
Research Article Journal of Optical Communications and Networking 1

Network Aware Compute and Memory Allocation in
Optically Composable Data Centres with Deep
Reinforcement Learning and Graph Neural Networks
ZACHARAYA SHABKA1,* AND GEORGIOS ZERVAS1

1Optical Networks Group, Department of Electronic and Electrical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E
7JE, United Kingdom
*Corresponding author: zacharaya.shabka.18@ucl.ac.uk

Compiled February 1, 2023

Composable data centre architectures promise a means of pooling resources remotely within data cen-
tres, allowing for both more flexibility and resource efficiency underlying the increasingly important
infrastructure-as-a-service business. This can be accomplished by means of using an optically circuit
switched backbone in the data centre network (DCN); providing the required bandwidth and latency guar-
antees to ensure reliable performance when applications are run across non-local resource pools. However,
resource allocation in this scenario requires both server-level and network-level resource to be co-allocated
to requests. The online nature and underlying combinatorial complexity of this problem, alongside the
typical scale of DCN topologies, makes exact solutions impossible and heuristic based solutions sub-
optimal or non-intuitive to design. We demonstrate that deep reinforcement learning, where the policy
is modelled by a graph neural network can be used to learn effective network-aware and topologically-
scalable allocation policies end-to-end. Compared to state-of-the-art heuristics for network-aware resource
allocation, the method achieves up to 20% higher acceptance ratio; can achieve the same acceptance ratio as
the best performing heuristic with 3× less networking resources available and can maintain all-around
performance when directly applied (with no further training) to DCN topologies with 102× more servers
than the topologies seen during training. © 2023 Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Contemporary data centre network (DCN) architectures are
based on (opto-)electronically packet-switched (EPS) networks.
In a typical Cloud computing model, large tasks requiring more
than one server’s worth of resources for a long period of time
can be distributed across numerous servers, which are all con-
nected via this underlying EPS infrastructure. These allocations
can not be done across single inter-server resource pools, instead
requiring the task to be split into smaller tasks where each will
be allocated resources from and run on a single server [1]. This
limitations stems from two things primarily.

Firstly, bandwidth is limited by the bandwidth per-port of the
opto-electronic switches which is fixed per-model. Popular EPS
switches typically support a per-port bandwidth at the order of
O(1Gb/s)−O(10Gb/s), whereas intra-server communications
(e.g. L1-cache access by the CPU) often operate at the order of
O(Tb/s). For resources to access each other remotely, a large
number of ports would be required for just a single pair of
devices and networking component costs would increase. Such

devices also have fixed bandwidth, meaning higher bandwidth
servers require network infrastructure replacement or must be
run sub-optimally.

Secondly, the unpredictable queuing patterns in packet-
switched networks lead to non-deterministic latency. Com-
pute mediums (i.e. CPU, GPU, RAM) co-located on the same
server exchange information at very high rates. For exam-
ple, L1 cache latency on high-end desktop CPUs exist in the
O(ns)−O(10ns) range. Application performance is strongly
dependent on compute-memory latency [2]. EPS networks are
incapable of consistently supporting standard application per-
formance given typical forwarding latency is non-deterministic
and in the range O(10µs)−O(100µs) .

These two features lead to resource fragmentation - where re-
sources are available on a server but not accessible due to all
the other resources on that server being occupied - and inflexible
resource-pooling applications can run directly on a single pool
who’s size is limited by the amount of resources at a single server
since inter-server pools are not possible.

Resource disaggregated DCs are a proposed DC architecture

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article Journal of Optical Communications and Networking 2

supporting a network architecture that provides sufficient band-
width and latency guarantees for resource pools to be defined
across servers on which long-lived resource-hungry applica-
tions can be run with local-like performance. This would reduce
fragmentation, as well as increase pooling flexibility. Such ar-
chitectures can in fact be built using off-the-shelf commodity
hardware such as commercially available optical-circuit switches
[3–6] (note that these systems are not yet deployed commercially
but have been shown beneficial in proof of concept demonstra-
tions).

However, since both server- and network- resources need
to be explicitly provisioned in order to allocate both compute
and connectivity, allocation is more complex (it is a NP-hard
combinatorial optimisation problem) as decisions need to be
made across the product of both of these domains, rather than
only server resources as in conventional resource management
frameworks [7–10]. This paper will refer to this requirement
as network aware resource allocation. On graphs with the order
of O(102) nodes - where DCN topologies are at least this large
- exact solutions are computationally intractable, as well as in-
napropriate for online allocation scenarios where requests arrive
dynamically rather than all at once. Moreover, while heuristic
solutions can generate acceptable outcomes in reasonable time,
they are sub-optimal and in particular subject to designer bias
which can considerably limit performance and/or scalability
[4, 5, 11, 12].

This paper shows that deep reinforcement learning (DRL)
with graph neural network (GNN) based policies can learn
very effective network aware allocation policies end-to-end
which both outperform and out-scale conventional methods.
Acceptance rate, CPU utilisation and memory utilisation are
improved by up to 19%, 24% and 22% respectively compared to
state-of-the-art heuristics. Furthermore the DRL-based method
achieves approximately the same performance as the best heuris-
tic achieves whilst requiring 3× less network resources to do
so. While the method is trained on small DCN topologies with
O(101) servers, the GNN-based policy architecture is topology-
size agnostic. Because of this it can be directly applied to topolo-
gies with 102× more servers than seen during training and main-
tain it’s allocation performance without further training required.
Following this, a discussion on interpreting the learnt policy is
presented, indicating that the method is flexible under changing
network resource profiles and generally more adaptable than
the heuristics.

2. BACKGROUND

A. Deep Reinforcement Learning
Reinforcement learning (RL) relates to the study of how to be-
have optimally in dynamic environments. An environment is
formally described by a Markov Decision Process (MDP) defined
as a tuple < S, A, Ra, Ta > where: S is the set of all possible
states that the MDP can be in, A is the set of all possible actions
that some actor can take in this environment, Ra is a function
describing the reward yielded when an agent is in state s, takes
action a and ends up in state s′, and Ta is a function describing
the probability of an agent being in state s, taking action a and
ending up in state s′. A policy is described as some function,
π(s) → a which maps states to actions, where RL problems seek
to find the policy that will yield the largest reward over time.
Deep reinforcement learning (DRL) refers to when policy func-
tions are modelled using deep neural networks. An extensive
explanation of RL theory can be found in [13]. This study has

yielded impressive performance on complex tasks such as the
board game Go or the video game Starcraft [14, 15].

A.1. Graph Neural Networks

Graph neural networks (GNN) extend standard neural network
(NN) architectures to graph-structured data, where data points
are nodes and any relationships. GNNs attempt to account for
topological information as well as the raw data during learn-
ing tasks by means of a message passing procedure where node
and/or edge information is propagated through the network
via single-hop neighbour exchanges and aggregated using a
layer of the GNN. This procedure can be represented by the
equation: hv = g(v, ∑v′ inN(v) f (v

′
, ev,v′)), where g and f are

(learnable/NN-based) functions, v is the information at node
v, ev,v′ is the information at the edge connecting nodes v and

v
′
, N(v) is the set of all one-hop neighbours of node v and

hv is the new representation of node v after a single message
passing procedure has been applied. GNN architectures have
been shown to outperform classical graph-embedding methods
in statistical tasks such as graph clustering or node classifica-
tion. GraphSAGE is a particular GNN architecture which intro-
duced a design where the NN-model is agnostic to the shape
of the dataset’s topology alongside a more efficient neighbour-
sampling technique used during message passing. This allows
for more generalised and scalable graph-based learning and
many contemporary GNN architectures are based on these de-
sign choices [16–18].

A.2. Combinatorial Optimisation

Combinatorial optimisation (CO) problems describe scenarios
with a finite set of items, where some optimal sub and/or or-
dered set of items (the solution) must be determined. Formally,
a CO problem can be described by a set of problem instances,
I; for some instance x ∈ I, f (x) is the set of valid solutions and
m(x, y) (termed the objective function) maps some valid solution
y ∈ f (x) to some number; the goal of a CO problem is to find,
for some x ∈ I, a solution y

′ ∈ f (x) such that m(x, y
′
) is either

minimised or maximised (depending on the problem).

A.3. RL and GNNs for CO

Graph-based combinatorial optimisation problems were pre-
sented as DRL problems initially in [19]. A node-by-node solu-
tion framework with DRL policies modelled with GNNs was
proposed where GNNs generate node-embeddings which are
used to determine whether that node should be added to the
solution set. Further iterations of this framework have shown
it able to scale to large graphs [20–22] and perform competi-
tively against exact solvers [23]. This architecture has been used
to effetively solve a number of network and computer-system
based optimisation problems, such as distributed machine learn-
ing [24], cluster management with dependency-structured tasks
[25], optical routing [26] and virtual network embedding [27, 28].
However, there has never been an application of this method to
the kind of system (optically composable data centres) and allo-
cation problem (network aware resource allocation) presented
here, and as such these works are not directly comparable.

A.4. (Composable) Data Centre Resource Allocation

Network aware algorithms for optically composable disaggre-
gated data centres are described in [4, 5, 11]. These works aug-
ment a breadth-first-search procedure to recursively discover
sub-networks that can support the required compute, memory,
storage, bandwidth and/or latency by some given request. They

Research Article Journal of Optical Communications and Networking 3

show advantages over traditional packing algorithms such as
best fit, but suffer from poor scalability since they are exhaustive
in the worst case. A bandwidth-aware multi-resource cluster
allocation (and scheduling) method is described in [12], where
servers are ranked based on server-local compute and network
resources. This method has more limited exposure to the net-
work as it does not consider network resources multiple hops
away from the server, but is less exhaustive in it’s search com-
plexity (elaborated in section B.1).

Cluster scheduling in commercial DCs is often handled us-
ing a variant of the dominant resource fairness algorithm and
typically accounts for numerous practical features relating to
operational efficiency such as software package availability of
each machine or failure domain acknowledgement, and gen-
erally seeks to reduce fragmentation and increase utilisation
[7, 9, 10, 29]. The framework presented in [30] describes a gener-
alised resource allocation that implements a highly paralellised
GPU-based packing method to solve generic virtual machine
allocation in a typical (not composable/optical) DC environ-
ment. Similarly, the virtual data centre (VDC) mapping problem
is implemented using a heuristic based on hand-crafted objec-
tives for server, switch and link mapping [31] - though only
comparisons against random allocation are made. While not
directly comparable to the method presented here which ad-
dresses a fundamentally different type of computer system and
associated problem, it is of value to note these methods as they
provide context for the motivations of composable DCs, as well
as the difficulties of tackling NP-hard allocation problems in
such systems.

3. PROBLEM

We identify resource allocation in composable DCs as a CO
problem, represent it as a MDP and show that GNN-based DRL
solutions can learn superior allocation strategies compared to
several baselines. Previous work has shown that DRL with GNN-
based policies can be used to learn network aware resource
allocation algorithms in composable data centres which are both
high performing and scalable [32]. This work continues the
examination of these architectures in a similar experiemental
setting, but provides more extensive analysis of the nature of
the policy that is learnt. Specifically, our analysis is extended to
the network usage, fairness and general nature of the decision
making by the DRL agent. In this way we seek to understand
more intuitively what the agent is doing, as opposed to a more
simple observation of improved long-term allocation outcomes.
We discuss new results about how each tier’s network resources
are used by the agent (and comparative methods) across the test
topologies, as well as analyse the relationship between request
size and how the agent’s allocations are distributed within racks,
between racks and between clusters.

A. Defining the Markov Decision Process
Environment: The environment consists of a DCN (a set of
servers and a network interconnecting these servers via some
network switches) and requests which arrive one by one. We
model a 3-tier space-switched DCN architecture (standard in
modern data centres and in-line with the previous optically com-
posable DC architectures detailed in past literature). Servers
connect directly to a tier-1 switch, which itself connects to a
number of tier-2 switches, which in turn connect to a number
of tier-3 switches. A set of servers connected to the same tier-
1 switch are referred to as a rack. A set of racks who’s tier-2

switches connect to the same set of tier-2 switches is referred to
as a cluster. By varying the number of channels-per-link at each
tier, we generate 9 distinct topologies. These topologies span 3
different oversubcription ratios and each also have different ab-
solute quantities of network resources. Table 1 shows explicitly
how these topologies were generated and Fig. 1 visualises the
DRL learning loop with this MDP.

The DCN is represented by a graph, G(V, E). Each server
(represented by the set of nodes V ∈ G) has an associated re-
source vector. Specifically, in this problem the CPU and memory
resources are accounted for so that [vcpu, vmem]∀v ∈ V, where
vcpu & vmem represent the available CPU and memory resources
of server v at any given moment. Each node is initialised at the
start of an episode as v = [16, 16] meaning there are 16 discrete
units available of CPU and memory resources at each server
initially.

Similarly, each switch has a particular number of input and
output ports. This is represented by proxy using edge features,
such that each edge has a number of distinct channels, also
denoted by a resource vector [ech]∀e ∈ E where ech is the number
of available channels in that link. This represents a scenario
where a certain number of ports on a switch are reserved for a
particular server who’s direct link to that switch has a certain
number of channels.

Table 1. Oversubscription and number of channels per link
for each topology. ‘Bottom-top oversubscription’ refers to the
oversubscription from the servers to the top tier of switches
(tier-3). ‘Oversub’ refers to the oversubscription at the inter-
face between that tier and the tier below it (hence Tier-1 does
not have an ‘oversub’ value. In this work we used topologies
of this structure with n ∈ {8, 16, 32}.

Oversubscription, channels-per-link for network tiers

Bottom-top Oversubscription

1:16 1:8 1:4

Ovsub, Chan Ovsub, Chan Ovsub, Chan

Tier-1 -, n -, n -, n

Tier-2 1:4, 2n 1:2, 4n 1:2, 4n

Tier-3 1:4, 1
2 n 1:4, n 1:2, 2n

Requests arrive at the DCN one at a time and are not seen
in advance, where R = [rcpu, rmem, rt] represents the CPU, mem-
ory and holding time requirements for that request. The DCN
environment is event-driven such that a ticker iterates once ev-
erytime a new request is received. As such when a request is
allocated, its holding time refers to after how many future re-
quest arrivals it will de-allocate. A valid solution consists of
a set of nodes, V

′
, must be found to satisfy the constraints of

1. ∑ vx ∈ V
′ ≥ rx, x ∈ {cpu, mem} and 2. a set of |V ′ |(|V ′ |−1)

2
distinct paths can be found to guarantee all-to-all connectivity
between all v ∈ V

′
. A good solution to this problem is one which

maximises successful allocations over time.
Episode: An episode is defined as receiving N requests. For

each request the agent will iteratively choose servers until either
it has successfully allocated a request or it’s solution is invalid.
When a new request arrives, if there is enough raw resources

Research Article Journal of Optical Communications and Networking 4

available in the DCN to theoretically allocate it, the agent is
prompted to attempt to do so. If an invalid solution is generated
(there are not enough network resources available to connect all
servers in the allocation) then this request is dropped and a new
request is fetched. We do not model queuing as this involves
another algorithmic domain (to balance new and queued request
with priority structures etc) and in this work we wish to focus
on the network-awareness/congestion dynamics of the under-
lying system. Moreover, queuing/prioritising can be handled
in parallel to resource allocation decisions so can be considered
separately.

State: given an awaiting request R = {rcpu, rmem, rt} (CPU,
memory and holding-time requirements respectively) the MDP’s
state is s = {G(Vnorm, E), rt, Ucpu, Umem} where, Vnorm =
{ vx

rx
∀vx ∈ V}, x ∈ {cpu, mem} and Ux is the DCN-global utili-

sation of resource x ∈ {cpu, mem}. This combines both node-,
edge- and graph- level resource information within the state
representation.

Feature normalisation is important in machine learning prob-
lems to ensure that certain features with larger absolute val-
ues/variation do not disproportionately influence policy up-
dates during training. Furthermore, normalised state representa-
tion ensures that policies should be robust under testing on sim-
ilar environments differing only by absolute scales (e.g. a DCN
with 4 CPU units-per-server vs one with 16 units-per-server, or
a scenario where requests are between 1-8 servers vs one where
they are between 8-16). As such, each server’s resource values
are normalised with respect to the current requested amount
of that resource. Similarly, link-resources are normalised with
respect to the maximum initial amount on any link in the DCN.
This ensures that the policy is exposed to the DCN in a way that
is feature-scale agnostic, as well as agnostic to the relative scale
of request quantities and server-resource quantities.

Action: A server v ∈ V is added to V
′
. If constraint 2 defined

previously cannot be satisfied (when k=3 shortest paths are tried
per node-pair) the allocation fails. If constraint 2 is satisfied, then
max(vx, rx) - the maximum that can be provisioned from this
server up to the limit of how much is needed and how much is
present at that server - is allocated from v (x ∈ {cpu, mem}) and
one channel-per-link per-path per-node-pair are allocated. If con-
straint 1 & 2 are satisfied the allocation is successful. Per request,
actions are taken until an action succeeds or fails an allocation,
at which point a new request is fetched (until termination).

Reward: The reward should guide the policy to maximise
the number of requests allocated over time. The reward should
also not be obviously biased towards certain requests (e.g. larger
vs smaller ones) and not be complex in order to avoid excessive
hand-crafting and to give the policy freedom to find allocation
strategies not limited by designer bias. We craft a reward which
awards α, β and γ for server selections resulting in successful
allocations, unsucessful allocations and neither (allocation has
not failed but is not fully provisioned yet) respectively.

We set γ = 0 since otherwise rewards are biased in favour
of allocations with more or less servers involved when γ > 0
and γ < 0 respectively. We also set α = −β = 10 - found by
simple grid search - to ensure that the reward creates stronger
signals contrasting good (lots of allocations) and bad (lots of
failures) outcomes compared to if only successful requests were
rewarded, or if only failed requests were punished. Further
tuning might determine that performance improves with un-
equal magnitudes of rewards for successes and failures, thought
we leave this for future work due to the open-endedness of the

exercise. Furthermore, more complex rewards can often lead
to unexpected/unwanted behaviour. For example, rewarding
acceptance more than failures are punished may lead to pri-
oritising acceptance at all costs, neglecting larger requests that
are harder to allocate and prioritising easier smaller ones exclu-
sively.

While CPU and memory utilisation are observed in testing,
we do not account for them explicitly in the reward. This is
largely because utilisation is inherently request-dependent and
accounting for it in the reward requires greater consideration
and hand-crafting than using only acceptance. Consider the
case where the reward is proportional to utilisation. Utilisa-
tion increases more when a larger request is allocated. Some
non-intuitive considerations would therefore have to be made
to ensure fair rewards are given to successful allocations across
different request sizes (i.e. not systematically prioritising larger
requests by giving greater rewards for allocating them). Further-
more, since higher acceptance means more requests allocated in
the DCN at any given time, better acceptance rates (as is seen
in section 5) leads to higher utilisation even without explicit
handling in the reward structure. As such, we use acceptance
only in order to reduce reward complexity. We nevertheless be-
lieve that exploring different reward structures is an interesting
avenue of future work.

B. Defining the deep reinforcement learning model
The learning model consists of a GNN (based on the GraphSAGE
architecture [17]) and 2 deep neural networks (DNN) which we
refer to as DNN1 and DNN2. The GNN acts on G(Vnorm, E)
to generate embeddings of each node in the topology, where
each layer of the GNN was constructed with 1 hidden layer of 16
units. DNN1 outputs a high dimensional (8 units) representation
of [rt, Ucpu, Umem]. DNN2 then calculates logits for each node in
the DCN graph based on an input of the concatenation of the
GNNs embedding of that node, the output of DNN1 and the
element-wise mean of the embeddings of the nodes that have
already been allocated to that request (or a zero-vector if the re-
quest has just been received and nothing has been allocated yet).
These logits are passed through a softmax function to specify the
probability of choosing each node. All hidden layers use ReLU
activation. This model is used to approximate a policy, trained
using the proximal policy optimisation (PPO) RL algorithm, and
is implemented using RLlib and Deep Graph Library [33, 34].

Fig. 1. Visualisation of the DRL feedback loop. The environ-
ment state is the DCN. Different coloured servers/links re-
fer to their allocation to different requests (distinguished by
colour).

The GNN used a distinct mean-based aggregator for each
layer, where messages exchanged during the message passing

Research Article Journal of Optical Communications and Networking 5

process are aggregated like: v = 1
|N(v)|+1 ∑x∈Mv

Wi(x) where v
is a node (embedding) in the DCN graph G(V, E), N(v) is the
set of the one-hop neighbours of v, Mv is the set of messages
received by v from it’s neighbours and Wi is a neural network
associated with the ith layer of the GNN.

The GNN outputs embeddings of each node in 16 dimensions,
and 3 layers were used so that information from the top of the
network can be accounted for in the embeddings of the servers.

We compare our model against 3 baselines (Tetris, NALB,
NULB) from previous work as well as a random allocation policy
[5, 11, 12]. By training and testing the same DRL model across
each of these topologies using the same reward structure we
learn a distinct policy per topology and seek to explore if the
model is topologically flexible in the policy it can learn given
the underlying environment.

4. EXPERIMENTAL SETUP

A. Training and Testing

Training is implemented separately on each topology. Topolo-
gies used for training have 64 nodes (2 clusters × 2 racks × 16
servers-per-rack) and servers have 16 units of CPU and memory
resources each. Requests are uniformly sampled with a maxi-
mum request size of 8 full-servers worth of resources in each
domain, and their holding times are sampled such that the av-
erage offered load on the DCN system is 95% of all CPU and
memory resources. Separate agents are trained for each topology,
and tested against each baseline on that same topology. Training
episodes are terminated after 32 requests have been received
(successfully or otherwise) by the agent, and testing episodes
on the smaller topology are terminated after 128 requests have
been received. Agent’s are tested on the same topologies on
which they were trained. On a Nvidia A100 GPU and a Intel
Xeon Gold 6148 CPU, training converges within ≈ 4 hours over
≈ 1000 episodes.

Shorter training episodes are generally more desirable since
long episodes can create difficult learning scenarios [35, 36]. On
the other hand, in the scenario explored here, any trained agent
deployed in a real DC would be operating in a continuous envi-
ronment. As such it is important that the policy can be trained on
episodes that are short, but not too short such that the long-term
dynamics of the system are unobserved in training, and thus not
accounted for in deployment. Our training cluster is small (64
nodes, 4 racks of 16 servers) but still has servers divided into
racks and clusters such that the different tiers of the network
must be accounted for in allocations. We choose for requests to
have a maximum size of 1

2 a rack (based approximately on [1])
and be uniformly distributed. We uniformly distribute holding
times within a range such that on average throughout the life-
time of an episode the offered load is 95% (after the ‘warm up’
period when utilisation starts at 0 and gradually climbs to some
convergent value as requests begin to arrive in the system). As
such there should be no requests arriving after warm-up which
are trivial to allocate due to excessive amounts of free resources.
This creates a challenging allocation environment in which net-
work usage must be carefully accounted for due to the high
demand on the system, and where on average 1

2 of the training
episode is spent in a high utilisation state (post warm-up).

Testing consists of deploying a trained policy on the same
topology on which it was trained. Testing episodes (128 re-
quests) are longer than training ones (32 requests) to emphasise
performance on the long-term dynamics or stability of the sys-

tem (more akin to real DC system operation). In this case, the
episode spends approximately 7

8 of the time in the high util-
isation state so that the long-term stability of the method is
observed. Testing episodes are seeded in the same way for each
baseline, so all methods are exposed to the same set of requests
(per test) received in the same order. Each test is run 5 times and
results presented (where a single value per topology is shown)
are the average of these 5 runs. Note that since testing/inference
requires only a forward pass through the GNN-based policy net-
work multiple times (once per each server selection until success
or failure), and as such takes O(seconds) to select servers for a
single request.

Tests are also implemented on scaled up (O(103) nodes) ver-
sions of each respective topology. Much longer episodes are
required here since warm up takes much longer (since there is
O(102)× more resources in the DCN). Additionally, in order to
maintain a high offered load the holding times are increased ap-
propriately so that resource requirements build up in the system
and allocation becomes harder as more requests arrive. More
crucially, this test is done to explore the suitability of this method
in a real DCN allocation scenario. Server clusters in large enter-
prise computer networks are of the order of O(103) servers and
above. As such scalability to topologies of at least this scale is
necessary.

If such a method were deployed in a real DC (though not
the case in this paper which is entirely simulation based), some
training and scaling practicalities must be considered. A small
test cluster may be feasibly reserved for experimentation [37],
though full-scale experimentation is not possible as this would
require halting all or much of the services provided by the clus-
ter (since the pre-trained allocation agent would be unsuitable
for service level requirements). Where a sufficiently accurate
simulation of DCN patterns is not available - which it often isn’t
[38–40] - and a small cluster is reserved for experimentation,
any algorithm developed on the small cluster must be consis-
tent with respect to performance when transferred to the larger
one. For this reason we observe whether a policy trained on
a topology with O(101) nodes can be directly deployed with
nor modification or further training on a larger topology with
O(103) servers (1024 specifically; 4 clusters of 4 racks each with
16 servers). Moreover, this also examines the longer-term stabil-
ity of the method as the large-topology scenario - even more so
than the longer testing episodes - requires allocation decisions to
be made continuously for very long episodes (O(103) requests,
2048 specifically). This can therefore indicate if the policy is
‘stable’ (it doesn’t deteriorate over time after a small number of
episodes) or not (it can perform well on a small training episode,
but does not do so consistently with larger topologies and/or
longer episodes).

All methods are evaluated on the basis of three metrics; accep-
tance ratio, CPU utilisation and memory utilisation. Acceptance
ratio refers to the proportion of all requests received by some
allocation method that were successfully allocated. CPU and
memory utilisation refers to the proportion of the total amount
of that resource that is available in the DC which is currently
allocated to some request. We also observe utilisation metrics
relating to each tier of the network, as well as the characteris-
tic relationship between request size and how distributed it is
throughout the DC for a particular method. These (baseline or
agent). These observations are considered as emergent features
(rather than performance-based metrics used to evaluate allo-
cation policies), and are used to try to understand the nature
of what each method (the proposed RL-based one in particular)

Research Article Journal of Optical Communications and Networking 6

does to achieve the allocation outcomes they do.

B. Baselines
Tetris [12] is a multi-resource packing heuristic. It uses the co-
sine similarity between task requirement and server resource
availability vectors to calculate scores upon which packing deci-
sions are made. Network resources are considered to be those
which are present at a particular server (e.g. how many free com-
munication channels are available at a particular node).Aa score
penalty is imposed on non-local resources in order to encourage
locality in its decision making. In this way an assumption about
network resource efficiency is imposed which suggests that it is
better to keep allocations rack local more than not.

NALB is a network-aware resource allocation algorithm
which uses a bandwidth-weighted breadth-first-search algo-
rithm and a bandwidth-weighted k-shortest paths routing algo-
rithm to find suitable nodes and establish connectivity between
them respectively [5]. The algorithm accounts for CPU, mem-
ory, storage (not used in this work), bandwidth and/or latency,
where relative weighting between bandwidth and latency is a
tunable parameter of the algorithm.

NULB works similarly to the NALB method, except that the
breadth-first-search algorithm does not use weighting. Weight-
ing is still used for the k-shortest paths procedure [5].

Random selects servers randomly. Used as a lower bound on
expected performance.

B.1. Complexity comparison of DRL method and baselines

On a topology with set N nodes and set E edges, the complexity
of server selection for the DRL method presented here and the
Tetris baseline is O(|N|). Tetris requires a vector multiplication
to be performed once per node, and message-passing - the core
operation in the DRL-based method - has linear complexity with
respect to number of nodes [41]. The NALB and NULB methods
are breadth-first-search based, and as such have complexity
O(|N| + |E|) since they are required to visit each and every
node and edge in the exhaustive breadth-first-search procedure
(in the worst case) before a viable server is guaranteed to be
found. Random allocation has a trivial complexity of O(1).

As such it is seen that the Tetris and DRL-based method have
the lowest complexity (excluding random allocation, which has
trivially bad performance) and the NALB and NULB heuristics
have the highest complexity.

5. RESULTS

A. DRL agent allocates more requests overall
On testing, the agent is observed to consistently outperform ev-
ery baseline across each topology tested. For each topology, the
percentage by which the agent improves over the best perform-
ing baseline on that topology is shown in Table 2. Most notably,
it is seen that the agent thrives in particular when the network
has few channels-per-links and/or when oversubscription is
high (i.e. when the network is generally resource-constrained),
achieving a 19.0%, 24.4% and 21.7% improvement for acceptance,
CPU utilisation and memory utilisation respectively. Moreover,
the agent is also able to find improvements even in the least
resource-constrained environment where even the random base-
line is comparable to some of the other baselines. It is also seen
that, unsurprisingly, the agent achieves similarly improved re-
source utilisation for CPU and memory. In this case the same
respective improvements are 5.8%, 2.7% and 2.7%. This is a
natural emergent outcome of allocating more requests; higher

Table 2. Percentage improvement of the agent pair over the
second best performing baseline for that topology across all
tested topologies.

RL agent improvement over best baseline (%)

(acceptance, CPU util., memory util.)

Oversubscription

1:16 1:8 1:4

Chan. 8 19, 24, 22 15, 16, 20 22, 43, 23

per-link 16 9, 21, 16 11, 12, 15 8, 16, 11

tier-1 32 17, 17, 21 19, 12, 10 6, 3, 3

acceptance ratio is equivalent to more requests occupying re-
sources in the DC on average in a given moment in time. As
such resource utilisation will also be higher on average.

B. DRL agent is more consistent than baselines across differ-
ent DCNs

The average performance at the end of the test episode for ac-
ceptance, CPU utilisation and memory utilisation are shown
in Fig. 2. A key observation from these plots relating to both
consistency and flexibility benefits is that while the RL method
is always the best performing method on each topology, the
baselines are frequently trading places for 2nd, 3rd, 4th and 5th.

As previously noted, heuristics are designed on the basis of
some specific assumptions about a given system or problem,
and are also tested in limited conditions. For example, the Tetris
baseline assumes a statically defined emphasis on locality is
beneficial, and also asserts that the network and node resources
accounted for when scoring a particular server should be only
it’s local ones (i.e. it’s directly attached resources, as opposed to
accounting for resources from nodes/links up to k-hops away,
for example). This is not so say that heuristics are entirely in-
flexible; Tetris parameterises how much of a penalty non-local
servers should receive, and NALB parameterises the weighting
between latency and bandwidth in the routing process for when
both features are used. However, the fundamental decision mak-
ing processes as well as what information is used to make these
decisions are for the most part static after the design and testing
phase. In this sense a heuristic has some inherent bias in it’s
behaviour that is derived from the design assumptions and test-
performance feature-tuning, and as such do not necessarily have
consistent performance benefits over some other heuristic in
every circumstance. The tests who’s results are shown in Table 2
and Fig. 2 differ only by the per-link resource quantity and share
the fundamental topology. Even so, relatively simple variation
is already enough to show the inconsistency of heuristics in this
regard. Conversely, the agent learns appropriate policies for
each network-resource profile and is able to consistently find
better performance across each topology.

C. DRL agent is more consistent than baselines with respect
to request size

The reward structure is designed to be minimally imposing on
the kind of policies the agent can learn, and as such is related
only to how many requests it successfully allocates rather than
some request-specific information (e.g. the resource requirement

Research Article Journal of Optical Communications and Networking 7

Fig. 2. blue=RL agent, orange=Tetris, green=NALB, red=NULB, purple=random. Line plots showing the acceptance ratio (left),
CPU utilisation (middle) and memory utilisation (right) for each method when tested on each topology. Topology labels (x-axis) are
channels per tier-1 link (upper part) and oversubcription (lower part).

magnitude). This was done to attempt to influence the agent
to learn policies that are ‘fair’ with respect to any request it
encounters. We expect from this design choice that the request
should not learn to treat any particular size-range of request
more carefully than others. As such we analyse how successful
each agent was with requests of different sizes, grouped by the
minimum possible number of servers required to allocate the
request (this is a value between 1 and 8 inclusive since the largest
requests ask for 8 full servers worth of resources). This is to see
if the agent is better overall but systematically and significantly
worse with requests of a particular size bracket, which would
suggest a more biased policy is learnt.

What is seen is that the agent’s advantage is very consistent
across not just topologies but also request size brackets. The only
exceptions are for the 3 most resource-constrained topologies,
where the agent incurs a small deficit in the largest request size
brackets. The worst case is seen on the 8-channel 1:8 oversub-
scription ratio topology, where deficit of 10 and 2 requests for the
requests in the 7-server and 8-server size brackets respectively.
This amounts to 1.8% of the total number of requests received
across this test, compared to an overall improvement of 15%,
where all other request-size brackets are improved relative to
the baselines. The agent achieves better allocation outcomes not
just overall but also with respect to each request size with few
and minor exceptions.

D. The agent requires less networking resources for similar
allocation performance

The agent’s performance is also favourable compared against
the baselines not just on the same topologies, but also across
topologies. In particular, the agent can enable higher acceptance
ratio on lower-resource topologies than the best performing
baseline on higher-resource topologies. In the most extreme
case observed across all experiments, the agent achieves an
acceptance on the 8-channel 1:16 oversubscription topology that
is only 1% lower than what the best performing baseline achieves
on the 32-channel 1:16 oversubscription topology. In this case,
the agent is effectively allowing for the same resource allocation
service level to be achieved with 3× less resources.

Practically speaking, this is a very desirable feature. While
optical DCN networks can allow various scalability issues to be
avoided, the disaggregated resource paradigm that they enable
imposes heavy demand on the network. An allocation policy
that is able to minimise the amount of networking resources
required to maintain some level of resource efficiency can al-
low for such systems to be built more feasibly. Large network

Table 3

RL agent performance delta on larger topologies (%)

(acceptance, CPU util., memory util.)

Oversubscription

1:16 1:8 1:4

Low-tier 8.0 6, 4, 0 6, -12, -2 4, 13, 6

channels 16.0 16, 8, 14 10, 3, 10 9, 4, 11

per-link 32.0 7, 4, 11 -6, 8, 3 -1, -1, 6

infrastructure requirements (e.g. lots of fibre and switches) is
expensive and requires much maintenance and planning [42].
Minimising these requirements is highly desirable to limit initial
capital, operational and maintenance costs of such systems.

E. Topology scale-up performance

Table 3 shows the percentage delta in test performance for the
DRL agent when applied to each topology vs it’s O(102) scaled
up version. In the table +ve indicates that the large-topology
score was better and −ve indicates that it was worse. Averaged
across each topology, the delta is 5.6%, 3.4% and 6.5% for ac-
ceptance, CPU utilisation and memory utilisation respectively.
The key indication from these results is simply that the agent is
clearly able to learn a policy on a small graph that accounts for
features of the topology and request distribution that are valid
when applied to much larger topologies and over a much longer
series of requests.

F. Interpreting the policy’s allocation strategy

Here is presented a discussion, led by visual analysis, on the
nature of the allocation policy that is learnt by the DRL agent.
Since it is unclear how to directly extract policy principles from
neural networks directly, numerical and visual analysis through
experimental probing is required to infer as best as possible what
the policy is doing. In effect, this section attempts to describe
the learnt allocation policy as if it were a heuristic using several
visualisations.

Fig. 3 shows the utilisation of each tier’s network resources
per-topology-per-method. The relationship between how many
servers were allocated to a request and their distribution is

Research Article Journal of Optical Communications and Networking 8

Fig. 3. blue=RL agent, orange=Tetris, green=NALB, red=NULB, purple=random. Line plots showing the utilisation of tier-1 (left),
tier-2 (middle) and tier-3 (right) networking resources for each method when tested on each topology. Topology labels (x-axis) are
defined as channels per tier−1 links

oversubscription

shown for each topology in Fig. 4 (x-axis and y-axis respec-
tively). In the figures, the size of a blue circle relates to the
number of requests which were allocated that number of servers
and distributed at that amount. Each distribution in Fig. 5 shows
the combined results of allocation outcomes for all topologies
of a particular oversubscription ratio (per-method). The x-axis
refers to how distributed the servers allocated to a request were,
and the y-axis indicates how commonly that distribution was
used by an allocation method. Fig. 6 similarly shows the rela-
tionship between the resource requirement of each request (CPU
and memory in x- and y- axis respectively) and how distributed
those requests were (shown by colour gradient).

F.1. DRL agent uses network when it is available

Looking at the agent’s results, it is seen that when the net-
work resources are very limited (highly oversubscribed and few
channels-per-link), the method concentrates allocations within
racks, having higher utilisation for tier-1 (intra-rack) and com-
paratively very low utilisation for the higher tiers. As the agent
moves towards topologies with lower oversubscription /more
channels-per-link, the tier-2 and tier-3 resources are more highly
utilised and the tier-1 resources less. This indicates that the
agent learns a policy that exploits network resources when
they are available, but allocates more rack-locally when they
are not. Moreover, the biggest increase in utilisation occus at
tier-3, which increases from ≈ 0.2 to ≈ 0.8 between the most and
least network-resource constrained topologies. This indicates
that in particular the agent learns to exploit the most non-local
allocation possible (inter-cluster) when network resources are
available to do so.

Observing Fig. 5, as the oversubscription moves from 1:16
(less network resources) to 1:4 (more network resources), the
agent changes it’s policy from being mostly intra-rack (and keep-
ing the limited higher-tier network resources generally free) to
exploiting more directly the available higher-tier network re-
sources as they become more abundant. By contrast, the other
heuristic’s distributions remain comparatively static regardless
of oversubcription, since the heuristics allocation scheme is hard-
coded by design and not able to flexibly exploit resources in
different circumstances.

F.2. The agent distributes requests differently based on their resource
requirements

Fig. 4 shows that distribution is more common when more
network resources are available and highly distributed requests
tend to be small ones requring few servers. Fig 6 confirms

Fig. 4. Visualising the relationship between how many servers
were allocated to a request (x-axis), and how distributed those
servers were for that request (y-axis). Size of the blue circles
represents how many requests were served at this x-y value.
One figure per topology, each labelled by 2 numbers; channels-
per-link at tier-1 (top) and oversubscription (bottom).

this observation of smaller requests being more likely to be
highly distributed. The largest requests tend to be allocated rack-
locally in all topologies and there is also a general preference
for rack-locality in general. Higher-tier links in the DCN are
exposed to more servers and are therefore most oversubscribed
and prone to full occupation. Larger requests require more
servers, and therefore more network resources to interconnect
them, whereas smaller requests require fewer network resources
correspondingly. Figures 4 and 6 show that the DRL agent learns
to allocate minimal resources per-request from higher tiers in
order to prevent congestion (full channel occupation) in these
higher tier links.

This behaviour can be summarised as 1. rack-local allocations
are generally preferred; 2. smaller requests have a higher likeli-
hood of being more highly distributed; 3. larger requests have a
higher likelihood of being less distributed and kept rack-local.
These principles allow for the least oversubscribed network re-
sources to be used for the requests with the most significant
network resource requirements, and for smaller requests to be

Research Article Journal of Optical Communications and Networking 9

Fig. 5. blue=RL agent, orange=Tetris, green=NALB, red=NULB, purple=random. Plots showing the density of different degrees
of distribution for each agent and each oversubscription ratios. Results for different topologies with the same oversubcription ratio
are combined into a single graph.

Fig. 6. Visualising the relationship between requested CPU
units (x-axis), requested memory units (y-axis) and how dis-
tributed the servers allocated to that request were (colour).
Lowest distribution is a single server, and maximum is inter-
cluster. One figure per topology, each labelled by 2 numbers;
channels-per-link at tier-1 (top) and oversubscription (bottom).

distributed more freely throughout the DCN.

6. CONCLUSION

This paper shows that deep reinforcement learning with graph
neural network based policy architectures can be used to learn
effective network-aware resource allocation policies end-to-end.
When trained and tested across 9 data centre topologies with
different network-resource quantity and oversubscription, the
presented method achieves up to a 19%, 24% and 22% improve-
ment for acceptance ratio, CPU utilisation and memory utili-
sation respectively against a number of baseline heuristics for
network-aware resource allocation. Improvements are most pro-
nounced when the network resources are most limited. The
method also achieves the same performance as the best heuristic
whilst requiring 3× less network resources to do so. Addition-
ally, the policy is highly scalable and the policy architecture
topology agnostic. When trained on topologies with O(101)
servers, policy performance is highly consistent when deployed
on topologies with the same oversubscription properties but
O(102)× more servers with no re-training or architectural ad-
justments required.

Avenues of future work include; increasing the scale of test
topologies beyond the O(103) shown here; handling a wider
variety of/more complex request types with harder allocation
constraints (latency minimums etc); more variety of possibly
time-dependent request distributions to be handled during al-
location rather than a single static one; stability of the policy in
more dynamic topologies where servers and/or links may be
randomly inaccessible (e.g. to simulate component failures).

ACKNOWLEDGEMENTS

This work was supported under the Engineering and Physical
Sciences Research Council (EP/R041792/1 and EP/L015455/1),
the Industrial Cooperative Awards in Science and Technology
(EP/R513143/1), the OptoCloud (EP/T026081/1), TRANSNET
(EP/R035342/1) grants.

DISCLOSURES

The authors do not maintain any relevant conflicts of interest.

REFERENCES

1. O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM allocation service at scale,” in 14th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20),
(USENIX Association, 2020), pp. 845–861.

2. D. A. Popescu, “Latency-driven performance in data centres,” Ph.D.
thesis (2019).

3. polatis.com, “Series 7000 - 384x384 port software-defined optical
circuit switch,” .

4. G. Zervas, F. Jiang, Q. Chen, V. Mishra, H. Yuan, K. Katrinis, D. Syriv-
elis, A. Reale, D. Pnevmatikatos, M. Enrico, and N. Parsons, “Disaggre-
gated compute, memory and network systems: A new era for optical
data centre architectures,” in Optical Fiber Communication Conference,
(Optical Society of America, 2017), p. W3D.4.

5. G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Opti-
cally disaggregated data centers with minimal remote memory latency:
Technologies, architectures, and resource allocation,” J. Opt. Commun.
Netw. 10, A270–A285 (2018).

6. V. Mishra, J. L. Benjamin, and G. Zervas, “Monet: heterogeneous
memory over optical network for large-scale data center resource dis-
aggregation,” IEEE/OSA J. Opt. Commun. Netw. 13, 126–139 (2021).

7. F. E. Blog, Efficient, reliable cluster management at scale with Tupper-
ware (2019).

8. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,” in

Research Article Journal of Optical Communications and Networking 10

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Sys-
tems Principles, (Association for Computing Machinery, New York, NY,
USA, 2009), SOSP ’09, p. 261–276.

9. A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at google with borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), (Bordeaux, France, 2015).

10. M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in SIGOPS European Conference on Computer Systems (EuroSys),
(Prague, Czech Republic, 2013), pp. 351–364.

11. H. Yuan, A. Saljoghei, A. Peters, and G. Zervas, “Disaggregated optical
data center in a box network using parallel ocs topologies,” in Optical
Fiber Communication Conference, (Optical Society of America, 2018),
p. W1C.2.

12. R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proceedings of the
2014 ACM Conference on SIGCOMM, (Association for Computing
Machinery, New York, NY, USA, 2014), SIGCOMM ’14, p. 455–466.

13. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(A Bradford Book, Cambridge, MA, USA, 2018).

14. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” CoRR. abs/1712.01815 (2017).

15. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Hor-
gan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney,
O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent rein-
forcement learning,” Nature. 575, 350–354 (2019).

16. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in International Conference on Learn-
ing Representations, (2018).

17. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Advances in Neural Information Processing
Systems, vol. 30 I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, eds. (Curran Associates, Inc.,
2017).

18. T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, (OpenReview.net, 2017).

19. E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combi-
natorial optimization algorithms over graphs,” in Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds. (Curran
Associates, Inc., 2017), pp. 6348–6358.

20. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” CoRR. abs/1806.01973 (2018).

21. A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, “Learning
heuristics over large graphs via deep reinforcement learning,” (2019).

22. Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Advances in
Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.
(Curran Associates, Inc., 2018), pp. 539–548.

23. T. D. Barrett, W. R. Clements, J. N. Foerster, and A. I. Lvovsky,
“Exploratory combinatorial optimization with reinforcement learning,”
CoRR. abs/1909.04063 (2019).

24. R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Alizadeh,
“Placeto: Learning generalizable device placement algorithms for dis-
tributed machine learning,” arXiv preprint arXiv:1906.08879 (2019).

25. H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-

izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Commu-
nication, (Association for Computing Machinery, New York, NY, USA,
2019), SIGCOMM ’19, p. 270–288.

26. P. Almasan, J. Suarez-Varela, A. Badia-Sampera, K. Rusek, P. Barlet-
Ros, and A. Cabello, “Deep reinforcement learning meets graph neural
networks: An optical network routing use case,” (2019).

27. H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing
284, 1 – 9 (2018).

28. Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network embed-
ding: A deep reinforcement learning approach with graph convolutional
networks,” IEEE J. on Sel. Areas Commun. 38, 1040–1057 (2020).

29. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple re-
source types,” in Proceedings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation, (USENIX Association,
USA, 2011), NSDI’11, p. 323–336.

30. A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation
for the cloud,” in Proceedings of the Third ACM Symposium on Cloud
Computing, (Association for Computing Machinery, New York, NY, USA,
2012), SoCC ’12.

31. M. G. Rabbani, R. P. Esteves, M. Podlesny, G. Simon, L. Z. Granville,
and R. Boutaba, “On tackling virtual data center embedding problem,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), (2013), pp. 177–184.

32. Z. Shabka and G. Zervas, “Nara: Learning network-aware resource
allocation algorithms for cloud data centres,” CoRR. abs/2106.02412
(2021).

33. E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Gold-
berg, and I. Stoica, “Ray rllib: A composable and scalable reinforce-
ment learning library,” CoRR. abs/1712.09381 (2017).

34. M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315 (2019).

35. T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden,
G. Barth-Maron, H. van Hasselt, J. Quan, M. Večerík, M. Hessel,
R. Munos, and O. Pietquin, “Observe and look further: Achieving
consistent performance on atari,” (2018).

36. C. W. F. Parsonson, A. Laterre, and T. D. Barrett, “Reinforcement learn-
ing for branch-and-bound optimisation using retrospective trajectories,”
(2022).

37. A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” SIGCOMM Comput. Commun.
Rev. 45, 123–137 (2015).

38. C. W. Parsonson, J. L. Benjamin, and G. Zervas, “Traffic generation for
benchmarking data centre networks,” Opt. Switch. Netw. 46, 100695
(2022).

39. B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of the 2nd ACM Symposium on
Cloud Computing, (2011), pp. 1–14.

40. E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
(Association for Computing Machinery, New York, NY, USA, 2017),
SOSP ’17, p. 153–167.

41. M. Balcilar, P. Héroux, B. Gaüzère, P. Vasseur, S. Adam, and
P. Honeine, “Breaking the limits of message passing graph neural
networks,” CoRR. abs/2106.04319 (2021).

42. L. Poutievski et al., “Jupiter evolving: Transforming google’s datacenter
network via optical circuit switches and software-defined networking,”
in Proceedings of the ACM SIGCOMM 2022 Conference, (Association
for Computing Machinery, New York, NY, USA, 2022), SIGCOMM ’22,
p. 66–85.

	Introduction
	Background
	Deep Reinforcement Learning
	Graph Neural Networks
	Combinatorial Optimisation
	RL and GNNs for CO
	(Composable) Data Centre Resource Allocation

	Problem
	Defining the Markov Decision Process
	Defining the deep reinforcement learning model

	Experimental Setup
	Training and Testing
	Baselines
	Complexity comparison of DRL method and baselines

	Results
	DRL agent allocates more requests overall
	DRL agent is more consistent than baselines across different DCNs
	DRL agent is more consistent than baselines with respect to request size
	The agent requires less networking resources for similar allocation performance
	Topology scale-up performance
	Interpreting the policy's allocation strategy
	DRL agent uses network when it is available
	The agent distributes requests differently based on their resource requirements

	Conclusion

