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A B S T R A C T 

Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects 
of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier 
SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination 

in the Dark Energy Surv e y (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and 

testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the 
Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), 
we produce a redshift-binned Hubble diagram marginalized o v er contamination and corrected for selection effects, and use it to 

constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian �M 

prior of 0.311 ± 0.010, we show 

that biases on w are < 0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 

10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using 

outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still 
modest (0.015–0.03). Finally, we measure biases due to contamination on w 0 and w a (assuming a flat universe), and find these 
to be < 0.009 in w 0 and < 0.108 in w a , 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample. 

Key words: surv e ys – supernovae: general – cosmology: observations. 
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 I N T RO D U C T I O N  

ype Ia supernovae (SNe Ia) are widely used in cosmology to directly
easure the accelerating expansion rate of the universe, and to

haracterize the properties of the ‘dark energy’ thought to cause it.
ollowing the original detection of the accelerating cosmic expansion
sing SNe Ia (Riess et al. 1998 ; Perlmutter et al. 1999 ), two decades
 E-mail: maria.vincenzi@duke.edu 
 NASA Einstein Fellow. 
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Pub
f time-domain surv e ys hav e disco v ered and followed up thousands
f cosmologically useful SNe Ia, from the local universe to redshifts
eyond z ∼ 1. As the statistical power of these samples has improved,
here has been a commensurate reduction in systematic uncertainties
hat has broadly tracked the increase in SN Ia numbers (Astier et al.
006 ; Kessler et al. 2009b ; Sullivan et al. 2011 ; Betoule et al. 2014 ;
est et al. 2014 ; Riess et al. 2018 ; Scolnic et al. 2018 ; Abbott et al.
019b ). Ho we ver, unlocking the full constraining power of current
nd future samples of SNe Ia requires a new level of controlling
ystematic uncertainties introduced by the use of photometric SN
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lassification. Modelling and assessing systematic biases introduced 
y SN classification is the main focus of this paper. 
Photometric SN classification methods are needed when candidate 

Ne detected by a surv e y lack a spectroscopic confirmation of their
ype. In these cases, most cosmological analyses to date have been 
estricted to SN events with spectroscopic redshift from the likely 
ost galaxy, and SN classification is based on the characteristics of
he observed light curve. Early approaches were frequently used for 
ndi vidual high-redshift SN e vents forming part of relatively small
amples (e.g. Perlmutter et al. 1999 ; Riess et al. 2007 ), albeit often
sing other contextual information such as host galaxy type. More 
eneral approaches include selecting candidate SNe Ia based on their 
ight-curve fit properties (Bazin et al. 2011 ) and classifying SNe 
ased on both template fitting (e.g. pSNID; Sako et al. 2011 , 2018
r Gonz ́alez-Gait ́an et al. 2014 ) and machine-learning approaches 
Lochner et al. 2016 ; M ̈oller et al. 2016 ; M ̈oller & de Boissi ̀ere 2020 ).

The outputs from SN photometric classifiers require a careful 
nterpretation, as instead of the simple binary classification asso- 
iated with spectroscopic classification (i.e. SN Ia or not a SN Ia),
hotometric classifiers return the probability of each event being a SN 

a, P Ia . A framework is needed to marginalize o v er the contamination
rom events that are not SNe Ia. The Bayesian Estimation Applied 
o Multiple Species (BEAMS) method (Kunz, Bassett & Hlozek 
007 ), and its extension ‘BEAMS with Bias Corrections’ (BBC; 
essler & Scolnic 2017 ), are frequently used in this context, the

atter also incorporating corrections due to selection effects based on 
igh-quality surv e y simulations. 
The development of photometric classification has been motivated 

y the recent and future large SN surv e ys like the Sloan Digital
k y Surv e y (SDSS) SN Surv e y (Sako et al. 2018 ), the P an-STARRS
edium Deep Surv e y (Jones et al. 2017 , 2018 ), the Dark Energy Sur-

 e y SN programme (Bernstein et al. 2012 ; Smith et al. 2020b ), and the
uture Le gac y Surv e y of Space and Time (LSST; Ivezi ́c et al. 2019 ).
hese SN imaging surv e ys moti v ated large spectroscopic follo w-
p programmes to measure host-galaxy redshifts for the majority 
f disco v ered SNe, and use them for cosmological measurements. 
he first measurement of the equation-of-state of dark energy, w, 
ith a photometric SN Ia sample was performed by Campbell et al.

 2013 ) using data from the SDSS SN Surv e y. The y used pSNID,
ogether with a selection of events based on their SN Ia light-curve fit
roperties, which together reduced contamination in the SN Ia sample 
o an estimated 3.9 per cent. Ho we ver, the systematic ef fects of this
ontamination on the final measurement of w was not estimated. 
lozek et al. ( 2012 ) first demonstrated the application of BEAMS
n the SDSS SN sample (similar to the sample used by Campbell
t al. 2013 ), but also lacked an assessment of systematic uncertainties
n the analysis. 

The cosmological analysis of the Pan-STARRS (PS1) photometric 
N sample (Jones et al. 2017 , 2018 ) was the first to include an
 v aluation of the cosmological biases and systematic uncertainties 
ntroduced by contamination in the photometrically classified SN 

a sample. Using several simple classification approaches that do 
ot rely on machine learning, including pSNID, the biases on 
easurements of w due to contamination were estimated to be 

mall, and the associated systematic uncertainty was estimated to 
e σw,syst = 0.012. This uncertainty is significantly smaller than the 
otal systematic uncertainty on w of 0.043, illustrating that, under 
he assumptions of this analysis, contamination resulted in a small 
ontribution to the total uncertainty budget. 

Recently developed photometric classifiers (Lochner et al. 2016 ; 
 ̈oller & de Boissi ̀ere 2020 ) have shown a good performance on sim-

lated samples of SNe developed for various classification challenges 
Kessler et al. 2010b , 2019a ; Hlo ̌zek et al. 2020 ). Ho we ver, a critical
ssue remains: the training and validation of these classifiers are 
ften performed on the same sample of simulated SN events. These
imulated samples are generated either applying the same selection 
unction of the test set, or assuming the training sample is biased
o wards brighter e vents due to spectroscopic selection ef fects. These
imulations may not reflect the true diversity of the transient universe, 
nd may require tuning in their input astrophysics to reproduce the
bserved characteristics of the selected SN sample (Jones et al. 2017 ,
018 ). This procedure can potentially lead to an o v er-estimation
f the classifier performance and thus underestimate systematic 
ncertainties in measured cosmological parameters. Ultimately, the 
evelopment of accurate SN survey simulations for the training and 
alidation of these photometric classifiers is at least as important as
he development of the classifiers themselves. 

This paper investigates biases in the measurement of cosmolog- 
cal parameters that are introduced in the use of photometric SN
lassification algorithms within the BBC framework. Our focus is 
n the Dark Energy Surv e y 1 (DES) SN programme (DES-SN; Smith
t al. 2020b ) data set. DES-SN is a state-of-the-art sample for SN
a cosmology analysis, with approximately 2000 likely SNe Ia in 
he final ‘5-yr’ sample: ∼20 per cent of the SNe have follow-up
pectroscopy of the SN itself (e.g. Smith et al. 2020b ), and most of
he remaining events have a host galaxy spectroscopic redshift (see 
idman et al. 2020 ). 
Vincenzi et al. ( 2021 , hereafter V21 ) previously presented large

imulations of DES-SN that generate realistic samples of transients 
hat accurately describe DES-SN data. The simulation includes the 
normal’ SNe Ia, impro v ed core-collapse SN spectral templates 
Vincenzi et al. 2019 , hereafter V19 ) and peculiar SNe Ia (SN1991bg-
ike SNe and SN2002cx-like SNe; Kessler et al. 2019a ), as well as
he DES surv e y characteristics, to make accurate predictions for the
xpected populations of SNe in DES-SN. These simulations demon- 
trated an excellent agreement between data and simulated SN prop- 
rties across many parameter distributions, including Hubble residu- 
ls and Hubble residual distribution tails. Analysing these simulated 
amples in detail, and fitting all the detected events with the SALT2
N Ia light-curve model (Guy et al. 2007 ), V21 predicted 6–8 per cent
f the sample to be comprised of events that are not SNe Ia, after an
vent selection based on the light-curve properties and fitted SALT2 
arameters. No photometric classification algorithm was used. 
Here we generate simulations as in V21 to assess the performance

f the SuperNNova (SNN) photometric SN classifier (M ̈oller & de
oissi ̀ere 2020 ) when applied to DES-SN data. SNN is a deep

earning classifier that identifies SNe Ia with high accuracy (see 
nalyses presented by M ̈oller & de Boissi ̀ere 2020 , and M ̈oller
t al. 2022 ). We exploit the BEAMS implementation in the BBC
ramework to assess the impact of contamination on the cosmological 
nalysis of the DES-SN photometric sample. The strength of our 
nalysis lies in the fact that we use realistic simulations of SNe Ia
nd non-Ia SN contamination that have been shown to reproduce the
eneral photometric properties of the DES-SN data to high accuracy 
 V21 ). We also test the effect of a range of astrophysically plau-
ible core-collapse SN model variations on the final cosmological 
easurements. 
The paper is outlined as follows. In Section 2 , we review the

ES-SN data set and the simulation infrastructure used in our 
nalysis. Section 3 details our cosmological analysis framework, in- 
luding distance estimation, BEAMS, and bias corrections. Section 4 
MNRAS 518, 1106–1127 (2023) 

https://www.darkenergysurvey.org/


1108 M. Vincenzi et al. 

M

i  

s  

c  

t

2

D  

o  

d  

s  

r  

e  

T  

m  

fi  

p  

o  

t

2

T  

c  

p  

V  

g  

a  

w  

l  

a
 

c  

p  

(  

c  

h  

p  

2  

D  

s  

t  

w

2

A  

c  

(  

s  

H  

C  

(  

(  

c  

n

2

O  

p  

t  

c  

5  

a  

(  

a  

2
 

e  

h  

H  

s  

t

 

p  

a
 

l
 

c  

l  

e
 

h
 

p  

f  

p

T  

T  

o  

I  

S  

S  

a
 

S  

p  

r  

I  

a  

t  

p
 

l  

s  

e  

C
 

I  

a  

c  

a  

w  

P  

S  

T  

p  

m

2 https://github.com/Samreay/Pippin 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/1/1106/6601453 by U
niversity C

ollege London user on 30 January 2023
ntroduces the SNN classifier and assesses its performance on our
imulated data sets, and in Section 5 we present an analysis of the
osmological biases introduced by the photometric classification of
he DES-SN sample. We conclude in Section 6 . 

 DES-SN  DATA  A N D  SIMULATIONS  

ES is an optical imaging surv e y designed to constrain the properties
f dark energy and other cosmological parameters by combining four
ifferent astrophysical probes: weak gravitational lensing, large scale
tructure, galaxy clusters, and SNe Ia (Abbott et al. 2019a ). DES
an for 6 yr and used the Dark Energy Camera (DECam; Flaugher
t al. 2015 ), mounted on the Blanco 4-m telescope at the Cerro
ololo Inter-American Observatory. For time-domain science, DES
onitored 10 3-deg 2 fields with an average cadence of 7 d in the griz
lters. Eight of the 10 fields were surv e yed to a depth of ∼23.5 mag
er visit (‘shallow fields’), and the remaining two to a deeper limit
f m ∼ 24.5 mag per visit (‘deep fields’), thus extending to z ∼ 1.2
he redshift limit to detect SNe Ia. 

.1 The DES photometric SN sample 

he primary goal of the DES-SN programme is to measure the light
urves of a sample of SNe Ia for use in cosmological analyses. In this
aper, we use the same DES photometric SN sample as described in
21 . This sample includes ∼3600 events that have an identified host
alaxy and accurately measured host galaxy spectroscopic redshift,
nd that pass light-curve quality selection: observations in two filters
ith at least one epoch with a signal-to-noise ratio (SNR) > 5, at

east one observation before the estimated time of peak brightness,
nd one observation after 10 d (rest-frame) after peak brightness. 

Following V21 , SN host information is derived from the deep
oadded images of (Wiseman et al. 2020 ), and SN light-curve
hotometry measured using the DES Difference Imaging pipeline
 DIFFIMG ; Kessler et al. 2015 ). The quality of the DIFFIMG light
urves is adequate for the analysis presented in this paper, but we
ighlight that the final DES SN light-curves with a more accurate and
recise scene modelling photometry (SMP) approach (Astier et al.
013 ; Brout et al. 2019a ) is in the process of being applied to all
ES-SN data. We also note that approximately 200 new host galaxy

pectroscopic redshifts have been processed and incorporated into
he sample while this analysis was de veloped. Ho we ver, in this work
e use the V21 sample to maintain consistency with that analysis. 

.1.1 Low- z SN sample 

s this paper considers the cosmological impact of our modelling
hoices and photometric classification methods, we include a ‘low- z’
i.e. z < 0.1) external SN Ia sample to combine with our DES-SN
ample. We include five publicly av ailable lo w- z samples from the
arvard-Smithsonian Center for Astrophysics (CfA3S, CfA3K, and
fA4; Hicken et al. 2009 , 2012 ), the Carne gie Superno va Project

CSP-1; Contreras et al. 2010 ), and the Foundation Supernova sample
DR1; F ole y et al. 2017 ). These samples include spectroscopically
onfirmed SNe Ia only, therefore they are not affected by contami-
ation. 

.2 Simulations 

ur SN simulations use SN time-series spectrophotometric tem-
lates, rates, luminosity functions, and empirical relationships be-
ween SNe and their host galaxies, as well as the DES surv e y
NRAS 518, 1106–1127 (2023) 
haracteristics, to simulate the transient populations detected in the
 yr of DES-SN. The simulations are presented in detail in V21
nd are generated using the supernova analysis software package
 SN AN A ; Kessler et al. 2009a ) as described in V21 . The simulation
nd analysis code were orchestrated by the PIPPIN (Hinton & Brout
020 ) 2 pipeline. 
V21 presented nine DES-SN simulations testing different mod-

lling choices and assumptions. The analysis presented in this paper
as been tested for the full set of simulations presented in V21 .
o we ver, for simplicity we focus on a reduced sample of five

imulations, that encapsulate a wide range of scenarios and provides
he most informative results. These simulations are: 

(i) ‘Baseline’ a simulation built using the core-collapse SN tem-
lates of V19 , and luminosity functions presented by Li et al. ( 2011 )
nd revised as described by V19 ; 

(ii) ‘LFs + Offset’ same as Baseline, but with the core-collapse SN
uminosity functions brightened by 0.5 mag; 

(iii) ‘Dust(H98)’ uses the host-galaxy dust extinction-corrected
ore-collapse SN templates of V19 , using the revised Li et al. ( 2011 )
uminosity functions and a dust distribution presented by Hatano
t al. ( 1998 ); 

(iv) ‘J17’ uses the core-collapse SN templates of Jones et al. ( 2017 ,
ereafter J17 ) together with their adjusted luminosity; 
(v) ‘DES-CC’ simulations: uses a new set of core-collapse tem-

lates of Hounsel et al. (in preparation; hereafter, DES-CC), built
rom a magnitude-limited sample ( i < 21.5) of spectroscopically and
hotometrically identified non type Ia SNe from DES-SN. 

he main characteristics of each simulation are summarized in
 able 1 . W e also consider two simulation subsets, one that includes
nly SNe Ia and one that includes only SNe Ia and peculiar SNe
a (‘Only pec Ia’). These subsets exclude exclude core-collapse
Ne, and are used to disentangle the effects of core-collapse
N contamination from other sources of systematic biases in the
nalysis. 

In all DES-SN simulations, host galaxies are associated with
Ne using published SN rates as a function of global galaxy
roperties (stellar mass and star formation rate). We use separate
ates for SNe Ia, peculiar SNe Ia, stripped envelope SNe (type
b, type Ic, and type IIb SNe) and hydrogen-rich SNe (type II
nd type IIn SNe; see section 4.5 in V21 ). We also include
he dependence of the SN Ia light-curve shape on host galaxy
roperties. 
We combine the DES-SN simulations with simulations of the

ow- z SN Ia samples introduced in Section 2.1.1 . These samples are
imulated follo wing K essler et al. ( 2019b , section 7.2) and Jones
t al. ( 2019 , section 3.1) and simulate mocks of the CfA (CfA3S,
fA3K, CfA4), CSP-1, and the Foundation Supernova samples. 
For both the DES-SN and low- z simulations, we assume the SN

a intrinsic brightness in rest-frame B -band to be M B = −19.365
nd we set the nuisance parameters applied for stretch and colour
orrections, α and β, equal to α = 0.167, β = 3.1. Moreo v er, we use
 flat ‘ � cold dark matter’ ( � CDM) cosmological model as input,
ith a Hubble constant H 0 = 70 km s −1 Mpc −1 and �M 

= 0.311 (e.g.
lanck Collaboration 2020 ). We generate 50 realizations of the DES-
N surv e y and pair these with 50 realizations of the low- z sample.
hroughout, the statistical properties of the simulated samples are
resented as the mean of the 50 realizations, and uncertainties are
easured as the standard deviation. 

https://github.com/Samreay/Pippin
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Table 1. Summary of core-collapse SN assumptions in the DES-SN simulations. 

Label Template Luminosity Dust 
Avg. number of SNe 

after Percentage of 
library functions model light-curve selection † Ia, PecIa, II, Ibc 

Baseline V19 Revised Li et al. ( 2011 ), Gaussian parameterization N/A 

∗ 1650 93.4, 1.4, 4.5, 0.8 
LFs + Offset V19 Revised Li et al. ( 2011 ) + 0.5 mag brightening offset N/A 1722 90.5, 1.4, 6.8, 1.3 
Dust(H98) dereddened V19 Revised Li et al. ( 2011 ), Gaussian parameterization H98 ‡ 1687 93.2, 1.4, 4.2, 1.1 
J17 J17 Adjusted LFs from Li et al. ( 2011 ) N/A 1667 94.3, 1.4, 3.0, 1.4 
DES-CC DES-CC DES-CC N/A 1687 91.6, 1.4, 0.5, 6.5 

∗N/A: Not applicable: core-collapse SN templates are not corrected for host galaxy extinction, and the simulation does not include extinction. 
† Selection criteria from Section 2.3 , without classification. Numbers are calculated as the mean o v er 50 realizations of the DES-SN surv e y. Each simulation 
include SNe Ia, peculiar SNe Ia and core-collapse SNe. Normal SNe Ia alone account for 1522 events on average. 
‡ Hatano, Branch & Deaton ( 1998 ). 
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.3 SN light-cur v e fitting and selection 

e fit all simulated and observed SN light-curves with the SALT2 
N Ia light-curve model (Guy et al. 2007 , 2010 ) using the trained
odel parameters from Betoule et al. ( 2014 ) and a χ2 -minimization

rogram in SN AN A . This fit determines several rest-frame parameters
nder the assumption that the event is a SN Ia: the time of SN peak
rightness t 0 , a stretch-like (Perlmutter et al. 1997 ) parameter x 1 , a
olour parameter c , and the light-curve normalization parameter x 0 , 
s well as their uncertainties (i.e. σt 0 etc.). We select SN events in both
imulations and data that are well described by this SALT2 model. 
his selection is based on the fit parameters, their uncertainties, 
nd the goodness of the light-curve fit (‘FitProb’) 3 . This is the same
election as used in V21 and in the Joint Light-Curve Analysis sample
JLA; Betoule et al. 2014 ). In detail, the selection requirements are: 

(i) | x 1 | < 3 and | c | < 0.3, 
(ii) σx 1 < 1 and σt 0 < 2, 
(iii) FitProb > 0.001. 

he outcome of applying this selection to our data and simulations
an be found in Table 2 . The result is a data sample of 1676 SNe
rom DES-SN and 312 low- z SNe (155 SNe from the CfA and CSP
amples and 157 from the Foundation sample). Averaging our 50 
aseline simulations, we have 1650 SNe from DES-SN and 400 at 

ow- z (161 SNe Ia from the CfA and CSP samples, and 238 SNe Ia
rom Foundation). 

We also explore a tighter selection on the SN colour c , removing
edder SNe using a selection of −0.3 < c < 0.15. This further reduces
ontamination from core-collapse SNe, with a minimal and easy-to- 
odel loss of SNe Ia (see Table 2 ). This asymmetric colour selection

s also moti v ated by the fact that se v eral analyses hav e shown that
edder SNe Ia exhibit larger scatter on the Hubble diagram (Kelsey 
t al. 2020 ; Brout & Scolnic 2021 ). 

 C O S M O L O G I C A L  ANALYSIS  F R A M E WO R K  

ext, we briefly re vie w the frame work used to measure the SN Ia
edshift–distance relation (‘Hubble diagram’) and estimate cosmo- 
ogical parameters from our SN data and simulations. We begin by 
escribing the method used to estimate distances from the SN Ia 
ight curve parameters (Section 3.1 ). We then present the Hubble 
iagram fitting method called ‘BEAMS with Bias Corrections’ 
BBC; Kessler & Scolnic 2017 ). In the BBC method, we implement
 FitProb ∈ [0,1] and is the computed probability from χ2 and number of 
egrees of freedom, and assuming Gaussian-distributed errors. It quantifies 
ow well each light curve is described by the SALT2 model. 

N

4

m

i) the method presented by Marriner et al. ( 2011 ) to determine SN
istances and nuisance parameters (Section 3.1 ), (ii) the BEAMS 

ormalism (Kunz, Bassett & Hlozek 2007 ) to marginalize o v er the
ontamination from non-Ia SNe (Section 3.2 ), and (iii) simulated 
ias corrections to account for surv e y selection effects (Section 3.4 ).
he main output of the BBC framework is a redshift-binned SN
istance–redshift relation corrected for selection effects and core- 
ollapse SN contamination, from which the cosmological parameters 
an be estimated (Section 3.6 ). BBC also produces fitted nuisance
arameters (Section 2.3 ). The cosmological analyses framework 
iscussed in this section is illustrated in Fig. 1 . 

.1 Distance estimation 

he SN Ia distance modulus, μobs , is (e.g. Tripp 1998 ; Astier et al.
006 ) 

obs = m B + αx 1 − βc + M B + 	 μbias , (1) 

here m B = −2.5log 10 ( x 0 ) and M B is the absolute magnitude of a
N Ia with x 1 = 0 and c = 0. The global nuisance parameters α and β
re determined following the approach presented by Marriner et al. 
 2011 ), i.e. fixing the cosmological parameters to some reference
alues (e.g. �M 

= 0.3, w = −1) and fitting for distance modulus
f fsets, 	μb , e v aluated at dif ferent (log-spaced) redshift bins. A
orrection, 	μbias , is applied to each SN to correct for selection
ffects from the surv e y and analysis (see Section 3.4 ). 

We neglect the dependence between μobs and host galaxy prop- 
rties in our simulations and fitting (e.g. Sulli v an et al. 2010 ).
hese correlations can shift the dark energy equation-of-state w by 
pproximately 1 per cent (Smith et al. 2020a ) but ignoring them has
egligible impact on studies of systematics related to contamination. 

.2 The BEAMS likelihood 

EAMS is a Bayesian framework for using photometric classifica- 
ions of SNe Ia, and their probabilities, in cosmology. The BEAMS
ikelihood requires for each SN an estimate of its probability of being
 SN Ia, P Ia . This set of probabilities are generally determined using
hotometric classifiers. 
The BEAMS formalism is implemented in BBC, and used to fit

or a binned Hubble diagram. We define the binned Hubble diagram
s a set of binned distance modulii, μb 

Ia , e v aluated for each of the
 bins redshift bins. 4 The binned distance modulii μb 

Ia are estimated 
MNRAS 518, 1106–1127 (2023) 

 We note that this binned Hubble diagram μb 
Ia is distinct from the distance 

odulus for individual events in equation ( 1 ). 
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Table 2. Number of observed and simulated SNe following the application of various selection criteria. 

Selection criteria Data Simulations (avg o v er 50 realizations c ) 
DES-SN Low- z Total DES-SN Low- z Total 

SALT2 selection 1676 312 1995 1650 400 2050 
SALT2 selection + valid bias correction a 1603 288 1891 1588 380 1969 
SALT2 selection + Chauvenet’s criterion b 1561 309 1870 1572 400 1972 
SALT2 + valid bias corr + Chauvenet 1533 286 1819 1545 380 1926 
SALT2 + valid bias corr + Chauvenet + SALT2 c < 0.15 1353 273 1626 1336 361 1697 

a See Section 3.4 for the definition of valid bias corrections. 
b See Section 3.5 for a discussion about Chauvenet’s criterion and outlier rejection methods. 
c Number of SNe averaged over 50 realizations ( N SNe ). The typical r.m.s. measured over the 50 realizations is 

√ 

N SNe . 

Figure 1. Flow chart of the cosmological analysis framework BBC (Kessler & Scolnic 2017 ), exploited in this work. BBC is specifically designed to estimate 
cosmological parameters from samples of photometrically identified SNe Ia. Photometric classifiers are introduced in Section 4 , while the different BBC 

configurations tested in this work are listed in Table 9 and discussed in Section 5 . 
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y maximizing the BEAMS likelihood. This is defined as the sum of
wo terms, one that models the SN Ia population, L Ia , and the other
hat models a population of contaminants, 

N SNe ∑ 

i= 1 

(
L 

i 
Ia + L 

i 
non-Ia 

)
. (2) 

he two terms of the likelihood, L 

i 
Ia and L 

i 
non-Ia , are defined as 

L 

i 
Ia = 

˜ P 

i 
Ia × exp 

(
− ( μobs ,i + 	 μb − μref ( z i )) 

2 

σ 2 
μ,i 

)

 

i 
non-Ia = (1 − ˜ P 

i 
Ia ) × D non-Ia ( z i , μobs ,i , μref ,i ) , (3) 

here μref ( z i ) is the distance modulus of the i -th SN as predicted
ssuming a fixed reference cosmology ( �M 

= 0.3, w = −1), and 	μb 

re the offsets quantifying by how much observations deviate from
NRAS 518, 1106–1127 (2023) 
he reference cosmology in each redshift bin. By construction, the
inned Hubble diagram, μb 

Ia is equal to μref ( 〈 z〉 b ) − 	 μb . The distance
odulus uncertainties σμ, i include the uncertainties propagated from

he SALT2 light-curve fit ( σm B 
, σx 1 , σ c and relativ e co variances),

he intrinsic SN Ia scatter ( σ Ia,int ), and peculiar velocity corrections
ncertainties. The SN Ia intrinsic scatter term is determined as
iscussed by Kessler & Scolnic ( 2017 , section 5.5). 
In equation ( 3 ), the terms ˜ P 

i 
Ia and (1- ˜ P 

i 
Ia ) are weighting factors

pplied to the two likelihoods, and represent the ‘scaled’ probabilities
f the i -th SN being a SN Ia and a core-collapse SN or peculiar SN
a, respectively. The scaled probabilities are defined as 

˜ P 

i 
Ia = 

P 

i 
Ia 

P 

i 
tot 

and ˜ P 

i 
non-Ia = 

S non-Ia 

(
1 − P 

i 
Ia 

)
P 

i 
tot 

 

i 
tot = 

(
P 

i 
Ia + S non-Ia 

(
1 − P 

i 
Ia 

))
, (4) 
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Figure 2. Modelling of core-collapse SN Hubble residuals versus redshift us- 
ing the different approaches discussed in Section 3.3 . Panel (a): the modelling 
of Hubble residuals for the H12 approach. The black curve and grey shaded 
region show the best-fitting polynomial 
( z) and intrinsic scatter, σ non-Ia . 
For comparison, we also show the Hubble residual distribution for a sample 
of simulated SNe Ia (dashed contours). Panels (b): as Panel (a), but when 
applying the approach by Kessler & Scolnic ( 2017 ) and using simulations. 
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here P 

i 
Ia is the probability of the i -th SN being a SN Ia as predicted

y a classifier, and S non-Ia is a scaling factor and an additional free
arameter in the minimization of the likelihood. This additional 
actor enables correcting for inaccurate probabilities 5 and it is equal 
o one for perfectly calibrated probabilities (see Kunz, Bassett & 

lozek 2007 ; Jones et al. 2018 , for a discussion on the necessity of
caling probabilities). As a result, the free parameters in the BEAMS
ikelihood minimization are the N bins offset terms 	 

b 
μ, the nuisance 

arameters α and β, the SN Ia intrinsic scatter term σ Ia,int , and the
caling factor S non-Ia . In this analysis, we use 20 logarithmically 
qually spaced redshift bins. 

Modelling the contamination likelihood term D non-Ia (equation 3 ) 
s more difficult because core-collapse SNe are not standardized by 
he SALT2 frame work. Qualitati v ely, we e xpect the distribution of
on-Ia SN distance moduli to have a larger scatter and to be shifted
rom μref by a positive offset because non-Ia SNe are generally fainter 
han SNe Ia. 

As BEAMS is designed to handle both SNe Ia and non SNe Ia, we
o not apply a P Ia cut prior to the BBC fit. Ho we ver, in Appendix A ,
e discuss the effects (and disadvantages) of combining BEAMS 

ith (for example) a P Ia > 0.5 selection and moti v ate the absence of
his cut. 

.3 Modelling the contamination likelihood 

e test two different approaches to describe D non-Ia analytically. The 
rst follows Hlozek et al. ( 2012 ), who tested an approximation in
hich core-collapse SN distance moduli and intrinsic scatter are 
arametrized similarly to SNe Ia 

D non-Ia = exp 

(
− ( μobs ,i − μref, non-Ia ( z i )) 

2 

σ 2 
μ,i 

)
(5) 

here 

ref, non-Ia = μref + 
( z ) and σIa, int → σnon-Ia, int ( z ) , (6) 

nd 
( z) describes the brightness offset of the population of
ontaminants, and σ non-Ia,int is the redshift dependent intrinsic scatter 
f contaminants that is included in σμ, i in equation ( 5 ). Both terms
re modelled as second order polynomials, the coefficients of which 
re fitted during the BBC fit. This parametrization introduces six 
dditional free parameters in the likelihood in equation ( 2 ). Fig. 2 (a)
hows an example of the best fit 
( z) (and relative σ non-Ia,int ( z))
easured from the Baseline simulations (Section 2.2 ). 
Kessler & Scolnic ( 2017 ) introduced an alternative approach, 

nd determine the term μref,non-Ia in equation ( 6 ) from simulation of
ore-collapse SNe. The mean and dispersion of the core-collapse 
N distance moduli are measured from the simulation at different 
edshift bins. In this approach, there are no extra free parameters in
he BBC fit. 

Following this approach, we use our Baseline simulation to derive 
he core-collapse distribution on the Hubble diagram and we show 

he simulated μref,non-Ia versus redshift in Fig. 2 b. 

.4 Bias corrections 

ll SN surv e ys are affected by selection effects introduced by their
ux-limited nature. These effects introduce systematic biases in 
osmological analyses of SN Ia samples, and thus SN Ia distances are
orrected for such biases (equation 1 ). The corrections are generally 
 Photometric classifiers often do not provide calibrated probabilities. 

o  

I  

s  
stimated using large SN Ia Monte Carlo simulations that accurately 
odel the surv e y detection efficienc y and other potential selection

ffects (Hamuy & Pinto 1999 ; Kessler et al. 2009b ; Perrett et al. 2010 ;
etoule et al. 2014 ). Early use of simulations modelled distance bias
orrections as a function of redshift only (Kessler et al. 2009b ; Jones
t al. 2018 ; Betoule et al. 2014 ), but Scolnic & Kessler ( 2016 ) showed
hat this approach is not adequate because distance biases also depend 
n colour and stretch. 
We estimate bias corrections, 	μbias , using the BBC framework 

nd the simulations following Section 2.2 , but including only normal
Ne Ia. BBC determines an average 	μbias in a five dimensional 
rid { z, x 1 , c , α, β} . F or each ev ent, the bias is interpolated between
eighboring bins in the subspace of { z, x 1 , c } , and also interpolated in
 2 × 2 grid of α and β ( α in [0.12, 0.20] and β in [2.3, 3.6]). The sim-
lations are used to bias correct both the real DES-SN sample and the
imulated DES-SN samples. We note that bias corrections are applied 
rior to the BEAMS likelihood minimization presented in Section 3.2 
nd the y hav e been shown to hav e a weak dependence o v er α and β.

The simulations used to model bias corrections include 770 000 
ES-SN events and 145 000 low- z SN events (this corresponds to
00 realizations of the DES-SN sample and 500 realizations of the
ow- z sample). The underlying assumption of BBC is that the bias
orrection simulation accurately describes the intrinsic properties of 
he SNe Ia and surv e y selection effects. Incomplete modelling of
ne of these aspects may result in inaccurate bias corrections (see
mith et al. 2020a ; Popovic et al. 2021 , for e xample). The de gree

o which core-collapse SN contamination can affect the modelling 
f the SN Ia intrinsic population (and therefore bias corrections and
osmology) will be explored in future analyses. 

In the BBC approach, some cells in the five-dimensional parameter 
pace have too few events (or no events) to reliably estimate bias
orrections. SNe in these cells cannot be bias corrected and are
ejected from the sample and the cosmological fit. This implicit 
ut further reduces the sample size, and affects SNe Ia and core-
ollapse SNe differently. The requirement of a valid bias correction 
s therefore an implicit photometric classifier for our sample. In 
able 2 , we report the numbers of SNe for which a valid bias
orrection cannot be estimated. In the low- z sample, 24 observed
Ne Ia do not have valid bias corrections (approximately 8 per cent
f the low redshift sample), and the simulated prediction is 18 SNe
a on average, in good agreement with the data. In the DES-SN
amples, there are 73 SNe without valid bias corrections in the
MNRAS 518, 1106–1127 (2023) 
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Figure 3. Simulated Hubble diagram (upper panel) and Hubble residuals 
(lower panel) for a single realization of the DES-SN sample (Baseline 
simulation, grey symbols) and the low- z sample (teal symbols). We apply 
the SALT2 selection criteria described in Section 2.3 , but no other selection. 
SNe without a valid bias correction (Section 3.4 ) and/or failing Chauvenet’s 
criterion (Section 3.5 ) are indicated with different colours. 
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bserved sample ( < 4 per cent) and the simulated prediction is 61
Ne on average. In our simulations, we find that almost 65 per cent
f the SNe without valid bias corrections are core-collapse SNe or
eculiar SNe Ia, illustrating the implicit classifier in BBC. We discuss
his further in Section 4.4 . 

.5 Outlier rejection: Chauvenet’s criterion 

 ollowing Conle y et al. ( 2011 ) man y cosmological analyses use
hauvenet’s criterion (Taylor 1997 ) to reject outliers on the Hubble
iagram (F ole y et al. 2017 ; Scolnic et al. 2018 ; Brout et al. 2019b ),
.e. outliers in 	μ. Given the number of SNe in the Hubble diagram
nd assuming their Hubble residuals are normally distributed around
ero, Chauvenet’s criterion can be used to identify the probability
hreshold (or σ cut) abo v e which the expected number of data points
s below unity (i.e. less the one event is expected to have such a large
eviation from zero). 
This approach has been used for samples of spectroscopically

onfirmed SNe Ia. In analyses of pure SNe Ia samples, Chauvenet’s
riterion selects normal SNe Ia and rejects atypical events or those
hat have poorly modelled peculiar velocities (for low redshift SNe
specially). 

In a photometric SN sample like the DES-SN sample, applying
hauvenet’s criterion primarily rejects core-collapse SN contam-

nants that, in this case, are the main source of outliers in the
ubble diagram. Since we mainly focus on exploiting photometric

lassifiers to describe contamination (see Section 4 ), rather than
utlier rejection or other sigma-clipping methods, we do not ap-
ly Chauvenet’s criterion by default. Ho we v er, we e xamine the
ifference in cosmological parameters between using photometric
lassifiers and applying Chauvenet’s criteria with P Ia = 1 for all
vents (see Fig. 1 ). This second approach is ef fecti vely the same
pproach applied to analyses of spectroscopic SN sample, and it
nables us to quantify cosmological biases from naively analysing
 contaminated SN sample as a pure sample of spectroscopically
onfirmed SNe Ia. 

For simplicity, we apply Chauvenet’s criterion before the BBC fit,
sing approximate Hubble residuals computed from initial values
f the nuisance parameters ( α = 0.14, β = 3.1) and our reference
osmology. 

For our sample of 1995 SNe following SALT2 selection (Sec-
ion 2.3 ), Chauvenet’s criterion corresponds to a 4 σ cut. This cut
ay affect the low- z and DES-SN samples in different ways. For

he low- z sample, Chauvenet’s criterion selects normal SNe Ia and
ejects atypical events or those that have poorly modelled peculiar
elocities. In the DES-SN sample, the criterion primarily affects core-
ollapse SN contaminants. To a v oid conflating the different effects
f Chauvenet’s criterion, we always apply Chauvenet’s criterion to
he lo w- z sample, ef fecti vely freezing these samples across our tests.

Applying Chauvenet’s criterion to our observed samples removes
o SNe Ia from the Foundation sample, 6 three SNe Ia from the
fA + CSP samples, and 122 SNe from the DES-SN sample (ap-
roximately 7 per cent of the sample). From our simulated low- z
amples, we predict no loss of low- z SNe after applying the criterion
ecause our low- z simulation consists of normal SNe Ia without
ontamination. For the DES-SN sample we predict a reduction from
n average of 1650 SNe to 1572 SNe (a loss of 78 SNe, approximately
NRAS 518, 1106–1127 (2023) 

 Chauvenet’s criterion has already been applied to the Foundation DR1 
ample and remo v es nine SNe Ia (5 per cent of the sample). See table 7 
y F ole y et al. ( 2017 ). 

c  

C  

p  

t  

P  

C  
 per cent of the sample) using the ‘Baseline’ simulation, in slight
ension with the data. Table 2 summarizes these numbers. 

In Fig. 3 , we show an example of how Chauvenet’s criterion and
BC bias corrections affect a simulated sample of SNe. The figure
resents one realization of the DES and low-$z$ simulations and
ighlights SNe that do not pass Chauvenet’s criterion and that do not
ave a valid BBC bias correction. 

.6 Cosmological parameter estimation 

he output of the BBC fit is a redshift-binned Hubble diagram
orrected for selection effects and contamination, and the associated
iagonal covariance matrix, C stat , that includes statistical uncertain-
ies only. As a result of the binning, the dimension of the covariance

atrix is reduced from N SNe to N bins . 
We note that binning the Hubble diagram may inflate system-

tic uncertainties that are not primarily redshift dependent (Brout,
inton & Scolnic 2020 ). We will illustrate this uncertainty inflation

or some systematics associated with SN photometric classification
Section 4.3 ), which may be self-calibrated in an unbinned approach.

Finally, we estimate cosmological parameters. We test two cos-
ological models: a flat wCDM model and a flat w 0 w a CDM model.

n both models, the dark energy equation-of-state is parametrized
s ρ ∝ a −3(1 + w) , where ρ is the dark energy density and a is
he scale factor and it is a = (1 + z) −1 ; ho we ver, while a wCDM
odel assumes constant w, a w 0 w a CDM model assumes w = w 0 

 w a (1 − a ). Unless otherwise stated, we measure cosmological
arameters assuming a prior on �M 

of 0.311 ± 0.010, following the
osmic microwave background measurements published by Planck
ollaboration ( 2020 ). In future cosmological analyses of the DES
hotometric SN sample, SN constraints will be combined with
he full cosmic microwave background (CMB) likelihood from
lanck Collaboration ( 2020 ). In Section 5.1.3 , we will show that
MB constraints constitute a more stringent prior compared to a

art/stac1404_f3.eps
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aussian �M 

prior, and thus contribute to reduce both w-biases due 
o contamination and statistical uncertainty on w. 

When testing a flat wCDM model, we measure cosmological 
arameters using a simple χ2 -minimization program that has evolved 
rom the analysis of Conley et al. ( 2011 ). This program e v aluates the

2 between μb 
Ia produced by BBC and μref o v er a grid of �M 

, w 

nd M B values (assuming a flat universe) and estimate �M 

and w 

arginalized o v er M B (see Goliath et al. 2001 for a description of the
2 definition and marginalization). This program does not provide 

he full posterior distribution of the cosmological parameters we are 
nterested to constrain. Ho we ver, it is faster than most cosmological
tting programs and it is adequate for measuring biases on w. 
To measure cosmological contours and to test a flat w 0 w a CDM
odel, we use the Cosmological Monte Carlo software COSMOMC 

Lewis & Bridle 2002 ). For the DES-SN data, absolute estimates of
he cosmological parameters are blinded and only relative differences 
etween cosmological fits are examined. 

 PHOTOMETRIC  CLASSIFICATION  

e use the SuperNNova (SNN; M ̈oller & de Boissi ̀ere 2020 )
ramework to perform photometric classification of our observed 
nd simulated SN data sets, and measure for each SN event its
robability of being a SN Ia, P Ia . We choose SNN as the code is
ublicly available, and SNN has demonstrated good classification 
erformance in the literature. For comparison with SNN, we also use 
wo simple algorithms to assign P Ia : 

(i) Perfect : an ideal classifier, that assigns P Ia = 1 to SNe Ia
nd P Ia = 0 to peculiar SNe Ia or core-collapse SNe. This approach
an only be used in simulations, where the true types are known; 

(ii) AllSNIa : a classifier that assigns P Ia = 1 to every SN. 

.1 SuperNNo v a 

NN is an open-source 7 machine learning algorithm that implements 
ecurrent Neural Networks for photometric classification of SNe. It 

s trained to classify different types of transients using photometric 
ata only (i.e. fluxes and flux uncertainties in different filters) and, 
ptionally, redshift information. It does not rely on feature extraction 
r light-curve fitting. 
Several metrics can be used to assess the performance of SNN. 

n the binary classification method, these are based on the number 
f true positives (TPs; SNe Ia correctly classified as such), true 
e gativ es (TNs; core-collapse SNe correctly classified as such), 
alse positives (FPs; core-collapse SNe incorrectly identified as SNe 
a), and false ne gativ es (FNs; SNe Ia identified as core-collapse).
ollowing M ̈oller & de Boissi ̀ere ( 2020 ), the contamination (by core-
ollapse SNe, or peculiar SNe Ia) of the classified photometric SN 

a sample and the classification efficiency are defined as 

ontamination = 

FP 

FP + TP 

(7) 

nd 

fficiency = 

TP 

TP + FN 

. (8) 

e implement SNN using the same hyper-parameters as M ̈oller & 

e Boissi ̀ere ( 2020 ), and include spectroscopic redshift information. 
 https:// github.com/supernnova/ SuperNNova 

a

8

For our analysis, we normalize the input fluxes using the ‘cosmo’
ethod (M ̈oller et al. 2022 ). In this method, each SN multiband

ight curve is normalized independently and the normalization factor 
s the SN maximum flux (in any filter). This method makes SNN
gnostic to the relative differences in apparent brightness between 
Ne, while preserving colour and signal-to-noise information (flux 
ncertainties are normalized using the same factor as for fluxes). 
ith this normalization, rescaled fluxes close to zero correspond to 

arly/late data points and rescaled fluxes close to one correspond to
ata points around peak brightness. 
We also test an alternative normalization method labelled as 

global’. In this method, the normalization factors are estimated from 

he full sample of light curves and the same normalization is applied
o all light curves. This method preserves the relative brightnesses 
etween different SNe and the full range of magnitudes. As a result,
he brightest (lower redshift) SNe have rescaled fluxes closer to one,
hile faintest SNe have rescaled fluxes closer to zero. 

.2 Training of SNN 

NN requires training on very large samples of SNe ( > 100 000
v ents). Combining all SN surv e ys from the last 15 yr, the sample of
pectroscopically confirmed SNe available is around 10 000 events; 8 

t is an inhomogeneous sample with an uncertain selection function 
nd biased to wards bright, lo wer-redshift e vents. To obtain a training
ample with sufficient statistics, SNN relies on large simulations 
here the SN Ia and SN non-Ia rest-frame SED models are derived

rom spectroscopically confirmed events. 
To generate the training samples we combine 100 realizations of 

ur Baseline simulation, apply a simple selection to the simulated 
vents (at least two detections, applying the detection efficiency 
resented by Kessler et al. 2015 ), and apply the host galaxy
pectroscopic efficiency of V21 . We do not apply any additional
pectroscopic classification efficiency like the one applied to the 
raining samples generated for the SN classification challenges 
resented by Kessler et al. ( 2010a ) and The PLAsTiCC team et al.
 2018 ). Moreo v er, we do not perform SALT2 fits for SNN. We
lso generate three additional training samples, using the J17 sim- 
lation ( SNN(J17) ), the DES-CC simulation ( SNN(DES-CC) ),
nd the Baseline simulation with host galaxies assigned randomly 
 SNN(randomHost) ). 

To compare the two different normalizations in SNN, we also train
 model using the Baseline simulation and the global normalization 
ethod instead of the cosmo normalization ( SNN(global) ). This 

ests the effects of a classifier that has knowledge of the relative
rightnesses between SNe Ia and core-collapse SNe. A summary of 
he five SNN models and the assumptions in their training simulations 
s in Table 3 . 

.3 Contamination and efficiency 

e test SNN on the simulations summarized in Section 2.2 , mea-
uring the average contamination and efficiency after our standard 
election (Section 2.3 ) and after requiring P Ia > 0.5 cut. As already
entioned in Section 3.2 , BBC is designed to handle both SNe Ia

nd non SNe Ia therefore we do not require a P Ia > 0.5 cut in the
osmological sample (see Appendix A ). 

We first examine the case of no classifier (i.e. AllSNIa in Table 4 )
nd SALT2-based selection. Applying only SALT2-based selection 
MNRAS 518, 1106–1127 (2023) 
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Table 3. Details of the different SNN training samples. 

SNN Simulation used Core-collapse SN Normalization Number of SNe in Percentage of Ia, pec Ia and core-collapse 
model name for SNN training template library training sample in the training sample 

SNN(Base) Baseline V19 cosmo 287 000 50, 6, 44 
SNN(J17) J17 J17 cosmo 287 000 50, 3, 47 
SNN(DES-CC) DES-CC DES-CC cosmo 240 000 50, 5, 45 
SNN(global) Baseline V19 global 287 000 50, 6, 44 
SNN(randomHost) Baseline, random V19 cosmo 155 700 50, 5, 45 

host association 

Table 4. Contamination and efficiency measured for the AllSNIa classifier (rows) on different simulations (columns) 
after applying a P Ia > 0.5 cut. 

† Fraction of contaminants after SALT2 fit loose cuts of x 1 ∈ [ −4.9, 4.9] and c ∈ [ −0.49, 0.49] (i.e. without applying 
the SALT2-based selection discussed in Section 2.3 ; see V21 ). 

Table 5. Contamination and efficiency measured for different SNN models (rows) tested on different simulations (columns). 

a See Table 3 for a description of the training approach utilized for each SNN model. 
b We highlight in bold the contamination measured using the same simulation both for training and testing. 
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9 To impro v e classification of peculiar SNe Ia, the fraction of this sub-type of 
SNe could be augmented in the training set. 
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educes contamination to less than 12 per cent, a factor of two
maller compared to SN samples before SALT2-based selection.

hen combined with outlier rejection ( AllSNIa + Chauvenet ,
ee Section 3.5 ), the contamination reduces to 4.0–6.6 per cent. A
ighter SALT2 colour selection (Section 2.3 ) combined with Chau-
enet’s criterion ( AllSNIa + Chauvenet, c < 0.15 ), reduces
he contamination further to 1.6–4.0 per cent. These results set a level
f comparison for assessing the performance of SNN. 
The performance of the SNN models is shown in Table 5 . For

he SNN models SNN(Base) , SNN(J17), and SNN(DES-CC) ,
he performance is impro v ed compared to outlier rejection methods
nly, with contamination of 0.8–3.2 per cent and an efficiency equal
r abo v e 99 per cent. SNN(Base) , trained on our Baseline simu-
ation, performs well not only when tested on Baseline simulations
0.8 per cent contamination), but also when tested on the simulations
17 and DES-CC, with contamination of 1.0 and 1.4 per cent,
espectively. In these two cases, the SNN(Base) classifier is trained
n core-collapse SN templates that are independent from the ones
sed to generate the simulations, suggesting that the SNN(Base)
odel generalizes well. 
By contrast, the SNN(J17) and SNN(DES-CC) classifiers

erform well when tested on simulations generated using the same
ore-collapse SN models (in bold in Table 5 ), but when tested on
aseline simulations they predict levels of contamination that are two
nd three times larger compared to using the SNN(Base) model.
his difference reflects the increased diversity of contaminants in the
aseline simulation compared to the J17 and DES-CC simulations. 
We make two further observations. The first is that, following the

pplication of SNN, peculiar SNe Ia account for around a third to
 half of the contamination (Table 5 ), suggesting that this class of
ransients plays an important role in our analysis, and that they are
NRAS 518, 1106–1127 (2023) 
s difficult to identify as core-collapse SNe with the current training
et and configuration. 9 The second is that, comparing the Baseline
nd Dust(H98) simulations, we do not observe large differences
n the contamination even though none of the SNN models have
een trained using the full range of dust extinction included in
he Dust(H98) simulation. This result suggests that including dust
xtinction in the simulations that is unmodelled in the training
amples does not significantly affect classification performance. 

.3.1 Performance as a function of SN Ia properties 

ig. 4 shows the contamination and efficiency for the Baseline sim-
lation as a function of redshift, fitted x 1 and c , and 	μ. These plots
dentify regions of parameter space where non-Ia SN contamination
s higher (or efficiency is lower). The poorest performance in terms
f contamination per-bin is observed at the extremes of the SALT2
arameter distributions. 
Focusing on SALT2 c , contamination increases significantly for

 ery blue ev ents ( > 20 per cent for c < −0.2), mainly due to fast-
eclining type II and type IIn SNe that are generally bluer than
Ne Ia at peak. Similarly, classification is more difficult for redder
Ne ( > 10 per cent contamination and < 95 per cent efficiency for c
 0.2), where intrinsically redder and lower signal-to-noise stripped

nvelope SNe are more easily misclassified as red (and therefore also
aint) SNe Ia, and vice versa (see Table 6 ). Contamination is less than
 per cent for −0.1 < c < 0.1, even when only applying the AllSNIa
lassifier and Chauvenet’s criterion. For stretch, contamination at

art/stac1404_ufig1.eps
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Figure 4. Contamination (panel (a)) and efficiency (panel (b)) using three SNN models SNN(Base) , SNN(J17), and SNN(DES-CC) measured on our 
Baseline simulation. All contamination and efficiency percentages are measured relative to the bin, not relative to the total sample. In panel (a), we present 
contamination as a function of SALT2 x 1 (upper left), c (upper right), redshift (lower left), and Hubble residual (lower right). Panel (b) is the same as panel (a), 
but showing efficiency. Contamination and efficiency are defined in Section 4.1 . 

Table 6. Fraction of different sub-types of contaminants for different 
selection cuts. Contamination is measured on the Baseline simulation, 
after applying the SALT2-based selection described in Section 2.3 and 
Chauvenet’s criterion. All contamination percentages are measured relative 
to the bin, not relative to the total sample. 

Selection Per cent non-Ia Per cent Per cent Per cent 
SNe Pec Ia II Ibc 

c > 0.2 16 .6 5 .3 0 .6 10 .7 
c < −0.2 24 .1 0 .1 22 .2 1 .8 
x 1 > 2 12 .0 2 .3 2 .8 6 .9 
x 1 < −2 6 .9 0 .7 1 .6 4 .6 
log 10 M � /M 
 < 10 2 .8 0 .8 0 .8 1 .1 
log 10 M � /M 
 > 10 3 .6 1 .5 1 .0 1 .1 
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Figure 5. Contamination (left-hand panel) and efficiency (right-hand panel) 
as a function of SN host-galaxy stellar mass. We measure contamination 
and efficiency for different SNN models (see Section 4.2 ) and before/after 
applying the Chauvenet’s criterion (see Section 3.5 ). 
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igher x 1 values is mainly due to slower declining stripped-envelope 
Ne, while contamination at the low x 1 is dominated by faster
eclining SNe Ic (see Table 6 ). 

.3.2 Performance of global versus cosmo normalizations 

ontamination after using SNN models trained with the global SNN 

ormalization ( SNN(global) ) is similar to the other SNN models 
rained using the cosmo normalization. Ho we ver, SNN(global) 
as a significantly lo wer ef ficiency – less than 98.5 per cent – and it
ecreases significantly for positive Hubble residuals. 
In the SNN(global) model, the relative brightness between SNe 

a and core-collapse SNe is preserved both in the training and testing
hase. Our results show that encoding SN relative brightnesses in the 
lassification does not result in a significant decrease in contamina- 
ion, and mainly affects the classification of faint SNe Ia. Approxi- 

ately 10–15 per cent of SNe Ia in the faint tail of the Hubble residual
istribution ( 	μ > 0.25 mag) are misclassified as non-SNe Ia. 
.3.3 Performance as a function of host galaxy properties 

ur simulations are designed to account for the differing properties 
nd rates of SNe in different host galaxies. This allows us to predict
ontamination in our photometric SN Ia samples as a function of
ost galaxy properties. As a reference, the SNN(randomHost) 
oes not use these intrinsic rates and assigns host galaxies randomly.
In Fig. 5 , we present contamination and efficiency as a function of

ost galaxy stellar mass before applying any classification algorithm 

i.e. applying only the AllSNIa classifier and Chauvenet’s criterion) 
nd after applying SNN. Contamination is not equally distributed 
cross host galaxies of different mass, but is al w ays larger in lower
MNRAS 518, 1106–1127 (2023) 
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Figure 6. Same as Fig. 3 , but here we highlight for each simulated event, its 
probability of being a type SN as estimated with SNN(Base) . 
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10 A version of the same comparison before classification-based cuts is 
available in V21 , fig. 13 
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ass galaxies. This variation is expected as most of the hosts in the
ighest mass bin consists of more passive galaxies, with a preference
owards SNe Ia and only small numbers of core-collapse SNe.
herefore, the fraction of contamination in these environments is

ow (less than 2 per cent) even with no photometric classification. 
The efficiency of classification is mostly insensitive to host

alaxy stellar mass, with two exceptions: efficiencies of the models
NN(global) and SNN(randomHost) drop significantly in
igher mass galaxies. For the SNN(global) model using the
global’ normalization (Section 4.2 ), the training retains information
bout the relative brightnesses between SNe Ia and SN contaminants.
his model is likely to heavily ‘fit’ on the information that core-
ollapse SNe are generally fainter than SNe Ia. This means that faint
Ne Ia (i.e. SNe Ia with positive Hubble residuals, see Fig. 4 b) in mas-
ive hosts (with lower signal-to-noise due to a brighter host galaxy
ackground) are more easily misclassified as core-collapse SNe. 
The SNN(randomHost) model is trained on a set of SN Ia

ight curves that have been assigned randomly to host galaxies.
21 demonstrated that the random association of host galaxies to

imulated SNe produces a distribution of host brightnesses and
asses in disagreement with the data (fig. 9 in V21 ). Therefore,

ost galaxies in the training sample of SNN(randomHost) are
n average fainter than those in the DES-SN sample or simulations.
hen the SNN(randomHost) model is tested on realistic SN

amples, a significant fraction of SNe Ia in bright and high mass
alaxies is misclassified as core-collapse SNe. This test demonstrates
he importance of training machine learning algorithms like SNN
n simulations that include a realistic SN-host association. Sub-
opulations of SNe Ia (e.g. SNe in bright galaxies) can be reduced
r remo v ed by classification simply because the y are not modelled
n the training sample, with a potential impact on studies of SN Ia
opulations and on SN Ia cosmology in general. 
Similarly to Fig. 3 , we show the Hubble diagram for a simulated

ample of SNe in Fig. 6 and we highlight SN probabilities, P Ia ,
stimated applying SNN(Base) . 

.4 Effects of BBC bias corrections on contamination 

n the BBC framework, there are cells of the three-dimensional sub-
pace { z, x 1 , c } that have no SN Ia (or too fe w e vents). Real e vents
n those cells are rejected prior to the BBC fit and this systematically
NRAS 518, 1106–1127 (2023) 
isfa v ours SNe that lie in regions that are atypical for SNe Ia. As
 result, the BBC bias corrections naturally reduce contamination
rom peculiar SNe Ia and core-collapse SNe. Tables 7 and 8 presents
ontamination and efficiency after BBC bias corrections are applied
cf. Tables 4 and 5 , the contamination and efficiency before BBC).
s expected, the number of SNe Ia is reduced by less than 1 per cent,
hile the number of core-collapse SNe is reduced by 20–30 per cent.
When analysing contamination after a P Ia > 0.5 cut from SNN, the

ffect of bias corrections on the contamination is almost negligible
ecause SNN is very efficient at removing contamination (see Table
 ). Ho we ver, when using no classifier (i.e. AllSNIa ; Table 7 ) the
ias corrections have a larger impact on reducing contamination. In
ppendix B , we consider the sub-sample of events that are rejected

rom the sample only due to the lack of a valid bias correction, and
nvestigate the impact of including these events in the analysis by
xing their bias correction to zero. 

.5 Comparison with the data 

e apply bias corrections, Chauvenet’s criterion and the SNN
lassifier to the DES photometric SN sample. In Fig. 7 , we compare
he results obtained from data and from simulations for different sets
f selection cuts. 10 

First, we consider Hubble residuals measured after applying
ALT2-based selection (Section 2.3 ), the Chauvenet’s criterion
Section 3.5 ), and requiring a valid bias correction (Section 3.4 ).
imulations and data are in very good agreement (Fig. 7 a); the
symmetry in the Hubble residual distribution due to the small
raction of core-collapse contamination ( < 3.8 per cent, see Table 7 )
s well reproduced by simulations and the reduced χ2 between data
nd the Baseline simulation is approximately 1.1. 

Secondly, we repeat the test abo v e and additionally require P Ia 

 0.5, where P Ia is estimated from the SNNclassifier trained on the
aseline simulation ( SNN(Base) ). The agreement between data
nd simulations is also good (reduced χ2 of 0.7) and the tail of SNe
ith faint Hubble residuals is significantly reduced both in the data

nd in the simulations (Fig. 7 b). 
We note the presence of a few outliers (Hubble residuals larger

han 1 mag) in the observed Hubble residuals distribution, that are not
eproduced in the simulations. This could be due to a small fraction
f SNe in the DES-SN sample (less than 1.1 per cent according to
iseman et al. 2020 ) that is mismatched to a closer and brighter

alaxy, and thus appear as faint outliers on the Hubble diagram.
e remind the reader that host mismatch is not included in our

imulations. 

 BIASES  O N  C O S M O L O G I C A L  PA R A M E T E R S  

he BBC framework requires several modelling choices, each
ausing a potential bias on the binned SN Ia distance moduli, μb 

Ia ,
nd on the resulting fitted cosmological parameters. We explore these
hoices in this section. The BBC configurations we test are listed in
able 9 and illustrated in Fig. 1 . Each is a different combination of
lassifier and L non-Ia . Specifically, we test: 

(i) P Ia measured from the five different SNN classifiers (Table 3 ),
s well as the Perfect and AllSNIa approaches; 
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Table 7. As Table 4 , but following the application of BBC bias corrections. 

Table 8. As Table 5 , but following the application of BBC bias corrections. 

a See Table 3 for a description of the training approach utilized for each SNN model. 
b We highlight in bold the contamination measured using the same simulation both for training and testing. 

Figure 7. Distributions of observed and simulated Hubble residuals for different selection criteria. Distributions are presented for the data (including Poisson 
uncertainties, black symbols) and for the five simulations summarized in Table 1 : both SNe Ia and core-collapse SNe are combined in the darker lines, and 
simulated core-collapse SNe only are shown in the partially transparent lines. Left: Sample selected applying SALT2-based selection discussed in Section 2.3 , 
Chauvenet’s criterion discussed in Section 3.5 , and requiring a valid bias correction (Section 3.4 ). Right: Sample selected applying SALT2-based selection 
discussed in Section 2.3 , a probability cut P Ia > 0.5 (where P Ia are determined using the SNN classifier trained on the Baseline simulation, SNN(Base) ) and 
requiring a valid bias correction. In each panel, we report the reduced χ2 between data and simulations. 
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(ii) Two approaches for the modelling of L non-Ia (Section 3.3 ): 
he polynomial fitting method of H12 ( D non-Ia (H12) ), and the
essler & Scolnic ( 2017 ) method implemented using the Baseline 

imulation ( D non-Ia (Base) ). 

e test combining Chauvenet’s criterion (Section 3.5 ) with the 
llSNIa approach. 
We consider as our reference the configuration that uses the 

lassifier SNN(Base) , and for which the core collapse SN like- 
ihood is modelled from the Baseline simulation. This has the label 
 SNN(Base) D non-Ia (Base) ’, and is used as the benchmark to
 v aluate other BBC configurations. 

All our tests are run on the simulations presented in Section 2.2 ,
eproducing the realistic scenario of testing classifiers on samples of 
ight curves that are not in the samples used to train the classifier.
his allows a verification that our modelling of L CC is sufficiently 
eneralized to be applied to any population of core-collapse SN 

ontaminants. Both are critical to robustly validate our results. 
For each simulation, we estimate different cosmology-related 

arameters av eraged o v er 50 realizations: μb 
Ia , nuisance parameters 

 α, β, σ Ia,int , S non-Ia ), w, and the time-varying dark energy equation-
f-state parameters w 0 and w a . We then calculate biases due to
ontamination as 

X = 〈 X Ia + CC − X Ia only , perfect classification 〉 (50 realizations) , (9) 

here X represents either μb 
Ia or the nuisance parameters or 

osmological parameters w , w 0 , w a depending on the context.
ssentially, we define a bias 	 X on a cosmological parameter X
ue to contamination as the average difference between the value 
f the parameter fitted including contamination, and the value of 
he parameter fitted with no contamination and assuming a perfect 
lassification. Uncertainties on 	 X are estimated as standard errors 
n the mean. 

.1 Biases for a flat wCDM model 

e first consider fits in a wCDM model. Our key results are in Fig. 8 ,
howing 	w estimated using different BBC options and simulations. 
he cosmological results presented from the data are preliminary 
nd are blinded (i.e. the best-fitting cosmology is not known) and are
herefore also shown as shifts 	w with respect to the (arbitrary) BBC
MNRAS 518, 1106–1127 (2023) 
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Table 9. Summary of BBC configurations (see also Fig. 1 ). The second line (highlighted) lists the reference configuration. 

BBC Classifier Modelling 	w using 	w using 
configuration (a) of D non-Ia Baseline simulation (b) DES-SN Data (c) 

1) Perfect D non-Ia (Base) Perfect Baseline 0.0001 ± 0.0002 –
2) ∗ SNN(Base)D non-Ia (Base) SNN(Base) Baseline 0.0045 ± 0.0008 0 .0000 (0.0338) 
3) SNN(J17) D non-Ia (Base) SNN(J17) Baseline 0.0109 ± 0.0009 0 .0059 (0.0342) 
4) SNN(DES-CC) D non-Ia (Base) SNN(DES-CC) Baseline 0.0045 ± 0.0008 0 .0101 (0.0324) 
5) SNN(Base) D non-Ia (H12) SNN(Base) Fit (H12) 0.0048 ± 0.0008 − 0 .0015 (0.0338) 
6) SNN(J17) D non-Ia (H12) SNN(J17) Fit (H12) 0.0135 ± 0.0012 0 .0025 (0.0331) 
7) SNN(DES-CC) D non-Ia (H12) SNN(DES-CC) Fit (H12) 0.0048 ± 0.0008 0 .0070 (0.0329) 
8) SNN(global) D non-Ia (Base) SNN(global) Baseline 0.0128 ± 0.0010 0 .0253(0.0319) 
9) SNN(randHost) D non-Ia (Base) SNN(randHost) Baseline 0.0043 ± 0.0007 0 .0095 (0.0328) 

10) AllSNIa P Ia = 1 ∀ SN ‡ −0.0252 ± 0.0046 0 .0407 (0.0517) 
11) AllSNIa + Chauvenet P Ia = 1 ∀ SN ‡ −0.0152 ± 0.0014 − 0 .0018 (0.0346) 
12) AllSNIa + Chauvenet, c < 0.15 P Ia = 1 ∀ SN ‡ −0.0139 ± 0.0020 − 0 .0005 (0.0345) 

(a) The numbers of selected SNe are in Table 2 . The SALT2 selection and the requirement of a valid bias correction is al w ays applied. Any additional selection 
criteria are indicated in the name of the BBC configuration. 
(b) Calculated using equation ( 9 ). 
(c) Biases measured from the DES-SN sample. Shifts are with respect to the value estimated using our BBC reference SNN(Base) D non-Ia (Base) . Errors 
reported in parenthesis are the statistical uncertainties on w only. 
‡ Assuming all SNe have P Ia = 1 means that the core collapse SN term in the BEAMS likelihood is always zero (equation 3 ). 
∗Reference BBC configuration. For this BBC configuration, we obtain 	w of 0.0045 ± 0.0008 for Baseline simulation, 0.0082 ± 0.0008 for LFs + Offset 
simulation, 0.0046 ± 0.0009 for Dust(H98) simulation, 0.0019 ± 0.0007 for J17 , and 0.0076 ± 0.0009 for DES-CC. 

Figure 8. Biases on the reco v ered dark energy equation-of-state parameter, 	w, measured for each simulation (Table 1 ) and for different BBC configurations 
(Table 9 ). Different SNN models correspond to different symbols (circles for SNN(Base) , squares for SNN(J17) , diamonds for SNN(DES-CC) ), and 
different D non-Ia modelling approaches correspond to different colours (red for D non-Ia (Base) and orange for D non-Ia (H12) ). For simulations, we estimate 
	w and relative uncertainties as described in equation ( 9 ). For the data (last column), we present 	w with respect to our reference BBC configuration 
( SNN(Base) D CC (Base) , second from the top, highlighted). Data error bars are 1 σ statistical uncertainties only, and are not independent for each BBC 

configuration. 
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11 As described in Section 3.6 , we estimate contours using the cosmological 
fitter COSMOMC . 
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eference configuration ( SNN(Base) D CC (Base) ). Uncertainties
n the data are the 1 σ statistical uncertainties, while for simulations
e average the results of 50 realizations. 

.1.1 Cosmological biases using the SNN classifier 

esting the different simulations presented in Section 2.2 with SNN,
e find that the biases on w are < 1 per cent (from a minimum of
w = 0.002 for Baseline simulation to a maximum 	w = 0.008 for

17 simulation) for our BBC reference configuration, and < 2 per cent
or the other configurations in Table 9 (a maximum 	w = 0.015
s estimated for LFs + Offset simulation analyzed with SNN(J17)
odel). Across all the BBC configurations and simulations tested,

he biases on the fitted nuisance parameters α and β are < 1.5 and
 1.8 per cent, respectively (see Fig. 12 ). Biases on SN Ia intrinsic
NRAS 518, 1106–1127 (2023) 
catter σ Ia,int are also consistent with zero and the reco v ered scaling
arameter S non-Ia is consistent with one. 
In Fig. 9 , we present the full �M 

−w cosmological contours 11 

rom a single realization of the DES-like sample (i.e. the same
tatistical constraining power as expected from the DES-SN pho-
ometric sample). We compare cosmological contours for the ideal
cenario of a perfectly classified sample of SNe Ia and for the
ealistic scenario of a contaminated sample of SNe Ia analysed
sing the SNN classifier. The biases on cosmological constraints
ue to contamination are significantly smaller than the statistical
ncertainties. 
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Figure 9. Cosmological contours estimated from a DES-SN simulated sample. The results show one realization of the Baseline simulation. We show the 
cosmological constraints (68 and 95 per cent confidence intervals) on �M 

−w for a flat wCDM model, with and without an �M 

prior of 0.311 ± 0.010 (right- 
hand and left-hand panels, respectively). We also present results obtained using a perfectly classified sample of SNe Ia (grey filled contours), a contaminated 
sample of SNe analyzed assuming all SNe passing SALT2 selection are SNe Ia (dotted purple contours, lower panel), assuming all SNe passing SALT2 selection 
and Chauvenet’s criterion are SNe Ia (dot–dashed purple contours, lower panel) and using our reference BBC configuration SNN(Base) D non-Ia (Base) 
(dashed red contours, top panel). The �M 

prior of 0.311 ± 0.010 is in grey. 
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Fig. 10 shows the biases on the binned Hubble diagram ( 	μ) using
ifferent SNN models. Generally, the | 	μ| are less than 10 mmag
cross all tests and simulations (consistent with the small biases 
easured on w). We observe consistently across all simulations 

hat SN Ia distances estimated from BBC are mostly unbiased ( 	μ

 4 mmag) at lower redshifts ( z < 0.5), and the largest biases are
bserved at z ∼ 0.7, to wards negati ve v alues (i.e. brighter v alues).
t these redshifts, the number of true SNe Ia decreases and thus the
odelling of the core collapse SN population is both more critical and 
ore uncertain. This makes the marginalization of core collapse SN 

ontamination from BBC less accurate. The choice of the modelling 
pproach adopted for the contamination likelihood can have a signif- 
cant impact on μb 

Ia . For the same SNN model, μb 
Ia can differ by > 5

mag when varying the modelling of the contamination likelihood. 
his is particularly evident in the simulation where contaminants are 
rtificially brightened (LFs + Offset). This suggests that the choice of
raining sample for SNN is not the only driver of systematics. 

Finally, we note that for all our tests with SNN we find that the
inned Hubble diagram μb 

Ia is mainly biased to wards negati ve v alues,
nd this in turn corresponds to positive biases on w. This suggests
hat combining SNN with the BEAMS formalism tends to slightly 
o v er-correct’ for contamination and, therefore, preferentially biases 
he Hubble diagram towards brighter values. In the next section, we 
iscuss cosmological biases when applying Chauvenet’s criterion 
nd no classification and we observe the opposite trend. 

.1.2 Cosmological biases using Chauvenet’s criterion without a 
lassifier 

e next test the case of not using a classifier and assuming all
Ne in the samples that pass the SALT2 selection are SNe Ia
 AllSNIa ), setting P Ia = 1 for every SN and the contamination
erm in the BEAMS likelihood to zero. We also test outlier rejection
n combination with the AllSNIa approach, with the results in 
ig. 11 . 
With no outlier rejection, the binned μb 

Ia are biased towards fainter 
alues pulled by faint core collapse SN contaminants, especially 
t z < 0.5. At higher- z the biases are smaller ( < 10 mmag) as
ontamination is naturally reduced by Malmquist bias, and can either 
e brighter (e.g. for LFs + Offset) or fainter (e.g. J17 ) depending on
he properties of the simulated core collapse SNe. As expected, this
pproach results in significant biases with 	w = −0.025 ± 0.009 
or Baseline up to 	w = −0.082 ± 0.008 for J17 (see also Fig. 9 ).
he biases from this no-classifier approach have the opposite sign 
ompared to the biases found when combining SNN and the BEAMS
pproach. In the no-classifier approach, the fainter population of 
ontamination is ‘under-corrected’ (or ef fecti vely not corrected at all
s core collapse SNe are assume to have P Ia = 1) therefore the biases
n μb 

Ia are mainly positive and w-bias is negative. 
When we combine Chauvenet’s criterion with AllSNIa , the 

iases in μb 
Ia are reduced, generally to < 10 mmag, and are broadly

onsistent with the SNN results (Fig. 11 ). The w-biases range from
0.010 ± 0.002 for Baseline to −0.019 ± 0.001 for Dust(H98) 

Fig. 8 ). Ho we ver, in the J17 simulations, while the fraction of
ontaminants (mostly red type Ib SNe) is similar to the other
imulations (Table 7 ), their distribution on the Hubble diagram is such
hat, even after applying Chauvenet’s criterion, a significant trend in 
b 
Ia is introduced biasing w by −0.030 ± 0.004. This is reduced by
0 per cent with a stricter SALT2 c selection (to −0.015 ± 0.02),
uggesting that the bulk population of red and bright contaminants 
s the main driver of this cosmological bias. For the other simula-
ions, applying stricter SALT2 c cuts does not reduce biases on w 

ignificantly, while it reduces the number of SNe Ia by 8 per cent. 
Fig. 12 shows that the fitted nuisance parameters are also biased

hen using Chauvenet’s criterion only. When applying Chauvenet’s 
riterion, the residual population of red and faint core-collapse 
ontaminants lead to an o v erestimate of the fitted values of β by
MNRAS 518, 1106–1127 (2023) 

art/stac1404_f9.eps


1120 M. Vincenzi et al. 

M

Figure 10. Differences in the binned distance modulus μb 
Ia when using SNN compared to using the Perfect classifier. Each panel presents the results when 

applied to a different simulation: Baseline (left), LFs + Offset (centre left), J17 (centre right), and DES-CC (right). We compare different SNN classifiers and 
different BBC configurations: each SNN model corresponds to a different line-style, and each D non-Ia modelling approach corresponds to a different colour (see 
legend). Differences in distance modulus between 	w = −0.03 and 	w = 0.03 are presented as dashed and dot–dashed lines, respectively. 

Figure 11. As Fig. 10 , but comparing the AllSNIa approach with perfect classification. We combine the AllSNIa approach with different SN selection 
criteria: SALT2 selection only ( AllSNIa ), SALT2 selection, and Chauvenet’s criterion ( AllSNIa + Chauvenet ), and finally including stricter SALT2 c cuts 
( AllSNIa + Chauvenet, c < 0.15 ). 

Figure 12. Relative differences in the fitted nuisance parameters α (panel a), β (panel b), and σ Ia,int (panel c), and the deviation from one of the scaling 
parameter S non-Ia (panel d). Each pair of panels presents the results for Baseline (left) and DES-SN5YR data (right). We compare different BBC configurations 
(see Table 9 ). The BBC fitting procedure does not return uncertainty on σ Ia,int . Therefore, for both data and simulations the uncertainties on σ Ia,int are estimated 
as the r.m.s. spread in σ Ia,int measured from the 50 realizations of the Baseline simulation. 
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pproximately 3 per cent. These biases are reduced to < 1 per cent
hen applying stricter SALT2 c cuts. Biases on α are < 1 per cent.
he SN Ia intrinsic scatter is also o v erestimated by 7–10 per cent. 
The cosmological constraints presented in Fig. 9 highlight the 

ower of outlier rejection methods like Chauvenet’s criterion. 
or a DES-like simulated sample, when we assume all SNe 
assing SALT2 selection and Chauvenet’s criterion are SNe Ia 
 AllSNIa + Chauvenet ), the biases on the cosmological contours 
re small. These findings and the results presented in Figs 8 and
1 suggest that cosmological biases due to contamination can be 
mall even without applying photometric classification algorithms 
nd using only outlier rejection methods. 

.1.3 The role of priors 

esides SNN and Chauvenet’s criterion, the �M 

prior discussed in 
ection 3.6 is another element that indirectly contributes to reduce 
iases on w due to contamination. In SN cosmology, SNe Ia measure-
ents and CMB measurements are typically combined in order to 

reak the respective degeneracies on the �M 

and w parameter space, 
nd thus reduce the o v erall statistical uncertainty on w. As shown in
ig. 9 (left-hand panel), core collapse contamination shifts the SN- 
nly cosmological contours along the ‘banana-shaped’ SN contours 
nd perpendicularly to the CMB constraints and to a Gaussian �M 

rior. Therefore, combining SNe with CMB measurements (left-hand 
anels in Fig. 9 ) or applying an �M 

prior (right-hand panels in Fig. 9 )
ot only reduces statistical uncertainties on w, but also significantly 
itigates systematic biases on w due to contamination. 
We highlight that, for w estimates, CMB constraints are more 

tringent (i.e. almost perfectly orthogonal to SN-only constraints) 
han a Gaussian �M 

prior. For this reason, we anticipate that 
pdating our prior with the latest CMB measurements from Planck 
ollaboration ( 2020 ) will further reduce statistical uncertainties on 
 and systematic biases on w due to contamination. 

.1.4 Biases when applied to data 

e perform the same tests on the DES-SN data as applied to the
imulations. Clearly, the true classification of each SN and the 
nbiased μb 

Ia is not known, so we estimate relative biases between 
ifferent BBC configurations. 
Table 9 (last column on the right) and Fig. 8 (last column on the

ight) present 	w shifts measured from the data and estimated with 
espect to the value of w fitted from our reference BBC configuration.
sing Chauvenet’s criterion and assuming all events are SNe Ia, we 
btain 	w = −0.0018 (r.m.s. on 	w estimated from 50 realizations 
f the Baseline simulation is 0.0076). This result suggests that our ref-
rence BBC configuration and the Chuavenet’s criterion approach are 
onsistent within the uncertainties. When comparing our reference 
BC configurations with the BBC configurations that use SNN mod- 
ls SNN(J17) and SNN(DES-CC) (i.e. BBC configurations 3 and 4
n Table 9 ), we observe shifts on w of 0.0059 (r.m.s. from simulations
s 0.0036) and 0.0101 (r.m.s. from simulations is 0.0036). The BBC
onfiguration that implements the SNN(global) classifier results 
n the largest 	w, but given the caveats discussed in Section 4.3.2 )
e do not consider SNN(global) a robust classification method. 
he statistical uncertainty on w for our reference BBC configuration 

s 0.034, which is approximately three times the maximum 	μ

bserved in the data. These results confirm that for the cosmological 
nalysis of the DES photometric SN sample, contamination is a 
ubdominant systematic when compared to the statistical uncertainty. 
In Fig. 12 , we compare fitted nuisance parameters when using the
eference BBC configuration and other BBC configurations. The 
arameters α and β fitted from the data are consistent between 
he different configurations tested. Large discrepancies are seen 
n the fitted values of the scaling factor S non-Ia . S non-Ia for the
ata is 0.26 ± 0.13, 4.11 ± 1.44, and 1.18 ± 0.70 when using
NN(Base) , SNN(J17), and SNN(DES-CC) , respectively, and 

he non-Ia likelihood approach D non-Ia (Base) . Predicting D non-Ia 
nd constraining the factor S non-Ia is difficult when the percentage 
f contaminants in the sample is already very low and this explains
hese large differences in the fitted values. 

For comparison and a sanity check, we also test the performances
f the SNN classifier SNN(Base) and Chauvenet’s criterion on the 
ES-SN sample of spectroscopically confirmed SNe. After applying 

ll the selection criteria discussed in Section 2.3 , we have 401
pectroscopically classified SNe observed by DES. We find that 354 
vents are certain SNe Ia, 44 likely SNe Ia, and three are classified as
on-Ia (two stripped envelope SNe and one hydrogen-rich SN). Only 
ne out of the three non-Ia SNe satisfy Chauvenet’s criterion. All
hree ev ents hav e P Ia < 0.2. The spectroscopic sample is significantly
iased towards bright, high signal to noise ratio events, therefore it
s not surprising that the contamination is extremely low (less than
 per cent after SALT2-based cuts only and zero after probability
uts). Ho we ver, it sho ws ho w ef ficiently a SALT2-based selection
nd Chauvenet’s criterion can reduce contamination, as generally 
pplied in the cosmological analysis of spectroscopic samples of 
Ne Ia (F ole y et al. 2017 ; Scolnic et al. 2018 ; Brout et al. 2019b ). 

.2 Systematic uncertainties associated with contamination 

n this section, we estimate the contribution of contamination to the
 systematic error budget from a DES-like cosmological analysis. 

n order to do this, we follow the approach presented by Conley
t al. ( 2011 ) and Brout et al. ( 2019b , section 3.8.2) and define a
ystematic covariance matrix, C syst , that can be included in the fit for
osmological parameters. The χ2 -minimization cosmological fitter 
ntroduced in Section 3.6 does not currently handle a systematic 
ovariance matrix; for this reason, we use COSMOMC when estimating 
ystematic uncertainties on w. 

Gi ven ∂ μb 
Ia , s k 

the dif ferences in the binned Hubble diagram after
hanging the systematic parameter s k , the systematic covariance 
atrix, C 

ij 
syst , is defined as 

 

ij 
syst = 

N syst ∑ 

k= 1 

( 

∂ μi 
Ia , s k 

∂s k 

) ( 

∂ μ
j 

Ia , s k 

∂s k 

) 

σ 2 
s k 
, (10) 

here σs k is the uncertainty of the systematic s k and the inde x es i
nd j are iterated o v er the N bins redshift bins ( i , j = 1,..., N bins ). 

We build two different covariance matrices: one that includes 
ariations o v er the three SNN models ( SNN(Base) , SNN(J17),
nd SNN(DES-CC) ) but fixes the contamination likelihood to 
 non-Ia (Base) (configurations 2, 3, and 4 in Table 9 ), and one

hat includes variations o v er the three SNN models ( SNN(Base) ,
NN(J17) , and SNN(DES-CC) ) but fixes the contamination like- 

ihood to D non-Ia (H12) (configurations 5, 6, and 7 in Table 9 ).
or each systematic, we estimate the contribution to the total error
udget on w by applying the definition presented by Brout et al.
 2019b , equation 22) 

′ 
w = 

√ 

( σ 2 
stat+ syst − σ 2 

stat ) , (11) 

here σ stat + syst is the uncertainty estimated when considering only 
ne (or a sub-group of) systematics and σ stat is the statistical 
MNRAS 518, 1106–1127 (2023) 
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Table 10. Uncertainty contributions to w for a wCDM model (SNe are 
combined with a �M 

prior of 0.311 ± 0.010). See Table 9 for a detailed 
description of the BBC configurations listed in the first column. 

σ ′ 
w σ ′ 

w /σstat σ stat + syst 

Total σ stat – – 0.039 
2) SNN(Base) D non-Ia (Base) 
3) SNN(J17) D non-Ia (Base) 0.004 0.106 0.040 
4) SNN(DES-CC) D non-Ia (Base) 

5) SNN(Base) D non-Ia (H12) 
6) SNN(J17) D non-Ia (H12) 0.007 0.171 0.040 
7) SNN(DES-CC) D non-Ia (H12) 

Figure 13. Same as Fig. 9 but in the w 0 −w a plane and assuming a flat 
w 0 w a CDM model with an �M 

prior of 0.311 ± 0.010. 
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ncertainty. The results are estimated for our Baseline simulation and
resented in Table 10 (and obtain similar results when performing
he same test on the other simulations). Systematic uncertainties
ssociated with contamination are 0.004 for the D non-Ia (Base)
ethod and 0.007 for the polynomial fitting method by H12. In

eneral, systematics associated with contamination are at most a
hird of the statistical error, which corresponds to an increase of the
 v erall w error budget by less than 5 per cent. 
In Appendix A , we highlight some potential limitations related to

he D non-Ia (H12) approach and to the choice of modelling the core-
ollapse likelihood term as a second order polynomial. Therefore, we
onsider the D non-Ia (Base) method as the most reliable one in our
nalysis and quote σ ′ 

w = 0 . 004 to be our best estimate of systematic
ncertainties associated with contamination. 

.3 Biases for a time-varying w 0 / w a model 

e analyse the effects of contamination when fitting our simulated
N samples assuming a flat w 0 w a CDM model. In Fig 13 , we present

he w 0 − w a cosmological contours obtained from one realization
NRAS 518, 1106–1127 (2023) 
f the Baseline simulation and assuming a Gaussian �M 

prior of
.311 ± 0.010. 
In Fig. 14 , we present the average biases on w 0 and w a mea-

ured for the Baseline simulation. For different BBC configurations
Table 9 ) and SNN, we find a −0.011–0.001 bias on w 0 and 0.008–
.166 bias on w a . Using Chauvenet’s criterion and AllSNIa , we
nd biases of −0.031 and 0.097 on w 0 and w a , respectively. If we
ssume our reference BBC configuration is the most robust one, we
easure biases across the different core collapse SN simulations of
0.009 < 	w 0 < 0.000 and 0.047 < 	w a < 0.108. This is shown

n Fig. 14 . 
By comparison, the average statistical uncertainties on w 0 and w a 

xpected for a DES-like sample are 0.097 and 0.620, i.e. 5–10 times
arger than the biases 	w 0 and 	w a due to contamination. 

Looking further to the future, these results can inform the planning
f future time-domain experiments such as the optical Le gac y Surv e y
f Space and Time (LSST; Ivezi ́c et al. 2019 ) that will be conducted
sing the Vera Rubin Observatory. Although the exact observational
trategy is being developed, LSST is expected to discover more than
000 new SNe Ia per night. Spectroscopic follow-up programmes
uch as the Time-Domain Extragalactic Surv e y (TiDES; Swann et al.
019 ) and others, will provide host galaxy spectroscopic redshifts as
ell as spectroscopic classifications for a subset of these events. The
hotometric SN Ia sample is expected to include at least 25 times
ore cosmologically useful SNe Ia than the DES-SN photometric
N Ia sample, with similar redshift distributions (Frohmaier et al., in
reparation). In parallel, low redshift SN samples are also expected to
ncrease (approximately × 10 more SNe Ia than available in current
ow- z samples; see DESC Science Requirements Document; The
SST Dark Energy Science Collaboration 2018 ). 
Following these forecasts, we estimate the statistical uncertainties

n w 0 and w a expected when combining 25 × the DES-SN5YR
hotometric SN sample, 10 × the current low- z samples, and an �M 

rior of 0.311 ± 0.010. These are found to be 0.03 and 0.19 for
 0 and w a , respectively, i.e. approximately 3 and 2 times larger

han the biases 	w 0 and 	w a found when applying our reference
BC configuration on the full range of simulations. The contours are
resented in Fig. 14 . We conclude that contamination is not expected
o degrade the figure of merit of the LSST SN Ia sample significantly,
specially when implementing classification techniques like SNN. 

 C O N C L U S I O N S  

n this paper, we have exploited state-of-the-art simulations of SN
andidates detected by the Dark Energy Surv e y (DES) to quantify
ystematic effects in cosmological analyses introduced by the use of
hotometric SN classification methods. We focused on the testing of
uperNNova (SNN), a SN photometric classification tool based on
achine learning techniques. In order to provide a robust assessment

f the algorithm’s performance and a v oiding potential o v er-fitting,
e have trained and tested SNN not only on our ‘Baseline’ simulation
f DES (Table 1 ), but on a wider suite of DES simulations designed to
xplore different astrophysical assumptions in the core collapse SN
opulation and different compilations of core collapse SN templates.
e then perform a state-of-the-art analysis using SALT2 light curve

tting, BEAMS and its extension BBC to estimate bias corrections
nd correct for contamination, and cosmology fitting. In this way, we
an propagate the effects of contamination to cosmological parameter
stimation. Our main findings are: 

(i) Across our DES simulations, contamination ranges from 0.8–
.2 per cent when using SNN, with the efficiency of the classification
anging from 99.0–99.5 per cent (Table 4 ). Therefore, on a sample of

art/stac1404_f13.eps
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Figure 14. Biases on the dark energy equation-of-state parameters w 0 and w a measured using (a) the Baseline simulation and varying the BBC configuration, 
and (b) the reference BBC configuration (Table 9 ) but varying the core collapse SN simulation (panel b). In panel (a), different SNN models correspond to 
different symbols (circles for SNN(Base) , squares for SNN(J17) , diamonds for SNN(DES-CC) ), and different D non-Ia modelling approaches correspond 
to different colours (red for D non-Ia (Base) and orange for D non-Ia (H12) ). In panel (b), we present results for four different core collapse simulations 
(see Table 1 ). The biases 	w 0 and 	w a and the relative uncertainties are measured as described in equation ( 9 ). As a comparison, we show the zero-centred 
68 per cent w 0 −w a contours from DES-SN sample combined with an �M 

prior of 0.311 ± 0.010 and from a sample of 25 times the size of DES-SN sample. 
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pproximately 1680 SNe (Table 2 ), we expect SNN to misclassify as
N Ia approximately 14–55 core collapse SNe and to exclude from

he cosmological fit 9–17 true SNe Ia. 
(ii) SNN trained on our Baseline simulation performs well across 

ll simulated data samples, including those based on independent 
ibraries of core collapse SN templates, with a contamination of 
1.4 per cent. SNN classifiers trained on simulations using templates 

rom J17 or DES-CC perform well when tested on simulations built 
sing the same set of templates ( < 1 per cent contamination), but
hen tested on simulations built using independent core-collapse 
N templates, contamination increases to 1.7–3.2 per cent. 
(iii) Outlier rejection methods like Chauvenet’s criterion can also 

ignificantly reduce contamination (to < 3.1 per cent in the Baseline 
imulation, and < 5.3 per cent for the other simulations, see Table 5 ).
his can be further reduced with a tighter selection based on the SN

a colour ( < 4.0 per cent). 
(iv) We combine the BBC formalism with SNN trained on the 

aseline simulation, and set this as our reference approach. Assum- 
ng a flat wCDM model, we find that biases on w are below 1 per cent
 | 	w| < 0.0082), and the reco v ered nuisance parameters ( α, β,
Ia, int ) are unbiased. When exploring additional BBC configurations 
nd SNN training methods, we find that biases on w are at most
.018. These biases are respectively 4 and 2 times smaller than the
xpected statistical uncertainty on w from DES-SN. The predicted 
ystematic uncertainties related to contamination are < 0.007 and 
his suggests that contamination increases by less than 5 per cent 
he total uncertainty on w and it is not a limiting systematic for the
osmological analysis of the DES-SN sample. 

(v) When we implement Chauvenet’s criterion and assume that 
ll SNe that are not identified as outliers in the Hubble diagram are
ype Ia, this simplistic approach provides relatively small biases on w 

 | 	w| < 0.018 and | 	w| < 0.033 with and without stricter SALT2 c -
ased selection). These results show that cosmological biases from 

ontamination are small even without applying photometric classifi- 
ation algorithms. This suggests an alternative and promising path to 
arry out cosmological analysis of photometric samples, that a v oid 
 v er-reliance on machine learning techniques. We recommend for 
uture analyses to perform close comparisons between cosmological 
esults obtained using outlier rejection techniques and machine 
earning classifiers. 

(vi) Core-collapse contamination shifts the SN-only cosmolog- 
cal contours perpendicularly to CMB constraints (see Fig. 9 ). 
herefore, combining SNe with CMB measurements (and not only 
ith a Gaussian �M 

prior) will not only reduce the statistical 
ncertainty on w, but also further mitigate systematic biases on 
 due to contamination. In future cosmological analyses of the 
ES photometric SN sample, SN constraints will be combined with 
MB constraints from Planck Collaboration ( 2020 ), therefore we 
nticipate our estimates of w-biases due to contamination and σ stat 

n w to decrease compared to using the Gaussian �M 

prior in this
aper. From a preliminary analysis, we forecast the contribution of 
ontamination to the statistical error budget on w (i.e. σ ′ 

w /σstat , see
able 10 ) to change by less than 20 per cent. 
(vii) We estimate biases due to contamination on w 0 and w a .

ombing the DES-SN sample with a Gaussian �M 

prior of 
.311 ± 0.010, we show the biases on w 0 to be less than 0.009,
nd the bias on w a to be less than 0.108. These are 5–10 times
maller than the statistical uncertainties on w 0 and w a expected from
he DES-SN sample. When using outlier rejection techniques (e.g. 
hauvenet’s criterion), we find biases on w 0 of approximately 0.03 

approximately three times larger than biases found when imple- 
enting SNN) and biases on w a of approximately 0.1 (comparable 

o biases found when implementing SNN). 

In general, the results in this paper are encouraging for the ongoing
ES-SN cosmological analysis, and demonstrate the tools to fully 

xploit the photometric DES-SN sample to constrain the dark energy 
quation-of-state. Our work lays the foundation for the cosmological 
nalysis of the DES photometric SN sample and our results will
e essential to assess the systematic error budget on cosmological 
arameters estimated from the DES-SN sample. 
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vezi ́c Ž. et al., 2019, ApJ , 873, 111 
ones D. O. et al., 2017, ApJ , 843, 6 
ones D. O. et al., 2018, ApJ , 857, 51 
ones D. O. et al., 2019, ApJ , 881, 19 
elsey L. et al., 2020, MNRAS , 501, 4861 
essler R., Scolnic D., 2017, ApJ , 836, 56 
essler R. et al., 2009a, Publ. Astron. Soc. Pac. , 121, 1028 
essler R. et al., 2009b, ApJS , 185, 32 
essler R., Conley A., Jha S., Kuhlmann S., 2010a, preprint

( arXiv:1001.5210 ) 
essler R. et al., 2010b, PASP , 122, 1415 
essler R. et al., 2015, AJ , 150, 172 
essler R. et al., 2019a, PASP , 131, 094501 
essler R. et al., 2019b, MNRAS , 485, 1171 
unz M., Bassett B. A., Hlozek R. A., 2007, Phys. Rev. D , 75, 103508 
ewis A., Bridle S., 2002, Phys. Rev. D , 66 
i W. et al., 2011, MNRAS , 412, 1441 
idman C. et al., 2020, MNRAS , 496, 19 
ochner M., McEwen J. D., Peiris H. V., Lahav O., Winter M. K., 2016,

ApJS , 225, 31 
arriner J. et al., 2011, ApJ , 740, 72 
cKinney W., 2010, in van der Walt S., Millman J., eds, Proceedings of the

9th Python in Science Conference. p. 56 
 ̈oller A., de Boissi ̀ere T., 2020, MNRAS , 491, 4277 
 ̈oller A. et al., 2016, J. Cosmology Astropart. Phys. , 2016, 008 
 ̈oller A. et al., 2022, preprint ( arXiv:2201.11142 ) 

https://github.com/maria-vincenzi/DES_CC_simulations
http://dx.doi.org/10.1103/PhysRevLett.122.171301
http://dx.doi.org/10.3847/2041-8213/ab04fa
http://dx.doi.org/10.1051/0004-6361:20054185
http://dx.doi.org/10.1051/0004-6361/201321668
http://dx.doi.org/10.1051/0004-6361/201116898
http://dx.doi.org/10.1088/0004-637X/753/2/152
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.3847/1538-4357/abd69b
http://dx.doi.org/10.3847/1538-4357/ab06c1
http://dx.doi.org/10.3847/1538-4357/ab08a0
http://dx.doi.org/10.3847/2041-8213/abf4db
http://dx.doi.org/10.1088/0004-637X/763/2/88
http://dx.doi.org/10.1088/0067-0049/192/1/1
http://dx.doi.org/10.1088/0004-6256/139/2/519
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://dx.doi.org/10.1093/mnras/stx3136
http://dx.doi.org/10.1051/0004-6361:20011398
http://dx.doi.org/10.1088/0004-637X/795/2/142
http://dx.doi.org/10.1051/0004-6361:20066930
http://dx.doi.org/10.1051/0004-6361/201014468
http://dx.doi.org/10.1086/300759
http://dx.doi.org/10.1086/305903
http://dx.doi.org/10.1088/0004-637X/700/1/331
http://dx.doi.org/10.1088/0067-0049/200/2/12
http://dx.doi.org/10.21105/joss.02122
http://dx.doi.org/10.1088/0004-637x/752/2/79
http://arxiv.org/abs/2012.12392
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.3847/1538-4357/aa767b
http://dx.doi.org/10.3847/1538-4357/aab6b1
http://dx.doi.org/10.3847/1538-4357/ab2bec
http://dx.doi.org/10.1093/mnras/staa3924
http://dx.doi.org/10.3847/1538-4357/836/1/56
http://dx.doi.org/10.1086/605984
http://dx.doi.org/10.1088/0067-0049/185/1/32
http://arxiv.org/abs/1001.5210
http://dx.doi.org/10.1086/657607
http://dx.doi.org/10.1088/0004-6256/150/6/172
http://dx.doi.org/10.1088/1538-3873/ab26f1
http://dx.doi.org/10.1093/mnras/stz463
http://dx.doi.org/10.1103/PhysRevD.75.103508
http://dx.doi.org/10.1103/physrevd.66.103511
http://dx.doi.org/10.1111/j.1365-2966.2011.18160.x
http://dx.doi.org/10.1093/mnras/staa1341
http://dx.doi.org/10.3847/0067-0049/225/2/31
http://dx.doi.org/10.1088/0004-637X/740/2/72
http://dx.doi.org/10.1093/mnras/stz3312
http://dx.doi.org/10.1088/1475-7516/2016/12/008
http://arxiv.org/abs/2201.11142


Cosmological biases from SN classification 1125 

O  

P
P
P
P
P
R
R
R
R
S
S
S
S
S
S
S
S
S
T  

T

T
T
V  

V
V
W

A
C

I  

c  

4
B
t
l  

B

A

W  

t  

r  

s
S  

c
c

Figure A1. Same as Fig. 2 but when applying P Ia -based cuts. 

 

c  

t  

s

  

t
r
T
s

m
c  

c
(  

μ

A

I
D  

H
t  

p
b
a  

d
 

S  

w
n
a
f  

p  

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/1/1106/6601453 by U
niversity C

ollege London user on 30 January
liphant T., 2006, Guide to NumPy. Available at https:// web.mit.edu/ dvp/ Pu
blic/numpybook.pdf

erlmutter S. et al., 1997, ApJ , 483, 565 
erlmutter S. et al., 1999, ApJ , 517, 565 
errett K. et al., 2010, AJ , 140, 518 
lanck Collaboration, 2020, A&A , 641, A6 
opovic B., Brout D., Kessler R., Scolnic D., Lu L., 2021, ApJ , 913, 49 
est A. et al., 2014, ApJ , 795, 44 
iess A. G. et al., 1998, AJ , 116, 1009 
iess A. G. et al., 2007, ApJ , 659, 98 
iess A. G. et al., 2018, ApJ , 853, 126 
ako M. et al., 2011, ApJ , 738, 162 
ako M. et al., 2018, PASP , 130, 064002 
colnic D., Kessler R., 2016, ApJ , 822, L35 
colnic D. M. et al., 2018, ApJ , 859, 101 
mith M. et al., 2020a, MNRAS , 494, 4426 
mith M. et al., 2020b, AJ , 160, 267 
ulli v an M. et al., 2010, MNRAS , 406, 782 
ulli v an M. et al., 2011, ApJ , 737, 102 
wann E. et al., 2019, Messenger , 175, 58 
aylor J., 1997, Introduction to Error Analysis, the Study of Uncertainties in

Physical Measurements, 2nd edn. University Science Books, Mill Valley, 
California 

he LSST Dark Energy Science Collaboration, 2018, preprint 
( arXiv:1809.01669 ) 

he PLAsTiCC team et al., 2018, preprint ( arXiv:1810.00001 ) 
ripp R., 1998, A&A, 331, 815 
incenzi M., Sulli v an M., Firth R. E., Guti ́errez C. P., Frohmaier C., Smith

M., Angus C., Nichol R. C., 2019, MNRAS , 489, 5802 
incenzi M. et al., 2021, MNRAS , 505, 2819 
irtanen P. et al., 2020, Nature Methods , 17, 261 
iseman P. et al., 2020, MNRAS , 495, 4040 

PPENDIX  A :  EFFECTS  O F  PR  O B  ABILITY  

U T S  

n Section 4.3 , we showed that a probability cut of P Ia > 0.5
an reduce contamination in the DES-SN sample by a factor of
–5, depending on the SNN classifier considered. Ho we ver, the 
EAMS/BBC framework is specifically designed to handle samples 

hat include both SNe Ia and contaminants, with the BEAMS 

ikelihood calculated using P Ia . Here we test the impact of combining
EAMS/BBC with probability-based cuts on cosmology. 

1 Core collapse SN likelihood and BBC configurations 

e combine the P Ia > 0.5 selection and se veral dif ferent configura-
ions of BBC, summarized in Table A1 . Applying a probability cut
emo v es all SNe with P Ia < 0.5 from the main sample and from the
imulations used to estimate bias corrections (which only include 
Ne Ia) and in the core-collapse SN simulation used to map the
ore-collapse SN likelihood ( L CC ). Probability cuts therefore have a 
omplex impact on the analysis. 
Table A1. BBC options tested with a SALT2 and P Ia > 0.5 selection. 

BBC configuration Classifier Modelling 
of D CC 

SNN(Base) D CC (Base) PIa > .5 SNN(Base) Baseline 
SNN(J17) D CC (Base) PIa > .5 SNN(J17) Baseline 
SNN(H20) D CC (Base) PIa > .5 SNN(H20) Baseline 
SNN(Base) D CC (H12) PIa > .5 SNN(Base) Fit (H12) 
SNN(J17) D CC (H12) PIa > .5 SNN(J17) Fit (H12) 
SNN(H20) D CC (H12) PIa > .5 SNN(H20) Fit (H12) 
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Fig. A1 shows the effect of a probability selection on the two core-
ollapse SN likelihood models tested. Comparing Figs A1 a and 2 (a),
he best fit 
( z) (and relative σ CC, int ( z)) measured when a P Ia > 0.5
election is applied is significantly different from the best-fitting 
( z) estimate without such a selection. This is expected because

he P Ia cut only selects the brightest contaminants and significantly 
eshapes the distribution of contamination on the Hubble diagram. 
his is particularly evident at high redshift, where contamination 
harply drops and 
( z) is an extrapolation. 

Similar differences are seen when comparing the core-collapse SN 

aps derived from the Baseline simulation before applying the P Ia 

ut (Fig. 2 b) and after (Fig. A1 b). After P Ia cuts, the distribution of
ore-collapse SN contamination is shifted to slightly higher redshifts 
0.3 > z > 0.7), skewed towards the SN Ia likelihood (centred on

model ) and sharply reduced at high redshift. 

2 Conclusions 

ntroducing a probability-based selection makes the modelling of 
 CC more complex. This can lead to significant biases when using the
12 approach, where the core-collapse SN likelihood is fitted from 

he data and it is assumed to be fully described by a second-order
olynomial. After probability cuts, this assumption is not adequate 
ecause the contamination likelihood at high redshift is essentially 
n extrapolation of the fitted polynomial and it does not reflect the
rop in contamination seen in simulations. 
In Fig. A2 , we show that biases on fitted μb 

Ia when implementing
NN D non-Ia (Base) and P Ia > 0.5 cut are still <10 mag. Ho we ver,
hen applying the H12 approach, the contamination likelihood is 
ot robustly modelled and many high-redshift, faint SNe Ia are 
ssigned a higher likelihood of being contaminants and excluded 
rom the cosmological fit. This biases μb 

Ia to wards negati ve v alues and
ropagates to the estimate of cosmological parameters. In Fig. A3 ,
e show the w-biases for the different BBC configurations tested and
e find biases larger than 0.04 for the majority of the configurations
here the H12 approach is used. We note that the main driver of the
ias in this case is not the presence of contaminants in the sample
ut the loss of SNe Ia in the cosmological fit. 

Finally, when the contaminants likelihood is modelled from the 
aseline simulation, the reco v ered biases are equal to or lower than
–3 per cent and generally consistent with the biases found when a
 Ia cut is not applied. 
In summary, our tests show that applying a probability-based 

election perhaps counter-intuitively provides equal or higher biases 
n cosmological parameters. The more accurate the classifier, the 
ower the residual contamination in the sample and the more 
ncertain the modelling of contamination in BEAMS. For these 
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M

Figure A2. Same as Fig. 10 , but applying a P Ia > 0.5 selection cut. 

Figure A3. Same as Fig. 8 but for BBC configurations in Table A1 . 
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easons, a probability-based selection is not recommended and we
o not implement it in our main analysis. 

PPENDIX  B:  R E J E C T I N G  SNE  W I T H O U T  A  

A LID  BIAS  C O R R E C T I O N  

ith BBC it is not al w ays possible to estimate valid bias corrections
or every SN, particularly those in regions of parameter space where
ew SNe are simulated (see Section 3.4 ). These SNe are excluded
rom a cosmological analysis and this reduces contamination in the
NRAS 518, 1106–1127 (2023) 

igure B1. Redshift distribution of SN events for which BBC does not 
rovide valid bias corrections. We compare the sample of such events in the 
ES data (open histogram) with the sample of such events in our DES-like 

imulations (filled grey histogram). In the simulations, only a third of the SNe 
ithout valid bias corrections are SNe Ia (red filled histogram). 

Figure B2. Difference in the observed and simulated binned Hubble diagram 

estimated when using our reference BBC configuration but including SNe 
without valid bias corrections. Simulations are generated using the Baseline 
approach. Uncertainties are estimated as the r.m.s. spread measured o v er the 
50 realizations of the Baseline simulation. 
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ample. Here we test how our results change if the requirement of a
alid bias correction is relaxed, and if SNe without a valid bias correc-
ion are retained in the sample but with μbias set to zero. Since setting
μbias = 0 is clearly an incorrect approach in a cosmology analysis,
e do not present updated results; rather, we compare the impact for
ata versus simulation to ensure that this effect is properly modelled.
The requirement of a valid bias correction significantly affects both

he low- z and DES-SN samples (Table 2 ), but here we focus on the
ES-SN sample and effects at higher redshifts. In Fig. B1 , we present
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