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Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain
states via signal detection theory. Depending on the a priori assumptions about the underlying data, dif-
ferent spatio-temporal features can be analysed. Alternatively, model-based techniques infer features
from the data and compare significance from model parameters. However, to assess transitions from
one brain state to another remains a challenge in current paradigms. Here, we introduce a ‘‘Dynamic
Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation
ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics.
In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain
dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain
dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various
brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical
interventions.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Over the last century, the search for therapeutic strategies to re-
establish mental health has relied on clinical trials. Despite the eth-
ical constraints of human experiments - and in particular of vulner-
able psychiatric populations -, this trial-and-error approach has led
to the discovery of therapies driving transitions from diseased brain
states towards a healthy brain state, using pharmacotherapy, elec-
tromagnetic pulses or even by self-regulating behaviour [1,2]. How-
ever, the efficacy of these strategies remains suboptimal and the
pace of development is slow, mainly due to the high variability of
treatment outcomes and a lack of computational tools to assist in
the design of personalised therapeutic strategies [3].

In neuroimaging,many studies serve to reveal statistically signif-
icant differences in brain activity in different disorders via signal
detection theory, or more colloquially, p-value testing [4,5]. In par-
ticular, the activity recorded with functional Magnetic Resonance
Imaging (fMRI) at rest - a task-free condition - reveals alterations
in spatial and temporal features ofmacroscopic (whole-brain) activ-
ity patterns. More specifically, differences in terms of regional acti-
vations, functional connectivity and fractional occupancy of
dynamic state-based approaches provide quantifiable distinguish-
ing features associated with specific brain disorders [6–8]. Yet, it is
unclear what underlying mechanisms give rise to the observed
differences.

Over the last decade,whole-brainnetworkmodels have served to
investigate possible mechanistic scenarios for the origin of the dif-
ferences detected at the empirical level with interpretations at the
level of changes to the local/global coupling strength, alterations
in the local dynamics (gain modulation/stability of oscillations)
[9–11]. We further elaborate on whole brain computational models
in the section ‘‘Brain networks models”. However, these models
serve mostly to address the pathophysiology of mental disorders
by studying themodel parameter changes and do not aim at finding
causal ways of transiting between various brain states with the con-
sequences for the treatment of disorders.

Here, we propose Dynamic Sensitivity Analysis as a general
framework to make computer-assisted predictions of optimal
stimulation strategies to rebalance spatio-temporal dynamics
between brain states using whole-brain network models. So in this
perspective ‘‘to rebalance” means to drive the brain’s dynamical
repertoire to that of the dynamic range associated with healthy
neurotypical brain states. In the context of Dynamic Sensitivity
Analysis, we would for example consider the brain dynamics to
be re-balanced if they achieve the same statistical distribution of
Probability Metastable Substates (PMS) as the control group / con-
dition. It builds on a paradigm initially proposed by Deco and
colleagues to investigate the brain regions more prone to drive
transition between awake and asleep states [12]. The same
paradigm was recently extended to the clinical context for
treatment-resistant depression, to find the brain regions that work
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in promoting a transition to a target healthy state in responders
but not non-responders to treatment with the psychoactive com-
pound psilocybin [13]. The approach revealed a map of brain
regions that significantly overlaps with the density map of specific
serotonin receptors (5HT2A and 5HT1A) to which psilocybin is
known to bind preferentially [14], corroborating the hypothesis
that the therapeutic effects of psilocybin are linked to a modulation
of the serotonergic system. Another study in the ageing population
of older participants showed region-specific stimulations that
approximate middle-aged population brain dynamics [15]. Being
free from ethical limitations, such in-silico approaches provide
new means to systematically investigate the impact of distinct
stimulation strategies on brain dynamics [16,17] and evaluate their
ability to drive transitions to a desired dynamical brain state [12].
Here, we describe how the framework can be extended to a wide
array of stimulation types, ranging from pharmacological to elec-
tromagnetic (such as TMS, tES and DBS), which can be applied
either at a single focus or distributed across the brain, in order to
mimic realistic interventions and bring about personalised mod-
elling strategies for recovery in various brain disorders.

Here, we focus on brain state transition from the perspective of
Dynamic Sensitivity Analysis. However, related approaches have
been considered. For example, control network theory has been
used to force transitions in large-scale brain networks. In this sce-
nario, different control strategies are used to navigate brain
dynamics from a source to a target brain state [18]. Control theory,
due to its wide ranging applicability in technological, social and
cyberphysical systems across various experimental scenarios, has
received a lot of attention [19,20]. Unlike in Dynamic Sensitivity
Analysis where the focus is on rebalancing the spatio-temporal
brain dynamics, control theory focuses on ‘‘controlling” the tempo-
ral trajectory between various source and target states.
2. Spatio-temporal dynamics of brain states

The contention here is that Dynamic Sensitivity Analysis can be
a useful tool to describe and evaluate strategies to transition
between various brain states. In this direction, an important aspect
is to accurately define what is understood as a brain state. Beha-
viourally, a brain state can be described by the condition in which
an individual is engaged, ranging from a task-free resting state, to
passive music listening or movie watching, or while performing an
attentional or cognitive task, or even sleeping in a given sleep
stage. Altered brain states can be induced by psychoactive drugs,
such as psychedelics, or appear in clinical context due to underly-
ing psychiatric conditions, such as schizophrenia, major depressive
disorder and autism, or neurological diseases such as Alzheimer’s
disease, or disorders of consciousness. Yet, at the biophysical level,
a more objective view is to define a brain state as a dynamical
regime in which the brain - as a collective system - exhibits
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characteristic activity patterns defined in space, time and fre-
quency domains, which are accompanied by characteristic beha-
vioural correlates [21]. This implies that distinct brain states can
be discerned by intrinsic differences in their spatio-temporal
dynamics. Importantly, unlike event-related signals, which consist
in the response functions triggered by a perturbation/stimulus/ta
sk/event, the metrics characterising a brain state are expected to
exhibit stationarity within a brain state.

Over the last century, the neuroimaging community has col-
lected an evermore detailed description of brain activity patterns
associated with distinct brain states. For instance, the slowing
down of oscillations detected with electroencephalography upon
falling asleep is one of the first descriptions of a robust physical
correlate of a brain state transition [22]. More recently, with the
shift of fMRI studies away from event-related responses towards
‘task-free’ recordings, novel features characterising brain states
have been revealed. However, it is to be noted that how complexity
at microscale impacts the assumptions of global brain states sus-
tained in time is not trivial. Using network-based approaches, a
growing literature has shown that brain activity in various brain
states can be described in terms of long-range correlations of
ultra-slow fluctuations (0.01–0.1 Hz) detected in segregated brain
areas, shaping state-specific functional connections and networks
[7,23,24]. Initially, these network-based metrics considered func-
tional connections to remain stable within a brain state, and
henceforth correlations were computed over the longest possible
Fig. 1. Conceptual Overview of Dynamic Sensitivity Analysis A) Descriptive Analysis. T
study groups (example control and patient groups). Dynamics can be described by variou
Dynamics Spectrum or Probability Metastable Substates (PMS). B) Explanatory Analysis
dynamical units in the brain network. Network models can be adjusted to approximate sp
model parameters relating to various brain mechanisms, such as global/local coupling
Relating to different brain mechanisms, these parameters can subsequently be statistica
each brain state. C) Predictive Analysis. The framework of Dynamic Sensitivity Analysis co
between distinct brain states. This framework provides a non-invasive means to evalua
transition from an aberrant brain state to an optimal and healthy brain state.
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observation time within a brain state, which is now termed static
functional connectivity (sFC). Only over the last decade, the tempo-
ral aspects of the brain’s interplay between areas, generally termed
dynamic Functional Connectivity (dFC), have been explored with
various techniques [8,25]. Yet, it is unclear what the best descrip-
tion of the brain’s complex dynamics is. Many methods have been
developed to study dynamic functional connectivity [21]. Often
they can be summarised in terms of quantification of signal inten-
sity or variability of different brain regions, as a temporal trajec-
tory in a landscape of spatial substates and spatio-temporal
graphs [26–28]. Accordingly, various features can be extracted
from these approaches: signal/connectivity diversity in time or
between individual brain regions, a description of time-varying
spatial substates in terms of probability of occurrence, life times
and probability of transitions, and graph theoretical metrics with
temporal dimension. Such rich spatio-temporal description has
been shown to distinguish many brain states (not their transitions)
[29–33] and serves as a first step in the Dynamic Sensitivity Anal-
ysis pipeline (Fig. 1A).

The appropriate choice of spatio-temporal features in any
Dynamical Sensitivity Analysis should consider how reliable and
specific the studied features are. In particular, in clinical settings
the stability of measures across scanning sessions and the ability
to distinguish adequately between subjects is of great importance
[34,35]. In line, fingerprinting based on functional and dynamic
connectomes has shown to be specific and identifiable [36–38].
raditional statistical analysis between empirical fMRI brain recordings of different
s features across space and time, for example Global Brain Connectivity, Functional
. Generative modelling approaches to describe the emergent dynamics of coupled
atio-temporal features of brain dynamics at the individual or group-level by tuning

strength, gain modulation, stability of oscillations or excitatory/inhibitory balance.
lly compared between conditions to obtain model-based features characteristic of
nsists in the systematic investigation of the optimal strategy promoting a transition
te the nonlinear response of distinct perturbation strategies aimed at promoting a
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Furthermore, dynamic descriptions of time varying substates have
shown reliability across scanning sessions and subjects [27]. Addi-
tionally, models fitted to the static FC performed well in terms of
reliability and specificity, especially when enhanced model person-
alisation was considered [39]. In other words, understanding the
reliability and specificity of spatio-temporal features enforces fur-
ther steps of Dynamic Sensitivity Analysis.
3. Brain network models

Theoretical and computational neuroscience aim to develop and
search for mechanistic models that explain the empirical observa-
tions of neural activity recorded across modalities and across
scales [40,41]. Although initially focused on the microscopic scale
of neurons and neuronal pools, there has been a growing interest
in extending computational models of neuronal activity to the
macroscopic whole-brain level in order to address the mechanisms
that give rise to the emergent spatio-temporal whole-brain
dynamics. Given the growing hypothesis that the principles
orchestrating brain activity at the macroscopic scale are related
to interactions of neural activity in the neuroanatomical network,
the general rationale is to use reduced models to mimic the emer-
gent spatio-temporal brain dynamics as an interaction of non-
linear local dynamics, approximating the collective dynamics of
neuronal pools, connected through a network of biologically plau-
sible topology [9–11,42,43]. It is important to note that linear
whole-brain models have also been fitted to the functional MRI sig-
nals, such as multivariate Ornstein-Uhlenbeck process or spatial
autoregressive (SAR) models, with success and sometimes outper-
forming their non-linear counterparts [44–47]. However, there is
growing evidence that they fall short of reproducing the spatio-
temporal features of brain dynamics [48]. Following different
reduction lines, several models have been put forward to simulate
the spontaneous dynamics of brain networks. In general, brain net-
work models consist of a set of coupled differential equations with
assumptions made at the level of neuronal physiology or phe-
nomenological dynamics. Often, the choice of the local model rep-
resenting the dynamics of a brain region depends on an
experimental question at hand and a delicate balance between
modelling of biophysical realism and complexity [39,49]. Specifi-
cally, the local mean field of neuronal activity can be approximated
considering the mean membrane potentials of a population of neu-
rons taking into account the conductance and Nernst potentials of
different ions and/or the ratio between excitatory and inhibitory
neurons [42,50] on one hand, and phenomenological descriptions
of dynamic profiles, such as phase- or phase-amplitude- oscillators
on the other [51,52].

Given the set-up of whole-brain models, there are several fea-
tures one can optimise in order to arrive at a mechanistic interpre-
tation of a brain state (Fig. 1B). Below we provide a brief
description of the main elements of a brain network model, namely
the connectivity structure, the local dynamics, the coupling func-
tions and the heterogeneity, and comment on the implications in
brain network dynamics.
3.1. Connectivity

Different brain regions are connected through a dense network
of axonal projections, which can be captured non-invasively using
tractography algorithms applied to diffusion MRI (dMRI). These
tractograms have been validated through ex-vivo track-tracing in
non-human mammals, and provide a close approximation of the
large-scale wiring diagram of brain structural connectivity - the
Connectome [53,54]. The Connectome serves to define the struc-
tural scaffold of brain network models, with the number of tracts
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detected between a pair of brain regions being used to scale the
relative coupling strength between units in the network. While
the connectome constrains the topology on which the spatio-
temporal dynamics emerge, it remains mostly invariant over the
timescales of brain recordings. From a perspective of brain states,
it is assumed to remain unchanged when a subject transits from
one brain state to another over relatively short time intervals, such
as when falling asleep or entering a psychedelic state, and there-
fore additional model parameters are necessary to explain brain
states and their differences. Still, it is believed that the structural
Connectome may be affected in certain neurological disorders
where structural lesions are detected at the level of white matter
between patients and healthy controls [55,56].

3.2. Local-dynamics

Parameters related to local neuronal dynamics of a brain area -
representing a node in the brain network model - depend on the
type of reduced mesoscopic models chosen for analysis. In bio-
physical models, where the mesoscopic activity emerges from
the balanced interaction between excitatory and inhibitory pools
of neurons (for example the mean field or Wilson-Cowan models),
the coupling weights are tuned to describe the level of influence
different pools of neurons have on each other [57,58]. Similarly,
the gain function transforming the incoming synaptic current into
a firing rate is related to the excitability of neuronal populations
and can be also modulated [59,60]. In phenomenological models
such as the ones describing the oscillatory response of a neuronal
pool, parameters of the local node include the natural frequency
and, when the amplitude dynamics is considered (such as in the
Stuart-Landau equation), a bifurcation parameter can be tuned to
modulate the stability of the oscillations [61,62].

3.3. Coupling functions

The term of how the activity in one node is affected by the activ-
ity in the other nodes is scaled by a global coupling parameter, that
must be tuned at the right balance to replicate the non-steady
dynamics observed in brain activity [50,63]. In addition, the rela-
tive coupling between each pair of units is scaled by the structural
connectome but can also be tuned to fit the directed connectivity
estimates across various brain states, assuming a dynamic compo-
nent modulating the coupling at the synaptic level [46,64]. Beyond
the strength of coupling, another important ingredient in the
model is the interaction function, i.e., how one unit responds to
the activity in the others [65]. Again, different scenarios have been
proposed, ranging from linear diffusive coupling between excita-
tory pools [50], to phase synchronisation between oscillators based
on the Kuramoto model, or even coupling both the amplitude and
the phase of the complex analytic signal [62,63].

3.4. Heterogeneity

Another important aspect of brain organisation is its heteroge-
neous anatomical, histological and cellular properties. Using PET
imaging or distinct MR pulse sequences, studies have shown maps
of heterogeneity in cortical and subcortical regions in terms of neu-
roreceptor density maps [66], gene expression [67], temporal time-
scales [68], myelin content as indexed by T1/T2-weighted MRI sig-
nal [69] and functional connectivity [70]. Tuning models with
heterogeneous information about molecular and cellular composi-
tion further extends the broad dynamic range of possible emergent
dynamics [59,71,72]. Such heterogeneity maps may be obtained at
the individual level to inform personalised models on which the
inference is based [59].
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4. Dynamic Sensitivity Analysis (Modelling Stimulations)

A brain state can be characterised in terms of its spatio-
temporal dynamics derived from the data or inferred from the
mechanistic parameters of the brain network models, as discussed
in the previous two sections. Yet, the proclivity of transition to
another state is an important feature in the characterisation of
brain states (Fig. 1C). For instance, reduced states of consciousness
such as sleep, disorders of consciousness and unresponsive wake-
fulness state can be understood in terms of their susceptibility/re-
silience to perturbation and thus can be characterised with
different metrics of stability and reversibility [73]. Similarly, per-
turbation analysis has shown path dependency when transiting
from and into a sleep state [12,74].

In practice, this means describing brain states with various
spatio-temporal features. Fig. 2A shows how spatio-temporal
dynamics can be described as a temporal trajectory of brain states
in a landscape of spatially relevant attractors. By doing so, a brain
state can be characterised in terms of the probability of occurrence
of the individual substates, termed Probability Metastable Sub-
states or other summary statistics measures describing spatio-
temporal brain dynamics. The error minimization of these experi-
mental features is used as an objective function in the fitting step
where a range of model parameters is tuned to approximate the
model and experimental dynamics. For example, the Kullback-
Leibler distance is considered to quantify the similarity of the sim-
ulated and experimental PMS features. Then, the correct parameter
Fig. 2. Design Overview of Dynamic Sensitivity Analysis A) Experimental Analysis. fM
Probability Metastable Substates (PMS) as a way to summarise brain dynamics across the
and aberrant dynamics are optimised to the PMS. C) Dynamic Sensitivity Analysis. A
perturbation protocol with varying parameters. D) Dynamic Sensitivity Analysis Evaluat
and evaluated for the optimal fit to the target description of PMS.
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choice of the whole-brain model is used to approximate the differ-
ent brain states (Fig. 2B). In turn, this is then used to perform an in-
silico perturbation protocol to study the effects of various stimula-
tions on the unfolding spatio-temporal dynamics (Fig. 2C).

The stimulation protocol can be explored exhaustively using
deep learning algorithms or in a hypothesis-driven manner. Previ-
ously defined hypotheses may constrain the range of parameters
explored but also constrain the range of possibilities discovered.
For instance, it is possible to define a priori the type of stimulation
applied (i.e., an increase in excitation, a change in frequency or
adding a sinusoidal pulse, among others), the location where the
stimulation is applied (i.e, locally or globally, homogeneously or
heterogeneously). In terms of heterogeneous stimulation, this
may be constrained by targeting specific functional subsystems
associated with the density of neuroreceptor maps, the neu-
roanatomy or topology of the connectome (Fig. 3, A). The profile
of stimulations may be intrinsic or extrinsic. Internally driven
stimulations will depend on the mesoscopic model choice of the
local dynamics. Often, this will result in a combination of noise-
induced and oscillation-induced dynamics. Alternatively, an exter-
nal perturbation can be introduced as an additional term in the
equations to drive the mesoscopic model description simulating
a combination of noisy, oscillatory and constant external inputs
(Fig. 3B). Furthermore, the duration of perturbation can be speci-
fied from a constant (long-term) to pulse-based and periodic oscil-
lations (Fig. 3C). Furthemore, Table 1 describes examples of the
types of properties that can be affected by stimulations, how they
RI signal is converted into a spatio-temporal description. Here, we focus on the
spatial and temporal dimension. B) Model Fitting. Whole-brain models for optimal

n optimal transition to the target state is systematically explored by applying a
ion. Varying perturbation sites, profiles, time durations and intensities are explored



Table 1
Modelling Examples for Brain Stimulations. Spiking Neurons - SN [75], Fitzhugh-
Nagumo - FN [76], Jansen-Ritt - JR [77], Conductance-Based Biophysical Model - CBB
[78], Dynamic Mean Field - DMM [79], Wilson-Cowan - WC [50], Stuart-Landau - SL
[63], Kuramoto Model - KM [51], Exact Mean Field Model - EMFM [80].

Property
affected by
perturbation

Model Parameters that can be modulated Model
examples

Firing Rate Shape of the transfer function from input
current to firing rate (i.e., as a function of
receptor density such as 5HT2A)

DMM, WC,
EMFM, JR

Excitation and
Inhibition

Ratio of excitatory and inhibitory neurons SN, CBB, WC,
DMM, EMFM

Weights of excitation-to-inhibition and
recurrent excitation

SN, CBB, WC,
EMFM, JR

Local Field
Oscillations

Frequency SN, KM, FN,
WC, SL

Stability, Amplitude, Ratio between noise
and oscillations

SN, SL

Fig. 3. Types of Perturbation Protocols. A) Perturbation Site: Stimulations to promote brain transitions can be applied at the global level to all regions of interest, at the
mesoscopic level defined by functional systems or other maps defining heterogeneity in space such as neurotransmitter receptor maps, T1/T2 weighting or transcriptomics
gradients or at the local level for individual brain regions. B) Perturbation Profile: Stimulations to promote brain transitions can reflect intrinsic (changes in local brain
dynamics such as the bifurcation parameter in Hopf-model and the gain function in Wilson-Cowan model) and extrinsic effects (modelled via an additional term reflecting
the stimulation). Stimulations can be noisy, oscillatory or constant. C) Perturbation Duration: Stimulations for the extrinsic perturbation profiles can reflect on-going,
constant, pulse-based short-lived or periodic effects.
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can be modelled mechanistically and suggestions for relevant
model choices.
5. Case studies

5.1. Neurophysiological stimulation

Perhaps one of the most obvious brain state transitions is that of
falling into sleep. It is a natural physiological process happening
every night and serves as a great example to demonstrate the
fecundity of Dynamic Sensitivity Analysis. It has been shown that
the brain follows a specific dynamic choreography of brain sub-
states while moving through the wake-non-REM sleep cycle [74].
Interestingly, this happens with hysteresis where the trajectory
between transitions to falling asleep are different to that of waking
up. In this context, sleep and wakefulness brain states have quan-
titatively different dynamic stability to perturbations [73] and
Dynamic Sensitivity Analysis can serve to probe the physiological
mechanism that ‘‘puts us to sleep at night and wake us up in the
morning”.

To understand the transition between wakefulness and sleep
brain states Deco and colleagues used principles of Dynamical Sen-
sitivity Analysis to explore the regions responsible for driving the
transitions between the two states [12]. First, they described the
fMRI activity of both brain states in terms of the Probability Meta-
stable Substates and Transition Probability Matrices (TPM). This
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has been achieved by using an unsupervised clustering algorithm
on the leading eigenvectors, derived from the instantaneous phase
coherence matrices at every time point [27,32]. The number of
clusters was chosen to be three according to various criteria such
as the Silhouette score and the smallest number of states to statis-
tically separate the two brain states. Then, the authors proceeded
to build whole brain models (Hopf model) of wakefulness and
sleep by optimising the Global coupling parameter G and Effective
Connectivity, demonstrating an optimal fit to the PMS and TPM
features. Furthermore, systematic perturbation of homotopic
(contra-lateral) connections was carried out by varying the bifurca-
tion parameter between noisy and oscillatory regime to rebalance
the dynamics between the two states. The authors showed that it
was possible to ‘‘awaken” the brain from sleep with weaker oscil-
latory activity compared to the other way around where stronger
noisy stimulation was required to bring the dynamics to ‘‘sleep”.
Moreover, they further showed that weaker multi-site perturba-
tion could achieve similar outcomes when driving sleep brain state
to that of wakefulness. These results motivate further Dynamical
Sensitivity Analysis studies where more physiologically-inspired
whole-brain models can give further probe into the biological
mechanism leading to the wake-non-REM sleep cycle.
5.2. Neuropharmacological stimulation

One of the objectives of translational neuroscience is to predict
the effects of pharmacological drugs on emergent spatio-temporal
dynamics and thus propose recovery response for various brain
disorders. In psychiatry, there has been a growing interest in psy-
chedelic medicine for conditions such as depression, addiction and
anorexia. One of the leading hypotheses is that administration of
psychedelic drugs together with psychological interventions pro-
vide a window of malleability whereby negative cognitive biases
and associated ruminative thoughts can be reassessed [81]. This
has been demonstrated with acute effects of psychedelics, suggest-
ing an increase in the repertoire of functional substates [82–84].
On the pharmacological level, psychedelics are known to bind with
high affinity to the serotonergic receptors, especially the 5HT2A,
but other receptors play a part, and by doing so modulating the
excitatory-inhibitory balance towards more excitation [14,85].
Recent whole-brain modelling work has demonstrated the causal
link between the impact of 5HT2A agonist-induced excitation on
the spatio-temporal dynamics [59].

Assessing how the intervention with psychedelics can promote
transition between pathological and healthy brain dynamics has
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been explored in recent work where intrinsic perturbation was
exhaustively performed to demonstrate regional effects on pro-
moting transition from aberrant to optimal brain dynamics [13].
First, the authors analysed different features of spatio-temporal
dynamics, such as Global Brain Connectivity, Metastability, Syn-
chrony, Functional Connectivity Dynamics and Probabilistic Meta-
stable Substates, demonstrating the importance of the temporal
dimension in separating responders from non-responders after
the treatment. The differences in the PMS served as the basis for
construction of two whole-brain models (in this case modelled as
a network of coupled Hopf oscillators) fitted by adjusting the glo-
bal coupling parameter to the PMS of responders and non-
responders before the treatment. The PMS description of the
responders after the treatment served as a target working point
against which the subsequent stimulation analysis was quantified.
Then, the stimulation protocol was implemented by independently
stimulating homotopic (contra-lateral) regions and comparing the
resulting PMS distribution to that of the target state. Here, the
authors used an intrinsic stimulation paradigm in which the brain
regions can exhibit a more noisy or a more oscillatory behaviour
depending on the value of the bifurcation parameter of the Hopf
model representing each brain region. By exhaustive stimulation
the authors have demonstrated that there is a subset of regions
that are more prone to drive a rebalancing of the PMS distribution
to the target post-treatment PMS for responders but not-
nonresponders. Moreover, the proclivity to this rebalancing effect
negatively correlates with the 5HT2A and 5HT1A serotonergic
receptor density maps from healthy subjects, suggesting that the
impact of pharmacological stimulation in brain dynamics is
directly related to the distribution of specific serotonin receptors
across distinct brain structures. For future work, knowing the phar-
macology of psychedelic drugs, Dynamic Sensitivity Analysis could
explore how different 5HT heterogeneity maps are relevant for the
transitions between states.

5.3. Invasive brain stimulation

Deep brain stimulation (DBS) is a powerful neurological proce-
dure used in the treatment and control of many neurological and
psychiatric disorders such as Parkinson’s disease (PD), dystonia,
essential tremor (ET), drug-resistant epilepsy and obsessive–com-
pulsive disorder (OCD), which aims at disrupting the abnormal
oscillatory neural activity [86,87]. It consists in implanting elec-
trodes into specific brain structures and delivering high-
frequency constant or intermittent current from a subcutaneously
implanted pulse generator [86].

The response time to the treatment varies incredibly depending
on the disorders and its associated symptoms in question, suggest-
ing that DBS may act through different mechanisms going from
immediate network neuromodulation (rapid-response symptoms
such as tremor, rigidity for PD or anxiety for OCD) to synaptic plas-
ticity and anatomical remodelling (slow-response symptoms such
as axial symptoms in PD or mood in OCD) [88].

The mechanisms by which high-frequency stimulation ensures
a decrease in symptoms is still a matter of debate. Evidence sup-
ports the hypothesis that either direct stimulation within Globus
Pallidus internus (GPi) or the Subthalamic Nucleus (STN), reduces
the GPi inhibitory output neurons activity and therefore increases
the thalamic target neurons activity, remarking the inhibitory role
of DBS. The local inhibition may be caused by various processes, for
example the inactivation of voltage-gated currents [89], activation
of inhibitory afferents [90] and sustained depolarization of neu-
ronal cell membranes [91]. Conversely, evidence also supports
the excitatory effect of DBS, for example when stimulating the
STN neurons, the GPi, Globus Pallidus externa (GPe), Substantia
Nigra (SNr) firing rates increase [92]. Additionally, changes also
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occur from the neurochemical perspective. Once action potentials
are generated, they propagate to the axon terminals and induce
neurotransmitter release both locally and throughout the network
of interest. The DBS-induced changes depend on the specific micro-
circuit stimulated and the effect can be either excitatory (via mod-
ulated glutamate release) or inhibitory (via modulated GABA
release).

On this note, a correct approach to underpin DBS mechanisms
will need to contemplate the empirical structural and functional
patterns, as well as underlying neurochemical alterations – span-
ning across pathways, microcircuits, and whole-brain levels. Com-
putational models have been able to describe empirical features as
well as to predict local activation patterns and transition between
states [88,93–95]. This could not only provide a comprehensive
empirical framework for interpreting how DBS is reorganising
brain diseased circuitry but could ultimately serve to improve
the precision of surgical planifications and risk assessment, and
consequently improve the success rate of DBS interventions [96].
5.4. Non-invasive stimulation

Over the last three decades non-invasive brain stimulations
(NIBS) such as transcranial electric stimulation (tES) and transcra-
nial Magnetic stimulation (TMS) have been shown as valuable
options aas treatments for psychiatric and neurodegenerative
brain disorders such as depression, epilepsy and dementia [97] as
well as disorders of consciousness [98]. NIBS tools work by deliver-
ing weak electric currents through the scalp and thus modulating
brain function by interacting with neuronal tissue. Such stimula-
tion profiles can vary from alternating currents (transcranial Alter-
nating Current Stimulation (tACS)), noisy (transcranial Random
Noise Stimulation (tRNS)), direct currents (transcranial Direct
Stimulation (tDCS)) or supra-threshold intracranial electric field
pulses evoked by TMS. In all instances, the current stimulation
modulates how information is processed within neuronal tissue
leading to top-down plasticity changes in terms of long-term
potentiation (LTP) and long-term depression (ltd) [99].

Alzheimer’s disease is a neurodegenerative disease causing a
decline of cognitive functioning that is worsening throughout years
with no disease-modifying therapies available, and for which phar-
macological therapies provide only modest symptomatic improve-
ments. While the neurophysiological causes of Alzheimer’s disease
are still debated, one of the main predictors of the onset and cog-
nitive deterioration is the accumulation of protein aggregates:
amyloid-beta (Ab) and phosphorylated tau protein (p-tau).
Another hallmark of the disease progression is the slowing of brain
oscillatory activity and particularly of the alpha rhythm (8–12 Hz).
In terms of network effects, the cascading network failure model
has suggested that an aberrant hyper-synchronisation at early AD
stages precedes the hypo-synchronisation at later AD stages [100].

A seminal paper in a mouse model has demonstrated a reduc-
tion of Ab plaques after a 40 Hz tACS stimulation. In turn, this
has been shown to halt subsequent neuronal degeneration and
behavioural impairments, promising a powerful therapeutic inter-
vention and paving a way for human clinical trials [101]. A recent
intervention-based human clinical trial has demonstrated the fea-
sibility of repeated sessions of 40 Hz tACS with different scalp
montages in mild to moderate AD patients leading to promising
outcomes in regulation of cerebral perfusion, spectral power
changes in gamma band (�40 Hz) as well as cognitive performance
[102]. However, how the underlying spatio-temporal dynamics
changes can be described, explained and predicted through the
repeated 40 Hz tACS stimulation is still unknown and deserves to
be explored through Dynamic Sensitivity Analysis as argued for
in this review.
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6. Discussion

In this review, we have argued that Dynamic Sensitivity Analy-
sis might deliver in-silico solutions for describing transitions
between brain states either in an exhaustive or hypothesis-
driven way and thus paving direction to a personalised strategies
in health and disease. In translational neuroscience this would
mean devising in-silico perturbation strategies to an individual
patient/condition and through the suggested perturbative profile
offering different clinical interventions (Fig. 4). In doing so, further
progress will require 1) a clear spatio-temporal description of
brains states, 2) whole-brain computational models providing
strongly representative descriptions of the empirical brain dynam-
ics at the individual level, 3) in-silico testing of the various pertur-
bative strategies and 4) further experimental studies proving/
disproving the suggested outcomes of the perturbational profiles
and capturing/approximating the real response function. More-
over, a general consideration and future challenge for successful
personalised/precision in-silico interventions for clinical treatment
is that of sensitivity and reliability. Recent work has shown that
whole-brain models are sensitive and reliable when fitted to the
individual static features of brain dynamics, especially with
enhanced model personalisation [39]. Further work should as well
explore a similar study paradigm in the dynamical measures.
Lastly, another important aspect of successful interventions will
be to first quantify the dimension of neuronal processing and thus
choose whole-brain models and their free parameters accordingly.
This will allow for adequate determination of how complex the
individual brain models need to be for the analysis at hand.
Fig. 4. Personalised in-silico brain model to predict therapeutic outcomes. The principle
for novel clinical intervention design. The schematic provides a pipeline for how to comb
describe the aberrant brain state (leftmost). Once the model is optimised, exhaustive Dy
and/or durations for optimally rebalancing the aberrant dynamics towards a target brain
suggested that are most compatible with the suggested in-silico intervention.
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The generalizability of Dynamic Sensitivity Analysis to a wide
range of modelling works, allows exploring distinct ‘control’ fea-
tures that may be needed to switch the brain to a different brain
state. In practice, every parameter of the model that has an impact
on the brain’s spatio-temporal dynamics can be thought of as a
control parameter. Depending on their biophysical realism and
level of detail, different models will have different parameters,
but most will at least contain the global coupling strength, which
tunes the level of interactions amongst the regional models, and
positions the brain at the optimal dynamic working point. At the
‘‘healthy” or optimal working point the dynamics have been shown
to exhibit near-critical properties where many of the informational
processing features are maximised [103]. At the level of perturba-
tions, when understood what the right perturbation sites and pro-
files are, one can ‘‘control” the optimal perturbation as one knows
what the right type of perturbation is to achieve the desired out-
come. Then, this choice of perturbation parameters can be thought
of as a controlled agent. However, as mentioned in the Introduc-
tion, this doesn’t imply that the chosen parameter controls the tra-
jectory to the target states. Rather, the perturbation with these
parameters ‘‘nudges” the system to the desired outcome state.

In our assumption a balanced brain is an optimal dynamical
regime that can be related to a healthy neurotypical brain state.
For instance on the macroscopic scale, brains of healthy partici-
pants are known to possess well-balanced integrative and segrega-
tive tendencies [104], work at a dynamical regime of near-
criticality where many of information processing properties are
maximised [105] and contain turbulent-like dynamics of maxi-
mally efficient information transfer [106]. In altered brain states
s of Dynamic Sensitivity Analysis using whole-brain computational models open up
ine functional information about the brain spatio-temporal dynamics in a model to
namic Sensitivity Analysis can be performed to establish perturbation sites, profiles
state. Lastly, based on the optimal perturbation profile, clinical interventions can be
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many of these properties are impaired. So from this angle to ‘‘re-
balance” suggests to promote dynamic change to that of the
spatio-temporal activity associated with healthy neurotypical
brain states. In Dynamic Sensitivity Analysis, we, for instance, con-
sider the brain dynamics to be ‘‘rebalanced” if they achieve a sim-
ilar PMS distribution as the control group/condition. However
other measures defining the spatiotemporal dynamics of brain
states and their probabilities of occurrences could potentially be
employed as well, as described earlier in the section ‘Spatiotempo-
ral Dynamics of Brain States’. This optimal dynamical working
point is probably well maintained through homeostatic means
but no explicit mechanism is assumed in the context of whole-
brain models. For example, the hopf model’s intrinsic stimulation
(from changes to the bifurcation parameter) leads to rebalancing
the dynamics by changing the nature of the local dynamical profile
(be it noise or oscillation-driven) this in turn can be related to
changes in the local excitatory-inhibitory balanced which is known
to be a well-maintained homeostatic process for good functioning
of the brain. Alternatively, more explicit examples have shown
how a local inhibitory feedback loop can serve as a homeostatic
mechanism that maintains a certain dynamical regime. This has
been performed for example in eNMM [79] and Wilson-Cowan
model [57].

In theory there is no conceptual or methodological issue with
being able to use linear models in a whole-brain paradigm. Indeed,
there have been several studies applying and fitting linear whole-
brain models to the functional MRI signals - multivariate Ornstein-
Uhlenbeck process [46] or spatial autoregressive (SAR) models
[44,45] are just two examples. And they might very well be used
if one wishes to validate the models to the grand-average func-
tional connectivity or as also known the static FC. Further on this
point, SAR models have been shown to, at times, outperform some
of the non-linear models [48], however, as we argued above and
throughout this review, for an optimal rebalancing of brain states
one wishes to have a rich spatio-temporal description of brain
states. This we have argued conceptually [103] but also from the
ability to predict different brain states [8]. As such it is imperative
to move beyond a mere time-collapsed picture of brain activity as
signified by static FC and consider other dynamical measures such
as the Functional Connectivity Dynamic or Probabilistic Metastable
Substates. In such light, linear models might fall short of ade-
quately describing the spatio-temporal signatures as explored in
[8,48] where non-linear models were shown to model FCD spec-
trum unlike linear models.
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