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Abstract: Rewilding is increasingly considered as an option for environmental regeneration, 15 

with potential for enhancing both biodiversity and ecosystem services. So far, however, there 16 

is little practical information on how to gauge the benefits and limitations of rewilding schemes 17 

on ecosystem composition, structure and functioning. To address this knowledge gap, we 18 

explored how satellite remote sensing can contribute to informing the monitoring and 19 

evaluation of rewilding projects, using the Knepp estate as a case study. To our knowledge, 20 

this study is the first to assess the impacts of rewilding as an ecological regeneration strategy 21 

on landscape structure and functioning over several decades. Results show significant changes 22 

in land cover distribution over the past 20 years inside rewilded areas in the Knepp estate, with 23 

a 41.4% decrease in areas with brown agriculture and grass, a roughly sixfold increase in areas 24 

covered with shrubs, and a 40.9% increase in areas with trees; vegetation in the rewilded areas 25 

also showed a widespread increase in annual primary productivity. Changes in land cover and 26 

primary productivity are particularly pronounced in the part of the estate that began its 27 

rewilding journey with a period of large herbivore absence. Altogether, our approach clearly 28 

demonstrates how freely available satellite data can (1) provide vital insights about long-term 29 

changes in ecosystem composition, structure and functioning, even for small, heterogeneous 30 

and relatively intensively used landscapes; and (2) help deepen our understanding of the 31 

impacts of rewilding on vegetation distribution and dynamics, in ways that complement 32 

existing ground-based studies on the impacts of this approach on ecological communities.  33 
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Introduction 37 

Human activity is leading to rapid and global biodiversity losses and increasing pressure on 38 

natural resources, compromising the ability of the planet’s natural environment to sustain future 39 

generations (IPBES 2019). Among the direct drivers of change in biodiversity with the largest 40 

relative global impacts, change in land use ranks particularly high: recent estimates show that 41 

three-quarters of terrestrial environments have been considerably altered by agricultural and 42 

forestry practices as well as urbanisation (Diaz et al. 2019). The current consensus is that 43 

conversion and degradation of habitats is driving global species loss, which in turn 44 

compromises the functioning of ecosystems and delivery of services (Cardinale et al. 2012; 45 

Pimm et al. 2014). 46 

With its potential for enhancement of biodiversity and ecosystem service delivery, rewilding 47 

is increasingly considered as a potential tool to repair some of the ecological damages 48 

associated with land use change (Carver 2016; Svenning et al. 2016). Originally associated 49 

with the restoration of large, connected wilderness areas that support wide-ranging keystone 50 

species such as large carnivores (Soulé & Noss 1998), rewilding can be broadly defined as the 51 

reorganisation of biota and ecosystem processes to set an identified social-ecological system 52 

on a preferred trajectory, leading to the self-sustaining provision of ecosystem services with 53 

minimal ongoing management (Pettorelli et al. 2018a). It is currently used as an umbrella term 54 

for a wide range of conservation activities, from accepting natural vegetation succession on 55 

abandoned agricultural land to translocating functional analogues of extinct species to restore 56 

trophic networks (Pettorelli, Durant & du Toit 2019). “Wild” ecosystems are expected to play 57 

an important role in the protection of ecosystem functions such as freshwater provision, 58 

nutrient regulation, air quality and supporting habitats (Pereira & Navarro 2015); these 59 

ecosystems have also been proven to supply higher quality services, for example, higher carbon 60 

storage and sequestration than other types of ecosystems (Cerqueira et al. 2015).  61 



However, despite burgeoning interest in the concept, uncertainties and difficulties associated 62 

with the practical implementation of rewilding projects remain. One major research area 63 

recently highlighted as being of paramount importance to develop the global rewilding agenda 64 

is facilitating the emergence of a comprehensive and practical framework for the monitoring 65 

and evaluation of rewilding projects (Pettorelli et al. 2018a; Torres et al. 2018). Long‐term, 66 

practical and scientifically sound monitoring and evaluation of rewilding projects are required 67 

to make sure, among other things, that the trajectory of change and original environmental 68 

targets set at the start of the project remain desirable for the social–ecological system 69 

considered. Targets, in this context, are likely to be centered on changes in indicators of 70 

ecosystem functioning, including the facilitation of existing or new ecological processes. How 71 

to measure changes in ecosystem functioning is however still open to debate, and the practical 72 

challenges are substantial. For example, carbon stocks in a forested system can be assessed in 73 

a cost‐effective way in a single visit, but monitoring decomposition requires repeated 74 

measurements over years.  75 

Research on monitoring options for ecosystem processes and functions has grown substantially 76 

in the past decade, and these efforts could be used to support the identification of a relevant 77 

and practical framework for the monitoring and evaluation of rewilding projects. Satellite 78 

remote sensing, for example, offers promising avenues for the cost‐effective monitoring of 79 

ecosystem processes, functions and services, such as disturbance dynamics (Chuvieco et al. 80 

2020), primary productivity (Juntilla et al. 2021), and climate regulation (del Río-Mena et al. 81 

2020), and could help inform such a framework (Pettorelli et al. 2018b). To date, however, 82 

little practical information is available to gauge the benefits and limitations of using satellite 83 

remote sensing technology to quantitatively assess the impacts of a rewilding scheme on 84 

ecosystem composition, structure and functioning. To address this gap in knowledge, we here 85 

explore how satellite remote sensing can contribute to inform the monitoring and evaluation of 86 



rewilding projects, using the Knepp estate as a case study. Specifically, we explore how 87 

rewilding impacted land cover and primary productivity, two parameters that significantly 88 

shape several ecosystem functions in terrestrial ecosystems (Pettorelli et al. 2018b), have 89 

changed over the past two decades. While doing so, we test the following hypotheses: (H1) 90 

Rewilding is driving a directional vegetation change, moving from dominance of crops and 91 

grasses to vegetation communities with significant amounts of shrubs and trees. This 92 

hypothesis is based on the fact that the rewilding approach on the Knepp estate included a 93 

withdrawal of agricultural activities, and (across parts of the rewilded areas) an initial 94 

protection from herbivory, two factors which tend to suppress woody species in agricultural 95 

landscapes in the temperate zone (e.g. Prevosto et al. 2011, Prach et al. 2014). We thus expect 96 

significant increases in shrubs and trees to have occurred in the rewilded parts of the Knepp 97 

estate since a rewilding approach was introduced, as opposed to areas that have not undergone 98 

rewilding. (H2) We also hypothesise that rewilding is driving an increase in primary 99 

productivity, partly due to changes in vegetation community composition, but also in response 100 

to increased nutrient availability, and other benefits to growth conditions (Vuichard et al. 101 

2008). We thus expect increases in primary productivity to be stronger than those (if any) 102 

observed in the areas neighboring the rewilded areas, and, in addition, primary productivity 103 

increases to be larger in rewilded sites than surrounding areas that showed the same increase 104 

in woody vegetation.  105 

 106 

Material and Methods 107 

Study area 108 

Knepp is a 1,400-hectare estate of heavy weald clay in West Sussex, England, and lies 50.9834° 109 

N, 0.3547° W (Figure 1A). The estate had previously been intensively farmed since World War 110 

II until 2001, when it was deemed unprofitable (Tree 2018). The estate has four separate blocks, 111 



three of which are fenced and have experienced different regeneration histories (Northern, 112 

Middle, Southern; Figure 1). The Middle block (242ha), which had formerly been a park 113 

designed in the style of Humphry Repton, was taken out of agricultural production in 2001. 114 

Fallow deer were introduced in 2002, followed by English long-horn cattle (2003), Exmoor 115 

ponies (2005), and red deer (2013). The fields of the Southern block (452ha) were phased out 116 

of production between 2001 and 2006, starting with the least productive fields. The Southern 117 

block was fenced in 2009 with English longhorn cattle, Exmoor ponies, and Tamworth pigs 118 

introduced the same year, followed by fallow deer (2010) and red deer (2013). The Northern 119 

block (215ha) was taken out of production in 2004 and English longhorn cattle introduced in 120 

the same year. The major difference between blocks is that fields in the Southern block were 121 

left fallow for 3-8 years without large herbivores being introduced. The estate now hosts a 122 

diversity of species, including the rare turtle doves (Streptopelia turtur), nightingales (Luscinia 123 

megarhynchos), peregrine falcons (Falco peregrinus) and purple emperor butterflies (Apatura 124 

iris), which all breed onsite (Rewilding Britain 2020).  125 

 126 

Satellite imagery 127 

To track changes in land cover over the past two decades, we used Landsat Collection 2 Tier 1 128 

Surface Reflectance products (georeferenced, terrain-corrected and atmospherically corrected; 129 

note that this product is distributed with all bands resampled to 30m resolution) processed on-130 

demand by the United States Geological Survey (USGS), as these are recognised as the most 131 

accurate pre-processed products (Young et al. 2017). The use of satellite data from different 132 

seasons has been shown to increase land cover classification accuracy (Lopes et al. 2020) as it 133 

captures land cover class-specific seasonal changes. We thus identified, for both 2001 and 134 

2020, cloud-free scenes from different points during the year, though scene availability was 135 

significantly restricted by the frequent cloud cover experienced by this part of the UK. This 136 



resulted in the use of three scenes for 2001 (with one scene each from February, August and 137 

December 2001) and two scenes for 2020 (from February and August 2020; see Table S1 in 138 

Supplementary Materials for scene ID and precise dates). Bands considered for analysis were 139 

bands 1-7 for both Landsat 5 and 8; all captured information at a 30m resolution. In addition, 140 

we calculated three additional indices for each scene: the Normalized Difference Vegetation 141 

Index (NDVI), the Normalized Burn Ratio (NBR), and the Modified Soil-Adjusted Vegetation 142 

Index 2 (MSAVI2), to capture differences in the spectral properties of different land cover 143 

classes not directly reflected by the original bands. The NDVI is derived from the red (RED): 144 

near-infrared (NIR) reflectance ratio (NDVI = (NIR – RED)/(NIR + RED)), where NIR and 145 

RED are the amounts of near-infrared and red light reflected by the vegetation and captured by 146 

the sensor of the satellite. NDVI values range from -1 to +1. Green leaves have high visible 147 

absorption and high near-infrared reflectance, which results in values closer to +1; negative 148 

values correspond to an absence of vegetation (Pettorelli 2013). The NBR is based on the 149 

shortwave infrared (SWIR) and NIR bands, calculated as (NIR-SWIR)/(NIR+SWIR). It also 150 

ranges from -1 to +1 and is commonly used to assess post-fire vegetation recovery; we 151 

considered this index because it is sensitive to changes in vegetation phenology (Granero-152 

Belinchon et al. 2020). The MSAVI2 is based on RED and NIR reflectance, as the NDVI, but 153 

attempts to adjust for variability in the spectral properties of background soil, improving the 154 

(vegetation) signal-to-noise ratio (Qi et al. 1994). 155 

 156 

The NDVI was moreover used to track changes in the spatial and temporal distribution of 157 

primary productivity. NDVI data were extracted from the MODIS 16-day product (MOD13Q1, 158 

L3 Global 250m version 6), which was freely available through the USGS Earth Explorer data 159 

portal. MOD13Q1 provides NDVI data every 16 days at a spatial resolution of 250m in a 160 

sinusoidal projection. NDVI data from February 2000 to December 2020 was considered for 161 



analysis. A geo-referenced shapefile providing information on the borders of the rewilded areas 162 

within the Knepp estate was used to identify pixels corresponding to the rewilding sites. To 163 

test our second hypothesis (H2), a 1 km buffer zone was created around the entire Knepp estate 164 

(Freemantle et al. 2013); land cover within this buffer zone, in addition to non-rewilded areas 165 

of the Knepp estate (together referred to as “buffer zone”, mainly consisted of agricultural land 166 

and fields.  167 

 168 

Land cover classification and accuracy assessment 169 

We used a post-classification land cover change analysis to detect changes in land cover across 170 

the study site. All analyses were carried out in R (R Core Team 2021). We used the Random 171 

Forest classifier to produce our land cover maps as this algorithm makes no a priori 172 

assumptions on the statistical distribution of predictive variables and is robust across different 173 

ecological settings (Wegmann et al. 2016). 500 trees were grown for each classification. 174 

Training and validation data were collected using Google Earth images from January 2001 and 175 

April 2020. Based on these Google Earth images, three land cover categories were 176 

differentiated: (1) brown agriculture and grassland; (2) scrub; and (3) trees. Brown agriculture 177 

in this study corresponds to ploughed, recently seeded fields or fields that display limited to no 178 

greenery on satellite imagery. Humanmade structures such as roads and buildings were visually 179 

identified in both the buffer zone and estate, and removed from the images before analysis, as 180 

were sparse water bodies. A total of 96 training and 94 validation polygons (1635 and 1278 181 

pixels, respectively) were used to classify the 2001 image. For the 2020 image, 79 training and 182 

79 validation polygons (2047 and 1412 pixels, respectively) were considered (see Table S2 in 183 

Supplementary Materials). Producer’s and user’s accuracies were calculated for both land 184 

cover maps. Producer’s accuracy quantifies the probability that a given pixel will be assigned 185 

to the correct land cover class by the random forest algorithm (also called recall). The user’s 186 



accuracy estimates the probability that the assigned class of a given pixel is correct (also called 187 

precision). We moreover calculated the F1 score (the harmonic mean of user and producer 188 

accuracy for a given class, giving a balanced view of both true and false positives for a given 189 

class), as well as the overall accuracy across all land cover classes (the proportion of all 190 

assessed pixels that are classified correctly, which is a good indicator of the overall prevalence 191 

of true positives and true negatives). 192 

 193 

Primary productivity analyses 194 

NDVI pixels covering the rewilded areas and the buffer zone were extracted from the MODIS 195 

images. Pixels overlapping with humanmade structures such as roads and buildings were 196 

identified and removed before analysis. To correct for environmental noise, the NDVI values 197 

were smoothed, following the method established by Garonna and colleagues (Garonna et al. 198 

2009). Specifically, the data for each pixel checked for rapid decreases or increases (a 199 

difference of 0.3 or more from one date to the next) that were immediately followed by a rapid 200 

return to previous values. These drops in NDVI are attributed to environmental noise and were 201 

replaced by the average of the previous and following values to ‘smooth’ the annual NDVI 202 

curve for that pixel. If two consecutive contaminated values were present, the average of the 203 

closest NDVI values was calculated (Garonna et al. 2009).  204 

Two parameters capturing important ecosystem functioning features (Pettorelli et al. 2012) 205 

were calculated: (1) annual maximum (MAX NDVI), which is the annual maximal value in 206 

NDVI (and therefore primary productivity); and (2) annual integrated NDVI during the 207 

growing season (March-November; I-NDVI), which is used as a proxy for cumulative annual 208 

primary productivity. Mann-Kendall trend tests were used to assess the significance of any 209 

temporal trend in both time series for all pixels within the rewilded areas and buffer zone, with 210 

significant slopes assumed for p-values < 0.05 (Pettorelli et al. 2012; Freemantle et al. 2013).  211 



To assess differences in NDVI changes in response to land cover change, the overall direction 212 

and magnitude of land cover change for each MODIS pixel was calculated as follows: for each 213 

pixel in the land cover map, the direction and magnitude of change was determined. Pixels 214 

which remained in the same land cover class were assigned a value of 0. Pixels which moved 215 

a single class towards a vegetation class with more woody elements (i.e., from 216 

agriculture/grassland to shrubs, or from shrubs to trees) were assigned a value of 1; if they 217 

moved two classes (i.e., agriculture/grassland to trees), they were assigned a value of 2. Pixels 218 

that moved one [two] class[es] in the opposite direction, indicating a decline in woody 219 

vegetation cover, were assigned values of -1 [-2]. Then, for each MODIS pixels, the sum of all 220 

land cover change values was calculated, with high values corresponding to a MODIS pixel in 221 

which all land cover pixels (n = 64) indicated a shift from agriculture/grassland to trees, and a 222 

value of -128 the opposite. The values were then plotted against the magnitude (tau) of change 223 

in (1) maximum NDVI and (2) I-NDVI. 224 

 225 

Results 226 

The random forest classification returned good accuracy for both the 2001 and 2020 land cover 227 

classifications, with overall accuracies of 97.2% and 92.6% respectively (Table 1). The land 228 

cover class that was most frequently misclassified was shrub in 2020, with 30% of pixels that 229 

were classified as shrub actually being agriculture/grassland (Table S2). However, most pixels 230 

that were classified as shrub, when they were in fact agriculture/grassland, were located outside 231 

of the rewilded areas, meaning that identification of shrub inside the rewilded areas was 232 

accurate (Figure S1). As expected from (H1), significant shifts towards vegetation with more 233 

woody plants occurred between 2001 and 2020 in the rewilded areas, with a 41.8% decrease in 234 

areas with brown agriculture and grass, a roughly sixfold increase in areas covered with shrubs, 235 

and a 40.9% increase in areas with trees (Table 2). These changes heavily contrasted with the 236 



changes observed in the buffer zone, where, for example, areas covered by brown agriculture 237 

decreased by only 10.7% (Table 2). Changes were particularly spectacular in the southern 238 

block, which converted from a predominantly brown agriculture and grass covered area to an 239 

area predominantly covered with shrubs and trees (Figure 2). 240 

NDVI-based analyses also supported our second hypotheses, with Mann-Kendall trend tests 241 

showing that 89% and 68% of the 197 MODIS pixels in the rewilded areas experienced a 242 

significant increase in I-NDVI and MAX NDVI respectively, over the 2001-2020 period (Table 243 

3; Figure 3). In the buffer zone, however, only 46% and 29% of the 450 pixels saw a significant 244 

increase in I-NDVI and MAX NDVI, respectively (Table 3). Only a very small number of 245 

pixels within the rewilded areas exhibited a significant decrease in both MAX NDVI and I-246 

NDVI (2 and 1 respectively), which was due to the recent development of a new building. 247 

Increases in I-NDVI and MAX NDVI, while clearly linked to increases in woody vegetation 248 

(either shrubs or trees), tended to be larger in the rewilded areas than in areas undergoing land 249 

cover change of a similar direction and magnitude in the buffer zones (Figure 4), again 250 

supporting our second hypothesis. 251 

 252 

Discussion 253 

After 20 years of rewilding at Knepp estate, the landscape is almost unrecognizable from its 254 

initial state. Our results show how rewilding has drastically impacted vegetation cover and 255 

dynamics over the past twenty years in the Knepp estate, particularly in the Southern block, 256 

thereby likely triggering changes in regulating, provisioning and supporting ecosystem 257 

functions including provision of food, raw materials and supporting habitats, water and nutrient 258 

regulation and soil retention. To our knowledge, our work is the first to report on the impacts 259 

of rewilding as a regeneration strategy on landscape structure and functioning over decades. 260 

Rewilding encouraged natural vegetation growth in Knepp, with tree and shrub cover 261 



increasing and brown agriculture and grass decreasing between 2001 and 2020. Such trends 262 

contrast with land cover trajectories in neighbouring areas, where, for example, agricultural 263 

fields did contract, but at a much slower pace.  264 

Interestingly, those parts of Knepp estate that were not part of the rewilding project (but 265 

remained under livestock grazing, agriculture and woodland, Greenaway 2006) show similar 266 

changes in land cover and NDVI dynamics as those in which herbivores were introduced 267 

rapidly after taking fields out of conventional agricultural production. This stands in contrast 268 

to the southern block, which exhibited the largest change in land cover between 2001 and 2020, 269 

with the area dramatically switching from brown fields and grassland dominated to shrub and 270 

tree dominated (Figure 2). Fields in this part of the Knepp were gradually left fallow between 271 

2001 and 2006, and, in contrast to the other blocks, no large herbivores were introduced until 272 

2009. This led to a huge surge in vegetation reported on the ground and a rise in the diversity 273 

of invertebrates, birds and small mammals, including rare species (Tree 2018). This illustrates 274 

that the regeneration timescales of different ecosystem components (e.g., woody vegetation, 275 

small herbivores, large herbivores) are likely to differ substantially across rewilding projects, 276 

depending on how wild species communities assemble, with cascading effects on ecosystem 277 

trajectories.  278 

Contrary to existing literature on protected areas, which generally describe a hardening of 279 

edges between protected lands and neighbouring areas (Woodroffe, Thirgood & Rabinowitz 280 

2009), our results show that the increases in tree and shrub cover within the rewilding project 281 

itself were partially mirrored in the buffer zone as well as non-rewilded parts of the estate. For 282 

small rewilding sites, such as at Knepp, this decline in contrast is likely to benefit the ecosystem 283 

inside the core area (Boesing et al. 2018), but higher habitat connectivity between core 284 

rewilding sites and the surrounding matrix could also have negative effects. For example, 285 

encouraging species movement into the buffer zone could increase the flow of ecosystem 286 



services, but also the potential for human-wildlife conflict (Pascual-Rico et al. 2020). While 287 

this issue will be most important for rewilding projects which include carnivores or large 288 

herbivores (e.g., Smith et al. 2016), a recent attempt to introduce a breeding pair of beavers in 289 

the Knepp estate failed because the animals quickly moved out of the core rewilding site 290 

(Knepp 2021). This highlights that monitoring environmental conditions in the area 291 

surrounding rewilded sites may play an important role in understanding (and responding to) 292 

ecological changes inside such sites. 293 

Annual primary productivity and annual maximum level of primary productivity increased in 294 

the rewilded areas and buffer zone over the past two deacades, although such significant 295 

increases were more prominent in the rewilded areas than in the buffer zone. These significant 296 

increases may be due to changes in vegetation cover (as, e.g., I-NDVI and NDVI MAX are 297 

expected to increase when transitioning from brown agriculture to shrubs and trees). However, 298 

these increases in primary productivity cannot be entirely explained by changes in land cover 299 

alone, as these increases tend to be smaller outside rewilded areas, even when controlling for 300 

the magnitude and direction of land cover change. Observed trends in NDVI dynamics could 301 

be attributed to the impacts of warming conditions in South England over the past two decades 302 

on the photosynthetic capacity of plants (Yang et al. 2019). Vegetation inside the rewilded sites 303 

seems to have been more sensitive to these climatic changes than vegetation in the surrounding 304 

landscape. This could be an early signal of autonomous internal change of this system in 305 

response to climate change, allowing the ecosystem at the study site to adapt to the altered 306 

abiotic environment. Alternatively (or additionally), it could be the result of agricultural fields 307 

switching to semi-natural grasslands, which tend to have higher primary productivity (Abdalla 308 

et al. 2013), a land cover transition we are unable to detect with our classification. However, 309 

since those parts of the Knepp estate that have not been rewilded showed similarly strong 310 

changes in NDVI, it cannot be ruled out that other mechanism(s) are behind these trends. As 311 



the climate continues to change (IPCC 2014), understanding what shapes the response of 312 

ecosystems in rewilded sites is key to anticipating, mitigating against, and adapting to 313 

potentially harmful ecological change. 314 

Our approach clearly demonstrates how freely available satellite data can provide vital insights 315 

about long-term changes in ecosystem composition, structure and functioning, even for small, 316 

heterogeneous and relatively urbanized landscapes. Such data provides important information 317 

to contextualise other ecological changes quantified via ground-based observations, such as 318 

changes in animal and vegetation community composition and functioning, to build up a 319 

comprehensive understanding of the different dimensions of rewilding outcomes (Torres et al. 320 

2018). Long-term trend assessments in land cover and primary productivity, such as the ones 321 

presented here, do however have their limitations: because multispectral data is the primary 322 

source of information for exploring changes in vegetation distribution and dynamics over 323 

decades, only images with low cloud cover can be used for analysis (Pettorelli, Durant & du 324 

Toit 2019). In countries such as England, this can drastically reduce the number of images 325 

available for classification. The reliance on multispectral data to classify vegetation types, 326 

without for example combining it with radar data, can then hamper the accuracy with which 327 

certain vegetation classes are mapped (Schulte to Bühne & Pettorelli 2018). In our case, the 328 

mapping of shrubs would have likely been more accurate, should have we been able to access 329 

radar information for the site and period considered (Lopes et al. 2020).  330 

Our study aimed to provide spatially explicit evidence on the impacts of rewilding on 331 

vegetation distribution and dynamics as well as landscape structure. Rewilding in Knepp 332 

started in 2001, and at that time, very few space missions were in orbit to capture information 333 

about the state of biodiversity. Since then, new missions have increased the breadth of options 334 

for monitoring ecosystems from space. For example, the Sentinel missions have radically 335 

transformed access to multispectral‐radar data fusion prospects for ecologists, thereby 336 



improving opportunities to reliably map land cover change across the world (Schulte to Bühne 337 

& Pettorelli 2018). Spaceborne hyperspectral sensor missions (such as the Environmental 338 

Mapping and Analysis Program (EnMAP), the Hyperspectral Infrared Imager (HyspIRI), and 339 

the Hyperspectral Precursor of the Application Mission (PRISMA – Italian Space Agency) are 340 

about to enable ecologists to track changes in surface chemistry and structure in great detail 341 

(Pettorelli, Durant & du Toit 2019). Monitoring of biomass and canopy structure will be 342 

transformed by the availability of global LiDAR data from spaceborne missions (e.g., ICESat‐343 

2 and GEDI). As new ecological regeneration strategies such as rewilding continue to be 344 

implemented in various sites around the world, these missions and the data they will be 345 

collecting in the years to come provide a significant opportunity to study how landscapes 346 

respond to drastic changes in land use.  347 

Studies such as this demonstrate one of the main assets of satellite data: they enable ecologists 348 

to retrospectively analyse spatio-temporal changes in vegetation distribution and dynamics, 349 

even when they had not planned to do so in the first place. Global satellite data archives provide 350 

access to ecological baselines that may have not been collected on the ground, thereby enabling 351 

the standardized, transparent, cost-effective tracking of ecological change over time. In this 352 

case, they have deepened our understanding of the impact of rewilding on ecosystem 353 

composition, structure and functioning, in ways that nicely complement existing ground-based 354 

studies on the impacts of this management approach on ecological communities (see e.g., 355 

Brompton 2018, Tree 2018, Wallace 2019).  356 
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TABLES 486 

 487 

Table 1. User and producer accuracies for the brown agriculture/grass, shrub, and tree cover 488 

classes, as well as overall accuracy of the land cover maps generated for the study area with a 489 

1km buffer for 2001 and 2020. 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

  500 

 2001  2020  

 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

F1 

(%) 

 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

F1 

(%) 

 

Agriculture/Grass 99.8 96.6 98.1 92.1 98.8 95.3 

Shrub 43.4 92.0 59.0 61.5 51.3 56.0 

Tree 98.7 99.4 99.0 96.5 91.8 94.1 

Overall 97.2  92.6  



Table 2. Percentage area cover for 2001 and 2020 and percentage area cover change in the 501 

rewilded areas and the rest of the study site. 502 

 503 

 504 

  505 

Area Class 
2001 area 

cover (%) 

2020 area 

cover (%) 

Rewilded areas 

Agriculture/Grass 78.8 45.9 ¯ 

Shrub 4.8 31.0 ­ 

Tree 16.4 23.1 ­ 

Other areas 

Agriculture/Grass 75.5 67.4 ¯ 

Shrub 6.6 11.7 ­ 

Tree 17.8 21.0 ­ 



Table 3. Number of pixels (out of 197 for the rewilded areas, 450 for the other areas) displaying 506 

significant and insignificant changes in MAX NDVI and I-NDVI. Significance was assessed 507 

with Mann-Kendall trend tests (n = 21 years, p = 0.05). 508 

 509 

  510 

Area 
Parameter 

Significant 

Increase 

Insignificant 

Increase 

Insignificant 

Decrease 

Significant 

Decrease 

Rewilded 

areas 

MAX 

NDVI 

% pixels 

 

133 

67.5% 

53 

26.9% 

9 

4.6% 

2 

1.0% 

I-NDVI 

% pixels 

175 

88.8% 

14 

7.1% 

7 

3.6% 

1 

0.5% 

      

Other 

areas 

MAX 

NDVI 

% pixels 

 

132 

29.3% 

240 

53.3% 

78 

17.3% 

0 

0.0% 

I-NDVI 

% pixels 

206 

45.8% 

180 

40.0% 

54 

12.0% 

10 

2.2% 



FIGURES 511 

 512 

 513 

Figure 1. Location of the study site, Knepp estate in Sussex, with the three main areas where 514 

rewilding occurred: northern, middle and southern blocks (dark grey, A). Google Earth 515 

imagery taken (B) illustrates the increase in shrub and tree covering the rewilding sites. As 516 

there was not enough high-resolution imagery available to visualize the entire site during 517 

comparable seasons, we chose four examples across the area where most of the shrub 518 

increase has taken place. Imagery from Google Earth 2021, (c) Bluesky, Landsat, Copernicus 519 

2021. 520 

 521 

Figure 2. Land cover classification maps for 2001 (A) and 2020 (B) as derived from a 522 

supervised random forest classification approach. 523 

 524 

Figure 3. Spatial variation in vegetation dynamic parameters (MAX and I-NDVI) in rewilded 525 

areas and the rest of the study site. 526 

 527 

Figure 4. The magnitude of change in vegetation dynamic parameters (tau of the Mann-528 

Kendall trend test) for (A) maximum and (B) integrated NDVI against the magnitude of land 529 

cover change which occurred in each pixel. “Maximum increase” means that, for a given 530 

MODIS pixel (nominal resolution: 250m), all assessed Landsat pixels (nominal resolution: 531 

30m) transitioned from agriculture/grassland to shrubs, or shrubs to trees, or from 532 

agriculture/grassland to trees; maximum decline corresponds to the pixels that were all 533 



assessed Landsat pixels transitioned from trees to shrubs, shrubs to agriculture/grassland, or 534 

trees to agriculture/grassland.   535 



536 
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Figure 1  538 
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Figure 2  540 
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Figure 4544 



Supplementary Materials 545 

Table S1: Scene IDs of satellite imagery used for land cover classification 546 

Year Month Scene IDs 

2001 February LT05_L2SP_202024_20010213_20200906_02_T1 

 August LT05_L2SP_202024_20010824_20200905_02_T1 

 December LT05_L2SP_201025_20011207_20200905_02_T1 

2020 February LC08_L2SP_201024_20200211_20200823_02_T1 

 August LC08_L2SP_202024_20200812_20200919_02_T1 

 547 

Table S2: Confusion matrices for the land cover classifications in 2001 (A) and 2020 (B). 548 

A Reference: agriculture/grassland Reference: shrubs Reference: trees 

Prediction: agriculture/grassland 911 28 4 

Prediction: shrubs 2 23 0 

Prediction: trees 0 2 308 

B Reference: agriculture/grassland Reference: shrubs Reference: trees 

Prediction: agriculture/grassland 661 7 1 

Prediction: shrubs 33 56 20 

Prediction: trees 24 28 582 

 549 



 550 

Figure S1: All validation data points classified as shrub in 2020. Most erroneously classified 551 

pixels (especially agriculture or grassland mistaken for shrubs) fell outside of the rewilded 552 

areas. 553 


