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Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer’s
disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy
of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for
Alzheimer’s disease progression. Here, we used an in vitro assay to model the impact of systemic environment
on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum
samples from individuals with mild cognitive impairment, who either progressed to Alzheimer’s disease or
remained cognitively stable. Mild cognitive impairment to Alzheimer’s disease progression was characterized
most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of
‘baseline’ cellular readouts together with education level were able to predict Alzheimer’s disease progression.
The assay could provide a powerful platform for early prognosis, monitoring disease progression and further
mechanistic studies.
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Introduction
Alzheimer’s disease is a progressive neurodegenerative condition
without effective treatment options. Individuals diagnosed with
mild cognitive impairment (MCI) are known to progress to
Alzheimer’s disease at a significantly higher rate (10–15% in clinical
studies, 5–10% in population studies) compared to cognitively
healthy elderly people (1–2%).1 However, not all individuals with
MCI develop Alzheimer’s disease, which calls for the need to de-
velop an accurate estimation of how likely an individual with MCI
is to progress to Alzheimer’s disease. Given the current consensus
that putative Alzheimer’s disease-modifying therapies work best
when administered during the preclinical stage, the estimation
should be done preferably at the earliest stages of disease progres-
sion to maximize the success of intervention. Recently, several
studies have suggested blood-based biomarkers as promising tar-
gets to monitor early disease progression and predict cognitive de-
cline, and most of them are associated with well-established
Alzheimer’s disease hallmarks.2,3 However, they provide limited
information on how the systemic environment impact the brain
at the cellular level, and this calls for a need to develop a biomarker
that allows us to gain a better understanding of what occurs at the
‘cellular phase’ of early Alzheimer’s disease.4

Hippocampal neurogenesis (HN) occurs throughout life in the
subgranular zone of themammalian dentate gyrus. The hippocam-
pal neurogenic niche is composed of hippocampal progenitor cells
(HPCs), their progeny (i.e. neurons and glia), endothelial cells and a
highly vascularized extracellular matrix.5 While the existence of
neurogenesis in adult humans has been questioned,6,7 an over-
whelming majority of the existing literature8 shows unequivocally
that HN is a lifelong process that occurs in many mammalian spe-
cies, including human and is important for hippocampus-
dependent learning and memory.9,10

Interestingly, HN is highly sensitive to the circulatory systemic
environment which is well-demonstrated by parabiosis experi-
ments where the circulatory systems of two animals are surgically
conjoined.11,12 Blood from young mice can exert a rejuvenating ef-
fect on the old animals’ cognition by improving HN,13,14 and vice
versa.11,15 Moreover, interventions that target the systemic envir-
onment (i.e. drugs, exercise, diet) have been shown to modulate
HN.16–18 Importantly, interventions like exercise19,20 and diet that
‘increase HN’ have been associated with ‘decreased Alzheimer’s
disease risk’.21,22

Several post-mortem studies on human Alzheimer’s disease
brains have recently demonstrated that significant changes in HN
can be observed from as early as Braak stage II of Alzheimer’s dis-
ease,23,24 which is in line with rodent model studies where altered
HN was indeed an early indication of Alzheimer’s disease progres-
sion.25,26 It is also worth noting that the hippocampus is one of the
brain regions affected early on in Alzheimer’s disease, and its atro-
phy is significantly associated with memory loss and learning

impairment.27,28 While this evidence collectively suggest that
changes in HN can serve as a potential biomarker for early disease
progression,29–31 neither rodent nor human studies have been in
full agreement with regards to the directionality and magnitude
of these changes. While most studies report a reduction of
HN,23,24,26 some report an increase.32–34 Such discrepancy amongst
existing studies suggests a gap in our knowledge which could be
bridged by understanding how HN changes ‘over time’ in
Alzheimer’s disease (i.e. longitudinal study). Indeed, evidence
from the Dominantly Inherited Alzheimer Network study35–37 indi-
cates that longitudinal analysis canprovide amore accurate picture
of disease progression. However, the lack of adequate techniques to
study HN in the ‘living’ human brain limits the number of ap-
proaches that can be taken in research to address this gap
effectively.

In the present study, we propose an in vitro parabiosis assay that
models the impact of systemic environment on HN, which we have
used as a proxy to investigate the changes in HN that occur with
time. Using human HPCs and longitudinal serum samples from
participantswithMCIwho either progressed toAlzheimer’s disease
(MCI converters) or remained cognitively stable (MCI non-
converters), we aimed to establish the role of the human systemic
environment in disease progression in vitro. We also sought to de-
termine whether our assay could be used as a prognostic
biomarker to predict the likelihood of MCI to Alzheimer’s disease
progression.

Materials and methods
Serum samples

Up to 161 serum samples were collected from 56 individuals initial-
ly diagnosed with MCI. Thirty-six individuals later developed de-
mentia due to Alzheimer’s disease (denoted ‘MCI converters’, 2–5
yearly follow-up visits with cognitive assessment and blood collec-
tion). Eighteen did not progress either to Alzheimer’s disease or
other disease, and they had transient memory problems while re-
maining cognitively stable over the period of at least 3 years from
MCI diagnosis (denoted ‘MCI non-converters’, with up to six yearly
follow-up visits with cognitive assessment and blood collection).

For serum preparation, blood was collected into Rapid Serum
Tubes and allowed to stand for at least 30min at room temperature
(RT), then centrifuged at 2000g for 10 min at 4°C. The resulting ser-
umwas aliquoted into 2-ml flat-bottom screw-capmicrocentrifuge
tubes (0.5-ml serum/centrifuge tube) and stored at −80°C.

The serum samples were sourced from two independent co-
horts. The first cohort is the EUAddNeuroMed Consortium, amulti-
centre European study38 with six participating medical centres:
University of Kuopio (Finland), University of Perugia (Italy),
Aristotle University of Thessaloniki (Greece), King’s College
London (UK), Medical University of Lodz (Poland) and University
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of Toulouse (France). Consensus diagnosis was made according to
previously published criteria.39,40 Clinical diagnosis was confirmed
during consecutive follow-up visits. Sixteen MCI non-converters
and 34 MCI converters were recruited from this cohort (n=50).
The second cohort is the King’s Health Partners-Dementia Case
Register, a UK clinic and population-based study.38 Diagnosis of
probable Alzheimer’s disease was made according to the
Diagnostic and Statistical Manual of Mental Disorders IV40 and
NINCDS-ADRDA Alzheimer’s criteria.41 MCI was diagnosed accord-
ing to the criteria used by Petersen et al.39 Clinical diagnosis was
confirmed during consecutive follow-up visits. Two MCI non-
converter and four MCI converter participants were recruited
from this cohort (n= 6). Informed written consent was obtained
from all serum donors or their carers according to the Declaration
of Helsinki (1991) and protocols and procedures were approved by
the relevant Institutional Review Board at each collection site.

Longitudinal serum samples from the study participants were
used to obtain the eight cellular readouts reported in this study,
corresponding to each follow-up visit [proliferation phase average
cell number, % Ki67+ cells, % cleaved Caspase 3 (CC3)+ cells; differ-
entiation phase average cell number, % Ki67+ cells, % CC3+ cells, %
doublecortin (DCX)+ cells, % microtubule-associated protein 2
(MAP2)+ cells]. Aminimumof three serum samples, collected at an-
nual assessment, was required for MCI non-converters; and a min-
imum of two samples, one before progression and one after
progression, was required for MCI converters. Serumwas collected
at the time of cognitive assessments and the samples were stored
at −80°C. The samples underwent one freeze–thaw cycle before
performing experiments.

Baseline characteristics of serum donors are presented in
Table 1, and changes in Mini-Mental State Examination (MMSE)
scores over time are presented in Supplementary Fig. 1. All partici-
pantswere age- (P= 0.320) and sex-matched (P= 0.129). MCI conver-
ters completed significantly fewer years of education compared to
MCI non-converters (P= 0.002). They also scored significantly lower
in MMSE (P=0.031). There was no difference in the number of the
apolipoprotein E (APOE) ϵ4 allele carriers between MCI converters
and MCI non-converters (P=0.625).

Cell culture and serum treatment

All experimentswere performed using themultipotent humanhip-
pocampal progenitor/stem cell line HPC0A07/03C (ReNeuron) de-
rived from the first trimester female foetal hippocampal tissue
following medical termination (in accordance with the UK and
USA ethical and legal guidelines, and obtained from Advanced
Bioscience Resources). HPC0A07/03C cells were conditionally im-
mortalized by introducing c-mycERTAM transgene that enables
them to proliferate indefinitely in the presence of epidermal growth
factor (EGF), basic fibroblast growth factor (bFGF) and 4-hydroxy-
tamoxifen (4-OHT).42 Removal of these three factors induces
spontaneous differentiation into neurons, astrocytes or oligoden-
drocytes.16,43,44 Cell passage number used in this study ranged
from 15 to 24.

Cells were treated with 1% serum 24 h post-seeding for the prolif-
eration assay; and for the differentiation assay cellswere treatedwith
serum 24 h post-seeding in proliferationmedium, and onemore time
3 days post-seeding in differentiation medium (Fig. 1). See Anacker
et al.16 and Supplementary Table 1 for cell culture medium compos-
ition and de Lucia et al.45 for information on how the optimal serum
concentrationwas determined. Control conditions consisted of either
proliferation or differentiation medium supplemented with 1%

Gibco™ PenStrep (ThermoFisher, #15140122). For each experiment,
three biological replicates (i.e. cells of three different passage num-
bers)wereused; and for each biological replicate, therewere technical
triplicates.Thecoefficientofvariation for eachmarkerwasbelow20%,
apart from CC3 (below 30%), calculated across different plates and
batches of experiment. Further details on the methods can be found
in the Supplemental Material.

Immunocytochemistry

All experiments were performed in NUNC™ 96-well plates
(ThermoFisher, #167008). Cells were fixed in 4% paraformaldehyde
(VWR, #43368.9 M) after 48 h of serum treatment for the prolifer-
ation and 7 days of treatment for the differentiation phase of the as-
say, respectively.

Briefly, cells were washed once with 37°C PBS and fixed in 4%
paraformaldehyde at RT for 20 min (50 µl/well), then they were
washed twicewith PBS for storage at 4°C prior to immunocytochem-
istry (ICC). On the day of ICC, cells were first blocked in ‘5% normal
donkey serum+0.3% Triton X-100’ in PBS (i.e. blocking solution) at
RT for 1 h (50 µl/well). On removal of blocking solution, cells were
incubated with primary antibodies diluted, overnight at 4°C
(30 µl/well). Cells were then washed with PBS (100 µl/well) twice
and incubated with secondary antibodies (1:500) at RT for 2 h
(30 µl/well) covered from light. On removal of secondary antibodies,
cells were washed with PBS (100 µl/well) twice and incubated with
4′,6-diamidino-2-phenylindole (DAPI) nuclear stain (Sigma Aldrich,
#D9542) at RT for 5 min (50 µl/well). Finally, cells were washed with
PBS (100 µl/well) twice and stored at 4°C with 0.05% sodium azide
in PBS (200 µl/well) before imaging.

All primary and secondary antibody solutions were made in
blocking solution (as described before). Mouse monoclonal
anti-Ki67 (Cell Signaling, #9449, 1:800) was used to assess prolifer-
ation (i.e. HPCs in active phases of the cell cycle such as G1, S, G2
and mitosis); rabbit monoclonal anti-CC3 (Cell Signaling, #9664,
1:500) to assess apoptotic cell death; mouse monoclonal
anti-Nestin clone 10C2 (Sigma Aldrich, #MAB5326, 1:1000) and rab-
bit polyclonal anti-Sox2 (SRY-Box Transcription Factor 2) (Sigma
Aldrich, #AB5603, 1:1000) to assess neural stemcellness; rabbit poly-
clonal anti-DCX (Abcam, #ab18723, 1:500) for neuroblasts and
mousemonoclonal anti-MAP2 (Abcam, #ab11267, 1:500) for mature
neurons. Secondary antibodies were conjugated with either Alexa
488 (Thermo Fisher Scientific, #A21202) or Alexa 555 (Thermo
Fisher Scientific, #A31572) fluorophores. Nuclei were counter-
stained with DAPI (Sigma Aldrich, #D9542).

High-content imaging

Semi-automated quantification of cellular phenotypes was per-
formed using the CellInsight™ CX5 High-Content Screening
Platform (ThermoFisher). The ‘Cell Health Profiling’ application
was used to detect the nucleus (DAPI) and to quantify neurogenic
markers expressed in the nucleus (Ki67), and the cell body/den-
drites (CC3, DCX and MAP2) (High-Content Screening Studio™
Cell Analysis Software, ThermoFisher). Based on the values from
positive and negative staining controls, thresholds were set for
average intensity within the target regions of interest (e.g. nuclear
or cell body). Any cell with an average intensity bigger than the
threshold was deemed positive for a given neurogenic marker.
Fifteen fields were scanned per well of a 96-well plate. A represen-
tative protocol used for cellular phenotyping is shown in
Supplementary Fig. 2.
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Statistics

All statistical analyseswere performedusing Prismv.5.0 (GraphPad),
STATA 13 or R. For univariate analyses, two-tailed paired t-test, one-
and two-way ANOVA, with post hoc comparisons test (Bonferroni
method) were used. The chi-square test was carried out to test for
differences in categorical outcomes such as sex and APOE ϵ4 status.
Complete case analyses were performed in this study. Source data
are provided in Supplementary Table 2.

Linear mixed-effects regression

Owing to the longitudinal aspect of our dataset, we used linear
mixed-effects regressionmodels for repeatedmeasures as they en-
able inclusion of varying numbers of assessment information avail-
able for each individual and do not require equal time intervals
between the follow-up visits. Random intercept and random slope
models were fitted with restricted maximum likelihood as the
method of estimation. Each serumdonorwas assigned an ID to spe-
cify random effects in the models. Classification to MCI converters
or non-converterswas dichotomous (MCI converterswere assigned
1, non-converters 0). The age of the individuals was centred at the
cohort median (77 years) to aid interpretation of the models. For
MCI converters, time to conversion was measured in years, which
indicated the time it took to Alzheimer’s disease progression. For

non-converters, time to last visit was measured in years. Time be-
fore conversion (or last visit) was assignednegative values and time
after conversion positive values. APOE ϵ4 status was dichotomized,
i.e. carriers with at least oneAPOE ϵ4 allele were assigned 1, carriers
of otherAPOE alleles were assigned 0. Educationwas entered in the
models either as years of education or as a dichotomized value
(high≥ 10.5 years assigned 1, low <10.5 years assigned 0). The 95%
confidence intervals (CIs) and P-values for the explanatory vari-
ables in each model were calculated using the Wald t-distribution.

Given that many individual characteristics or comorbidities
might affect HN and/or Alzheimer’s disease risk, among the poten-
tial explanatory variables considered in the models were:
Alzheimer’s disease risk factors [gender, APOE ϵ4 status, age
centred around median and time to conversion (or time from last
visit for MCI non-converters)], education level, solitary living and
MMSE score (baseline MMSE, MMSE score change/year); comorbid-
ities (diabetes, arthritis, hypertension, hypothyroidism, depres-
sion, cancer, stroke, angina, infections and allergies); drug intake
(antidepressants, statins, nonsteroidal anti-inflammatory drugs);
dietary supplements (vitamins, omega-3 fatty acids) and lifestyle
related factors (alcoholism, smoking). In addition, we also tested
some biologically plausible interactions of different explanatory
variables.

Our approach to building the linear mixed-effects model was to
systematically compare the full model to other models that were

Table 1 Baseline characteristics of the study participants (n=56)

Baseline characteristics MCI converters MCI non-converters

Gender, %, female 60.52 38.89
APOE ϵ4 status, % 50 44.44
Age at baseline, mean±SD 76.02±7.81 78.06±5.08
MMSE at baseline, mean±SD 26.78±1.97 27.94±1.43
Education in years, mean±SD 8.95±4.53 12.83±3.09
Years from baseline until conversion or last assessment [range] 1.30±0.69 [1–3.42] 3.36±1.66 [0.92–5.83]
Comorbidities (objective and self-reported)

Hypertension 12 (31.58%) 10 (55.56%)
Heart attack ever 1 (2.63%) 4 (22.22%)
Angina 5 (13.16%) 4 (22.22%)
Depression 19 (50%) 9 (50%)
Arthritis 1 (2.63%) 3 (16.67%)
Asthma 2 (5.26%) 1 (5.56%)
Cancer 5 (13.16%) 8 (44.44%)
Glaucoma 2 (5.26%) 1 (5.55%)
Hypothyroidism 6 (15.79%) 8 (44.44%)
Infections, allergies 5 (13.16%) 2 (11.11%)
Stroke/transient ischaemic attack 2 (5.26%) 2 (11.11%)
Diabetes 7 (18.42%) 2 (11.11%)

Drug intake
Antidepressants 12 (31.58%) 3 (16.67%)
NSAIDs (with aspirins for platelet control) 11 (28.95%) 8 (44.44%)
Analgesics 5 (13.16%) 5 (27.78%)
Alzheimer’s disease drugs 11 (28.95%) 0 (0%)
Metformin 4 (10.53%) 1 (5.55%)
Sleeping pills 3 (7.89%) 2 (11.11%)
Statins 13 (34.21%) 8 (44.44%)

Lifestyle factors
Excessive alcohol intake 1 (2.63%) 3 (16.67%)
Smoking (ever) 9 (23.68%) 5 (27.78%)
Solitary living 16 (42.10%) 9 (50%)
Supplement intakea 7 (18.42%) 5 (27.78%)

Comorbidities represent either history of disease or being presently affected. Drug intake means either having a history of medications or current intake.
aVitamins (including folic acid) and omega-3 fatty acids.
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the same except for one term missing. The comparison was done
using a likelihood-ratio test, and the test statistic χ2, degrees of free-
dom and P-value were reported for the missing term. A P-value of
<0.05 was considered to indicate that themissing term contributed
significantly to the model fit. We only included variables that were
significant when included in the model. All mixed-effects regres-
sion models were assessed using Akaike information criterion,
likelihood-ratio test and deviance.

Stepwise logistic regression and internal validation

Stepwise logistic regression analysis was carried out to assess the
effect of selected predictors on probability of progression to
Alzheimer’s disease by 3.5-year follow-up frombaseline. It was pre-
ceded by analysis of multicollinearity. Area under the curve (AUC)
under the receiver operating characteristic (ROC) curve was calcu-
lated to determine the classification accuracy of selected variables
in predicting progression to Alzheimer’s disease.

The ‘e1071’ package in R was used to train and test themachine
learning classifiers based upon support-vector machines (SVM)
classifier using the radial basis function kernel. ROC curves were
drawn using the ‘ROCR’ package in R. Performance of the classifier
was assessed using 1000 repeats of 5-fold cross-validation.

Proteomic quantification

Here, 3620 unique proteins or 4006 different protein epitopes were
quantified using the SomaScan assay (SomaLogic Inc.) from 150 µl
of baseline serum samples from 38MCI converters and 18MCI non-
converters. The SomaScan assay is an aptamer-based technology
that uses protein-capture SOMAmers (Slow Off-rate Modified
Aptamer) to quantify proteins in a biofluid. SOMAmers are chem-
ically modified oligonucleotides with specific affinity to their pro-
tein targets, developed by SELEX (described in detail at www.
somalogic.com). The identities of all proteins quantified are listed
in Supplementary Table 3. The normalized and calibrated signal
for each SOMAmer reflects the relative amount of each cognate

Figure 1 Outline of the experimental design and sample collection. (A) HN is regulated by a complexmicroenvironment, composedof blood vessels and
various cell types such as hippocampal neural stem cells (NSCs), neural progenitor cells (NPCs), neuroblasts, immature/mature granule cells (i.e. neu-
rons), microglia and astrocytes (i.e. neurogenic niche). Blood-derived factors, delivered to the niche by its rich vasculature, play a fundamental role in
modulatingHN.We aimed tomodel the role of systemic environment on the hippocampal neurogenic process duringAlzheimer’s disease progression,
by treating a humanHPC linewith 1% longitudinal serumat different stages ofHN (i.e. proliferation anddifferentiation ofHPCs). (B) Longitudinal serum
samples were collected during annual follow-up visits from 56 participants diagnosed with MCI at baseline (n=38 converted to Alzheimer’s disease,
n= 18 remained cognitively stable). A total of 338 samples were analysed. For each sample, three biological replicates (cells of three different passage
numbers) were used and for each biological replicate, there were technical triplicates. (C) Neurogenic markers measured in the proliferation and
differentiation phases of the assay are outlined (top) and representative images of cells positive for Ki67, CC3, Nestin, Sox2, MAP2 and DCX are shown
(bottom). Scale bar = 100 μm. (D) An overview of the proliferation and differentiation phases in the assay. HPC0A07/03C cell line was treated with 1%
serum samples from MCI converters and non-converters collected at sequential follow-up visits. Proliferation medium included EGF, bFGF and
4-OHT. Differentiation medium lacked these factors. To analyse serum effects on proliferation, 24 h after seeding, medium was replaced with prolif-
erationmediumsupplementedwith 1% serum. Cellswerefixed 48 h later and subjected to ICC. To analyse the effects of serumondifferentiation, at the
end of proliferation phase, medium was replaced with differentiation medium supplemented with 1% serum. Cells were fixed 7 days later and sub-
jected to ICC. c= converters; nc=non-converters. Panel A was created with BioRender.com.
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protein present in the original sample. Quantifications are reported
in relative fluorescence units and all data were first log10 trans-
formed before analysis.

Analysis of SomaScan data

AWilcox testwith false discovery ratemultiple correctionwas used
to identify proteins that were differentially expressed. Machine
learning using least absolute shrinkage and selection operator fea-
ture selection and SVM for predictionwas performed to identify the
optimal number of multivariate proteins to differentiate MCI con-
verters from non-converters. Samples were divided into non-
intersecting subsets. Training and testing were performed on these
following standard 10-times cross-validation. Briefly, the data is
randomly partitioned into 10 parts; each model is built using nine
of the parts as a training set and one part as the test set. The 10
models are averaged to create a single model balanced for
randomness.

Ingenuity pathway analysis

IPA (ingenuity pathway analysis, IPA®, Qiagen) generated a list of
canonical pathways and networks for proteins within detection
limit of the SomaScan. Only proteins differentially expressed with
P< 0.05 were considered for analysis.

Data availability

Further information on resources and reagents should be directed
to and will be fulfilled by the lead contact, S.T. This study did not
generate new unique reagents and codes for data analysis. The
HPC0A07/03C cell line (ReNeuron) and further information on re-
agents needed for culturing this cell line are available from
the lead contact on request. Source data for all figures and tables
are provided within this study as supplemental information (avail-
able online). Any additional information required to reanalyse the
data reported in this paper is available fromthe leadcontactupon re-
quest. The transparent reporting of amultivariable predictionmodel
for individual prognosis ordiagnosis guidelineswereused.46 All sup-
porting data andassociated links can be found in the Supplementary
material.

Results
Longitudinal changes in neurogenic readouts
characterizing serum from MCI converters

First, using the longitudinal serum samples from MCI converters
only, we modelled the relationship between time to conversion in
years, as an explanatory variable, and each readout readout from
our assay, as a response variable, using linearmixed-effects regres-
sion. We used time to conversion in years as the explanatory vari-
able because the effect of age itself in years on HN level was not
significant (P>0.05). The value 0 was assigned to the time of
Alzheimer’s disease diagnosis, which equals the time point when
the last serum sample was collected for each MCI converter. Other
samples collected before that time were assigned negative values
in years (i.e. serum taken 1 year before conversionwas assigned−1).

When random intercept models were fitted to the proliferation
phase data (Fig. 2A–D, Supplementary Fig. 3 and Supplementary
Table 4), the effects of time to conversion on average cell number
were significantly positive [beta=17.37, 95% CI: 6.87 to 27.87, t(81)
=3.29, P=0.001]. This was not related to an increase in proliferation

itself (% Ki67+ cells) because the effects of time of conversion were
significantly negative over the same period [beta=−1.44, 95%
CI: −2.03 to −0.86, t(81)=−4.94, P<0.001]. In addition, the effects
of time to conversion on apoptotic cell death (%CC3+ cells) were sig-
nificantly positive [beta=0.12, 95% CI: 0.01 to 0.23, t(80)=2.19,
P=0.031], while the effect of education level (dichotomized at 10.5
years) was significantly negative on apoptotic cell death [beta=
−0.60, 95% CI: −1.20 to −0.01, t(80)=−2.03, P= 0.046].

When the models were fitted to the differentiation phase data
(Fig. 2E–H, Supplementary Fig. 2 and Supplementary Table 5), an
increase with time to conversion was observed for average cell
number [beta= 12.17, 95% CI: 2.24 to 22.11, t(81)= 2.44, P= 0.017],
number of neuroblasts [% DCX+ cells, beta= 1.20, 95% CI: 0.27 to
2.12, t(79)= 2.58, P= 0.012] and number of mature neurons [%
MAP2+ cells, beta= 0.95, 95% CI: 0.10 to 1.79, t(80)= 2.22, P=
0.029]. For the number of neuroblasts, baseline MMSE scores (di-
chotomized at 27) were also found to be a significant explanatory
variable, where higher MMSE scores at baseline had a significant-
ly negative effect on DCX+ cells overall [beta=−3.91, 95%
CI: −6.75 to −1.08, t(79)=−2.75, P= 0.007]. Similarly, sex (female
assigned 1) was a significantly negative explanatory variable for
the number of mature neurons [beta=−3.39, 95% CI: −5.90 to
−0.89, t(80)=−2.70, P= 0.009].

We did not detect any significant effects of time to conversion
on apoptotic cell death in the differentiation phase data [beta=
0.16, 95% CI: −0.09 to 0.40, t(81)= 1.28, P= 0.203], and variables
such as APOE ϵ4 status and comorbidities (as listed in Table 1)
did not have significant explanatory values when included in
the mixed-effects models for both proliferation and differenti-
ation phase datasets. No significant interactions between predic-
tors were determined in the models we tested (Supplementary
Fig. 5).

Serum from MCI converters differentially impacts
neurogenic readouts compared to non-converters

Next, we asked whether serum from MCI converters and non-
converters can differentially impact the trajectories of HN. We
used the variable ‘MCI to Alzheimer’s disease progression’ to de-
note whether the participant progressed to Alzheimer’s disease
or not (converters assigned the value 1).

Fitting the linear mixed-effects models on the proliferation
phase data (Fig. 3A and B, Supplementary Fig. 3 and
Supplementary Table 6), we observed significantly positive effects
of both time to last visit or conversion [beta= 18.23, 95%
CI: 10.81 to 25.65, t(154)= 4.85, P<0.001] andMCI to Alzheimer’s dis-
ease progression [beta= 74.71, 95% CI: 36.96 to 112.46, t(154)= 3.91,
P<0.001] on average cell number. On the other hand, their effects
were significantly negative on proliferation (% Ki67+ cells) [time
to last visit or conversion: beta=−1.24, 95% CI: −1.59 to −0.89,
t(155)=−7.03, P< 0.001; MCI to Alzheimer’s disease progression:
beta= 5.58, 95% CI: 2.53 to 8.63, t(155)= 3.61, P< 0.001].

During the differentiation stage of the assay (Fig. 3C and D,
Supplementary Fig. 4 and Supplementary Table 7), we observed sig-
nificantly positive effects of time to last visit or conversion [beta=
11.48, 95% CI: 5.65 to 17.32, t(156)=3.89, P< 0.001] and significantly
negative effects of MCI to Alzheimer’s disease progression [beta=
−47.64, 95% CI: −85.13 to −10.15, t(156)=−2.51, P= 0.013] on average
cell number. On the other hand, their effects were significantly
positive on the number of mature neurons (% MAP2+ cells) [time
to last visit or conversion: beta= 0.56, 95% CI: 0.11 to 1.02, t(153)=
2.47, P= 0.015; MCI to Alzheimer’s disease progression: beta= 2.96,
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Figure 2 Exposure to 1% serum from MCI converters leads to decreased proliferation, increased cell death and increased neurogenesis.
(A) Representative images of proliferation phase cells treated with serum from the same individual. Left (MCI panel): serum sample from 1 year before
conversion. Right (AD panel): serum sample taken at the time of conversion to Alzheimer’s disease (AD). Nuclei are stained with DAPI. Ki67 and CC3
were used to label proliferating and apoptotic cells, respectively. (B–D) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models
fitted to the proliferation phase data. Time of conversion to Alzheimer’s disease was assigned 0, and the number of years before conversion were as-
signed negative values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters increased average cell number (B),
decreased proliferation (% Ki67+) (C) and increased apoptotic cell death (% CC3+) (D). Slopes (β coefficient estimates) are indicated within the plots.
(E) Representative images of differentiation phase cells treatedwith serum from the same individual. Left (MCI panel): serum sample from 1 year before
conversion. Right (AD panel): serum sample taken at the time of conversion to AD. Nuclei are stainedwith DAPI. DCX andMAP2were used to label neu-
roblasts and mature neurons, respectively. (F–H) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models fitted to the differen-
tiation phase data. Time of conversion to Alzheimer’s disease was assigned 0, and the number of years before conversion were assigned negative
values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters increased average cell number (F), neuroblasts (%
DCX+) (G) and mature neurons (% MAP2+) (H). Slopes (β coefficient estimates) are indicated within the plots. Scale bar = 100 μm.
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95% CI: 0.62 to 5.31, t(153)= 2.50, P= 0.014]. We did not detect any
significant effects time to last visit or conversion on apoptotic cell
death in the differentiation phase data [beta= 0.02, 95%
CI: −0.09 to 0.14, t(153)=0.41, P= 0.680], but effects of MCI to
Alzheimer’s disease progression were significantly positive [beta
=1.62, 95% CI: 0.89 to 2.36, t(153)= 4.36, P< 0.001] (Supplementary
Fig. 6). Taken together, our data show that, compared to non-
converters, converters can be characterized with higher average
cell number and proliferation during the proliferation phase of
the assay, and then with lower average cell number and more ma-
ture neurons during the differentiation phase of the assay.

Baseline neurogenic readouts and education can
predict MCI to Alzheimer’s disease progression

Wenext examinedwhether the baseline neurogenic readouts from
the assay combined with some of the baseline participant charac-
teristics could predict progression fromMCI to Alzheimer’s disease.
Using stepwise logistic regression, the best predictors of progres-
sion from MCI to clinical Alzheimer’s disease were: education in
years, average cell number during proliferation phase, % Ki67+ cells
during proliferation phase and % CC3+ cells during differentiation
phase of the assay (Table 2). The fit of the logistic regression model
was confirmed using Hosmer–Lemeshow goodness of fit (P= 0.324)

and Stata linktest, demonstrating no specification errors (_hat=
0.001, _hatsq=0.110). We observed no significant effects of educa-
tion (both in years and dichotomized at 10.5 years) on average cell
number during proliferation phase, percentage Ki67+ cells during
proliferation phase, and percentage CC3+ cells during differenti-
ation phase of the assay (Supplementary Fig. 7).

To assess the predictors’ ability to accurately classify converters
and non-converters, area under the ROC curve was calculated
(Fig. 4A). The value of the full logistic regression model, 0.967, was
higher than that of other models built on each predictor alone
(Fig. 4B and Table 2). We also found that the odds of converting to
Alzheimer’s disease decreased by factor 0.72 with each additional
year of education, whereas it increased by a factor of 3.49 with
each additional percentage point of apoptotic cell death during
the differentiation phase of the assay (Fig. 4C).

Since our sample size was limited (n=56) and we did not have
access to a separate longitudinal validation cohort in this study, a
machine learning-based internal validation of the model was per-
formed. Repeated k-fold cross-validation (k=5, 1000 repeats) was
carried out using a SVM classifier (radial basis function kernel), in
which 20% of the datawere used for each round of repeated testing.
We found that the classifier using the three chosen neurogenic
readouts as predictors achieved anAUCof 0.93,with 90.3% sensitiv-
ity and 79.0% specificity (Fig. 4D).

Figure 3 Exposure to 1%serumfromMCI converters leads todifferential changes in average cell number, proliferation andneuronal differentiation com-
pared to non-converters. (A and B) Modelled trajectories (with 95% CIs) of linear mixed-effects regression models fitted to the proliferation phase data.
Time to last visit (for non-converters) and time of conversion to Alzheimer’s disease (for converters) was assigned 0, and the number of years before
that were assigned negative values (i.e. 1 year before conversion is −1). Longitudinal serum samples from MCI converters (turquoise) predicted overall
higher average cell number (A) and proliferation (% Ki67+) (B) compared to non-converters (red). Slopes (β coefficient estimates) are indicated within
the plots. (C andD) Modelled trajectories (with 95%CIs) of linearmixed-effects regressionmodelsfitted to the differentiationphase data. Time to last visit
(for non-converters) and time of conversion to Alzheimer’s disease (for converters) was assigned 0, and the number of years before that were assigned
negativevalues (i.e. 1 yearbefore conversion is−1). Longitudinal serumsamples fromMCI converters (turquoise) predictedoverall lower average cell num-
ber (C) and higher neuronal differentiation (%MAP2+) (D) compared to non-converters (red). Slopes (β coefficient estimates) are indicatedwithin the plots.
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Proteomic analysis of baseline serum from MCI
converters and non-converters

To explore whether we can achieve a similar prognostic accuracy
using a different modality, we performed a proteomic analysis on
all baseline serum samples using SomaScan® (SomaLogic). The
serum levels of 205 proteins (Fig. 5A and Supplementary Table 8)
were found to be significantly differentially expressed between
MCI converters andnon-converters. However, none of these passed
the false discovery rate correction. Among the differentially ex-
pressed proteins, there were proteins involved either in the neuro-
genic process (e.g. GDF11) or in Alzheimer’s disease (e.g. LRRK2,
RCAN1, NTRK2), or in both neurogenesis and Alzheimer’s disease
(e.g. CREBBP, SFRP1, IL1RAP). We then performed machine
learning-based repeated k-fold cross-validation (k= 10) to find the
minimal signal that differentiated between MCI converters and
non-converters. The AUC in training and testing sets for different
number of input features is shown in Fig. 5B. A panel of 15 proteins
achieved the highest predictive value AUC of 0.77 to distinguish be-
tween serum samples from MCI converters and non-converters
(Fig. 5C and Supplementary Table 9).

We then aimed to gain further insights intomolecular pathways
and networks by which proteins in the serummight regulate hippo-
campal stem cell fate and progression to Alzheimer’s disease.
Canonical pathway analysis and Network analysis on IPA software
(Qiagen) was used to determine any pathways that the differentially
expressed proteins might constitute. Some of the canonical path-
ways identified in the analysis include: ‘Coagulation system’ (P=
0.000192, ratio 7/26), ‘Acute phase response signalling’ (P=0.00345,
ratio 12/100), ‘Extrinsic prothrombin activation pathway’ (P=
0.0111, ratio 3/10), ‘FXR/RXR activation’ (P=0.0146, ratio 7/53),
‘Notch signaling’ (P=0.0237, ratio 3/13), ‘Superpathway of methio-
nine degradation’ (P=0.0321, ratio 2/6) and ‘Wnt/β-catenin
Signaling’ (P=0.0353, ratio 6/50) (Supplementary Table 10). The three
top networks identified in the analysis were: ‘Hematological System
Development and Function, Organismal Functions, Organismal
Injury and Abnormalities’ (Fig. 5D and Supplementary Table 11),
‘Cell Death and Survival, Embryonic Development, Organismal
Development’ (Fig. 5E and Supplementary Table 11) and
‘Cell-to-Cell Signaling and Interaction, Cellular Function and
Maintenance, Inflammatory Response’ (Fig. 5F and Supplementary
Table 11).

Discussion
This study used an in vitroparabiosis assaywhere a humanHPC line
was exposed to longitudinal samples of human serum. Our ap-
proach to modelling the effects of systemic milieu on HN can serve
as a proxy of in vivo HN, as HPCs are allowed to react to a given sys-
temic environment (such as serum) sampled at different
time points. We demonstrate that the baseline data generated
from the assay were able to predict progression from MCI to
Alzheimer’s disease up to 3.5 years before clinical diagnosis, pro-
viding an opportunity to understand the temporal changes of HN
at the early stages of Alzheimer’s disease progression.

We report an increase in neurogenesis induced by serum ob-
tained closer to the time of MCI to Alzheimer’s disease progression.
While previous human autopsy studies showed dysregulation
of HN in Alzheimer’s disease, it has been debatedwhether HN is in-
creased,32 decreased23,24,47 or unchanged.48 As most of these
studies describe HN at the ‘later’ stages of Alzheimer’s disease, it
is difficult to extrapolate their results to ‘early’ stages of
Alzheimer’s disease.We note that our in vitromeasures are only po-
tential proxy of in vivoHN, and the systemic effect on the neurogen-
ic process in vivo is more likely to be visible later than what we
observe in vitro. Nevertheless, our data showing increased prolifer-
ation inMCI converters during the differentiation stage of the assay
are in line with a recent rodent study that investigated HN in ‘pro-
dromal’ Alzheimer’s disease, where proliferation of DCX+ neuro-
blasts in the hippocampus was significantly and specifically
‘elevated’ during the pre-plaque stage in the APP-PS1 mouse mod-
el.25 Intriguingly, we observed an increased average cell number
and a decreased percentage of proliferating cells with each con-
secutive visit. Thismay be due to increased proliferation at an earl-
ier time point, followed by contact inhibition of proliferation at 48 h
after serum treatment,49 suggesting that it might be informative to
include an earlier time point in the assay. In addition, we observed
an increased apoptosis that could be related to the depletion of nu-
trients and increase in metabolites such as lactate as cells become
overconfluent.50–52

It is not clear whether increased HN plays a compensatory role
by providing cognitive resilience or contributes to ongoing path-
ology in Alzheimer’s disease. For example, increased neurogenesis
was associated with behavioural recovery in a mouse model of se-
lective neuronal loss in the hippocampus (CaM/Tet-DTA), although

Table 2 Predictors of progression to Alzheimer’s disease from stepwise logistic regression analysis

Predictors Odds ratios 95% CI P

Model with all four predictors
(Intercept) 0 0.00–0.00 0.012
Education (years) 0.72 0.49–0.94 0.039
Average cell number (prol.) 1.03 1.01–1.05 0.001
% Ki67+ cells (prol.) 1.35 1.07–1.92 0.037
% CC3+ cells (diff.) 3.49 1.42–11.85 0.016

Predictors Odds ratios 95% CI P AUC

Four models with one predictor each
Education (years) 0.79 0.66–0.92 0.004 0.756
Average cell number (prol.) 1.02 1.01–1.02 <0.001 0.802
% Ki67+ cells (prol.) 1.04 0.94–1.16 0.399 0.573
% CC3+ cells (diff.) 2.67 1.48–5.72 0.004 0.782

Top: The full logistic regressionmodel including all four predictors: years of education, average cell number during proliferation, proliferationmarker (Ki67) during proliferation
and apoptosis marker (CC3) during differentiation stages of the assay. Bottom: Four logistic regression models with each predictor being the sole predictor of progression to

Alzheimer’s disease. Odds ratios, 95% CI and P-values are shown. prol = proliferation assay; diff = differentiation assay.
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this effect was only pronounced in youngmice (6months old)53 and
not in old mice (14 months old).54 This suggests that increased HN
at the later stages of Alzheimer’s disease might be insufficient for
cognitive recovery. In contrast to the rescuing effects of HN, several
functional studies have shown that increasedHNcan interferewith
the retrieval of old memories,55–57 while ablation of neurogenesis
can improve hippocampus-dependent working memory by redu-
cing interference.58,59 While the exact role of ‘increased’ HN in
Alzheimer’s disease still remains to be determined, we attempt to
make a cautious summary of the findings from our study, in which
increased neurogenesis could be a compensatorymechanism in re-
sponse to the ageing/neurodegenerative systemic milieu, but it
may not be a functionally restorative one that could halt cognitive
decline altogether.

The predictionmodel in this study was able to differentiate MCI
converters from non-converters using a subset of the baseline data
from the assay and years of education. We believe that education
attainment serves as a proxy of ‘lifestyle’, where it may affect the
choice of occupation, socioeconomic status and the degree of ex-
posure to Alzheimer’s disease risk factors throughout life. While
our study supports previous findings on the association between
lower education and higher Alzheimer’s disease risk,60 we note
that various lifestyle factors that may provide even better predic-
tion of HN were not directly examined in this study. This includes
(but not limited to) social/cognitive engagement, physical activity
and diet. For those that were available for this study, we report no

significant effects on the trajectories of HN modelled in our assay,
except for a few demographic characteristics such as education le-
vel dichotomized at 10.5 years, baseline MMSE scores and sex. In
addition, we report no significant effect of APOE ϵ4 status, adding
to the existing literature on the ‘debatable’ role of ϵ4 in the hippo-
campus.61–63

The baseline neurogenic readouts from our assay were able to
predict progression into clinical Alzheimer’s disease with higher
accuracy than a panel of 15 serum proteins that were identified
from proteomic analysis. This could be because neurogenic read-
outs represent the effect of ‘all components’ in the serum (i.e. sys-
temic milieu) rather than that of few proteins.64 We recommend
validating these proteins in an independent cohort of MCI and
Alzheimer’s disease participants and a follow-up hypothesis-
driven study focusing on specific molecular pathways and/or
networks that are regulated by the serum analytes, which could
provide better insights into how these proteins affect hippocampal
cell fate and Alzheimer’s disease progression. One candidate is the
p38 MAPK pathway, as its activation has been shown to trigger
inhibition of proliferation, induce apoptosis and stimulate differen-
tiation of progenitor cells.65

We recognize several limitations of our study. First, Alzheimer’s
disease diagnosis was clinical only and none of the study partici-
pants had a post-mortem Alzheimer’s disease diagnosis. Second,
there was no neuroimaging or CSF biomarker data available
in the longitudinal cohort for us to ascertain the relationship

Figure 4 Average cell number and Ki67 during proliferation, and CC3 during differentiation, combinedwith education in years can predict progression
fromMCI to Alzheimer’s disease. (A) ROC curve for the logistic regression model predicting progression fromMCI to Alzheimer’s disease. AUC for the
model, an indicator of the discriminative performance, is 0.967. Sensitivity=92.1%, specificity=94.1%, positive predictive value=97.2% and negative
predictive value=84.2%. (B) ROC curves for each four individual predictors included in the full logistic regression model. (C) Odds ratios for the four
predictors. Blue and red indicate>1 and<1, respectively. *P<0.05. ***P<0.001. (D) ROC curve for the cross-validated logistic regressionmodel predicting
progression to Alzheimer’s disease. Internal validation of the model was done with repeated k-fold cross-validation (k=5, 1000 repeats) using SMVs
(radial basis function kernel). AUC=0.93, sensitivity 90.3% and specificity 79.0%.
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Figure 5 Analysis of serum proteins differentially expressed in MCI converters compared to non-converters. (A) Volcano plot of proteins significantly
increased in MCI converters compared to non-converters. Turquoise dots represent proteins whose P-value was below the significance threshold of
P<0.05 (n= 205). (B) The optimal number of multivariate proteins to differentiate MCI converters from non-converters was calculated by machines
learning. The plot shows AUCs of the training set as features are added to the model, and AUCs of the testing set during cross-validation. The least
absolute shrinkage and selection operator feature selection with SVM for prediction were used. The number of proteins identified with this procedure
was 15. (C) ROC curve of the test model. ThemaximumAUC (0.77) was achieved using the following 15 identified proteins: Q9UHD0, Q9UK55, Q9NPH3,
Q96PU8, Q8N474, Q8TBE7, Q9NTK1, Q6UWD8, O14548, P43251, P19876.P19875, Q8NBP7, P52907, P00797 and Q9Y5Q6 (UniProt ID). (D–F) The three top
scoring networks analysed by IPA using the 205 differentially expressed proteins in MCI converters. Proteins are represented by nodes: upregulated
in red and downregulated in turquoise. Additional interacting molecules not included in the SomaScan are marked in white. Each network is
displayed as a series of nodes (proteins) and edges (i.e. lines corresponding to biological relationships between nodes). Solid and dotted lines indicate
direct and indirect interactions, respectively. (D) ‘Hematological System Development and Function, Organismal Functions, Organismal Injury and
Abnormalities’ (score 48; includes 27 focus molecules from the SomaScan panel). (E) ‘Cell Death and Survival, Embryonic Development, Organismal
Development’ (score 43; includes 25 focus molecules from the SomaScan panel). (F) ‘Cell-to-Cell Signaling and Interaction, Cellular Function and
Maintenance, Inflammatory Response’ (score 21; includes 15 focus molecules from the SomaScan panel).
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between the altered neurogenic process and other Alzheimer’s
disease-associated pathogenic processes. Third, our sample size
and follow-up period were limited, despite the samples being
drawn from two independent multicentre cohorts, and we lack
data regarding potentially confounding lifestyle factors of the par-
ticipants, such as physical activity levels.While themodel has been
cross-validated in our study, ideally, we and otherswill want to test
our model in larger cohorts that include relevant lifestyle informa-
tion. It will also be interesting to explore whether our results can be
generalized to familial Alzheimer’s disease. Moreover, our cohort
contained individuals with MCI with a high number of comorbid-
ities, so having a larger cohort would enable us to study their influ-
ence on the neurogenic readouts, giving us more confidence that
the readouts are reliable predictors of progression from MCI to
Alzheimer’s disease. Fourth, we recognize that the assay we used
in this study does not reconstitute the neurogenic niche in its entir-
ety, and future experiments should see the expansion of this in vitro
model to include other key players in Alzheimer’s disease, such as
microglia or extend the duration of the assay to monitor synaptic
formation and plasticity. Including other markers and characteriz-
ing at what point apoptosis increases in the differentiation phase
may improve the prognostic accuracy of the assay. Fifth, we have
previously shown that the cell line used in this assay contains sin-
gle nucleotide polymorphisms that may reduce neurogenesis un-
der inflammation,66 therefore, future studies should compare
HPC lines with different genomic backgrounds or Alzheimer’s
disease-specific induced pluripotent stem cell-derived neural pro-
genitors. Sixth, the effects observed in vitro might not mirror those
in vivo (i.e. foetal cells cultured with recombinant growth factors
may not behave the same way as native adult neural precursors).
Finally, although the strength of a serum assay is that serum is
that blood collection is inexpensive and minimally invasive, it
may not fully reflect the conditions of the brain milieu since the
blood–brain barrier prevents free passage of molecules from the
CNS to the blood.67 Therefore, a CSF assay may result in a higher
prognostic accuracy.

In summary, the in vitro parabiosis assay presented in this
study can model the effects of human systemic environment
(i.e. serum) on HN. This assay can predict progression to
Alzheimer’s disease up to 3.5 years before clinical diagnosis
using a subset of baseline cellular readouts and years of educa-
tion. Despite the limitations of this study, we believe that the pro-
posed assay has the potential to facilitate early prognosis of
Alzheimer’s disease and aid with effective stratification of study
participants in clinical trials. The assay also presents a unique
opportunity for us to facilitate our understanding of the potential
mechanisms underlying alterations in human HN both in the
context of health and disease.
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