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Abstract
Lignocellulosic biomass is one of the most abundant bioresources on Earth. Over recent decades, various valorisation tech-
niques have been developed to produce value-added products from the cellulosic and hemicellulosic fractions of this biomass. 
Lignin is the third major component accounting for 10–30% (w/w). However, it currently remains a largely unused fraction 
due to its recalcitrance and complex structure. The increase in the global demand for lignocellulosic biomass, for energy 
and chemical production, is increasing the amount of waste lignin available. Approaches to date for valorizing this renew-
able but heterogeneous chemical resource have mainly focused on production of materials and fine chemicals. Greater value 
could be gained by developing higher value pharmaceutical applications which would help to improve integrated biorefinery 
economics. In this review, different lignin extraction methods, such as organosolv and ionic liquid, and the properties and 
potential of the extracted chemical building blocks are first summarized with respect to pharmaceutical use. The review then 
discusses the many recent advances made regarding the medical or therapeutic potential of lignin-derived materials such as 
antimicrobial, antiviral, and antitumor compounds and in controlled drug delivery. The aim is to draw out the link between 
the source and the processing of the biomass and potential clinical applications. We then highlight four key areas for future 
research if therapeutic applications of lignin-derived products are to become commercially viable. These relate to the avail-
ability and processing of lignocellulosic biomass, technologies for the purification of specific compounds, enhancements in 
process yield, and progression to human clinical trials.
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1  Introduction

Lignin is the second most abundant biopolymer after cel-
lulose, accounting for approximately 10–30% (w/w) of the 
organic carbon in the biosphere [1]. Lignocellulosic biomass 
has attracted widespread attention for energy production, 
in particular bioethanol generation, due to its high cellu-
lose content. Lignin, a major component of lignocellulosic 
biomass, does not contain carbohydrates and is not usable 
for bioethanol production [2]. It has thus been viewed as an 
unwanted waste material or low value by-product that is best 
burnt to generate electricity or heat [3].

In recent years, global bioethanol production has 
increased to meet the world’s energy demand and reduce 
greenhouse gas emissions caused by fossil fuel use [4]. It 
is estimated by 2030, as annual biofuel production in the 
United States (US) grows to 60 billion gallons, that produc-
tion of lignin in US refineries alone will reach 0.225 billion 
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tonnes [5, 6]. Valorisation of lignin post bioethanol synthesis 
has been a focus of research for cost-effective biofuel pro-
duction [7]. The chemical heterogeneity of lignin has been 
a particular challenge limiting its use. However, there are 
now multiple studies showing the feasibility of extracting 
and synthesizing high-value products from lignin, and these 
are reviewed in this article.

Widespread advances in science and technology have 
underpinned the growth of the pharmaceutical industry. 
Today people can expect to live longer and better than they 
did a century ago. Furthermore, the pharmaceutical indus-
try plays a critical role in the global economy. In 2017 the 
industry invested nearly € 35,200 on R&D in Europe alone 
[8]. However, it is estimated that around one-third of the 
world’s population still has no access to essential medicines 
[9]. Lowering the raw material and production costs of new 
medicines can increase the affordability and availability of 
new drugs. Lignocellulosic materials thus have significant 
potential to enable sustainable economic growth of the phar-
maceutical sector.

Cellulose and its derivatives, including cellulose esters, 
already find widespread use in drug delivery systems [10]. 
Use of innovative cellulose-based materials, including 
micro-cellulose (MC) and nano-cellulose (NC) for sus-
tained drug delivery, has attracted considerable interest [11]. 
Oxycellulose (OC or oxidized cellulose) is another cellulose 
derivative widely used as a tablet excipient [12]. Similarly, 
hemicellulose-based materials have been used to develop 
new drug delivery systems [13], antithrombotic agents [14], 
and cancer therapeutics [15]. For example, hemicellulose 
extracted from spent liquor was utilized to develop hydrogels 
that can rapidly respond to pH and salt concentration and 
be applied for controlled drug release [16]. Furthermore, 
xylose (the main sugar present in hemicellulose) is widely 
used as a low calorie sweetener for diabetes and can also 
promote proliferation of human intestinal Bifidobacteria to 
help enhance immunity [17].

Alongside these other lignocellulosic biopolymers, 
lignin has the potential to replace diminishing fossil-
based resources for the sustainable production of various 
chemicals [18]. Its derivatives are already understood to 
be essential components present in traditional medicine; 
hence, it could play an increasingly important role in 
development of value-added pharmaceuticals [19]. Val-
orisation of lignin in this way could also have a positive 
impact on the future development of biorefineries and the 
bio-based economy. The main pharmacological activities 
of lignin can be categorized as (i) antioxidant activity 
and protection against oxidative stress, (ii) antimutagenic 
and antitumor activity, (iii) antiviral and antimicrobial 
activity, (iv) immunomodulatory effects, and (v) intesti-
nal activities (such as anti-diarrheal effects) [20]. One of 
the most promising uses of lignin compounds stems from 

their antioxidant capacity [21]. Antioxidants are com-
pounds that delay autoxidation by inhibiting formation 
of free radicals or by interrupting propagation of the free 
radicals [22]. Furthermore, recent studies showed that 
lignin-based hydrogels have great potential for develop-
ing new drug delivery systems [23]. At present, however, 
the complex and variable structure of lignin according to 
its origin, separation, and purification still limits com-
mercial applications [24].

This work provides a comprehensive review of the phar-
maceutical and healthcare potential of lignin-based chemi-
cals and materials. Previously, the pharmaceutical benefits 
of lignin and its derivatives were described in [25]. That 
study provided information from articles published between 
2010 and 2016. Here, we present recent findings including 
on new and greener lignin extraction methods, and we sys-
tematically categorize lignin types and their pharmaceutical 
potential according to their chemical structures. We discuss 
current strategies for developing novel lignin-based hydro-
gels and studies using lignin-carbohydrate complexes for 
different pharmaceutical purposes, and we highlighted the 
potential of lignophenols. We believe that this review will 
provide a valuable perspective that helps endorse further 
research on lignin-based pharmaceutical production.

2 � Source and structure of lignin

Lignin, a three-dimensional amorphous polymer, is one of 
the three major components of lignocellulosic biomass [26], 
and the amount of lignin varies depending on the source 
(Table 1). Agro‐industrial activities generate large amounts 
of lignocellulosic wastes (non-edible parts of edible plants 
and/or non-edible plants) such as straw, bagasse, foliage, 
bunches, and shells. A proportion of these discarded mate-
rials are removed during the first stage of the harvesting 
process and are either left in the field, used as animal feed, 
or incinerated despite their rich carbohydrate content [27].

The chemical composition and lignin content of the bio-
mass depend on the agricultural source and growth con-
ditions. The diversity of the lignin structure leads to the 
necessity of developing multiple methods to isolate the 
desired chemical fractions from lignin [28]. Lignin is a high 
molecular weight complex aromatic heteropolymer mainly 
composed of three different monomers or monolignol units: 
(i) p-coumaryl alcohol (H units), (ii) guaiacyl alcohol (G 
units), and sinapyl alcohol (S units) [29–31] (Fig. 1). The 
molecular weight of hardwood lignin is lower than that of 
softwood lignin [32]. Guaiacyl alcohols (G units) constitute 
approximately 90% of softwood lignin, whereas approxi-
mately equal amounts of G and S units appear in hardwood 
lignin [32]. Since the β-O-4 aryl ether bond is the dominant 
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linkage (approximately 50% of all ether linkages in lignin) in 
both softwood and hardwood, degradation of this structure 
is a crucial step in lignin degradation [33, 34].

3 � Types of lignin and current lignin 
extraction processes

The biomass source and the conditions used for extraction 
and isolation influence the type and purity of the lignin frac-
tions produced. Figure 2 summarizes current lignin types 
within four major categories as described below.

3.1 � Sulfur‑free lignins

Soda lignin is a sulfur-free lignin that comes from the soda 
pulping process. Soda pulping is one of the earliest meth-
ods invented for cellulose extraction from lignocellulosic 
biomass by Watt and Burgess in 1853 [35]. Crop residues 
such as straw, flax, and bagasse are used in the soda process 
[36]. In this case, biomass is treated with aqueous NaOH at 
a temperature between 150 and 170 °C. Due to degradation 
of lignin and release of carbohydrates during the process, 
the selectivity of lignin extraction by this method is low 
[37]. However, some additives/catalysts, such as anthraqui-
none, can be added to decrease carbohydrate degradation 
and improve selectivity [38].

In other lignin extraction processes, biomass is treated with 
a solution containing a polar organic solvent (e.g., alcohols, 
organic acids, ketones) at high temperature with or without a 
catalyst [39]. Extraction is based on the solubility of lignin in 
the organic solvent used [40]. The main advantage of this orga-
nosolv method is the easy recovery of the solvent and lignin by 

Table 1   Renewable forestry and agricultural sources of lignin. Table indicates lignin content of different feedstocks and their geographical distri-
bution around the world (* data collected from [227], n.a. data not available)

Lignin source Composition (%, dry basis) Global availability of lignin content of the 
biomass for biorefining* (Mtonnes)

References

Lignin Cellulose Hemicellulose

Hardwood (alder, beech, 
maple, oak, teak, etc.)

15–30 38–49 19–40 n.a [228–230]

Softwood (cedar, juni-
per, pine, spruce, etc.)

26–34 40–50 7–17 n.a [229, 231, 232]

Corn stover 12–18 34–36 22–23 Africa: 3.7
America: 25.3
Asia: 15.8
Europe: 4.8

[233, 234]

Rice straw 19–21 35–38 18–25 Africa: 1.8
America: 1.8
Asia: 34.3
Europe: 0.2

[235, 236]

Sugarcane bagasse 20–28 37–42 21–26 Africa: 1.7
America: 18.5
Asia: 12.4
Europe: < 0.0002

[237, 238]

Wheat straw 15–23 30–42 18–29 Africa: 1.9
America: 7.4
Asia: 23.1
Europe: 18.6

[239–241]

Fig. 1   Macromolecular structure of lignin and its major monol-
ignol units. S-units (sinapyl alcohol) are colored in blue, H-units 
(ρ-coumaryl alcohol) are colored in green, and G-units (guaiacyl 
alcohol) are colored in red. This structure is adapted from [242]
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distillation and precipitation [41]. The organosolv method is a 
costly technology, but the quality of the product is considered 
to be high in that it does not contain sulfites (however it does 
remains poorly water soluble) [42]. Organosolv lignin contains 
more phenol hydroxyls and carbonyl groups [43] and hence 
has high potential for production of phenolic and epoxy resins 
[44]. The solvents used in an organosolv process are consider-
ably more expensive than the chemicals used in conventional 
pulping processes [45]. An organosolv method integrated with 
membrane filtration was evaluated in a previous study, and it 
was reported that the production cost of the obtained lignin was 
around 52 €/tonne, which was higher than the cost of Klason 
lignin (33 €/tonne) [46]. In another study, the economic and 
environmental impacts of different lignin extraction processes 
were assessed, and both production costs and potential environ-
mental impacts of organosolv extraction were found to be higher 
than other methods (Kraft extraction, lignosulfonate extraction, 
soda extraction, etc.) [42].

In a lignocellulosic biorefinery, removal of lignin can 
increase the efficiency of enzymatic hydrolysis of the 
remaining carbohydrate-based polymers which directly 
affects biofuel production yield. Various chemical, biologi-
cal, and physicochemical pretreatment methods have been 
developed to disrupt the recalcitrant structure of lignocel-
lulosic biomass. These methods are not discussed in this 
review because they focus on degradation of hemicellulose, 
reduction in cellulose crystallinity, and the amount of car-
bohydrate extracted rather than on the extraction of lignin. 
In some cases, however, these methods have been modified 
to facilitate lignin extraction. Steam explosion is an effective 
and well-studied physicochemical pretreatment method. In 
general, hot steam (180–240 °C) is used to break down the 
structural components of lignocellulosic biomass under high 
pressure (1.0–3.5 MPa) [47]. In terms of purity and chemical 

structure, there is a large heterogeneity in the lignin obtained 
[48]. Compared to Kraft lignin, the lignin fractions released 
by steam explosion have lower molecular weight and higher 
solubility in aqueous/organic solvents [49].

3.2 � Sulfur‑containing lignins

The most well-known type of lignin is Kraft lignin which 
comes from commercial pulping. In general, Kraft liquor, 
which contains 16 g of sodium sulfite in 1L of 1 N NaOH 
solution, is mixed with wood chips in a ratio of 4:1 (w/w, 
liquid/wood) and cooked at 155–180 °C for 1–2 h [50]. The 
process temperature and time are dependent on the biomass; 
most softwoods require higher temperature than hardwoods 
[51]. Since the pulping process is designed to produce paper 
and other cellulose products, the produced Kraft lignin has 
low ß-O-4 content and in most cases does not give good 
yields of depolymerization products.

The annual global production of Kraft lignin is approxi-
mately 45 million tonnes of which 98–99% is incinerated to 
produce energy and only 1–2% of this material is used for 
chemical production [52]. Depending on the type of wood 
and cooking process, the resulting Kraft black liquor is usu-
ally composed of 30–45% (w/w) ligneous material, 25–35% 
(w/w) saccharinic acids, 10% (w/w) formic acid, 3–5% (w/w) 
sulfur, and 3–5% (w/w) other extractives [53]. The most 
common method to recover lignin from Kraft liquor is acid 
precipitation using sulfuric acid [54]. In the Kraft process, 
the chemical balance between sodium and sulfur is of inter-
est to minimize the production cost. Precipitated lignin can 
be separated from the liquid via filtration, and the resulting 
product contains 1.5–3% (w/w) sulfur [41]. CO2 acidifica-
tion and electrochemical acidification processes are emerging 
alternatives to Kraft pulping. CO2 acidification has a lower 

Fig. 2   Classification of the most 
well-known types of lignin. 
Classification based on source 
and method of production
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impact on the sodium-sulfur balance, and the precipitate can 
be easily filtered [41]. Electrochemical acidification requires 
lower amounts of chemicals compared to conventional meth-
ods, but the low chemical and mechanical stability of ion 
exchange membranes, membrane fouling, and high opera-
tional costs limits their commercial application [41].

Lignosulfonates are produced by sulfurous acid and/or 
a sulfite salt in the sulfite pulping process. In a traditional 
lignosulfonate extraction process, wood chips are treated with 
aqueous sodium sulfite at high temperatures. The cook may 
have acid, neutral, or alkaline character. In a neutral sulfite 
treatment process, sulfite liquor contains 15% sodium sulfite 
and 1.5% sodium carbonate mix with wood chips at 3:1 
ratio (w/w, liquid/wood) and cooked at 175 °C for approxi-
mately 90 min [50]. Lignosulfonates generally have more 
sulfur groups than Kraft lignin, and due to the presence of 
sulfonated groups, they are anionic and water-soluble [55]. 
This means they may not be easily precipitated by acidifying 
the liquor [55]. The average molecular weight of hardwood 
lignosulfonate is 7–11 kDa, while the molecular weight of 
softwood lignosulfonate is 35–57 kDa [56].

Amine extraction and ultrafiltration are among the 
most commonly used methods to separate lignosulfonates 
[57]. The main problems encountered are subsequent 
removal of amine from the product, the formation of NaCl 
during re-extraction, foam and emulsion problems, and a 
time-consuming separation procedure [57]. Consecutive 
ultrafiltration steps with different molecular weight cut-
off (MWCO) membranes are used to separate impurities 
as well as high molecular weight lignosulfonates [56]. 
Membrane-based filtration holds great promise for an 
economical and environmentally sustainable recovery of 
highly pure lignin [58]. Another strategy to recover high-
purity lignosulfonates is including a fermentation step to 
utilize residual sugars before membrane filtration [41].

Around 66% of lignosulfonate is currently used as fuel 
for energy production during the pulping process [59]. The 
annual global production of lignosulfonates is growing and 
estimated to reach 1.75 M tonnes by 2025 [60]. Kraft lignin is 
the second most commonly used lignin after lignosulfonates 
[41]. The total annual global production of technical lignin is 
approximately 1.65 Mt, among which lignosulfonates domi-
nate 80% of the market [61]. Lignosulfonates are commonly 
used for commodities like coal briquettes, ceramics, plywood 
production, and water-reducing concrete additives [37, 62]. 
Diverting a proportion of lignin from low-value products to 
high-value chemicals would greatly improve overall process 
economics.

3.3 � Next‑generation “greener” lignins

Ionic liquids are becoming attractive green alternatives to 
conventional organic solvents [63]. They can dissolve high 

amounts of biomass and can be designed to be multifunctional 
solvents [64]. Various types of ionic liquids have been used as 
a pretreatment method to fractionate lignocellulosic biomass 
and enhance cellulose digestibility [63, 65–67]. Ionic liquids 
can dissolve up to 20% (w/w) lignin, and the solubility is cor-
related to the structure of the cation and anion, particularly 
the anion [68]. Protonic ionic liquids that are produced via an 
acid–base neutralization process are relatively cost competi-
tive and demonstrate high lignin–extraction efficiency [69]. 
The solubility of different types of lignin in various ionic liq-
uids has recently been reviewed, and it was shown that ionic 
liquids possessing aromatic cations have high lignin solubility, 
while those with nonaromatic cations have lower solubility 
[70]. However, the lignin dissolution mechanism is not fully 
understood, and further evaluation is needed to understand the 
properties and potential of the extracted lignin [71].

Deep eutectic solvents are another alternative to ionic liq-
uids [72]. They are non-flammable, non-toxic, and sometimes 
biodegradable. A deep eutectic solvent is a liquid mixture 
formed by hydrogen-bond donors and acceptors [73]. Gen-
erally, the final melting point of the mixture is much lower 
than the individual components, usually < 100 °C [74]. Unlike 
ionic liquids, deep eutectic solvents can be easily prepared 
from available materials, and their cost is lower than that of 
ionic liquids [75]. The lignin extraction yield of various deep 
eutectic solvents for various lignocellulosic feedstocks and 
pretreatment conditions have also been reviewed. Compared 
to other deep eutectic solvents ChCl/oxalic acid and ChCl/
lactic acid-based solvents had the best delignification yields 
[70]. In a recent study, these solvents were evaluated for lignin 
separation from rice straw. The results showed that nearly 60% 
of the lignin in the biomass can be separated at a high purity 
(> 90%) [74]. In another study, five different deep eutectic 
solvents were used for preferential dissolution of lignin in 
loblolly pine at 60 °C, and depending on the solvent type, vari-
ous lignin solubilities (9–14%, w/w) were reported [75]. This 
means that deep eutectic solvents can be employed to facilitate 
selective lignin extraction from lignocellulosic biomass [76]. 
Their efficacy is significantly dependent on the chemical com-
position of the biomass, and recent developments in this area 
have been critically reviewed in another study [77]. However, 
to date there are very few studies on the characterization of 
deep eutectic lignin and its potential in pharmaceutical appli-
cations. The cost and scale of production of both ionic liquids 
and deep eutectic solvents also need to be addressed.

3.4 � Other lignins

Finally, other types of lignin can be separated from lignocellu-
losic biomass that undergoes different pretreatment processes. 
Pyrolysis lignin and hydrolysis lignin are typical examples. 
Pyrolysis is a thermal decomposition process that converts 
lignocellulosic biomass into a solid residue (bio-char), bio-oil, 
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and gas under a non-oxidizing inert atmosphere at high tem-
peratures (> 400 °C). Depending on the biomass and operating 
conditions used, a wide range of lignin-derived materials can 
be found in pyrolysis products. Recently, a range of lignin-
derived compounds, such as guaiacol and 2-methoxy-4-vi-
nylphenol, were quantified by thermogravimetric analysis of 
products from pyrolysis of pine, bamboo, corncob, and corn 
stover [78]. In general, bio-oils contain a significantly less 
water and acetic acid and larger amounts of sugars and other 
products generated during lignin pyrolysis [79]. Pyrolytic 
lignin can be separated from bio-oil by pouring the bio-oil 
in iced water under stirring [80]. Previously, pyrolytic lignin 
obtained from pyrolysis of hardwood biomass was evalu-
ated for bio-composite production and compared with soda 
and Kraft lignins. The study showed that pyrolytic lignin has 
potential for resin and adhesive applications, but Kraft lignins 
were preferred for application in bio-composites based on pol-
yethylene [80]. More studies are needed however to determine 
the real industrial potential of pyrolytic lignin.

Acid saccharification of lignocellulosic biomass and 
woody materials has been developed to facilitate bioethanol 
production [81]. Hydrolysis lignin is the term that describes 
the left-over lignin that is precipitated from acid hydrolysis 
black liquor. Depending on the composition of the biomass 
and the process conditions, high quantities of hydrolysis lignin 
can be produced. For example, in a coniferous wood to etha-
nol plant, 0.9 tonne of coniferous wood yields 160–175 kg of 
ethanol and produces 350–400 kg of lignin as by-product [82]. 
Therefore, finding effective and economic processes to valor-
ize this by-product is a major focus [83–85]. Recently, lignin 
generated as a by-product of acid hydrolysis of white poplar 
was characterized and compared with lignin generated from 
Kraft pulping and organosolv hydrolysis of the same biomass 
[86]. Results showed that hydrolysis lignin exhibited extensive 
depolymerization and lower molar mass and higher phenolic 
content. Furthermore, results showed that hydrolysis lignin 
has high thermal stability and for this reason could be used 
for developing flame-retardant materials. However, acid treat-
ment eliminates the α-hydroxy group in ß-O-4 units, leading 
to highly condensed structures with low ß-O-4 content which 
makes this lignin difficult to depolymerize.

3.5 � Accessing lignin‑derived chemical building 
blocks

In literature, there are multiple studies showing the phar-
maceutical potential of various compounds derived from 
lignin. To produce these from lignin, several pretreat-
ment processes including pyrolysis, chemical oxidation 
and hydrolysis, and microbial and enzymatic treatment 
methods have been carried out [85, 87–90]. The oxidative 
cleavage of C–O–C and C–C bonds in lignin can result 
in monomeric phenols together with CO, CO2, and H2O. 

However, oxidative methods become undesirable due to 
the production of free radicals as a side product [91]. Solid 
catalysts can also be used for selective cleavage of C-O 
ether bonds in lignin. In [92] a solid catalyst (SiO2-Al2O3) 
was used under an inert atmosphere to depolymerize lignin 
into aromatic monomers with high yields (60%) at 250 °C. 
In another study, a novel catalyst, Ni/CaO-H-ZSM-5(60), 
has showed promising performance for C-O bond cleavage 
under very mild conditions (141 °C, 1 MPa H2), and the 
C-O bond of β-O-4 has been completely cleaved within 
60 min [93].

Even though white-rot basidiomycete fungi has been 
extensively studied for biological lignin degradation [94, 
95], in nature, there are some bacteria capable of decon-
structing lignin [96]. Furthermore, some bacteria have 
metabolic pathways that simultaneously convert lignin 
into high-value products such as ferulic acid and van-
illin. Since 2010, there has been a resurgence of inter-
est in lignin-oxidizing enzymes from soil bacteria [89]. 
Recently, Paraburkholderia aromaticivorans AR20-38, a 
bacterium isolated from Alpine forest soil, was used to 
convert ferulic acid (5–10 mM) to vanillic acid at low and 
moderate temperatures (10–30 °C), and the strain showed 
high bioconversion yield (85–89%) without inhibition of 
growth [97].

A more recent strategy is the use of lignin-degrading 
enzymes to imitate the lignin degradation process in nature 
[98]. Microbial β-etherases catalyzing the reductive cleav-
age of β-O-4 bonds are promising candidates for biotech-
nological lignin degradation [99]. Microbial lignin degrad-
ing enzymes including fungal peroxidases and bacterial 
stereoselective enzymes have been described elsewhere 
[100]. Enzymatic methods can be combined with steam 
explosion to extract ferulic acid from wheat bran [101]. 
This study showed that Alcalase and Termamyl pretreat-
ment increased the ferulic acid extraction yield by up to 
20-fold (0.82–1.05 g/kg bran).

Potential therapeutic applications of some of the major 
lignin-derived phenolic compounds are discussed in the 
following sections.

4 � Opportunities and challenges 
for the production of lignin‑based 
chemicals and pharmaceuticals

The sustainability and economic viability of biorefineries and 
paper mills depend upon utilization and, ideally, valorisation 
of all three of the major biopolymers present in lignocellulosic 
biomass. Extracting specific chemicals from lignin remains 
challenging and resource intensive, as described in Section 3, 
and while many different products can be isolated, only a few 
are considered promising for industrial scale production [102]. 
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Figure 3, the value pyramid, categorizes some of the most 
important products obtainable and their relative commercial 
value. Products with pharmaceutical applications are clearly 
top of the pyramid and offer a way to improve biorefinery eco-
nomics. Such applications are therefore of commercial interest 
provided they do not interfere with primary material flows (e.g., 
cellulose utilization for bioethanol production) or key existing 
operations (e.g., anaerobic digestion for waste treatment).

A number of approaches have thus been developed 
to convert lignin into pharmaceutical products. From 
an engineering perspective, extracting the desired com-
pounds from biomass-derived lignin is challenging due 
to its complex structure (Fig. 1) and the frequently low 
concentrations of the target compounds (typically < 10%). 
Furthermore, most thermo-chemical processes for lignin 
fractionation causes structural modifications, while more 
selective enzymatic treatments are expensive [103].

Generation of complex mixtures by traditional lignin deg-
radation methods is one of the biggest challenges of lignin-
based chemical and pharmaceutical production. Recent 
developments in the discovery of bacterial enzymes for lignin 
degradation and their potential for generation of renewable 
chemicals were described elsewhere [89]. However, strategies 
like non-catalytic or catalytic thermochemical transformation 
[104], chemo-catalytic and biocatalytic conversion of lignin 
[105] that enable the simultaneous release of a number of 
pharmaceutical precursors, with high selectively and yield, 
while maintaining the existing lower-value application of the 
residual lignin would appear the most attractive.

For biorefinery operations, specific challenges are ensuring 
that lignin utilization does not jeopardize carbohydrate extraction 
or increase the capital cost [106] and that the depolymerization 

method used does not degrade the extracted compounds due to 
their low starting concentrations [107–109]. Improved meth-
ods for the chemical, physical, and structural characterization of 
lignin, and extracted fractions, are needed that can also be used 
for biorefinery monitoring and control [41, 103, 108].

Reactive oxygen species (ROS) which include hydrogen per-
oxide (H2O2), hypochloride (OCl−), hydroxyl radical (•OH), 
and superoxide (O2•−) are unstable molecules that react with 
other molecules in a cell. They are commonly generated, trans-
formed, and consumed by living cells during normal metabo-
lism. They function in cells as signalling molecules, and main-
taining a basal level of ROS in cell is essential for life [110]. 
When ROS production increases, they damage vital cellular 
structures, such as DNA, proteins, and lipids. Antioxidants are 
chemicals that can inhibit or slowdown the damages caused by 
ROS by directly reacting with free radicals or indirectly inhibit-
ing the activity enzymes that generate free radicals or enhanc-
ing the intracellular activity of antioxidant enzymes [111, 112]. 
Phenolic hydroxyl groups are the main reason of antioxidant and 
antimicrobial properties of lignin and lignin extracts [113]. In 
general, it is considered that the antioxidant effects of lignin are 
derived from the scavenging activity of phenolic structures on 
oxygen containing ROSs [114]. The influence lignin extraction 
methods have on the antimicrobial activities of various lignin-
based materials was discussed in a previous study [115]. For 
example, Wang et al. used a successive ethanol–water dissolu-
tion method to fractionate enzymatic hydrolysis lignin (EHL) 
and reported that successive fractionation was an effective way 
to enhance the antimicrobial activity of EHL extracts on Gram-
positive (Staphylococcus aureus and Bacillus subtilis) and 
Gram-negative (Escherichia coli and Salmonella enterica) bac-
teria [116]. They concluded that the better solubility and higher 

Fig. 3   Potential lignin applica-
tions and relative values of dif-
ferent product classes. Adapted 
from [243]
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hydroxyl content of the lignin fractions might be responsible for 
this improvement.

Figure 4 summarizes the main lignin derivatives exploited 
to date and their potential therapeutic application as described 
in literature. Even though these studies show the potential for 
pharmaceutical and therapeutic applications, these approaches 
have not yet been commercialized. Furthermore, most of the 
examples have relied on use of chemical grade compounds for 
clinical trials rather than biomass-derived products. The follow-
ing sections describe the relationship between lignin-derived 
compounds and their potential therapeutic applications.

5 � Pharmaceutical and healthcare 
applications of lignin‑derived compounds 
and complexes

5.1 � Individual compounds derived from lignin

5.1.1 � Vanillin and vanillic acid

The structures of the major lignin-derived monomeric 
phenolic compounds are provided in Fig.  5. Vanillin 

(4-hydroxy-3-methoxybenzaldehyde) is usually present at 
the highest concentrations (~ 20%) and is currently the only 
phenolic compound manufactured on an industrial scale 
from biomass, mainly via the Kraft process [117]. It is pro-
duced on a scale of more than 9000 tonnes per year [118]. 
Only 5% of global vanilla production comes from the pod of 
Vanilla orchid, while 95% of vanillin is produced syntheti-
cally, and 15% of synthetically produced vanillin is derived 
from lignin [117]. Various strategies have been developed 
to produce vanillin from Kraft lignin [119, 120] and feru-
lic acid [121, 122]. Vanillin, the major flavor constituent of 
vanilla, has a wide range of applications in the food and bev-
erage industry, perfumery, and the synthesis of several phar-
maceutical chemicals [123]. Trimethoprim and L-DOPA 
(L-3,4-dihydroxyphenylalanine) are the most well-known 
pharmaceuticals that can be produced from vanillin. Tri-
methoprim is an antibiotic used in the treatment of urinary 
infections, and L-DOPA is used to treat Parkinson’s disease, 
as it is a precursor for the neurotransmitter dopamine [124]. 
The protective effect of vanillin on diabetic nephropathy, a 
common complication of diabetes which leads to renal dys-
function, was also studied [125]. Experiments conducted on 
diabetic rats showed that vanillin significantly decreased the 

Fig. 4   Overview of potential therapeutic applications of lignin-
derived feedstocks. The major potential of lignin-based monomeric 
compounds is their anticancer and antidiabetic use. Lignin-carbo-

hydrate complexes (LCC) also show important anticancer potential. 
Unlike the other lignin-based compounds, lignophenols have unique 
potential for control of heart disease
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fasting blood glucose level, and vanillin administration at a 
dose of 100 mg/kg improved kidney function. The authors 
concluded that treatment with vanillin exhibited a potent 
reno-protective action against diabetic nephropathy, and van-
illin administration in the early stages of diabetic nephropa-
thy should be a focus of future human-based clinical studies.

In the literature, there are also some studies that investi-
gated the anticancer activity of vanillin and vanillin-based 
chemicals. The in vivo anticancer activity of vanillin semi-
carbazone against Ehrlich ascites carcinoma cells in Swiss 
albino mice was previously studied [126]. The study showed 
that vanillin semicarbazone at a dose of 10 mg/kg increased 
the life span to more than 88.9%; hence, it can be considered 
a potent anticancer agent [126]. Elsherbiny et al. investi-
gated the synergistic effect between vanillin and doxoru-
bicin which is an anthracycline antibiotic widely used as a 
chemotherapeutic agent for breast cancer [127]. The study 
showed that vanillin (100 mg/kg) provided protection from 
the toxic side effects of doxorubicin and that the mean sur-
vival time of the mice treated with the combination of these 
two chemicals (88.3 days) was significantly higher than the 

group treated with only doxorubicin (33.7 days). Vanillic 
acid (4-hydroxy-3-methoxybenzoic acid) is an oxidized form 
of vanillin, and it is also used as a flavoring agent. Similar 
to vanillin, the effects of vanillic acid on the toxic effects of 
cisplatin, another extensively used cancer drug, was investi-
gated using an animal model [128]. This study showed that 
male albino rats treated with vanillic acid (50–100 mg/kg) 
restored the elevated levels of renal functions and reduced 
the antioxidant status to near normalcy when compared 
to animal group treated only with cisplatin. These results 
demonstrate that vanillin and vanillic acid can be used as a 
combinatorial regimen in cancer therapy.

5.1.2 � Ferulic acid

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a 
lignin-based phenolic acid that can be used to produce vanil-
lin and vanillic acid. In the plant cell wall, ferulic acid is usu-
ally found cross-linked with hemicelluloses via ester bonds 
[129]. It can be obtained by hot water [130], deep eutectic 
solvents [131], or alkaline processes [132], and it has been 
used in traditional Chinese medicine for treatment of car-
diovascular and cerebrovascular diseases [133]. As a natural 
antioxidant, it exhibits an ability to scavenge free radicals, 
and it presents a wide array of antioxidant, antimicrobial, 
anti-inflammatory, antidiabetic, and anti-carcinogenic activi-
ties [129, 134]. Curcumin, a dimer of ferulic acid, also tar-
gets critical genes associated with angiogenesis, apoptosis, 
cell cycle, and metastasis, hence it has been considered an 
anticancer agent [135]. Lin et al. investigated the activity 
of ferulic acid on human keratinocyte HaCaT cells treated 
by UVB radiation [136]. The study showed that ferulic acid 
could inhibit UVB-induced carcinogenesis and has poten-
tial anti-carcinogenic properties on UVB-induced epidermic 
tumor development. In another study, the radiosensitizing 
effect (increasing the lethal effects of radiation) of ferulic 
acid was tested in two cervical cancer cell lines (HeLa and 
ME-180) [137]. The authors reported enhanced oxidative 
DNA damage and apoptotic morphological changes in feru-
lic acid and radiation-treated cells. They found that ferulic 
acid enhances the lethal effects of radiation and decreases 
the cell viability and survival rate. Fahrioğlu et al. exam-
ined the effects of ferulic acid on gene expression, viability, 
colony formation, and mitigation/invasion in cultured MIA 
PaCa-2 human pancreatic cancer cells [138]. They reported 
that ferulic acid behaves as an anticancer agent by affect-
ing cell cycle, apoptotic, invasion, and colony formation of 
cancer cells. Zhang et al. evaluated the antitumor activity 
of ferulic acid in the breast cancer cell line MDA-MB-231 
[139]. They found that ferulic acid treatment decreased via-
bility and increased apoptosis and suppression of metastatic 
potential in breast cancer cells. These results suggest that 
ferulic acid might be an effective therapeutic agent against 

Fig. 5   Major monomeric lignin derivatives with potential pharmaceu-
tical application. Figure also indicates extraction yields of each deriv-
ative (% w/w, based on lignin content) isolated from different lignin 
sources [164, 244–251]
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breast cancer and has potential as an effective treatment for 
different types of cancer.

Furthermore, there are a small number of studies inves-
tigating the effects of ferulic acid and its combinations with 
other antioxidants in diabetes. Song et al. tested the activ-
ity of ferulic acid on obese, diabetic rats [140]. They found 
that it significantly increased the antioxidant activity in the 
plasma, heart, and the liver. They also reported activity 
against oxidative stress in obese rats with late-stage diabe-
tes. In another study, the protective effects of ferulic acid on 
protein glycation, lipid peroxidation, membrane ion pump 
activity, and phosphatidylserine exposure in high glucose-
exposed human erythrocytes were investigated [141]. The 
authors reported that ferulic acid (10–100 µM) significantly 
reduced the levels of glycated hemoglobin (HbA1c), and at 
0.1–100 µM, it inhibited the lipid peroxidase in erythrocytes 
which was associated with increased glucose consumption. 
These results show that ferulic acid is capable of improving 
the effects of hyperglycemia and preventing vascular dys-
function associated with diabetes.

5.1.3 � Coumaric acid

Coumaric acid is a hydroxy derivative of cinnamic acid, and 
in nature, its most commonly available form is ρ-coumaric 
acid [142]. It can be produced by alkaline hydrolysis [143] 
and attenuates UV-induced cytotoxicity making it an active 
ingredient in cosmetics [144]. Similar to ferulic acid, cou-
maric acid is a well-known plant-based antioxidant.

In several cases, its antioxidant activity was tested 
together with other phenolic compounds such as ferulic 
acid and caffeic acids. Yeh et al. studied the lipid-lower-
ing and antioxidative activities of ρ-coumaric acid, ferulic 
acid, and caffeic acid [145]. They reported that these phe-
nolic compounds significantly lowered the plasma lipid and 
hepatic cholesterol levels and enhanced antioxidant capacity 
in high cholesterol-fed rats. In another study, the effects of 
ρ-coumaric acid against the hippocampal neurodegeneration 
in type 2 diabetic rats were investigated [146]. This study 
showed that ρ-coumaric acid may inhibit hippocampal neu-
rodegeneration via its potent antioxidant, anti-inflammatory, 
and anti-apoptotic properties. Therefore, the authors rec-
ommended this compound as a promising adjuvant agent 
against brain neurodegeneration in diabetics.

Antidiabetic and antihyperlipidemic activities of 
ρ-coumaric acid in rats were evaluated in a previous study 
[147]. This study revealed that ρ-coumaric acid protects 
pancreatic β-cells to control hyperglycemic excursions 
and improves metabolic disorders via GLUT 2 activation. 
Recently, antidiabetic activities of 11 phenolic acids, includ-
ing ρ-coumaric acid, were compared with metformin, a 
well-known medication for the treatment of type 2 diabetes 
[148]. Results showed that all phenolic acids had equivalent 

or more potent effects on glucose uptake in HepG2. This 
study also reported that coumaric acid is among the top three 
phenolic acids that showed the highest glucosidase inhibi-
tory activity.

In the literature, there are some studies that have investi-
gated the anticancer potential of ρ-coumaric acid. Protective 
effects of ρ-coumaric acid and ferulic acid against colon 
cancer were studied on endothelial tumor cell line Caco-2 
[149]. The study reported that both of these chemicals 
showed anti-proliferative effects on Caco-2 human cancer 
cells and decreased the number of cancer cells to 43–75% 
of the control after 2–3 days of treatment. Roy et al. inves-
tigated the activity of ρ-coumaric acid and ferulic acid on 
human colorectal cancer cell line HCT 15 and epidermal 
growth factor receptor (EGFR) that may have an important 
role on provoking colorectal cancer [150]. They found that 
these chemicals were able to inhibit EGFR at its active site. 
Furthermore, the cytotoxicity experiments showed that both 
ρ-coumaric acid and ferulic acid were efficient in killing 
colorectal cancer cells.

5.1.4 � Syringic acid

Syringic acid (4-hydroxy-3, 5-dimethoxybenzoic acid) is 
another phenolic known for its strong antioxidant activity 
and can be obtain via alkaline hydrolysis [151]. It can be 
used as a therapeutic agent in various diseases such as dia-
betes, cancer, and liver damage [152]. It can modulate the 
dynamics of several biological targets such as transcriptional 
and growth factors [152]. The leaves and bark of different 
Quercus species (a small oak tree) have been used to extract 
syringic acid and other phenolic compounds for assessment 
of their biological activities [153]. Quercus infectoria is 
one of the most popular traditional medicines in Asia and 
used to treat wound infections and toothache [154]. In 1979, 
syringic acid (extracted from powdered galls of Quercus 
infectoria using solvent extraction) and the neuropharma-
cological activity of a syringic acid-rich extract were tested 
on mice [155]. The effect of syringic acid against throm-
bogenesis and platelet activation was investigated on male 
Sprague–Dawley rats [156]. They found that syringic acid 
attenuated the development of thrombosis and thromboem-
bolism by inhibiting clot formation and procoagulant pro-
tease activity. These findings demonstrated that syringic acid 
has significant potential as an antithrombotic and antiplatelet 
agent that can be used against cardiovascular disease and its 
possible complications.

The antimicrobial activity of syringic acid and syringic 
acid containing plant extracts was also assessed against 
different bacteria and fungi [157–159]. Shi et al. reported 
that syringic acid retarded bacterial growth of Cronobacter 
sakazakii, an opportunistic pathogen that has been impli-
cated in bacteraemia and neonatal meningitis, and caused 
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cell membrane dysfunction. They also indicated that it has 
a strong potential to develop natural preservatives to prevent 
C. sakazakii-related infections. Abaza et al. investigated the 
antimitogenic and chemo-sensitizing activities of syringic 
acid isolated from Tamarix aucheriana (salt cedar plant) 
against human colorectal cancer cell lines SW1116 and 
SW837 [160]. They reported that syringic acid showed a 
time and dose-dependent antimitogenic effect against cancer 
cells with little cytotoxicity on normal fibroblasts. They also 
reported that it sensitized cancer cells to standard chemo-
therapies and increased their sensitivity up to 20,000-fold 
compared to standard drugs.

5.1.5 � Eugenol

Eugenol (4-allyl-2-methoxyphenol) is another chemi-
cal derived from lignin in woody biomass. Eugenol can 
be converted to ferulic acid and vanillin via different bio-
chemical pathways [161–163]. It can also be generated by 
the depolymerization of lignin along with variety of active 
biomaterials. Varanasi et al. reported that the production of 
lignin-based chemicals such as eugenol, phenols, guaiacols, 
syringols, and catechols are dependent on the starting bio-
mass concentration and dissolution temperature; they pro-
duced approx. 2 g eugenol from 1 kg of low sulfonate alkali 
lignin after dissolution at 160 °C for 6 h at 3% biomass load-
ing [164].

Eugenol is generally used as a flavoring agent and food 
additive. In the literature, there are also some studies on its 
antioxidant and antimicrobial properties. Zhang et al. tested 
the activities of eugenol and isoeugenol against several 
foodborne pathogens such as S. aureus, Bacillus subtilis, 
Listeria monocytogenes, E. coli, Salmonella typhimurium, 
and Shigella dysenteriae [165]. They showed that both of 
the compounds had strong antioxidant and antimicrobial 
activities. Furthermore, they exhibited protective effects 
against DNA damage. In another study, eugenol-bearing 
oxypropanolamine derivatives were developed, and their 
antimicrobial activities were tested against various multi-
drug-resistant bacteria including Acinetobacter bauman-
nii, Pseudomonas aeruginosa, E. coli, and S. aureus [166]. 
These derivatives showed strong antibacterial effects on 
bacterial strains and inhibited some important metabolic 
enzymes like α-glycosidase (involved in the digestion of 
carbohydrates), cytosolic carbonic anhydrase I and II (its 
I form is a key enzyme in aqueous humor production in 
eye, and its II form is found in renal tubes, brain, and osteo-
clasts), and acetylcholinesterase (performs a key role in the 
functioning of cholinergic neuronal pathways). Hence, the 
authors concluded that these chemicals can be investigated 
further for the treatment of some important diseases such 
as epilepsy, ulcers, glaucoma, osteoporosis, and neuro-
logical disturbance. The protective effects of eugenol as a 

therapeutic intervention agent under diabetic condition was 
studied in vitro and in vivo animal-based models [167]. One 
study showed that eugenol exposure rescued SHSY5Y cells 
from glucose-induced death and increased cell survivability. 
In the animal-based model, eugenol treatment significantly 
lowered the mean body weight and blood glucose levels of 
diabetic rats. In another animal-based study, the antidiabetic 
effects of eugenol were demonstrated by significant reduc-
tion levels of serum glucose, triglyceride, and cholesterol in 
diabetic male adult Sprague–Dawley rats [168]. Moreover, 
this study showed that eugenol treatment (10–20 mg/kg) 
facilitated insulin sensitivity, and it could be a promising 
therapeutic agent to prevent type 2 diabetes.

5.2 � Lignin‑derived fractions and complexes

5.2.1 � Lignin fractions obtained by solvent extraction

Solvent fractionation is a convenient method to fractionate 
technical lignins or depolymerized lignins, which generates 
a set of fractions of varying molecular weight and hydropho-
bicity useful for different applications. These fractions have 
been reported to show enhanced antioxidant activity, anti-
bacterial activity, and UV absorption properties, the latter 
useful for sunscreen applications [169, 170]. These fractions 
can be employed as complex mixtures or can be further puri-
fied if a single active species can be identified.

5.2.2 � Lignophenols

Lignophenol, a lignin-based functional polymer, can be sepa-
rated from lignin through phase separation reactions composed 
of phenol derivatives and concentrated acid [171]. Even though 
lignophenols have high antioxidant properties, their physiologi-
cal role and medical potential have not been well characterized 
[25, 172]. In the literature, some in vitro and animal-based stud-
ies have shown the pharmaceutical potential of lignophenols. In 
one study on streptozotocin-induced diabetic rats, lignophenols 
were able to attenuate oxidative and inflammatory damage in the 
kidney by suppressing excess oxidative stress and the infiltration 
and activation of macrophages in the diabetic kidney [173]. In 
another study, lignophenols played an important role in improve-
ment in the vascular impairment of diabetes by reducing the 
vascular oxidative stress and inflammation via inhibition of 
NAD(P)H oxidase [174]. These results indicate that lignophe-
nols have potential for control of the most common diseases 
of the twenty-first century: diabetes and obesity. Furthermore, 
lignophenol derived from bamboo lignin using a phase-sepa-
ration technique has showed potent neuroprotective activity 
against H2O2-induced apoptosis in human neuroblastoma cells 
(SH-SY5Y) by preventing caspase-3 activation [175, 176]. This 
suggests that lignophenols are also promising neuroprotectors 
which can be used to delay the progress of neurodegenerative 
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diseases. In another study, it was reported that lignophenols can 
decrease secretion of oleate‐induced apolipoprotein‐B, a lipo-
protein which is positively correlated with the incidence of coro-
nary heart disease and atherosclerosis, in HepG2 cells (human 
hepatocellular carcinoma cell line) [172].

5.2.3 � Lignosulfonic acid

As described in Section 3.2, water-soluble lignosulfonates 
(salts of lignosulfonic acid) are the major by-product of 
the sulfite pulping process. They have been shown to be a 
high-value raw material for fine chemicals such as vanillin 
[177]. Lignosulfonic acid (LSA), a low-cost lignin-based 
polyanionic macromolecule, is generated as a by-product 
from the pulp and paper industry.

The known antiviral and antimicrobial activity of LSA 
highlights its potential as a low-cost pharmaceutical agent. 
Gordts et al. investigated the anti-HIV and anti-HSV activity 
of pure LSA (commercial product) in various cellular assays 
[178]. They demonstrated that HIV and HSV infection in T 
cells was blocked by LSA and that LSA has strong inhibitory 
activity on HIV replication. They also indicated that LSA 
targeted the envelope proteins and did not show antiviral 
activity against non-enveloped viruses.

In the literature, there are also some studies investigating 
the potential of LSA for controlled drug release. LSA and 
gelatine blend microspheres were developed by cross-linking 
with glutaraldehyde and used for controlled release of an 
anti-malarial drug [179]. This study indicated that micro-
spheres enhanced the release rates of the drug up to 10 h 
and the drug release profiles were pH-sensitive. In a similar 
study, LSA and sodium alginate blend microspheres were 
used to develop a polymer matrix for controlled release of 
an antibiotic (ciprofloxacin) [180]. Based on the results, the 
developed carrier was found to be suitable for controlled 
drug delivery for gastrointestinal applications.

Hasegawa et al. studied the inhibition effects of LSA 
on intestinal glucose absorption [181]. They found that, 
in human colorectal adenocarcinoma cells, LSA inhibited 
2-deoxyglucose uptake and during their in vivo rat experi-
ments found that LSA significantly suppressed the rise in 
blood glucose levels through inhibition of α-glucosidase 
activity and intestinal glucose absorption. Similarly, due to 
the inhibition of α-glucose activity and intestinal glucose 
absorption, feeding diabetic KK-Ay mice with LSA signifi-
cantly suppressed the increase of the serum glucose levels 
[182]. These results suggest that as well as lignophenols, 
LSA might be used to control obesity and diabetes.

5.2.4 � Lignin carbohydrate complexes

Some polysaccharides in the cell wall of lignified plants 
are covalently linked to lignin to form lignin-carbohydrate 

complexes (LCCs) [183]. There are eight different types of 
lignin-carbohydrate bonds: benzyl ether, benzyl ester, gly-
cosidic, phenyl glycosidic, hemiacetal linkages, acetal link-
ages, ferulate ester, and diferulate ester bonds [184]. Phenyl 
glycoside, benzyl ethers, and ester linkages are the main 
three types of LLC linkages in wood [185], whereas feru-
late and diferulate esters are the prevalent LCC linkages in 
non-wood plants [184]. Benzyl ethers and phenyl glycoside 
linkages in wood can be easily cleaved under acidic condi-
tions [185]. Due to the presence of different types of lignin 
and polysaccharides in different lignocellulosic biomasses, 
the composition and the structure of natural LCCs is very 
diverse [184]. The presence of LCC, that is either naturally 
formed or generated during processing, is considered to be 
one of the reasons for difficulties in chemical and biological 
processing of lignocellulosic biomass [186]. Recently, six 
types of LCC fractions were extracted from Eucalyptus by 
aqueous dioxane and then precipitated sequentially by 70% 
ethanol, 100% ethanol, and acidic water [187]. This study 
showed that the low molecular weight LCC containing a 
high amount of carbohydrate (60–63%) was precipitated by 
the first extraction step (70% ethanol). In a recently pub-
lished study, glucomannan-lignin and glucuronoxylan-lignin 
were found to be the main structures in the LCCs extracted 
from hot water pretreatment liquor of poplar [188]. The 
authors also reported that the glucuronoxylan-lignin com-
plex can be enriched by increasing the process temperature 
and LLCs extracted from poplar could be suitably modified 
by changing the temperature.

There are several reports on LCCs possessing antivi-
ral effects against Herpes simplex (HSV) (types 1 and 2), 
HIV-1, and influenza viruses [189–192]. A pilot study 
with 48 healthy patients, with active lesions of HSV-1, 
was undertaken to evaluate anti-HSV-1 activity of LCC 
obtained from pine cones via an alkaline process. The 
study showed that the majority of the patients reported a 
reduction in symptoms after the LCC-ascorbic acid treat-
ment, suggesting its possible applicability for the treat-
ment of HSV-1 infection [193, 194]. Previously, LCCs 
obtained from cocoa mass and cocoa husk by 1% NaOH 
extraction and acid precipitation process have shown 
anti-HIV activity [195]. The study indicated that LCCs 
stimulated the growth of human MT-4 cells by inducing 
hormesis and that the cocoa mass LCC has higher anti-
HIV activity than that of cocoa husk LCC. In another 
study, LCCs extracted from licorice root under alkaline 
conditions showed greater anti-HIV activity than LCCs 
extracted by water [191]. Overall, these works show that 
extraction conditions play a significant role in the antiviral 
properties of LCCs.

There are also some reports addressing the antimicrobial 
and antiparasitic effects of LCCs. LCCs extracted from pine 
cones of Pinus parviflora via alkaline treatment have been 
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reported to induce antimicrobial activity in mice infected 
with Staphylococcus aureus, a pathogen that causes a wide 
variety of clinical infections [196]. In another study, un-puri-
fied lignin extracted via alkaline extraction of corn stover 
residue, that was previously used for ethanol production, 
exhibited antimicrobial activities against the Gram-positive 
bacteria S. aureus and Listeria monocytogenes [197]. How-
ever, extracts did not show the same effect on Gram-negative 
bacteria such as E. coli and S. enteritidis. The study also 
indicated that the antimicrobial activities of the extracts were 
consistent with their antioxidant activities which were also 
affected by the extraction conditions (temperature and resi-
due/solvent ratio).

LCCs also have been used for antitumor research. Based 
on folkloric information that the hot water extracts of pine 
cones is effective for gastroenterological tumors, Sakagami 
et al. investigated the antitumor activity of LCCs isolated 
from hot water and alkaline extracts of pine cones [198]. 
They found evidence that isolated LCCs significantly pro-
longed the survival of mice that had been implanted with 
ascites tumor cells (sarcoma-180). Another traditional medi-
cine, Inonotus obliquus (Chaga mushroom), has been used 
to treat several human malicious tumors since the sixteenth 
century [199, 200]. Niu et al. investigated the characteris-
tics and in vitro antioxidant and immunological activities 
of LCCs isolated from the alkaline extract of I. obliquus 
[200]. They indicated that extracts possessing multiple radi-
cal scavenging activities exhibited excellent antioxidant and 
immunological activities. These results suggest that some 
LCCs might be behind the legendary antitumor effects of 
some plants.

LCCs are also used as a natural UV blocking agent 
in sun creams and moisturizers. The anti-UV activity 
of resveratrol and vitamin C was compared with LCCs 
extracted from Lentinus edodes mycelia. The results 
showed that the anti-UV activity of LCCs was compara-
ble to these two well-known UV-protective compounds 
[201]. In another study, LCCs extracted from pine cone 
and pine seed shell, by sequential alkaline extraction and 
acid precipitation processes, showed excellent anti-UV 
activity [202]. LCCs extracted from Miscanthus sacchari-
florus (silvergrass) and Pinus densiflora (Japanese red 
pine) have been blended with a commercial cream, and 
their UV protection performance showed that SPF values 
increased in proportion to their amount [203]. Likewise, 
Ratanasumarn and Chitpraset studied the UV protec-
tion potential of lignin extracts (contains carbohydrate 
impurities) from alkaline-treated sugarcane bagasse and 
reported that the extract provided broad-spectrum UVA/
UVB protection [204]. These results suggest a promising 
early commercial application of LCCs as personal care 
products, while pharmaceutical applications, and regula-
tory approval, can be established in the longer term.

5.3 � Biodegradable hydrogels and other drug 
delivery materials

Hydrogels are commonly defined as hydrophilic polymers 
providing a three-dimensional network which can contain a 
large volume of water. Advantageous properties generally 
include non-toxicity, high drug-loading capacity, biodegra-
dability and biocompatibility, excellent support scaffold, and 
oriented architecture [205]. Hydrogels with these properties, 
have potential application in personal hygiene products, drug 
release devices, wound healing dressings, and regenerative 
medicines [206–208]. In recent years, the use of natural 
polymers has become increasingly popular for hydrogel 
development [209]. Hyaluronic acid, chondroitin sulfate, 
chitosan, gelatine, alginate, and cellulose derivatives have 
all been used to develop biopolymer-based hydrogel sys-
tems [210]. Lignin has a similar potential to be employed in 
the synthesis of biodegradable hydrogels; it contains many 
functional hydrophilic and functional groups (hydroxyls, 
carbonyls, methoxyls) allowing easy chemical modifica-
tion for different applications [211]. Lignin has a number of 
inherent advantages such as antimicrobial, antioxidant, and 
biodegradable properties [209, 212]. Consequently, lignin-
based hydrogels present promising properties as medical 
material coatings [23].

Cross-linking copolymerization, cross-linking of 
reactive polymer precursors, and cross-linking via poly-
mer–polymer reaction are the three main methods used 
for synthesizing lignin-based hydrogels [213]. The main 
synthetic strategies and cross-linkers used to develop 
lignin-based hydrogels have been reviewed elsewhere 
[211]. Biocompatible hydrogels have been prepared by 
mixing chitosan solution (2.5%, w/v) in acetic acid with 
10% (w/v) alkali lignin solution, and the resulting gels 
showed no cytotoxicity towards tested stem cells and ani-
mals; the authors concluded that the cross-linked products 
have great potential in wound healing applications [214]. 
By using a high amount of lignosulfonate and Al+3, Mon-
dal et al. have prepared a hydrogel which exhibits ultrafast 
self-healing and outstanding antibacterial properties [215]. 
In another study, the mechanical stability and biocompat-
ibility of hyaluronan-Kraft lignin-based hydrogels cross-
linked with carbodiimide were tested. The authors reported 
that addition of Kraft lignin up to 3% (w/w) improved 
the resistance of the hydrogels [216]. Raschip et al. pre-
pared hydrogel films by incorporating lignin extracted 
from annual fiber crops in xanthan gums (a common food 
additive and thickening agent) for vanillin release; they 
found that the lignin acted as an antioxidant agent and 
could improve compatibility and biocompatibility of the 
resultant hydrogels [217]. Recently, soluble lignin frac-
tionated and isolated from the black liquor oil of empty 
fruit bunches by an acidification procedure was used to 
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synthesize lignin-agarose hydrogel with epichlorohydrin 
as the cross-linking agent [208]. The study reported that 
the produced hydrogels have good mechanical properties. 
In another study, hydrogels have been synthesized through 
the radical polymerization of hardwood Kraft lignin and 
compared with synthetic hydrogels. This study showed 
that lignin-based hydrogels have a higher swelling capac-
ity and are more thermally stable than synthetic hydro-
gels [218]. Lignin-based hydrogel development remains a 
developing research area, however, and there are limited 
therapeutic studies.

Apart from hydrogels, lignin-based nanoparticles 
(LNPs) can also be used to carry an active substrate. Due 
to their exceptional absorption capacity, biodegradability, 
and their non-toxic properties, LNPs have great potential 
for drug delivery [219]. Recent studies have shown that 
processes such as precipitation, solvent exchange, dialy-
sis, and ultrasound can be applied to prepare drug-loaded 
nanoparticles [220]. LNP synthesis and characterization 
methods, as well as their advantages, have been recently 
reviewed [221] as has the impact of these processes on 
particle morphologies, drug loading capacities, and their 
potential applications [220]. LNPs have shown enhanced 
antioxidant and UV barrier properties compared to mac-
romolecular lignin-based particles, and they have been 
tested for the release of silver ions used in cancer treatment 
[222–224]. They have also been evaluated for the delivery 
of doxorubicin hydrochloride (DOX), another anticancer 
drug which is used to treat many types of cancer such as 
leukemia, lymphoma, neuroblastoma, breast, and ovarian 
cancer. A recent study demonstrated the higher antican-
cer efficacy of DOX-loaded folic magnetic-functionalized 
LNPs [219].

A large number of pharmaceutical products are taken 
in solid dosage forms such as tablets. Excipients are the 
major components of these solid forms and are included 
to aid the manufacturing process or to add functionality 
to the drug compound [225]. A limited number of stud-
ies have tested the potential of lignin as an excipient and 
have shown that addition of lignin as an excipient can 
improve the drug release profile. In one recent study, lignin 
combined with microcrystalline cellulose was used as an 
excipient to prepare directly compressed tetracycline tab-
lets; results showed that the presence of lignin in the tablets 
significantly modified the release profile and enhanced the 
amount of tetracycline released [224]. In another study, 
aspirin tablets containing lignin showed a higher release 
rate of the active pharmaceutical ingredient compared to 
the tablets without [226].

It is now clear that polymeric lignin, in various forms, has 
significant potential in the area of drug delivery and controlled 
release although further clinical evaluation is required.

6 � Conclusions and priorities for future study

The production of additional high value-added products 
from the lignin fraction of lignocellulosic biomass has the 
potential to enhance the economic viability of lignocellu-
losic biorefineries (Fig. 3). Lignin-based pharmaceutical 
production is an emerging strategy in biorefinery process 
design and has gained considerable attention recently. This 
review has shown that lignin-derived pharmaceuticals can 
be used to treat various important diseases such as can-
cer and diabetes. Some monolignols, specifically vanillin 
and ferulic acid, may be used as therapeutic agents against 
breast cancer, the most frequently diagnosed cancer among 
women. These monolignols are also capable of controlling 
blood glucose levels, vascular dysfunctions, and neurode-
generation associated with diabetes which is a major public 
health problem worldwide. Scientific evaluation of some 
“folk medicines” shows that the excellent antioxidant and 
immunological activities of LCCs might be the main cause 
of the legendary antitumor activities of some plant extracts. 
Furthermore, the broad antiviral effects of some lignin-
derivatives have shown that in the close future, lignin can 
be used to treat life-threatening viral diseases such as HIV.

While broad therapeutic potential has been demonstrated, 
this review indicates that four major engineering and clini-
cal hurdles remain before lignin-derived pharmaceuticals 
can be exploited commercially. These are summarized and 
discussed below.

•	 Availability and processing. The various sources of lignin 
(Section 2), and the impact of different pretreatment methods 
(Section 3), complicate the search for a common process 
technology that can reliably and predictively release defined 
products such as vanillin, ferulic acid, and eugenol. Further 
work is needed on milder and environmentally friendly pre-
treatment methods, such as the use of ionic liquids and deep 
eutectic solvents, to facilitate selective lignin extraction from 
lignocellulosic biomass with minimal degradation or by-
product formation. Specifically, more studies focusing solely 
on pharmaceutical release from biorefinery waste streams are 
needed.

•	 Isolation and characterization of defined products. 
For pharmaceutical and therapeutic studies, products 
isolated from lignin or lignocellulosic biomass need to 
be well characterized in order to meet regulatory require-
ments. Here, further research on methods for the large-
scale isolation of lignin-derived therapeutics is needed 
as well as on the characterization and quantification of 
product and impurity profiles as a basis for regulatory 
approval.

•	 Yield and productivity improvement. To produce high-
value pharmaceuticals from lignin-based feedstock eco-
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nomically, the yield of the desired product (or intermedi-
ate) needs to be increased, and the synthesis of the final 
pharmaceutical (if required) has to be efficient. Further 
studies focusing on improving the yield and productivity 
of processes for waste lignin to pharmaceutical products 
are required alongside technoeconomic and life cycle 
evaluations to ensure financial and environmental sus-
tainability.

•	 Progression to human clinical trials. Finally, in the 
majority of studies reported in this review, animal-based 
models have been used to evaluate the clinical potential 
of lignin and its derivatives, especially for vanillin, feru-
lic acid, and coumaric acid and for LCCs. Further clinical 
research with human subjects is needed to evaluate the 
true therapeutic potential of lignin-based products. Ide-
ally, these need to be conducted with products released 
and purified from biomass sourced from an existing com-
mercial biorefinery.
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