ∗+△)−R(Θ∗))≤ 0 (B.10)
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Given R(Θ) = Tr(ΘT LΘ), We expand the term R(Θ∗+△)−R(Θ∗) as

R(Θ∗+△)−R(Θ∗) = Tr((Θ∗+△)T L(Θ∗+△))−Tr((Θ∗)T LΘ
∗)

= Tr((Θ∗)T LΘ
∗)+(Θ∗)T L△+△T LΘ

∗+△T L△)−Tr((Θ∗)T LΘ
∗)

= 2Tr((Θ∗)T L△)+Tr(△T L△)

= 2Tr((Θ∗)T L△)+R(△)

= 2⟨LΘ
∗,△⟩+R(△)

≥−2|⟨LΘ
∗,△⟩|+R(△)

(B.11)

Substituting the last inequality, we have

L (Θ∗+△)−L (Θ∗)+α(−2|⟨LΘ
∗,△⟩|+R(△))≤ 0 (B.12)

From the definition of δL (Θ∗) Eq. (4.10), we know that

L (Θ∗+△)−L (Θ∗) = ⟨▽L (Θ∗),△⟩+δL (Θ∗) (B.13)

Substituting yields

⟨▽L (Θ∗),△⟩+δL (Θ∗)+α(−2|⟨LΘ
∗,△⟩|+R(△))≤ 0 (B.14)

Note that

⟨▽L (Θ∗),△⟩ ≥−|⟨▽L (Θ∗),△⟩| (B.15)

With this, we have

−|⟨▽L (Θ∗),△⟩|+δL (Θ∗)+α(−2|⟨LΘ
∗,△⟩|+R(△))≤ 0 (B.16)
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Applying the Holder Inequality [101], we have |⟨▽L (Θ∗),△⟩|≤ ||▽L (Θ∗)||∞||△

||∗ and |⟨LΘ∗,△⟩| ≤ ||LΘ∗||F ||△ ||F , thus

δL (Θ∗,△)+αR(△)≤ ||▽L (△,Θ∗)||∞||△ ||∗+2α||LΘ
∗||F ||△ ||F (B.17)

If we assume, α ≥ ||▽L (△,Θ∗)||∞, we have

δL (Θ∗,△)+αR(△)≤ α||△ ||∗+2α||LΘ
∗||F ||△ ||F (B.18)

Due to Lemma 4 tr(△T L△) ≥ λ2|| △ ||F and the strong convexity condition

Eq. (4.10), δL (Θ∗)≥ κ||△ ||2F , we have

κ||△ ||2F +αλ2||△ ||2F ≤ α||△ ||∗+2α||LΘ
∗||||△ ||F (B.19)

Note the fact that if rank(△)≤ r, then ||△||∗≤
√

r||△||F . Substituting and dividing

both sides with ||△ ||F yields

||△ ||F ≤
α(
√

r+2||LΘ∗||F)
κ +αλ2

(B.20)

B.3 Proof of Corollary 1

The estimator is defined in Eq. (4.4) is a ridge estimator applied to estimate the

design matrix Θ. We denote it a ridge estimator below if not confusion introduced.

Θ̂ridge = arg min
Θ∈Rm×k

1
2n
||Y −ΘX ||2F +α||Θ||2F (B.21)

Note that the ridge estimator is equivalent to

Θ̂ridge = arg min
Θ∈Rm×k

1
2n
||Y −ΘX ||2F +αtr(ΘT ImΘ) (B.22)
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Where Im is the identity matrix Im ∈ Rm×m.

By following the same arguments in previous section. We have

||Θ̂ridge−Θ
∗||F ≤

α(
√

r+2||Θ∗||F)
κ +α

(B.23)

Note that 1 = λ1(Im) = λ2(Im) = ... = λm(Im). So, there is no difference between

employing λ1(Im) or λ2(Im).

B.4 Justification of Assumption 1
Given the definition △ = Θ̂−Θ∗, it is reasonable to expect that entries of △ j

varies around 0. i.e., the set {△ j1,△ j2, ...,△ jm} consists of both positive, negative

real number and 0. Under such condition, it is reasonable to assume ∑
m
i=1△2

ji≫
1
m(∑

m
i=1△ ji)

2 since positive and negative real numbers would cancel out to some

extent, which leads to a small 1
m(∑

m
i=1△ ji)

2, while ∑
m
i=1△2

ji is not affected.

This pattern is expected to be consistent across columns of△ so that we assume

k

∑
j=1

m

∑
i=1
△2

ji≫
k

∑
j=1

1
m
(

m

∑
i=1
△ ji)

2 (B.24)
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Appendix of Chapter 5

C.1 The proof of Lemma 7

Proof. Suppose Si,t < 0, that is

β (||xi∗ ||V−1
t
+ ||xi||V−1

t
)< µ̂i∗,t− µ̂i,t (C.1)

Rearrange terms gives

µ̂i,t +β ||xi||V−1
t
≤ µ̂i∗,t−β ||xi∗||V−1

t
(C.2)

Note that |µi− µ̂i,t | ≤ β ||xi||V−1
t
, ∀i ∈A . Then,

µ̂i∗,t−β ||xi∗||V−1
t
≤ µi∗ (C.3)

and

µi ≤ µ̂i,t +β ||xi||V−1
t

(C.4)

Combine together we have

µi ≤ µi∗ ≤ µ∗ (C.5)

Recall by definition i∗ = argmaxi∈A µ̂i,t −β ||xi||V−1
t

is the arm with largest lower

upper bound at round t. Therefore, ∆i = µ∗−µi > 0. In words, arm i is suboptimal.
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Suppose S j,t ≥ Si,t ≥ 0

β (||x j∗ ||V−1
t
+ ||x j||V−1

t
)− (µ̂ j∗,t− µ̂ j,t)≤ β (||xi∗||V−1

t
+ ||xi||V−1

t
)− (µ̂i∗,t− µ̂i,t)

(C.6)

Recall the definition of i∗,

i∗ = arg max
j∈[K]

µ̂ j,t−β ||x j||V−1
t

(C.7)

Thus, at each time t, i∗ = j∗. Then,

β ||x j||V−1
t
+ µ̂ j,t ≤ β ||xi||V−1

t
+ µ̂i,t (C.8)

C.2 The proof of Lemma 8

Proof.

pUt =
∑i∈Ut exp(γtSi,t)

∑i∈Ut exp(γtSi,t)+∑ j∈Lt exp(γtS j,t)
(C.9)

By definition, S j,t < 0, ∀ j ∈L . Thus,

exp(γS j,t)< 1, ∀ j ∈L (C.10)

Then,

∑
j∈Lt

exp(γS j,t)< |Lt | (C.11)

Therefore,

pUt >
∑i∈Ut exp(γtSi,t)

∑i∈Ut exp(γtSi,t)+ |Lt |
(C.12)

For any probability δ ∈ (0,1), we can find a γt such that pUt ≥ δ , namely

∑i∈Ut exp(γtSi,t)

∑i∈Ut exp(γtSi,t)+ |Lt |
≥ δ (C.13)
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Rearrange terms gives

∑
i∈Ut

exp(γtSi,t)≥
δ |Lt |
1−δ

(C.14)

Take logarithm on both sides,

log

(
∑

i∈Ut

exp(γtSi,t)

)
≥ log

(
δ |Lt |
1−δ

)
(C.15)

The left side term is LogSumExp which can be approximated by

log

(
∑

i∈Ut

exp(γtSi,t)

)
≥max

i∈Ut
γtSi,t = γt max

i∈Ut
Si,t (C.16)

Denote S̃max,t = maxi∈Ut Si,t and let

γt S̃max,t ≥ log(
δ |Lt |
1−δ

) (C.17)

we have

γt ≥
log( δLt

1−δ
)

S̃max,t
(C.18)

Therefore, if γt satisfies Eq. (C.18),

pUt ≥ δ (C.19)

Clearly, pLt < 1−δ since pL⊔+ pUt = 1.

C.3 The derive of gradients

Proof.

max
β

Y (T ) = max
β

T

∑
t=1

E[yt ] = max
β ,γ

T

∑
t=1

K

∑
i=1

pi,t µi

s.t. |µi− µ̂i,t |−β ||xi||V−1
t
≤ 0, ∀i ∈A , ∀t ∈ [T ]

(C.20)
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Apply the Lagrange multipliers, the optimization objective is

max
β

T

∑
t=1

K

∑
i=1

pi,t µi−η(|µi− µ̂i,t |−β ||xi||V−1
t
) s.t. η > 0 (C.21)

Apply the score function▽θ f (θ) = f (θ)▽θ log f (θ) to pi,t

log pi,t = γSi,t− log
K

∑
j=1

expγS j,t (C.22)

▽β log pi,t = γtφi,t−
∑

K
j=1 γtφ j,t expγtS j,t

∑
K
j=1 expγtS j,t

(C.23)

Then, the gradient g(β ) is

g(β ) =
T

∑
t=1

K

∑
i=1

µi pi,t

(
γtφi,t−

∑
K
j=1 γtφ j,t expγtS j,t

∑
K
j=1 expγtS j,t

)
+η ||xi||V−1

t
(C.24)

The gradient estimator ĝ(β ) is obtained by repalcing µi with µ̂i,t = xT
i θ̂ t where

θ̂ t = V−1
t ∑

t
s=1 xsys is obtained via least-square estimator.

ĝ(β ) =
T

∑
t=1

K

∑
i=1

µ̂i,t pi,t

(
γtφi,t−

∑
K
j=1 γtφ j,t expγtS j,t

∑
K
j=1 expγtS j,t

)
+η ||xi||V−1

t
(C.25)

C.4 The proof of Theorem 12

Proof. The probability of each arm is defined as

pi,t =
exp(γtSi,t)

∑
K
j=1 exp(γtS j,t)

(C.26)

Si,t is defined as

Si,t = β̂ φi,t− ∆̂i,t = β̂ (||xi||V−1
t
+ ||xi∗||V−1

t
)− (µ̂i∗,t− µ̂i,t) (C.27)
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The cumulative regret to be minimized is defined as

RT =
T

∑
t=1

E[rt ] =
T

∑
t=1

µ∗−E[yt ] =
T

∑
t=1

(µ∗−
K

∑
i=1

pi,t µi)

=
T

∑
t=1

K

∑
i=1

pi,t(µ∗−µi) =
T

∑
t=1

K

∑
i=1

pi,t∆i

(C.28)

where we use ∑
K
i=1 pi,t = 1.

At each time t, trm set A is divided into two subsets Ut and Lt with Ut ∪Lt = A .

Arm i ∈Ut if Si,t ≥ 0 and arm i ∈Lt if Si,t < 0.

E[rt ] =
K

∑
i=1

pi,t∆i = ∑
i∈Ut

pi,t∆i + ∑
i∈Lt

pi,t∆i (C.29)

Suppose γt follows Lemma 8, then ∑i∈Lt pi,t < 1−δ . Assume ∆i ≤ 1,∀i∈A . Then,

E[rt ] = ∑
i∈Ut

pi,t∆i + ∑
i∈Lt

pi,t ≤ ∑
i∈Ut

pi,t∆i +(1−δ ) (C.30)

By setting δ ≈ 1, we have 1−δ ≈ 0. It means arms in Lt are unlikely to be selected.

So, the second term can be dropped. Therefore,

E[rt ]≤ ∑
i∈Ut

pi,t∆i (C.31)

Thus,

E[rt ]≤ ∑
i∈Ut

pi,t∆i = ∑
i∈Ut

pi,t(µ∗−µi) (C.32)

Note that at each time t, |µ̂i,t−µi| ≤ β̂ ||xi||V−1
t
, ∀i ∈ [K]. Then

µ∗ ≤ µ̂∗,t + β̂ ||x∗||V−1
t

(C.33)

and

µi ≥ µ̂i,t− β̂ ||xi||V−1
t

(C.34)



C.4. The proof of Theorem 12 168

Thus,

µ∗−µi ≤ β̂ (||x∗||V−1
t
+ ||xi||V−1

t
)+(µ̂∗,t− µ̂i,t) (C.35)

Note that µ̂∗,t− µ̂i,t ≤ µ̂i∗,t− µ̂i,t where i∗ = argmax j∈[K] µ̂ j,t− µ̂i,t . Therefore,

µ∗−µi ≤ β̂ (||x∗||V−1
t
+ ||xi||V−1

t
)+(µ̂i∗,t− µ̂i,t) (C.36)

Since i ∈Ut , Si,t ≥ 0. That is µ̂i∗,t− µ̂i,t ≤ β (||x∗||V−1
t
+ ||xi||V−1

t
). Then,

µ∗−µi ≤ β̂ (||x∗||V−1
t
+ ||xi||V−1

t
)+(µ̂i∗,t− µ̂i,t)

≤ 2β̂ (||x∗||V−1
t
+ ||xi||V−1

t
)

(C.37)

Define ψt = maxi∈[K] ||xi||V−1
t

. We have

µ∗−µi ≤ 4β̂ψt (C.38)

Plugging this into Eq. (C.32) gives

E[rt ]≤ 4β̂ ∑
i∈Ut

pi,tψt (C.39)

Since we assume γt follows Lemma 8, we have pUt = ∑i∈Ut pi,t = δ . Therefore,

E[rt ]≤ 4β̂ ∑
i∈Ut

pi,tψt = 4β̂ φt ∑
i∈Ut

pi,t = 4β̂ψt pUt ≤ 4β̂ δψt (C.40)

Thus, the cumulative regret

RT =
T

∑
t=1

E[rt ]≤

√
T

T

∑
t=1

E[rt ]2 ≤ 4β̂ δ

√
T

T

∑
t=1

ψ2
t (C.41)

From Lemma 12 (stated below), we have

T

∑
t=1

ψ
2
t ≤ 2d log(α +

T
d
) (C.42)
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Plugging in Eq. (C.41),

RT ≤ 4β̂ δ

√
2T d log(α +

T
d
) = Õ(β̂

√
T d log(1+

T
d
)) (C.43)

where δ is the probability parameter chosen by user.

Lemma 12. (Lemma 11 in [37])

T

∑
t=1
||x||2V−1

t
≤ logdet(Vt)≤ 2d log(α +

T
d
) (C.44)
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C.5 The pseudocodes

Algorithm 17: SoftUCB
Input :β , A , K, T , α .

Initialization : V0 = αI ∈ Rd×d , b0 = 0 ∈ Rd , θ̂ 0 = 0 ∈ Rd , γ0 = 0.

for t ∈ [1,T ] do

1. Find Si,t ,∀i ∈A via Eq. (5.7) with β .

2. Find πt via Eq. (5.8) with γt−1.

3. Select arm it ∈A randomly following πt and receive payoff yt .

4. Update Vt ← Vt +xtxT
t , bt ← bt−1 +xtyt and θ̂ t = V−1

t bt .

5. Update γt .

end

Algorithm 18: SoftUCB offline

Input :A , K, T , λ , η

Initialization : β0 = 0, β̂ = 0.

for n ∈ [1,N] do

1. Run SoftUCB on A rounds with β = βn−1.

2. Update βn← βn−1 +λ ĝ(β ) via Eq. (5.13)

end

Output : β̂ ← βN

Run SoftUCB on A with β = β̂ .
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Algorithm 19: SoftUCB online

Input :A , K, T , α , λ , η

Initialization : β0 = 0, V0 = αI ∈ Rd×d , b0 = 0 ∈ Rd , θ̂ 0 = 0 ∈ Rd ,

γ0 = 0.

for t ∈ [1,T ] do

1. Select arm it ∈ [K] randomly following πt and receive payoff yt .

2. Update Vt ← Vt +xtxT
t , bt ← bt−1 +xtyt and θ̂ t = V−1

t bt .

3. Update βt ← βt−1 +λ ĝt(β ) via Eq. (5.17).

end
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C.6 The learning curves of SoftUCB offline

(a) d = 5,T = 28 (b) d = 5,T = 29 (c) d = 5,T = 210

Figure C.1: Learning curves of SoftUCB offline

(a) d = 10,T = 210 (b) d = 15,T = 210

Figure C.2: Learning curves of SoftUCB offline

C.7 The dataset Jester
The dataset Jester contains ratings of 40 jokes from 19891 users. We sample K = 50

users randomly as arms. Their rating to top 39 jokes are used as feature vector. Then,

to reduce the sparsity, we apply principle component analysis algorithm to reduce the

dimension d = 10. Their rating on the 40th jokes are used as rewards. At each round,

the algorithm selects on user to recommend the joke and the reward is the rating

given by the user. MovieLens contains 6k users and their ratings on 40k movies.

Since not every user gives ratings on all movies, there are a large mount of missing

ratings. We factorize the rating matrix to fill the missing values. The rest works the

same as in Jester.
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Appendix of Chapter 6

D.1 The Proof of value functions

The equivalence between two value function expressions:

Vπ(i) = r(i)+ γ ∑
i′∈S

Pπ(i, i′)Vπ(i′) (D.1)

Vπ(i) = ∑
k∈S

r(k)Mπ(i,k) (D.2)

From the definition for Successor Representation (SR) [118], we have

mπ(i,k) = I{i = k}+ γ ∑
i′∈S

Pπ(i, i′)mπ(i′,k) (D.3)

where I{·} denotes the indicator function.

Substituting Eq. (D.3) into Eq. (D.2) results in Eq. (D.1):

Vπ(i) = ∑
k∈S

r(k)
(
I{i = k}+ γ ∑

i′∈S
Pπ(i, i′)mπ(i′,k)

)
= ∑

k∈S
r(k)I{i = k}+ γ ∑

i′∈S
Pπ(i, i′) ∑

k∈S
r(k)mπ(i′,k)

= ∑
k∈S

r(k)I{i = k}+ γ ∑
i′∈S

Pπ(i, i′)Vπ(i′)

= r(i)+ γ ∑
i′∈S

Pπ(i, i′)Vπ(i′)

(D.4)
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D.2 The Proof of Lemma 9
Proof.

|Vπ(x)−Vπ(y)|= |∑
k

r(k)(Mπ(x,k)−Mπ(y,k))|

= |rmax ∑
k

r(k)
rmax

(Mπ(x,k)−Mπ(y,k))|

= |rmax ∑
k

αk(Mπ(x,k)−Mπ(y,k))|

≤ |rmax| · |∑
k

αk(Mπ(x,k)−Mπ(y,k))|

= |rmax| · |∑
k

αkMπ(x,k)−∑
k

αkMπ(y,k)|

(D.5)

Denote dπ(x,y) = |∑k αkMπ(x,k)−∑k αkMπ(y,k)| and c = |rmax|, we have

|Vπ(x)−Vπ(y)| ≤ cdπ(x,y) (D.6)

D.3 The proof of Lemma 11
Given the metric dπ(x,y), an navie method using it for value function approxima-

tion is nearest neighbor approximation. In the below, we show the value func-

tion approximation bound of this method. Given V (x),x ∈ B, for y ̸= x,y ∈ S ,

the state value V (y) can be approximated by nearest-neighbor method: Suppose

x = argminx∈B(V (x)+ cdπ(x,y))

V̂π(y) =Vπ(x)+ cdπ(x,y) (D.7)

|Vπ(y)−V̂π(y)|= |Vπ(y)−Vπ(x)+Vπ(x)−V̂π(y)|

≤ |Vπ(y)−Vπ(x)|+ |Vπ(x)−V̂π(y)|

≤ cdπ(x,y)+ |Vπ(x)−V̂π(y)|

≤ cdπ(x,y)+ cdπ(x,y)

= 2cdπ(x,y)

(D.8)
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Assume value function is linearly realization V (x) = φ(x)T θ and shape the represen-

tation to match the metric ||φ(x)−φ(y)||2 = dπ(x,y). In the following, we show the

value function approximation bound. Suppose ||φ(x)− φ̂(y)||= dπ(x,y), we have

V̂π(y) = φ̂(y)T
θ

= (φ̂(y)−φ(x)+φ(x))T
θ

≤ ||φ̂(y)−φ(x)||2||θ ||2 +Vπ(x)

= dπ(x,y)ℓ+Vπ(x)

(D.9)

|Vπ(y)−V̂π(y)|= |Vπ(y)−Vπ(x)+Vπ(x)−V̂π(y)|

≤ |Vπ(y)−Vπ(x)|+ |Vπ(x)−V̂π(y)|

= |Vπ(y)−Vπ(x)|+ |φ(x)T
θ − φ̂(y)T

θ |

≤ cdπ(x,y)+ ||φ(x)− φ̂(y)||2||θ ||2

≤ cdπ(x,y)+dπ(x,y)ℓ

= (c+ ℓ)dπ(x,y)

(D.10)
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