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Abstract

Rewilding has been suggested as an effective strategy for addressing environmen-

tal challenges such as the intertwined biodiversity and climate change crises, but

there is little information to guide the monitoring of rewilding projects. Since

rewilding focuses on enhancing ecosystem functionality, with no defined end-

point, monitoring strategies used in restoration are often inappropriate, as

they typically focus on assessing species composition, or the ecological transition

of an ecosystem towards a defined desired state. We here discuss how satellite

remote sensing can provide an opportunity to address existing knowledge and

data gaps in rewilding science. We first discuss how satellite remote sensing is

currently being used to inform rewilding initiatives and highlight current barriers

to the adoption of this type of technology by practitioners and scientists involved

with rewilding. We then identify opportunities for satellite remote sensing to help

address current knowledge gaps in rewilding, including gaining a better under-

standing of the role of animals in ecosystem functioning; improving the monitor-

ing of landscape-scale connectivity; and assessing the impacts of rewilding on the

conservation status of rewilded sites. Though significant barriers remain to the

widespread use of satellite remote sensing to monitor rewilding projects, we argue

that decisions on monitoring approaches and priorities need to be part of imple-

mentation plans from the start, involving both remote sensing experts and ecolo-

gists. Making use of the full potential of satellite remote sensing for rewilding

ultimately requires integrating species and ecosystem perspectives at the monitor-

ing, knowledge-producing and decision-making levels. Such an integration will

require a change in know-how, necessitating increased inter-disciplinary interac-

tions and collaborations, as well as conceptual shifts in communities and organi-

zations traditionally involved in biodiversity conservation.

Introduction

Our environment is breaking down, taking with it the

foundations of our economies, food security, health and

quality of life (Steffen et al., 2018). A number of crises

underpin this breakdown, such as rapid changes in cli-

matic conditions and unprecedented biodiversity loss;

many of these are fundamentally connected. For example,

human-induced climate change is leading to a loss of bio-

logical diversity, but the loss of biodiversity driven by cli-

mate change and other anthropogenic pressures (such as

land use change) is deepening the climate crisis, with

reduced species abundance, local extinctions, as well as

the rapid degradation and loss of ecosystems such as

mangroves, tropical forests, peatlands and seagrass (P€ort-

ner et al., 2021). These losses are having major impacts

on our planet’s ability to store carbon, as well as on nat-

ure and people’s ability to adapt and cope with changing

climatic conditions (Pettorelli et al., 2021). Scientific

advice from international scientific panels such as the

International Panel on Climate Change (IPCC) and the

International Platform on Biodiversity and Ecosystem Ser-

vices (IPBES) could not be clearer: we need rapid bold

collective action to transform economies to achieve a

low-carbon, sustainable, biodiverse future (IPBES, 2019;

IPCC, 2022).

As the planet’s life-support systems are fast approach-

ing a danger zone for humanity (Persson et al., 2022), it
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is fundamental that we not only promote a different path

for development underpinned by the sustainable use of

natural resources but that we also acknowledge that our

ability to tackle current societal challenges is closely

linked to our ability to retain and increase biodiversity

(Strassburg et al., 2020). Such a realization has recently

led to an increase in calls for large-scale ecological

restoration projects, as exemplified by the Bonn Chal-

lenge, which aims to restore 350 million ha of degraded

and deforested lands by 2030, and the launch of the Uni-

ted Nations Decade on Restoration, which aims to spur

actions to prevent, halt and reverse the degradation of

ecosystems on every continent and in every ocean (Pet-

torelli et al., 2021).

Rewilding, broadly defined as the recovery of self-

organizing and self-sustaining ecosystems shaped by natural

processes, is increasingly being considered as a cost-effective

environmental management option to bend the curve of bio-

diversity loss, with the potential for enhancing both biodiver-

sity and ecosystem services such as carbon sequestration and

climate regulation (Cromsigt et al., 2018; Pettorelli

et al., 2018a). As a conservation approach, it has gained sub-

stantial traction in the past few years, with, for example, the

International Union for the Conservation of Nature (IUCN)

having launched both an inter-commissional working group

on rewilding and a rewilding thematic group under the

Commission on Ecosystem Management. Several rewilding

projects are currently being implemented in multiple coun-

tries around the world, with the number of launched projects

having increased significantly in the past few years, particu-

larly in Europe (Pettorelli et al., 2019).

Although related, rewilding is expected to be concep-

tually different from traditional ecological restoration

(du Toit & Pettorelli, 2019), in the sense that rewilding

aims at enhancing the functioning of ecosystems, rather

than reaching a particular compositional or structural

state. As such, the monitoring of rewilding projects and

the definition of success are in many respects uncharted

territory, as, for example, how to best detect and track

changes in ecosystem functioning is still open to debate,

with very little experience to draw from (Schulte to

B€uhne et al., 2022; Torres et al., 2018). Practical and

comprehensive guidance on how to monitor the impacts

of rewilding efforts has so far been limited, with existing

recommendations including (1) adapting guidance from

organizations such as IUCN and the Society for Ecologi-

cal Restoration on how to audit restoration projects,

which requires setting up a benchmark and comparing

the level of ecosystem integrity between the chosen

benchmark and the rewilded site (Torres et al., 2018),

and (2) using species distribution models to assess the

potential level of colonization by new species (Mata

et al., 2021).

Over the past decades, satellite remote sensing has

shown increased utility for providing information on the

state of, and pressures on, biodiversity at a landscape,

regional, ecosystem, continental and global spatial scales

(Pettorelli, 2019) and could, amongst other things, offer

promising avenues for the cost-effective monitoring of

ecosystem processes and functions (Pettorelli et al., 2018b)

making satellite-based monitoring approaches particularly

well suited to inform rewilding projects. Indeed, propo-

nents of rewilding often emphasize that rewilding takes

place at large spatial scales, making satellite remote sensing

a well-suited instrument for monitoring rewilding, given

its wall-to-wall coverage of the Earth’s surface. In addition,

many satellite missions have been generating data for dec-

ades (e.g. the Landsat archive going back more than 40

years in many places), allowing for changes in ecosystem

dynamics (such as phenology) to be observed.

To date, however, little practical guidelines and recom-

mendations are available to practitioners to gauge the

benefits and limitations of using satellite remote sensing

technology to quantitatively assess the impacts of a rewil-

ding scheme on ecosystem composition, structure and

functioning. Discussions as to how satellite data could

help address current knowledge and data gaps in rewild-

ing science are also lacking. To address these gaps, we

here provide an up-to-date, interdisciplinary perspective

on the current and future prospects of satellite technology

to inform the monitoring and evaluation of terrestrial

rewilding projects (Fig. 1). There are many ways in which

satellite data can inform rewilding efforts, such as helping

monitor changes in land cover, ecosystem functioning

and the level of various human-induced disturbances in

and around rewilding sites. In this contribution, we

review established avenues and highlight new develop-

ments that have a high potential to make a difference to

practitioners and policymakers. Although satellite data

have become increasingly popular in applied ecology, they

are still underused. Hence, we also discuss current barri-

ers to the democratization of satellite-based approaches in

rewilding science and practices and identify possible ways

to overcome some of these limitations.

Satellite Remote Sensing and the
Monitoring of Rewilding and Other
Restoration Projects: Status and
Limitations

How does satellite remote sensing currently
inform rewilding?

The rewilding of a degraded area is expected to transform

ecosystem structure, composition and functioning, alter-

ing the distribution of habitats for multiple species. The

2 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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utility of satellite data to map ecosystem and habitat dis-

tribution in different realms and at various spatial resolu-

tions is well established (Pettorelli, 2019), and studies that

have made use of satellite data to assess the biodiversity

outcomes of rewilding projects, and restoration projects

more broadly, have so far primarily focused on land cover

mapping, land cover change detection and changes in the

availability of suitable habitats as informed by satellite

imagery (see e.g. Dombrovski et al., 2022; Mata

et al., 2021; Regos et al., 2016; Zielke et al., 2019). Exam-

ples of such applications include the use of very high-

resolution imagery (e.g., Quickbird, Worldview) to char-

acterize the response of woodlands to mechanical restora-

tion (Meddens et al., 2016); and the use of passive (Wu

et al., 2020) or active sensors (Chen et al., 2018) to com-

pare the outcomes of different restoration treatments.

Tracking changes in ecosystem structure involves pro-

viding information on the distribution of structural com-

ponents (e.g. number of water bodies in a given

terrestrial ecosystem), as well as describing horizontal and

vertical arrangements. The horizontal arrangement typi-

cally refers to fragmentation metrics (e.g. number of frag-

ments, distance between fragments; Fahrig, 2003) whilst

vertical structure typically refers to the arrangement of

the canopy in the vertical dimension, which is a key com-

ponent of habitat quality for many species. Changes in

satellite-derived metrics of ecosystem structure as a result

of restoration or rewilding projects have rarely been

reported in the literature, though exceptions do exist, par-

ticularly when it comes to the restoration of forests (see

e.g. Camarretta et al., 2020 for a review of the use of pas-

sive and active sensors to capture structural attributes at

the tree- and stand-level). For example, LiDAR data have

been used to track changes in vertical vegetation structure

on abandoned agricultural fields over time (Broughton

et al., 2021).

Similar to land cover and land cover change, the tracking

of primary productivity dynamics from space has been the

subject of many scientific studies since the launch of the

Landsat program, with many satellite-based vegetation

indices, including the normalized difference vegetation

index (NDVI), having been shown to indirectly relate to

this key ecosystem process (Pettorelli, 2013). Despite this

popularity, few studies have looked at the impacts of rewil-

ding projects, or unintentional rewilding as a result of

human land abandonment, on primary productivity

dynamics as tracked by NDVI (but see Sikorska et al., 2021;

Schulte to B€uhne et al., 2022). This is surprising, as rewild-

ing often includes reintroducing or increasing populations

of large herbivores, and the remote monitoring of primary

productivity dynamics can help assess the impacts of

increasing herbivory on vegetation (Navarro et al., 2020).

Figure 1. Overview of existing and missing information flows for rewilding monitoring. Field-based and satellite data already provide complemen-

tary information on the different dimensions of ecological change occurring as a result of rewilding. Satellite data could also help elucidate the

relationships between different dimensions of ecological change.
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Similarly, the use of NDVI to inform restoration projects

remains relatively limited, although interesting exceptions

can be found (see e.g. Hausner et al., 2018; Kim

et al., 2015). More broadly, and despite rewilding efforts

being centred on the functioning of ecosystems, including

the facilitation of new processes as well as the enhanced

functioning of existing processes, literature documenting

changes in ecosystem functioning because of rewilding (or

restoration) remains relatively scarce.

What are the barriers to the use of satellite
data in rewilding projects?

Though satellite data has become a standard tool in eco-

logical research over the past decades, its use in monitor-

ing environmental protection and restoration strategies,

including rewilding, remains limited, for a number of rea-

sons. Some of the barriers to the use of satellite data in

rewilding projects are discussed below (Fig. 2).

Importance of monitoring for rewilding

Rewilding is a conservation approach that seeks to estab-

lish self-organizing, self-sustaining ecosystems, with no

commitment to align ecosystems’ structure, composition

or functioning with specific ecological or historical bench-

marks. As such, questions are sometimes raised about the

necessity to monitor rewilding projects and their

outcomes, especially so given the difficulties and costs

associated with biodiversity monitoring. There are how-

ever several reasons why monitoring should be part of

any rewilding project’s implementation plans. First,

although uncertainty about ecosystem trajectory charac-

terizes rewilding, rewilding is defined as broadly aiming

to enhance ecosystem functions, and existing rewilding

projects have so far been associated with clear targets

(Pettorelli et al., 2018a). These aims and targets are part

of the information communicated to funders, local com-

munities, policy makers and other stakeholders when

seeking support to establish and implement a project;

they represent commitments that need to be honoured

and reported on. Second, rewilding is characterized by a

high level of unpredictability in its ecological outcomes,

and projects could pose a number of issues and risks to

local communities and neighbouring restoration projects.

The ability to communicate early about the likely trajec-

tory an ecosystem may take, and the associated risks this

may pose, is key to securing local communities’ long-

term engagement and support with rewilding initiatives.

Such assessments can only be made if rewilding sites are

comprehensively and regularly monitored.

Perceived and established capacity issues

The increased appetite for rewilding approaches in con-

servation can be broadly understood as being part of a

Figure 2. Barriers to the use of satellite data in rewilding projects.

4 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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wider interest in, and focus on, ecosystems and ecosys-

tem conservation over the past decade, as opposed to

the species-focused approach that characterized the pre-

vious decades of conservation biology. The shift being

relatively recent, many scientists and practitioners are

still having to learn about ecosystems, ecosystem dynam-

ics and ecosystem monitoring, being primarily trained in

species-based approaches and knowledge. Satellite data

may therefore be wrongly perceived by many as being

inadequate or inaccessible to inform rewilding projects

on the ground, with common assumptions including

satellite data always needing to be of very high (i.e.

<1 m) resolution (and thus not free) to be useful, or

satellite data always requiring very high-performance

computers to be manipulated and interpreted. Other

concerns that may hamper the use of satellite data by

projects for their monitoring and reporting include data

access and limited training opportunities that help set

common references across communities of both scien-

tists and practitioners.

Trust

High-resolution satellite data and user-friendly platforms

for satellite data analyses have become widely accessible

to scientists and practitioners all around the world,

enabling anyone to build a land cover map for known

rewilded sites globally. Increasingly, maps derived from

satellite images are constructed by those who may not be

very familiar with the sites they are looking at, or those

whose familiarity with remote sensing analyses may be

limited. Improved access to data and algorithms has cer-

tainly helped satellite technology to be part of the big

data revolution in wildlife management, but it has also

increased the likelihood that important contextual infor-

mation and analytical steps are missed, and wrong con-

clusions produced. These risks, associated with a

perception by some that satellite remote sensing aims to

replace existing monitoring methods used in rewilding

projects, such as expert-led assessments, or field-based

data collection, can lead to decreased trust by stakehold-

ers in the approach and results; without trust, much of

the work performed generally ends up being dismissed

and not used to guide management.

Opportunities to Address Current
Knowledge Gaps

Rewilding aims to impact many different levels of ecologi-

cal organization, from single species (e.g. reintroducing a

large herbivore to a site; Naundrup & Svenning, 2015) to

landscape-level functioning (e.g. restoring floodplain

dynamics; Brown et al., 2018). Ecological changes across

different levels interact, creating often complex and unan-

ticipated changes (Maris et al., 2018; Tree, 2017). A key

challenge for rewilding projects is to understand how

these broad ecological principles manifest across widely

varying ecological contexts. Satellite remote sensing can

play a key role in bridging the gap between the species

perspective, which focuses on population dynamics, habi-

tat occupancy and individual species-species interactions,

and the ecosystem perspective, which focuses on flows

and stocks of matter and energy at large spatial scales and

interactions in trophic networks, to gain a better under-

standing of the ecological changes brought about by

rewilding (Fig. 1). To demonstrate this point, we identify

below three knowledge gaps in rewilding science that

could benefit from the use of satellite remote sensing to

monitor rewilding projects.

Gaining a better understanding of the role
of animals in ecosystem functioning

Trophic complexity underpinning good ecosystem func-

tioning is key to rewilding. Yet, our understanding and

ability to assess how much control different animals

exert over ecosystem functioning on the one hand

(Ellis-Soto et al., 2021), and how rewilding affects habi-

tats, altering animal impacts in space and time, on the

other (Contos et al., 2021; Fuhlendorf et al., 2009)

remains limited, hindering the development of rewilding

practices. Satellite remote sensing data allows the deriva-

tion of relevant information for a wide range of ecosys-

tem functions, providing an avenue for monitoring

changes in ecosystem functioning in rewilding sites (Fre-

itag et al., 2021; Pettorelli et al., 2018b; Zhang

et al., 2021). Satellite remote sensing also offers key

opportunities to characterize how species use their envi-

ronment at multiple scales, enabling, for example, the

derivation of information that can help contextualize

animal-mediated nutrient translocation within and

between ecosystems (Ellis-Soto et al., 2021). For

instance, changes in the distribution of suitable habitats

for focal animal species over time can be monitored

based on changes in remotely-sensed ecosystem structure

and function (Arenas-Castro & Sillero, 2021). Being able

to monitor fluctuations in habitats in space and time is

especially important for understanding the impact of

novel species, or species with a potentially large impact

on whole ecosystem functioning, allowing affected com-

munities (both human and non-human) to respond to

these changes. Such knowledge could help prioritize

interventions to enhance ecosystem functioning in

degraded sites, whilst improving our ability to predict,

for example, the ecosystem consequences of predator

introduction (Ellis-Soto et al., 2021).

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Factoring in connectivity

A key species-ecosystem interface relevant to rewilding is

connectivity (Torres et al., 2018). Connectivity is shaped

by landscape-scale ecosystem structure, but it varies by

species: a habitat mosaic that can easily be traversed by

one species may be impenetrable for another (Baguette

et al., 2013). Connectivity between rewilding sites and the

wider landscape will govern much of the ecological

change occurring in response to rewilding. This includes

community re-organization through the arrival of new

(novel or native) species (Grau et al., 2020), as well as the

spread of species from the rewilded site into the wider

landscape, especially of potentially high-impact species

such as predators (Garcia-Lozano et al., 2020).

There are two key gaps in knowledge regarding the role

of connectivity in rewilding. First, understanding species

movements in and out of rewilded sites is especially

important where rewilding takes place next to sensitive

areas, such as small populations of highly threatened spe-

cies, that may be adversely impacted. Satellite imagery can

aid in monitoring rewilding-driven changes in ecosystem

aspects that shape species-specific landscape connectivity

(Baumann et al., 2020; Root-Bernstein & Svenning, 2017;

Torres et al., 2017). This is key to understanding how

connectivity changes across the landscape, and across

time, thereby allowing potential flows of rewilding bene-

fits and costs to humans and biodiversity to be taken into

consideration when planning or adapting to rewilding

projects (or ecosystem restoration more broadly; Koh

et al., 2013).

Second, it is unclear how changes in connectivity will

shape ecosystem function. The arrival of novel species, or

changes in species abundance, will alter the trophic struc-

ture of an ecosystem, which could have long-term effects

on ecosystem function. In marine ecosystems, increasing

trophic complexity (i.e. more and more diverse interac-

tions between species) is overall expected to lead to

increases in ecosystem functioning (Mora et al., 2014),

but this relationship does not necessarily apply every-

where (Valiente-Banuet et al., 2015). Ecosystem function-

ing shapes flows of benefits and harms to all species in an

ecosystem, including humans (IPBES, 2019), so under-

standing the impact of connectivity on ecosystem func-

tioning is important to predicting the effects of rewilding

on socio-ecological systems.

Assessing the impacts of rewilding on the
conservation status of rewilded sites

Rewilding initiatives are expected to benefit biodiversity,

leading to more ecologically complex and more resilient

ecosystems. A multitude of variables and indicators are

relevant to assessing the ecological outcomes of rewilding

projects, but these need to be integrated into a framework

that helps us conclude whether the conservation status of

rewilded ecosystems has improved or not. That synthetic

information is key to secure long-term engagement and

political support for rewilding globally.

Nearly a decade ago, the IUCN adopted the Red List of

Ecosystems (RLE) Categories and Criteria as a robust and

consistent tool for monitoring the risk status of ecosys-

tems in order to plan appropriate conservation actions

(Bland et al., 2016; Keith et al., 2013). This protocol aims

to estimate the probability of ecosystem collapse over a

specified time frame (Keith, 2015), thus providing an

interesting metric for tracking changes in conservation

status for a given ecosystem, including rewilded ones.

Many data sources are relevant for RLE assessment,

including satellite remote sensing, which can deliver eco-

logically relevant, long-term datasets suitable for analysing

changes in ecosystem area, structure and function at the

temporal and spatial scales relevant to risk assessment

protocols (Murray et al., 2018). Thus, a key benefit of the

RLE framework is its ability to cope with a diversity of

biodiversity data, including satellite data. So far, very little

has been done in terms of using RLE assessments to track

the impacts of restoration (which it is ideally suited for)

or rewilding approaches on ecosystems, even though such

an integrative approach could provide practitioners with

an alternative to having to make sense of potentially con-

flicting trends in different biodiversity metrics.

The use of RLE assessments to assess the impacts of

rewilding on ecosystems could however be challenging, as

positive changes in RLE status imply that the composi-

tion, structure and/or functioning of a given ecosystem

type (Keith et al., 2022) has improved. Because of climate

change and other drivers of global change environmental

change, successful rewilding projects may yet include situ-

ations in which ecological communities become radically

different, and ecosystems transition to a new ecosystem

type (which would correspond to ecosystem collapse in

RLE assessments). This could include transitions to a dif-

ferent yet known ecosystem type, or (in extreme situa-

tions) transitions to novel ecosystems that have no

historic precedent. In such situations, biotic and abiotic

changes will need to be judged based on the effects they

have on the long-term autonomous functioning of an

ecosystem and not merely by fidelity to any particular

ecosystem type.

Interestingly, there have been efforts to identify ecologi-

cal variables that can track the capacity of an ecosystem

to function autonomously, such as trophic complexity,

disturbance dynamics and connectivity (Perino et al.,

2019; Torres et al., 2018). These variables have already

been applied to expert-based assessments of rewilding

6 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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success; however, the scaling up of this framework has

proven difficult (Segar et al., 2022). In situations where

ecological communities and ecosystem types are poten-

tially altered in response to changes in environmental

conditions and management approaches (e.g. through the

adoption of rewilding), RLE assessments could be com-

bined with such a framework to measure the impacts of

rewilding on the conservation status of rewilded sites. For

instance, the conceptual ecosystem models underlying

RLE assessments could be used to guide the identification

of meaningful indicators of autonomous ecosystem func-

tion for an ecosystem in transition. In addition, data on

ecosystem distribution and functioning, as well as data on

abiotic and biotic threats collected as part of RLE status

assessments could be used to track spatio-temporal

changes in such indicators (including trophic complexity,

disturbance dynamics and/or connectivity).

Conclusions

Satellite remote sensing enables access to important infor-

mation about the changes in ecosystem composition,

structure and functioning instigated by rewilding initia-

tives (Table 1). It provides scientists and practitioners

with a synoptic landscape perspective that is more diffi-

cult or expensive to achieve via other methods; this

includes being able to track large-scale disturbances such

as floods and fires, and broad changes in vegetation cover

at large spatial scales (Pettorelli et al., 2018b). Being able

to access such information can enrich expert-led or field

data-based assessments, for instance by providing infor-

mation about the spatial distribution of indicators of

habitat quality of key species (Regos et al., 2022).

Integration of in situ knowledge from local stakehold-

ers and expert knowledge from a range of disciplines,

including remote sensing analysts, is key for correctly

interpreting satellite information and capitalizing on the

opportunities that satellite remote sensing has to offer to

rewilding science. Establishing effective interdisciplinary

relationships that build on everyone’s interests and benefit

all parties can however be challenging (Pettorelli

et al., 2014), requiring for example actors to extend their

networks and reach out to new communities; devote time

to appreciate others’ constraints and priorities, and estab-

lish common reference frames and understanding of each

other’s work. This could be achieved via a dedicated net-

work whose explicit aim is to improve collaboration

between rewilding practitioners and policy makers on the

one hand and satellite remote sensing experts on the

other. Ultimately, removing the barriers between the spe-

cies and the ecosystem perspective, in terms of data,

methodologies and professional communities of scientists

and practitioners, is key to ensuring that the full potential

of satellite remote sensing data for informing rewilding

projects can be realized.
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