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Abstract 

Models that can effectively represent structured Electronic Healthcare Records (EHR) are central to an increasing 
range of applications in healthcare. Due to the sequential nature of health data, Recurrent Neural Networks have 
emerged as the dominant component within state-of-the-art architectures. The signature transform represents an 
alternative modelling paradigm for sequential data. This transform provides a non-learnt approach to creating a fixed 
vector representation of temporal features and has shown strong performances across an increasing number of 
domains, including medical data. However, the signature method has not yet been applied to structured EHR data. To 
this end, we follow recent work that enables the signature to be used as a differentiable layer within a neural archi-
tecture enabling application in high dimensional domains where calculation would have previously been intractable. 
Using a heart failure prediction task as an exemplar, we provide an empirical evaluation of different variations of the 
signature method and compare against state-of-the-art baselines. This first application of neural-signature methods in 
real-world healthcare data shows a competitive performance when compared to strong baselines and thus warrants 
further investigation within the health domain.
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Introduction
Prediction tasks defined on structured EHR data are 
a key focus for applications of Machine Learning in 
Healthcare, with the potential to improve patient out-
comes through faster and more accurate diagnoses. Due 
to the rapidly increasing quantity and availability of EHR 
data, methods in deep learning are increasingly being 
utilised to model the complex interactions in a range of 
healthcare related predictive tasks. Due to the sequential 
nature of EHR data, RNNs have emerged as a key compo-
nent in many recent state of the art methods. This paper 
introduces signature methods as a theoretically well-
grounded method of extracting features from sequential 
structured EHR data. We provide an empirical evaluation 

of signature methods as a novel alternative to RNNs for 
disease prediction using data collected during routine 
healthcare encounters.

The signature transform maps a path (for example a 
time series) onto an infinite sequence of summary statis-
tics. It is known that these terms completely characterise 
the path (up to translation) and that any function on the 
path can be modelled arbitrarily well by a linear function 
on the signature [21, 34]. In a machine learning context, 
this makes the signature a useful feature set with which 
to learn from. The signature has been successful across 
a range of predictive tasks involving time series data 
[37] in particular in the medical domain [38]. However, 
the signature method has not yet been applied to struc-
ture EHR data, most likely due to its high dimensionality 
posing computational challenges. To this end, we follow 
recent work that enables the signature to be used as a 
differentiable layer within a neural architecture enabling 
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application in high dimensional domains where calcula-
tion would have previously been intractable [7].

In this paper we perform an empirical evaluation of sig-
nature methods as a novel alternative to RNNs for dis-
ease prediction using EHR data. We create a 90 day HF 
prediction task with data from the UK Biobank [9] to 
compare neural-signature models with various augmen-
tations against RNN and bag of words baselines. The key 
results can be summarised as follows:

•	 Neural-signature methods are able to produce a 
competitive predictive performance when compared 
to RNN models, returning results over two separate 
corpora and metrics within one standard deviation

•	 Log-signature and lead-lag variants improve results 
from those similar to basic bag of words models to 
those comparable with RNNs

•	 Adding time-augmentations does not significantly 
effect model performance for both neural-signature 
and RNN models

Related work
The methods previously used to address temporality in 
EHR can be roughly separated into three main areas;

Discretization This consists of splitting the continuous-
time variables into discrete bins. Features are then calcu-
lated from the sub-sequences within each time period. 
For categorical data, the most common approach is to 
count the number of events.

Neural approaches Neural network approaches attempt 
to automatically learn a feature set that best describes the 
underlying data for a specific prediction task. [41] and 
[12] applied RNN variants to find results that reported 
improved performance over existing state-of-the-art 
methods.

RNN variants continue to play a role in more recent 
papers [1, 13, 14, 20, 35, 42, 47, 51]. Modifications include 
using bidirectional RNNs to reduce steps between 
dependencies, attention mechanisms to improve inter-
pretability, facilitate combining with Convolutional Neu-
ral Network (CNN) models, and improved embeddings 
for visits with graph-based attention models. In all such 
papers, RNNs are used to handle the sequential aspect of 
structured EHR.

While it is clear that RNNs perform comparatively well 
in deep learning applications, an alternative set of meth-
ods is also worth discussing.

Sequential feature extraction This encompasses meth-
ods that are able to extract flat features from sequential 
data while retaining information relating to ordering. 
Despite being more popular in higher frequency data 
modalities such as streams data, previous works using 

structure EHR have explored; shapelets [52] and sym-
bolic aggregate approximation [4] for adverse drug reac-
tion prediction. More broadly, this includes methods 
such as the discrete Fourier transformation [43].

It is this category that signature methods can be con-
sidered to belong. A key advantage of signature meth-
ods is a strong theoretical groundwork showing the 
signatures usefulness in non-parametric hypothesis test-
ing [11] and algebraic geometry [40]. Machine learning 
applications have also been demonstrated in a grow-
ing variety of domains [10] including: healthcare [3, 27, 
28, 38], finance [24, 39], action recognition [32, 49] and 
hand-writing recognition [50].

Data preprocessing and cohort
The UK Biobank [9] is a national population-based study 
comprising of 502,629 individuals. We extract a retro-
spective heart failure (HF) cohort using the same meth-
odology as [19] which uses the previously-validated 
phenotyping algorithm in the CALIBER resource [18].

To form the sequential input data required for our pre-
dictive model, we extract primary and secondary diag-
nosis terms (ICD10), procedure terms (OPCS4) and, 
timestamps (“epistart”) from the UK Biobank inpatient 
dataset. Patient events are extracted with a buffer period 
of 90 days before HF diagnosis (for controls this is the 
HF diagnosis of its matched case) to exclude highly cor-
related events such as end of life care [29]. Events that 
occur at the same time are randomly ordered.

We create two separate corpora for each patient: 
PRIMDX is a corpus that only contains primary diagno-
sis terms, and PRIMDX-SECDX-PROC also includes sec-
ondary diagnoses and procedure terms. Since the number 
of events in each sequence is greater for the PRIMDX-
SECDX-PROC cohort, this allows us to compare each 
of our methods’ ability to handle longer sequences with 
more complex and redundant information.

In Table 1 we provide a breakdown of the demographics 
of the matched cohort used in this study. In Appendix A 
we provide further details on the HF cohort extracted 
and the tokenization process of healthcare terms.

Methods
Let each patient record be denoted by the path 
x = (x1t , . . . , x

d
t ) , where each value xit is real-valued and 

parameterised by t ∈ [0,T ].
Our objective is to classify each sequence with a binary 

variable which indicates whether the patient will develop 
heart failure within 90 days. The dimension of the path, 
d, is be determined by the maximum number of unique 
tokens as we represent each token with a one-hot-vector, 
such that only the dimension corresponding with the 
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index of the vocabulary is one and with zeros everywhere 
else.

Signature methods
The definition of the signature transform is as follows.

Let T > 0 and 0 < t1 < t2 < · · · < tn−1 < tn = T  . Let 
fx = (f 1x , . . . , f

d
x ) : [0,T ] → R

d be the unique continuous 
function such that fx(ti) = xi and is affine on the inter-
vals between them. The signature is the infinite collection 
of iterated integrals

The form of the signature in Eq. 1 can be broken down 
to help give the reader a better understanding as done 
in [10]. We can start by simplifying to a single index 
i ∈ {1, . . . , d} . This reduces Eq. 1 to

As this is a single integral and f is affine, the equation 
simply resolves to the increment of i-th coordinate of the 
path

The double-interated integral considers any pair of coor-
dinates i, j ∈ {1, . . . , d} such that

(1)

Sig(x) =

· · ·

0<t1<···<tk<T

k

j=1

df ij

dt
(tj)dtj

1≤i1,...,ik≤d 1≤k

.

(2)Sig(x)i =

∫

0<t<T

df i

dt
(t)dt.

(3)Sig(x)i = xiT − xi0.

(4)Sig(x)i,j =

∫

0<t<T
Sig(x)i

df i

dt
(t)dt

(5)=

∫

0<t1<t2<T

df i

dt1
(t1)dt1

df j

dt2
(t2)dt2

where we have used Eq.  2 and replaced t to denote the 
integration limits as

Notice that the integration limits in Eq. 6 correspond to 
the integration over a triangle. Going further this process 
can continue recursively and be interpreted as integrat-
ing over an increasingly high dimensional simplex. This 
real number is known as the k-fold iterated integral seen 
in Eq. 1

where the superscripts are members of the set

We can further simplify this form and remove the need 
for the integral when we consider the path as a series of 
linear segments in a piecewise linear path. For a single 
segment the signature can be expressed by the product of 
its increment

To calculate each signature term of the full path, we can 
use Chen’s Identity, which states that the signature of the 
entire path can be calculated from the signatures of its 
segments [30]

(6)a < t1 < t2 < T =

{

0 < t1 < t2
0 < t2 < T

(7)Sig(x)ii ,...,ik =

∫

0<t<T
Sig(x)i1,...,ik−1

df ik

dt
(t)dt

(8)=

∫

· · ·

∫

0<t1<···<tk<T

k
∏

j=1

df ij

dt
(tj)dtj

(9)1, . . . , k ∈ {1, . . . , d}.

(10)Sig(x)
i1,...,ik
t,t+1 =

1

k!

k
∏

j=1

(x
ij
t+1 − x

ij
t ).

(11)Sig(x)
i1,...,ik
0,T =

k
∑

j=0

Sig(x)
i1,...,ij
0,t Sig(x)

i1,...,ik
t,T .

Table 1  A summary of the cohort used for HF prediction experiments

HF Controls Total

# patients 5722 51,498 57,220

PRIMDX # events 48,779 188,893 237,672

Average # events per patient 8.52 3.67 4.15

Unique tokens – – 2147

PRIMDX-SECDX-PROC # events 184,036 616,066 800,102

Average # events per patient 32.16 11.96 13.98

Unique tokens – – 6235
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Using the signature as an infinite series in a machine 
learning pipeline would not be tractable. Instead, it 
is common to truncate the series to the k-th level, 
this is also known as the depth of the signature. This 
results in the finite collection of terms Sig(x)i1,...,ik 
where the multi-index is restricted to length N. For 
example a signature of depth 1 is the collection of 
d real numbers Sig(x)1, . . . , Sig(x)d and a signature 
of depth 2 is the collection of d + d2 real numbers 
Sig(x)1, . . . , Sig(x)d , Sig1,1, . . . , Sig(x)d,d.

The number of terms τ , for any truncated signature of 
order N of a d-dimensional path, where d ≥ 1 , is the geo-
metric series:

For structured EHR data with hundreds or thousands 
of unique terms, this poses a significant computational 
issue. In the next section, we highlight a number of vari-
ations that can be used to encourage information into 
lower order signature terms.

In Appendix  B, we provide a further breakdown of 
the definitions provided here and explore an example 
in toy data to show how the signature terms describe 
sequential data. Theoretically, the signature terms are 
proven to uniquely describe any path up to transla-
tions (Proposition 1) and act as a universal non-linearity 
(Proposition 2). This latter property is shared with neural 
networks and allows us to reduce potentially complicated 
non-linear relationships between variables into linear 
ones.

Signature variations
There is a body of variations on the standard signa-
ture transform that have been developed. Each can tai-
lor the properties of the signature to be more suited 
for a certain task. [37] provides an overview of possi-
ble variations of the signature together with an empiri-
cal evaluation on streams data. Given the substantially 

(12)τ =

N
∑

k=0

dk =
dN+1 − 1

d − 1

greater dimensionality of structured EHR data, we 
restrict our investigation to the augmentations in Table 3 
and the log-signature (Table 2).

Augmentations
An augmentation considers transforming our sequence of 
patient events x ∈ R

d into one or several new sequences, 
p, whilst potentially changing the dimensionality of each 
path to a. In general, this can be described by the map

The time augmentation consists of the concatenation 
of an extra dimension. As shown in Proposition  1, this 
can be used in the absence of any actual timestamps by 
simply using the index of the event in the sequence. In 
both cases, this removes the property of time-parame-
terisation invariance of the signature [31]. We also inves-
tigate applying actual time differences from prediction 
date to account for the irregularly sampled nature of the 
data. We follow [1] by applying the parameterised scaling 
function, f (�T ) = Tscalelog(�T ) capped a maximum 
Tmax . Tscale and Tmax control extreme time-deltas and are 
optimised as hyperparameters.

The basepoint [25] is used to remove the property of 
translational invariance. This property means that the 
signature of two paths separated by a constant transla-
tion will be the same. The basepoint also has a significant 
advantage for our pipeline as ∼ 20% of pathways in the 
dataset used in this study have only a single event. Base-
point introduces an origin point at the start of each path 
and thus ensures each path has at least two points which 
is a requirement for calculating the signature.

The lead-lag augmentation [10, 22] adds shifted cop-
ies of the path as new coordinates. This augmentation 
explicitly captures the quadratic variation of the under-
lying process, an important concept for our data where 
the co-variance between medical concepts is known to be 
highly important to the underlying pathology of disease 
[16, 42]. A lag of a single timestep is described by the fol-
lowing augmentation

The learnt projection can be described by the affine 
transformation or embedding, θA ∈ R

a×d , such that

This reduces the dimensionality of the path to make the 
calculation of the signature tractable.

(13)φ : S(Rd) → S(Ra)p.

(14)
φ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xt , xt)) ∈ S(R2d).

(15)φ(x) = (θAx1, θAx2, . . . , θAxn) ∈ S(Ra).

Table 2  Summary of augmentations

Augmentation a p Length

Time d + 1 1 n

Basepoint d 1 n+ 1

Lead-lag 2d 1 2n

Learnt projections a p n
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The log‑signature
The log-signature corresponds with taking the formal 
logarithm of the signature in the algebra of formal power 
series [10]. Both the signature and its logarithm uniquely 
define a path (Proposition 1) but the log-signature does 
not hold the same universality property (Proposition  2) 
[32]. The log-signature maps to a smaller number of 
terms at each truncation level determined by Witt’s for-
mula, which is shown in Appendix  B.3.2 along with an 
example.

Deep signatures
For the affine transformations discussed in Equation 15, 
we briefly described a learning process. As detailed in 
recent works from [7], it is possible to train the affine 
transformations together with the signature transform 
through an end-to-end neural network architecture. 
Here, the signature acts as a non-parametric pooling 
function able to extract provably useful information from 
sequential data.

It is possible to calculate the gradient needed in this 
method as the signature can be formulated as a calcula-
tion tree of differentiable operations [25, 45].

The generalised function of the neural-signature model 
used in this work can be written as

where we have denoted that the learnt parameters as the 
weights of a fully connected neural network classifier θfc 
and elements of the affine transformation augmentation 
θA . The sigmoid function is used to map the output acti-
vation to a [0,1] score.

(16)f (x;�) = σ

(

(gθfc ◦ SigN ◦ φθA)(x)
)

Experiments
As baselines, we consider a bag of words model with 
logistic regression as a commonly used most basic model, 
along with a GRU model, which is comparable with the 
state of the art RETAIN [14, 48]. We also include a GRU 
variation that incorporates the time delta augmentation.

Additionally, we consider the following signature mod-
els: the standard signature (S) provides the baseline for 
further variations, the log-signature (LS) removes the 
universality property (the fully connected neural network 
classifier still guarantees this overall) but greatly reduces 
the number of signature terms, the lead-lag (LL) aug-
mentation encourages information about the quadratic 
variation into lower-order signature terms, the add time 
index augmentation (ATI) provides sensitivity to param-
eterization, the time delta (ATD) version goes further to 
account for non-uniform sampling rates. We limited the 
exploration on augmentations to the above after initial 
testing on validation data found the leag-lag augmenta-
tion to be most influential.

We use two metrics for evaluation; area under the 
receiver operator curve (AUROC) and area under the 
precision-recall curve (AUPRC).

Previous studies have shown that the AUROC can pro-
vide misleading results when there is considerable data 
imbalance, mainly if the number of negative examples 
is high, and we have a preference for identifying true 
positive examples [46]. This issue exists in our task due 
to the 1:9 case-control split and the increased benefit of 
correctly identifying HF cases over correctly identify-
ing controls. The result of this class imbalance can cause 
AUROC to become inflated due to a high number of 
true negative cases. AUPRC is an alternative metric that 

φA

Embedding

Tokenize
Case

Controls
SigN or
fθgru

Encoder

gθfc

Classifier

σ

Predictions
Preprocessing

Model

Case Controls: Identifying matched Heart Failure cases and controls (Section 3 and Ap-
pendix A).
Tokenize: Extract prior medical history using ICD10 terms and apply NLP tokenization with
corpus tags (Appendix A.1).
Embedding: Apply augmentations to reduce dimensionality from one-hot encoding (Sec-
tion 4.2.1).
Encoder: Extract sequential features using signature transform or GRU (Section 4.1).
Classifier and Predictions: Apply fully connected neural network as a prediction head (Sec-
tion C.2).

Fig. 1  Overall experiment pipeline
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captures the trade-off between precision and recall. Cru-
cially, it ignores the number of true negatives allowing 
changes in performance to be seen without being diluted 
as in AUROC.

The signature variations explored are summarised 
together with the baselines in Table 3. Common to each 
model is the architecture shown in Fig. 1. Further details 
on implementation, including initialisation, activation 
functions, optimisation, hyperparameters, regularisation, 
and other such related details are found in Appendix C.

Results
From Table 4, we observe similar predictive performance 
across signature models using lead-lag augmentations 
and GRU models over all corpora, with all metrics from 
the two sets of models remaining within one standard 

deviation of performance seen on the validation data. 
All models perform the same or better on the larger 
PRIMDX-SECDX-PROC cohort, but more complex 
models gain a more significant benefit from the added 
data.

The addition of time augmentations does not show a 
consistent improvement in performance over just apply-
ing the lead-lag augmentation, and there is no consistent 
difference between adding a time index and time delta. 
Increasing the depth of the signature to three also shows 
no significant increase in performance. Signature models 
perform similar to the bag of words baselines without the 
lead-lag transform.

Data ablation study
Our final set of experiments evaluates how the models 
perform as the volume of data is reduced. For the data 
ablation study, each trial randomly samples a propor-
tion of the training and validation dataset. For each pro-
portion a new set of hyperparameters is found for each 
model.

The model parameters and hyperparameters are 
trained using 5-fold cross validation on the sub-sample 
while the remaining data is unused. The ablation study 
test data remains the same as the main experiment.

Again, results are broadly similar for both models 
except for three points where the two models produce 
performance outside of one standard deviation of vali-
dation performance. Notably, at 20% data ablation for 
AUPRC, the signature model has a 21.0% higher score 
with 0.283 versus 0.237 for the GRU. Overall, both mod-
els’ performance begins to saturate at ∼ 20% for both 
metrics, and the results show no conclusive trend as to 
which model performs best as the amount of training 
data is reduced.

Table 3  Sequential models compared

Variants Description

S
2 Standard Signature with depth 2

LS
2 Log-signature—a condensed form of the signature

LS
2 + LL LS with lead-lag augmentation—extracts quadratic 

variation

LS
2 + LL+ ATI LS + LL with time index—removes time reparameteri-

sation invariance

LS
2 + LL+ ATD LS + LL with time delta—accounts for non-uniform 

sampling rate

LS
3 + LL+ ATD Increased truncation depth—more complex, sequen-

tial features

BoW OH LR Most basic model with one-hot bagging and logistic 
regression

GRU​ Baseline gated recurrent unit sequential model

GRU + ATD Takes into account time differences

Table 4  Best performing models maximised for AUROC during hyperparameter optimisation

Highest performing models in bold

Performance metrics evaluated on the test dataset with ±1 standard deviation calculated from cross validation scores

PRIMDX PRIMDX-SECDX-PROC

Model AUROC AUPRC # Params AUROC AUPRC # Params

S
2 0.682 ± 0.011 0.211 ± 0.015 525,296 0.695± 0.005 0.247 ± 0.003 258,098

LS
2 0.687 ± 0.005 0.248 ± 0.014 637,906 0.704 ± 0.011 0.245 ± 0.019 167,101

LS
2 + LL 0.703 ± 0.007 0.241 ± 0.005 216,404 0.728 ± 0.011 0.300 ± 0.014 592,528

LS
2 + LL+ ATI 0.700 ± 0.009 0.249 ± 0.018 864,817 0.724 ± 0.007 0.303 ± 0.009 545,474

LS
2 + LL+ ATD 0.695 ± 0.013 0.254 ± 0.014 596,364 0.730 ± 0.008 0.304 ± 0.009 1,504,205

LS
3 + LL+ ATD 0.698 ± 0.007 0.244 ± 0.017 7,015,643 0.734 ± 0.008 0.300 ± 0.009 4,037,181

BoW OH LR 0.699 ± 0.007 0.252 ± 0.006 – 0.690 ± 0.015 0.300 ± 0.015 –

GRU​ 0.701 ± 0.009 0.241 ± 0.007 795,390 0.731 ± 0.008 0.293 ± 0.017 415,892

GRU + ATD 0.710 ± 0.010 0.275 ± 0.012 668,997 0.733 ± 0.008 0.309 ± 0.012 489,151
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Discussion
Given the properties that the two methods share these 
results might not come as a surprise. However, without 
the lead-lag augmentation the performance of the signa-
ture models drop significantly. This confirms the prior 
belief that the quadratic variance of the path plays an 
important role in structured EHR HF prediction. This 
could correspond with encouraging features that describe 
changing comorbidities to be present in the lower order 
terms of the signature.

For the data ablation study, we expected the signature 
model to outperform the GRU baseline however, results 
for both methods are similar. Our prior hypothesis was 
partly motivated by the success of signature methods in 
previous shallow machine learning tasks [38]. A key dif-
ference in our task could be the high dimensionality and 
reliance on embeddings to make the signature tractable. 
The need to train these embeddings is likely data-inten-
sive but could benefit from initialisation using pretrained 
word2vec embeddings as has been shown for RNNs [12].

Comparison to previous literature
Comparing the results in this paper directly to previous 
work is challenging due to the use of different underlying 
study designs, populations, and incomplete definitions 
of cohorts and outcomes [17]. We note that previous 
works investigating sequential models for predicting HF 
on structured EHR data have found greater performance 
[14, 44, 48]. In particular, these works also show a more 
significant performance difference between bag of words 
baselines and RNN based architectures. Again, differ-
ences in the features and data sources used make com-
parisons difficult. For example, we could compare against 
Solares et  al. [48], which also uses data from a multi-
center UK EHR data source and achieves 0.951 AUROC 
using the RNN based model RETAIN. However, we must 
consider that the authors also include primary care and 
demographics data, which could influence prediction 
performance independent of model choice. The large 
US multi-center study by [44] show RETAIN achieving 
a more comparable AUROC of 0.769 on US healthcare 
care with a balanced cohort with 14,500 cases and with 
only diagnosis codes provided for as prediction input. 
The same model achieved an AUROC of 0.822 when 
trained and tested on the full cohort of 152,790 cases and 
1,152,517 controls with diagnoses, demographic, medica-
tion, and surgery data.

In this work, we have restricted our work to predic-
tion on high dimensional structured EHR data. Signature 
methods have shown success in related health prediction 
applications but with lower dimensional, high frequency 
data domains including: mood ratings for Bipolar and 

Borderline Personality Disorder [3], brain imaging data 
for Alzheimer’s disease [36] and physiological data for 
Sepsis prediction [38]. Future work could look to expand 
signature method applications within similar domains 
such as ECG signals diagnosis [6] and prediction systems 
for biogas production [8].

Conclusion
Given the prevalence of RNNs in current structured 
EHR architectures, any improvement in this fundamen-
tal component is likely to influence future work signifi-
cantly. A substantial body of theory motivates the use of 
signature transforms to represent sequential data, and 
previous works have shown them to have strong empiri-
cal performance. In particular, recent works on neural-
signature architectures have enabled their applications 
on high-dimensional data.

This work is the first to show that neural-signature 
methods with dimensional reduction before the trans-
form are competitive on high dimensional structured 
EHR data. Using an HF prediction task, we evaluated the 
signature transforms as an alternative to RNNs that pro-
vide a predictive and compact representation of sequen-
tial structured EHR data. We show that the signature 
achieves comparable performance to RNNs and that 
the performance of both models saturates with a similar 
number of training examples. While the signature origi-
nates from perhaps abstract theory, empirically, it can 
successfully compete with the current state-of-the-art 
architectures.

Appendix A: Cohort
The HF cohort excludes patients with: self-reported prev-
alent HF cases, those who died during the study period, 
heart failure diagnoses outside the study period between 
1997 and 2015. The cases are matched to controls on 
assessment center, year of recruitment, sex, and year of 
birth. Controls use an index date that is assigned to the 
date of HF diagnosis for its matched case. We randomly 
sampled the total potential control population of 496,892 
with the above matching criteria to create a cohort with 
a ratio of 1:9 cases to controls. This resulted in 5722 
cases and 51,498 controls, where 15 cases could not be 
matched.

A.1 Tokenization
We follow a similar practice to NLP tokenization, using 
tags to identify whether a code comes from a particular 
corpus. This allows us to distinguish between primary 
and secondary codes with the same ICD10 term and 
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introduce additional tokens to indicate if there is no data 
present. The tokenization process also applies two meas-
ures to reduce the vocabulary size; limit the length of all 
terms to 4 characters and a minimum count of 5. This is 
possible because many ICD10 and OPCS contain exten-
sion codes or additional sub-chapter codes which are not 
commonly used across healthcare providers and often 
contain details that indicate minor differences between 
terms. The tokenizer vocabulary is fitted on the train-
ing data, and any subsequent code that is not present in 
the vocabulary is assigned an out-of-vocabulary token in 
place.

Appendix B: Signature methods
B.1 A geometric intuition and exploration in toy data
Previously in Eq. 3 we showed that the first level resolves 
to the increment of a path in a single dimension. It is 
also possible to find a geometric interpretation for 2nd 
level terms in Eq. 2. For 2nd level terms where i = j we 
find Sig(x)i,j = (xiT − xi0)

2/2 which is simply the area of 
a triangle sided with the increment in the coordinate. If 
i  = j then Sig(x)i,j = (xiT − x

j
0)

2/2 . Another geometric 
comparison can be made here by considering the Lévy 
area, which is the signed area shown in Fig. 2. This area 
illustrates the 2nd order terms through the following 
equation

The Fig.  2 can be related to our task if we consider the 
line (path 2) and its cord (path 1) to be two separate 
patient pathways with three unique events (1,2,3), but for 
path 2 the order of events 1 and 2 are swapped. When 
classifying a patient pathway with an HF prediction, the 
order of events may hold vital information. However, 
when we calculate the terms of the signature in Table 5, 
we see that the two paths are only separable when taking 
a signature of depth 3.

Taking the geometric interpretation to higher orders 
becomes more complicated, but for additional interpreta-
ble relations, we refer the reader to [10] which expands on 
the ideas here to include relations to statistic moments. 
It is clear that these signature terms are extracting infor-
mation about the order and that higher-order signature 
terms can be used to discriminate different paths better. 
It is also possible to observe how the terms of the signa-
ture change by drawing a path using an online tool1.

B.2 Key properties and caveats for signature methods
A natural extension to our toy example would be to ask 
if the signature can be used to discriminate between any 
path. In fact, it has been shown that a path is essentially 
defined by its signature and that almost no information 
is lost. There are two key properties of the signature that 
make its use interesting for path-like data.

Proposition 1  (Uniqueness of signature [23]). Given 
x = (x1, . . . , xn) then the map x → Sig∞((1, x1), (2, x2),

. . . , (x, xn)) uniquely determines x up to translations.

For the purpose of this statement we have introduced 
the two concepts of time-augmenting a path and of 

(17)Alevy =
1

2
(Sig(x)1,2.− Sig(x)2,1).

Fig. 2  A plot of two event paths with path 1 also being the chord 
that joins the two end points of path 2. The Levy area is negative 
above the chord and positive above

Table 5  Signature terms up the 3rd level for the paths in Fig. 2

Sig Terms Path 1 Path 2 Different?

(1,) 3 3 FALSE

(2,) 3 3 FALSE

(1, 1) 4.5 4.5 FALSE

(1, 2) 4.5 4.5 FALSE

(2, 1) 4.5 4.5 FALSE

(2,2) 4.5 4.5 FALSE

(1, 1, 1) 4.5 4.5 FALSE

(1, 1, 2) 4.5 4 TRUE

(1, 2, 1) 4.5 5.5 TRUE

(1, 2, 2) 4.5 5.5 TRUE

(2, 1, 1) 4.5 4 TRUE

(2, 1, 2) 4.5 2.5 TRUE

(2, 2, 1) 4.5 5.5 TRUE

(2, 2, 2) 4.5 4.5 FALSE

1  http://​imano​lperez.​pytho​nanyw​here.​com/

http://imanolperez.pythonanywhere.com/
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translational invariance. Both of which will be expanded 
on in Section B.3.

Proposition 2  (Universal non-linearity [39]) Let F be a 
real-valued continuous function on continuous piecewise 
smooth paths in Rd and K be a compact set of such paths. 
Furthermore assume that x0 = 0 for all x ∈ K . (To remove 
the translational invariance.) Let ǫ > 0 . Then there exists 
a linear functional L such that for all x ∈ K

In other words, we know that we can find a linear func-
tion that when applied to the signature of a path can 
approximate any function applied to that same path. 
This powerful property is shared with neural network 
approaches and allows us to reduce potentially compli-
cated non-linear relationships between variables into the 
linear ones.

We refer the interested reader to Appendix A of [7] for 
an expanded summary.

B.3 Variations on the signature transform
There is a growing body of variations on the standard 
signature transform that have been developed. Each can 
tailor the properties of the signature to be more suited 
for a certain task. [37] gives an overview of the variations 
on the signature transform and proposes a generalised 
framework for extracting signature features for time-
series data.

Here we have introduced a number of new terms. Each 
of which will be explained in more detail and discussed 
in relation to our data. Briefly; φ is known as an augmen-
tation, W describes a windowing operation, ρ describes 
a re-scaling operation both pre and post calculating the 
signature. Finally, SigN represents either the now famil-
iar signature operation up to depth N or the log-signature 
variation, which will be introduced later in this section. 
The indices (i, j) refer to the signature terms of windowed 
operations, with yi,j,k reducing to the more familiar sig-
nature terms up to level k, yk , when a global window is 
used. For our work, we will focus on only two aspects of 
this generalised framework, augmentations and the log-
signature, leaving the exploration of the additional steps 
to future work.

B.3.1 Augmentation
An augmentation considers transforming our sequence of 
patient events x ∈ R

d into one or several new sequences, 

(18)|F(x)− L(Sig(x)| < ǫ.

(19)yi,j,k = (ρpost ◦ Sig
N ◦ ρpre ◦W

i,j ◦ φk)(x).

p, whilst potentially changing each paths dimensionality 
to a. In general this can be described by the map

There are a number of different augmentations that have 
been used for continuous time series data.

The augmentations in Table  2 are broadly separated 
in two categories. Fixed augmentations consider using 
a transformation that does not vary after initialisa-
tion and learnt augmentations which include learnable 
parameter weights that are trained as part of the model 
fitting process. We start by explaining the two previ-
ously mentioned augmentations, time and basepoint 
augmentations.

The time augmentation is the addition of an extra 
dimension that is dependant on the order of the 
sequence. As shown in Proposition 1, this can be used in 
the absence of any actual timestamps by simply using the 
index of the event in the sequence

or if timestamps are available

In both cases this removes the property of time-parame-
terisation invariance of the signature [31]. Meaning that 
without time augmentation the signature only encodes 
the order in which events arrive and does not consider 
the when event arrives. This could potentially be a sig-
nificant factor for our task. For example, consider two 
patient records of the same sequence of HF related 
inpatient admissions, if in one sequence the frequency 
of these admission was much higher it might suggest a 
increased disease progression. Using the actual times-
tamps allows the signature to account for the irregularly 
sampled nature of the data.

The basepoint [25] and invisibility augmentations [49] 
are both created with the goal of removing the property 
of translational invariance. This says that the signature 
of two paths separated by a constant translation will be 
the same. In [37] a comparison shows that the invisibil-
ity augmentation has essentially the same performance 
as the basepoint but increases the dimensionality of the 
path, which is of concern since the signature scales with 
O(dN ) as seen in Eq. 12. The basepoint also has a signifi-
cant advantage for our pipeline as ∼ 20% of pathways in 
the dataset used in this study have only a single event. 
Basepoint introduces an origin point at the start of each 
path and thus ensures each path has at least two points 
which is a requirement for calculating the signature.

(20)φ : S(Rd) → S(Ra)p.

(21)φ(x) =
(

(1, x1), . . . , (n, xn)
)

∈ S(Rd+1)

(22)φt(x) =
(

(t1, x1), . . . , (tn, xn)
)

∈ S(Rd+1).
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The lead-lag augmentation [10, 22] adds shifted copies of 
the path as new coordinates. This explicitly captures the 
quadratic variation of the underlying process, an impor-
tant concept for our data where the co-variance between 
medical concepts or otherwise described as comorbidi-
ties, are known be highly important to the underlying 
pathology of disease [16, 42]. A lag of a single timestep is 
described by the following augmentation

Lead-lag comes at a high cost as the dimensionality and 
length of the path is doubled. The remaining augmenta-
tions provide a potential remedy for this as they propose 
reducing the dimensionality the path before calculating 
the signature. We only consider stream-preserving neural 
networks that take one projection, p, as the dimensional-
ity of our paths is orders of magnitude higher than that 
considered in [37].

stream-preserving neural networks have also been 
used as an initial stage in previous literature on struc-
tured EHR data HF prediction tasks and provide a strong 
basis for comparison [15, 19, 48]. In its most basic form, 
a stream preserving neural network can be created by 
introducing a learnable affine transformation, θA ∈ R

a×d , 
such that

B.3.2 The log‑signature
The log-signature is a compressed version of the sig-
nature that only retains the Lyndon words of the index 
series [2]. As an example, we show the terms of the log 
signature up to depth 2 as

Here we can notice that the 2nd order terms of the log 
signature directly correspond with the Lévy area in 
Equation 17.

The number of terms in this more compact form of the 
signature can be generalised with the following.

Proposition 3  The number of terms of the truncated 
log-signature τlog , of order N of a d-dimensional path, 
where d ≥ 1 is given by Witt’s formula [33]

(23)φt(x) = (0, x1, . . . , xn) ∈ S(Rd).

(24)
φ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

(25)

log Sig2(x) =
(

1, Sig(x)1, . . . , Sig(x)d ,

1

2

(

Sig(x)1,2 − Sig(x)2,1
)

, . . . ,

1

2

(

Sig(x)1,d − Sig(x)d,1
)

, . . . ,

1

2

(

Sig(x)d−1,d − Sig(x)d,d−1
)

)

where µ is the Möbus function.

This results in almost a third of the output signature 
terms when calculating the signature for a path with 
d = 50 at depth 3 ( τlog = 42, 925 vs. τ = 127, 550).

Appendix C: Experiments
C.1 Augmentations
After tokenization, we project the sequence into a lower-
dimensional representation with an embedding, which is 
the learnable affine transformation we describe in Equa-
tion 15. For neural-signature and GRU baselines, this is 
initialized with a Xavier distribution and trained in an 
end-to-end fashion and updated during gradient descent.

We experiment with applying different combinations 
of previously discussed augmentations: lead-lag, index, 
or time delta parameterization. If both lead-lag and time 
parameterization are applied, then time parameteriza-
tion is always done first, such that φ(x) ∈ R

2(a+1) . This 
sequence of embedded codes is used as input to the 
encoder stage.

C.2 Classifier
Dropout is applied to the outputs of fully connected 
hidden layers and determined by hyperparameter 
optimization.

The bag of words models use a logistic regression clas-
sifier with the sklearn implementation of L-BFGS-B and 
L2 regularisation.

C.3 Implementation
The experiments were implemented using: PyTorch and 
Signatory [25]. Models were trained on various GPU 
cards available through the UCL Department of Com-
puter Science High Performance Computing Cluster, 
using distributed asynchronous hyperparameter optimi-
zation and MongoDB. Code used for the project, includ-
ing full details on hyperparameter bounds are available at 
https://​github.​com/​andre-​vauve​lle/​doctor-​signa​ture.

C.4 Training and validation schema
All models are trained by minimizing binary cross-
entropy loss with Adam [26]. We also stop training after 
five epochs if validation loss does not improve. The best 
model is then taken for evaluation on the test dataset.

Nested cross validation is used to evaluate our models 
and baselines. The data is split into training, validation, 

(26)τlog = w(d,N ) =

N
∑

k=1

1

k

∑

i|k

µ

(

k

i

)

di

https://github.com/andre-vauvelle/doctor-signature
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and held-out test sets with a 90% training and valida-
tion, 10% test data split. Training and validation sets are 
used in an inner loop with 5-fold cross validation to train 
model hyperparameters. Each fold is stratified such that 
we preserve the percentage of samples for each class. We 
use a Bayesian hyperoptimization algorithm, Tree-struc-
tured Parzen Estimator, to reduce the number of evalua-
tions needed. We fix the number of trails for each model 
at 100 [5]. We then select the hyperparameters with the 
highest average AUROC score across a 5-fold. Test data is 
unseen until the final evaluation, where we use it to make 
predictions using models trained with optimal hyperpa-
rameters from the inner validation loop on one fold of 
data.
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