
Offline Deep Reinforcement Learning

for Dynamic Pricing of Consumer Credit

Raad Khraishi1, 2, * and Ramin Okhrati1

1
Institute of Finance and Technology, UCL, London, United Kingdom

2Data Science and Innovation, NatWest Group, London, United Kingdom
*Corresponding author: Raad Khraishi, raad.khraishi.13@ucl.ac.uk

Abstract

We introduce a method for pricing consumer credit using recent advances in offline deep reinforcement
learning. This approach relies on a static dataset and requires no assumptions on the functional form of
demand. Using both real and synthetic data on consumer credit applications, we demonstrate that our
approach using the conservative Q-Learning algorithm is capable of learning an effective personalized
pricing policy without any online interaction or price experimentation.

Keywords: Reinforcement Learning, Finance, Pricing, Revenue Management, Consumer Credit

1 Introduction

Consumer debt in the United States alone is worth over $15 trillion.1 Despite the importance of this market,
setting interest rates for debt products is done with varying levels of sophistication. Two common techniques
used by lenders today are risk-based and profit-based pricing (Phillips, 2020). Risk-based pricing involves
adding a fixed margin on top of the expected cost including default for a specific loan or pricing segment.
Profit-based pricing extends this by also incorporating the estimated responsiveness of customers or customer
segments to price to find the profit-maximizing interest rate.

This present work builds on profit-based pricing by introducing a model-free reinforcement learning
approach to finding optimal prices. In particular, we develop an approach for pricing installment credit
products such as mortgages as well as personal and student loans which form the bulk of the consumer debt
market. Setting prices for these products involves factoring in short-term rewards from the underwriting
of the product as well as longer-term default risk, adverse selection, market competitiveness, and customer
lifetime value. With reinforcement learning we are able to formulate this problem as a sequence of pricing
decisions for each loan applicant. This formulation helps induce long-term consequences of actions by allowing
pricing decisions taken by the agent to affect the future state of the environment. In addition, we use a
model-free reinforcement learning algorithm in which an agent must learn to implicitly estimate individual
price-responsiveness as it learns a pricing policy. This is a key departure from traditional profit-based pricing
approaches that make strong assumptions on the functional form of demand. Furthermore, a reinforcement
learning approach also allows us to learn a dynamic pricing policy that can adapt to changes in behavioral
patterns and the economy (Rana and Oliveira, 2014).

Traditional reinforcement learning algorithms learning from scratch by pricing consumer loans in a live
environment may start off by setting inaccurate prices that would incur significant financial and reputational
costs for a lender. The potential for these costs makes traditional online reinforcement learning difficult to

1https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2021Q3.pdf

1

ar
X

iv
:2

20
3.

03
00

3v
1

 [
cs

.L
G

]
 6

 M
ar

 2
02

2

https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2021Q3.pdf

apply in practice and motivates the need for offline reinforcement learning algorithms that are able to learn a
policy from a static dataset with past pricing decisions and outcomes.

Offline learning introduces several additional challenges. In particular, the agent must assess counterfactual
scenarios about what might happen following an action despite not having any examples of that behavior in
the training set. The decisions in the dataset used to learn a policy may be different than the decisions that it
must learn to apply. This problem of distributional shift leads traditional reinforcement learning approaches
to overestimate the value of unseen outcomes and propagate poor decisions (Levine et al., 2020). Given
limited changes in prices historically, distributional shift and generalization are particularly problematic for
pricing consumer credit products. To mitigate these issues this paper uses the conservative Q-learning (CQL)
algorithm to regularize Q-values and reduce overestimation of out-of-distribution actions (Kumar et al., 2020).

The main contribution of this paper is the introduction of an approach to pricing consumer credit that
uses model-free offline deep reinforcement learning to learn a sequential pricing policy. This approach makes
no assumptions on demand often used in traditional pricing approaches that may introduce misspecification
errors in unknown and non-stationary environments. We also extend credit pricing to the full reinforcement
learning problem in which current actions may impact the future state of the environment. Using synthetic
and real data on auto loans, we demonstrate that this approach is able to learn an effective policy using only
a static dataset without any live interaction or price experimentation.

The rest of this paper is organized as follows. Section 2 presents a review of related pricing and
reinforcement learning literature. Section 3 formulates credit pricing as a reinforcement learning problem and
describes the algorithm and evaluation approaches used. Section 4 presents our result on both historic and
synthetic datasets of loan applications. Finally, Section 5 presents our conclusions and possible extensions of
our work.

2 Related Work

Despite many breakthroughs in reinforcement learning across several problem domains (see Li (2018) for
an overview), the literature on pricing and consumer credit remains sparse. In perhaps the paper most
closely related to our current work, Trench et al. (2003) used tabular value-function iteration to choose credit
line increases and interest rate decreases for credit cards at regular intervals. They applied a model-based
approach that required estimation of a separate static transition matrix and heavily discretized the state and
action space to make the problem tractable. In addition, they introduced several constraints on the action
space such as only considering interest rate reductions or credit line increases. Despite these simplifications,
the authors state that their model was implemented by Bank One and estimated an associated increase in
annual profit of approximately 5% (equivalent to $75 million per year).

We improve on their work in several ways. First, we do not discretize prices or restrict actions to only
price decreases. Second, we use a model-free deep reinforcement learning approach with continuous prices
and states that does not involve estimation of a separate transition matrix and does not assume knowledge of
the demand curve. In addition, we also treat credit pricing as a continuing infinite horizon problem which is
better suited to capturing the delayed effects of adverse-selection and price competitiveness.

Several studies have applied profit-based pricing approaches to the same historical auto loans dataset
used in Section 4. Phillips et al. (2015) implement a profit-based pricing approach using a logistic regression
price-response model and a simplified profit objective on the same historical auto loans dataset used in this
paper to estimate the effectiveness of field price discretion. Ban and Keskin (2021) extended this work by
introducing an iterated approach to learning the price-response curve using a generalized linear regression
model and the capacity for price experimentation. While both papers cite substantial increases in revenue,
38% and 47% respectively, their estimated performance relies heavily on their assumed demand behavior. In
Section 4, we compare our reinforcement learning approach against a similar profit-based pricing approach.
Several bandit approaches have also been explored recently. Bastani et al. (2019) introduced an approach
that uses Thompson sampling and a linear demand model to learn a pricing policy across multiple related
products through pricing experiments. They defined a discrete set of auto loan products whereas in our
approach the number of products is not fixed and new products may be defined as part of the continuous

2

state. Luo et al. (2021) applied a contextual linear bandit approach using a modified linear upper confidence
bound algorithm. As with Ban and Keskin (2021), both these approaches rely on random and potentially
costly price experimentation to learn a policy. In addition, none of the papers extend credit pricing to the
full reinforcement learning problem where actions may impact the future state of the environment and use
simple linear function approximation.

Outside of consumer credit, many successful applications of dynamic pricing using bandit or reinforcement
learning algorithms exist. For example, Cheung et al. (2014) developed pricing policies in the presence
of unknown demand with limited ability to perform price experimentation and personalization. They
implemented their pricing strategy for an online deal website, Groupon, and estimated a 21% increase in
daily revenue. Chen et al. (2021) explored personalized pricing as well as assortment optimization for airline
seating reservations in a single-period problem. Cohen et al. (2020) developed an online contextual bandit
approach for pricing online fashion products with each product defined by a set of features. Trovò et al.
(2018) applied multi-armed bandit algorithms to online pricing of non-perishable goods in both stationary and
non-stationary environments. Several other papers have extended dynamic pricing to the full reinforcement
learning problem where an agent must consider the long-term consequences of its actions. For example, Rana
and Oliveira (2014) developed a model-free tabular Q-learning approach for selling a fixed inventory by a given
deadline. Using simulated data, they found improved performance in the presence of demand misspecification
using their model-free approach relative to classic parametrized pricing policies. Krasheninnikova et al. (2019)
applied model-free reinforcement learning for finding a pricing policy for insurance renewals to maximize
revenue subject to a minimum renewal rate constraint using a synthetic dataset.

Pricing consumer credit, however, has two unique characteristics that distinguish it from pricing many
types of consumer goods and services. First, adverse selection may arise when higher risk borrowers are less
sensitive to price than borrowers with lower default risk (Phillips and Raffard, 2011). This behavior leads
increases in prices to increase the riskiness of a lender’s portfolio. Second, instalment loans are contractual
products with terms that may vary from several months to several decades in which a borrower makes regular
payments towards the original principal and interest. As such, revenue is not realized directly upon purchase
as future customer behavior, such as failing to repay or early repayment, over the term of the product may
impact profitability. Therefore, at the time the price of a loan is set, the loan’s profitability is a random
variable.

Offline reinforcement learning techniques have been applied to many different problems where learning
online is costly or inefficient. Abe et al. (2010) implemented a constrained offline reinforcement learning
approach based on Q-learning for optimizing debt collections using linear function approximation. They
also implemented their solution to manage collections for the New York State Department of Taxation and
Finance and estimated expected savings of $100 million over a three year period. Theocharous et al. (2015)
used a classic offline reinforcement learning algorithm, Fitted Q-Iteration (Ernst et al., 2005), for personalized
ad recommendations. By using reinforcement learning methods, they found that their policy was able to take
into account the long-term effect of ad choice on customer lifetime value.

3 Methodology

In this section we formulate credit pricing as a Markov decision process, introduce our offline reinforcement
learning approach, and describe our approach to policy evaluation.

3.1 Markov Decision Process

Following Levine et al. (2020), we define a Markov decision process to be a tuple (S,A, T, d0, r, γ), where
S represents the set of states s ∈ S, A represents the set of actions a ∈ A, T is the unknown transition
dynamics T (st+1|st, at), d0 is the initial state distribution, r : S ×A → R denotes the reward function, and
γ ∈ (0, 1) is the discount factor. We also define credit pricing to be a continuing problem where each time
step t relates to a new application and the total number of time steps, H, equals ∞.

3

States. Our state space, S, includes information that is typically available in a loan application such as
credit score, the type of loan, the term of the loan, the amount of the loan, and competitor rates.

For example, with the auto loans dataset described in Section 4.1.1, we define st = [Termt, Amount t,
FICO t, PD t, PreviousRatet, CompetitionRatet, PrimeRatet, Tier t, LoanTypet, CarTypet, PartnerBint,
Statet,Monthst,DayOfWeek t,MonthOfYear t,DaysSinceAppt]. See Appendix A.1 for more details.

Additional features that are typically available through a credit application process such as tenure, channel,
debt obligations, and income can be used to extend the state space though care must be taken to ensure any
feature does not lead to biased or unfair pricing policies.

Although we refer to state for simplicity, our environment is partially observable due to incomplete
information on factors that may impact a lender’s profitability. For example, a potential borrower who has
recently lost their job may be more willing to accept an uncompetitive interest rate for fear of not receiving
another offer later. This behavior would impact both the price sensitivity of the borrower as well as their
riskiness which may induce adverse selection and is not captured by the feature set (for a detailed discussion
of price-dependent risk see Phillips and Raffard (2011)).

Actions. Upon each application the agent chooses an interest rate, at, quoted as an annual percentage rate
(APR) which determines the price of the loan. We define our action space, A, to be the subset of positive
real numbers, i.e. at ∈ R+. This may be extended to include product fees as well.

Rewards. Many alternative financial measures of profit such as Net Income or Net Interest Income may
be used to define rewards. For example, with the auto loans dataset, we use a simplified expected profit
measure from Phillips et al. (2015) which accounts for interest income, capital costs, and credit risk. We use
the shorthand rt = r(st, at) to denote a scalar reward value, which is defined by:

r(st, at) = p(Acceptt|at, st) ∗

[
(1− PDt) ∗ (TotalPaymentt − CapitalCostt)− PDt ∗ LGDt ∗ CapitalCostt

]
, (1)

where p(Accept t|at, st) denotes the probability of a potential borrower accepting a loan given a price, at,
and state feature vector, st. PDt is the estimated probability of default of the applicant.2 We set the loss
given default, LGD, to 50% for all customers as in Phillips et al. (2015). TotalPayment t is shorthand for
the total value of interest and principle payments of the loan over the course of its term as a function of its
interest rate, at, loan amount, and term. A similar function is used for the cost of capital, CapitalCost t, with
the prime rate, PrimeRatet, used in place of at.

The goal of our pricing algorithm will be to learn a policy π(at|st) that defines a distribution over actions
conditioned on states. We can use this to define a trajectory, τ , to be a (potentially infinite) sequence of
states and actions (s0, a0, ..., sH , aH), admitting the following distribution:

pπ(τ) = d0(s0)

H∏
t=0

π(at|st)T (st+1|st, at) .

We may also define the return, Rt, to be sum of discounted rewards
∑T
t=0 γ

tr(st, at). Our objective then

becomes to find a policy that maximizes the expected return, Eτ∼pπ(τ)
[∑H

t=0 γ
tr(st, at)

]
, denoted by J(τ).

3.2 Reinforcement Learning

Traditional pricing techniques for consumer credit such as risk-based pricing fail to capture idiosyncrasies in
customer behavior and responsiveness to prices (Phillips, 2020). While more sophisticated profit-based pricing

2The probability of default, PD, is not directly available in the dataset and is estimated from the FICO scores using data
from Munkhdalai et al. (2019) which covers roughly the same time period. However, as their data is not specific to auto loans
we expect our PD values to be conservative estimates of default risk.

4

approaches attempt to estimate this they require strong assumptions on the functional form of demand
(Phillips et al., 2015; Ban and Keskin, 2021). In addition, these techniques are often myopic - they use the
estimated price-response curve to find the profit-maximizing prices without taking into account the long-term
consequences of actions. Reinforcement learning algorithms help address these issues by allowing us to train
an agent to learn to make sequential decisions based on past experience in an unknown and non-stationary
environment (Sutton and Barto, 2018). In addition, model-free reinforcement learning techniques do not
assume knowledge of the reward function, r(st, at), price-response function, p(Acceptt|st, at), or transition
probabilities, T (st+1|st, at).

We use the value function, Vπ, to refer to the estimated value of being in a state, st, and following policy
π(at|st). We also define the action-value function, Qπ, to be the estimated value of being in state, st, taking
action at and then following policy π. These functions are defined as follows:

Vπ(st) = Eτ∼pπ(τ |st)

[
H∑
t′=t

γt
′−tr(st, at)

]
,

Qπ(st, at) = Eτ∼pπ(τ |st,at)

[
H∑
t′=t

γt
′−tr(st, at)

]
.

Writing the action-value function only in terms of Q:

Qπ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at),at+1∼π(at+1|st+1)[Qπ(st+1, at+1)] ,

gives rise to the Q-learning algorithm which iteratively applies the Bellman optimality operator, B∗Q(st, at) =
r(st, at)+γEst+1∼T (st+1|st,at)[maxat+1

Q(st+1, at+1)], to find the optimal Q-function. These estimates are then
used to take actions usually following an implicit policy (e.g., ε-greedy). The Q-values may be approximated
using a deep neural network with parameters θ, in which case we use Qθ to denote the action-value function.

Actor-critic algorithms are another class of popular reinforcement learning algorithms and closely resemble
classic policy iteration from dynamic programming (Sutton and Barto, 2018). These algorithms directly
estimate both a parameterized value function, Qθ, as well as a policy parameterized by φ, πφ, by alternating
policy evaluation and policy improvement steps:

Q̂k+1
θ ← arg min

θ
Est,at,st+1∼D

[
((r(st, at) + γEat+1∼π̂kφ(at+1|st+1)

[Q̂kθ(st+1, at+1)])−Q(st, at))
2

]
,

π̂k+1
φ ← arg max

φ
Est∼D,at∼πkφ(at|st)

[
Q̂k+1
θ (st, at)

]
,

where D = {(st, at, rt, st+1)} refers to a dataset with states, actions, and rewards. The arg min and
arg max in the equations are often approximated using gradient descent steps.

Standard Q-learning and actor-critic methods are off-policy algorithms that typically rely on some online
interaction with the environment when learning.

3.2.1 Offline Reinforcement Learning

Learning to price consumer credit through trial-and-error using standard online reinforcement learning
techniques can lead to costly mistakes at the detriment of both the lender and consumers. More generally,
organizations may also restrict the ability to perform any sort of live pricing experiments. These restrictions
on learning from live interaction motivate the need for training a pricing policy using a dataset of historical
pricing decisions and outcomes.

In offline reinforcement learning, the dataset, D, is gathered by a different policy than what our agent
learns - in our case, a static dataset of historical pricing decisions. To denote the behavioural policy used
to collect the dataset we use πβ(at|st). The goal of our reinforcement learning agent then becomes to learn

5

a policy, π, from a dataset, D, collected from behavioral policy πβ , to maximize expected return, J , when
interacting with the environment at test time.

While many online reinforcement learning techniques can be used to learn from an offline dataset they
often suffer from distributional shift which results in poor performance (Levine et al., 2020). Learning a policy
from a static dataset requires assessing counterfactual actions that may not have been observed historically.
With the absence of corrective feedback, standard online techniques may end up over-estimating the value of
unseen actions and states which in turn propagate further errors as the agent uses these inaccurate estimates
at test time.

Offline (or batch) reinforcement learning algorithms mitigate these issues by attempting to learn to
improve on the historical policy seen in the data while reducing deviation from historical actions. This is often
done through policy constraints that limit deviation from the historical policy, accounting for uncertainty
in action-value estimates, or using conservative value function estimates that penalize out-of-distribution
actions (Levine et al., 2020). After initial training, many offline algorithms may be combined with online
fine-tuning to boost performance.

3.2.2 Conservative Q-Learning

We use the conservative Q-learning algorithm (CQL) introduced by Kumar et al. (2020) for our pricing agent.
CQL is a model-free offline reinforcement learning algorithm which has achieved state-of-the-art performance
on a number of offline tasks.

CQL mitigates distributional shift by penalizing values for out-of-distribution state-action tuples during
training. In the implementation of CQL that we use this is done by adding an additional regularization
term, Es∼D[log

∑
a expQ(s, a)], when learning the Q-function. This helps mitigate distributional shift by

pushing down Q-values for action-values sampled from the current policy as they are more likely to be
out-of-distribution. To avoid underestimation or producing estimates that are too conservative a second
term is added to maximize the values of state-action tuples seen in the historical data, Es,a∼D[Qθi(s, a)].
Combined these two terms produce a conservative Q-function that is a lower bound in expectation on the
true value (Kumar et al. (2020, Theorem 3.2)).

We use the soft actor-critic (SAC) (Haarnoja et al., 2018) version of the CQL algorithm implemented in
the d3rlpy package (Seno, 2020) and use πCQL to refer to the learned policy. This version modifies the soft
actor-critic loss to include the additional CQL regularization term:

L(θi) = αEst∼D

[
log
∑
a

expQθi(st, a)− Es,a∼D[Qθi(s, a)]− κ

]
+ LSAC(θi) , (2)

where LSAC refers to the soft actor-critic loss without CQL regularization. As in the original soft
actor-critic paper, we use two critics parameterized by θi to speed up training and reduce positive bias in the
policy improvement step (Haarnoja et al., 2018). The parameter α controls the degree of conservativeness
and is automatically tuned by Lagrangian dual gradient descent. κ is a user-defined threshold value that
helps control the magnitude of α. The log

∑
a expQ(s, a) term used to penalize Q-values is estimated using

samples from the current policy:

log
∑
a

expQ(s, a) ≈ log

(
1

2N

N∑
ai∼Unif(a)

[
expQ(s, ai)

Unif(a)

]
+

1

2N

N∑
ai∼πφ(a|s)

[
expQ(s, ai)

πφ(ai|s)

])
,

where N refers to the user-defined number of sampled actions, and Unif is the uniform distribution.

3.3 Performance Evaluation

We are unable to test our policy through live interaction and instead evaluate our new approach using
historical data. To do so, we apply our model to an out-of-sample test set and predict performance using an
estimated price-response model. We compare our results against historical pricing decisions and a popular

6

profit-based pricing approach. In Section 4.2, we also evaluate the performance of our policy on a synthetic
dataset where the true demand function is known.

3.3.1 Offline Policy Evaluation

Without knowledge of the true price-response function, p(Acceptt|at, st), or the transition probabilities,
T (st+1|st, at), and without the ability to test our policy through live interaction it is difficult to assess model
performance on the static auto loans data set. Offline policy evaluation is an area of active research with a
variety of different methods that include importance sampling, models of the transitions and rewards, and
value-based estimators (Paine et al., 2020; Voloshin et al., 2019). Following Phillips et al. (2015); Ban and
Keskin (2021); Luo et al. (2021), we use a model-based approach and focus on estimating the price-response
function in Equation (1) to predict the probability of a customer accepting a new price and use that to
calculate expected reward. Although a potentially significant advantage of our approach is in treating credit
pricing as a sequential decision problem, we do not develop a model for the transition dynamics, T (st+1|st, at),
to evaluate this.

Our primary price-response model is a logistic regression model trained on the full dataset, however, the
choice of model and feature set used to estimate the price-response function impacts estimates of performance.
To account for the impact of misspecification we also estimate several alternative models using parametric
and non-parametric techniques to provide a range of performance.

3.3.2 Comparison

Our first point of comparison is to the historical pricing policy, πβ , captured in the data. Unfortunately, we
could find no information on how pricing decisions were made by the lender at the time. However, using the
data we are able to directly calculate rewards and compare total expected reward from each of the policies
over the test set, see the Appendix A.2. In addition, we also measure the mean absolute percentage deviation
(MAPD) in prices from the historical policy to capture how different the pricing policies are.

Our second comparison is to profit-based price optimization, an approach commonly used in practice
(Phillips, 2020; Ban and Keskin, 2021; Besbes and Zeevi, 2009; Phillips et al., 2015). At a high-level, this
approach involves two steps. We first estimate a price-response model to estimate how likely a potential
borrower is to take out a loan at a given price point, p(Acceptt|at, st). This price-response model is then used
to find the greedy price that maximizes the reward function, maxat r(st, at), defined in Equation (1). We
use πOpt to denote this profit-based price optimization policy. An example of this approach for an arbitrary
customer is shown in Appendix D. As with our CQL model this approach requires the offline policy evaluation
technique described in Section 3.3.1 to estimate performance.

4 Results

4.1 Online Auto Lending

4.1.1 Data Description

For our first experiment, we use a static dataset on auto loan applications from an online lender in the United
States provided by the Center for Pricing and Revenue Management.3 This dataset contains information on
approximately 200,000 approved auto loan applications including the interest rate charged, the term of the
loan, the approved amount, the FICO risk score, and whether the customer accepted the offer. A description
of the data, features, and pre-processing steps is available in Appendix A. We also refer the reader to Phillips
et al. (2015) for more detail on this dataset.

3https://www8.gsb.columbia.edu/cprm/research/datasets

7

https://www8.gsb.columbia.edu/cprm/research/datasets

4.1.2 The CQL Policy

We evaluate the performance of the CQL policy, πCQL, on the test set using a logistic regression model
to estimate the response probabilities, p(Acceptt|st, at), at the new prices and calculate expected reward.4

Averaged over three seeds, our results indicate that the CQL agent is able to learn an effective policy that
improves on historical pricing, πβ , by approximately 21% in expected profit while maintaining a less than
15% mean absolute percentage deviation in prices from the existing policy. Figure 1b shows that despite the
strong overlap between πCQL and πβ , the new policy pushes the average price downwards from 6.8% to 5.9%.
This is consistent with the results of Phillips et al. (2015) who find evidence of historical over-pricing in this
dataset due to a lack of subvented deals that were prevalent at many dealerships at the time which reduced
the competitiveness of the lender’s rates.

06/01 06/15 07/01 07/15 08/01 08/15 09/01

Date

$0

$2M

$4M

$6M

$8M

$10M

C
u
m

u
la

ti
v
e

re
w

a
rd

Historic

CQL

(a) Cumulative expected reward

4% 6% 8% 10%

Interest rate (α)

0

500

1,000

1,500

2,000

2,500

C
o
u

n
t

Historic

CQL

(b) Price distribution

Figure 1: Performance of the CQL policy on the test set for a single seed. Cumulative expected reward is
estimated using the baseline logistic regression price-response model.

We also compare the CQL model against the profit-based optimization policy, πOpt , described in Sec-
tion 3.3.5 This approach uses the same logistic regression price-response model used to evaluate performance
but fitted on the training set to identify the price that maximizes the expected reward in Equation (1) for
each application in the test set. With this policy we find an overall 34% increase in expected profit which
is associated with an average 24% absolute percentage difference in price relative to the historical policy.
These results are consistent with the results of Phillips et al. (2015) and Ban and Keskin (2021) who estimate
increases of 38% and 47% on the same auto loans dataset, respectively. The differences in performance may
be explained by the different test sets and the simplified reward functions they used that did not factor in
credit risk or capital costs in the case of Ban and Keskin.

Figure 2 demonstrates the sensitivity of πOpt performance to the assumed functional form of demand. Using
alternative non-parametric and parametric price-response models with comparable classification performance,
we find high variance in πOpt performance with estimates ranging from a -7% decrease to a 34% increase
in total expected reward relative to πβ with an average estimate of 12.6%. There is also strong evidence of
overfitting with the highest performance estimated by the logistic regression used to optimize the prices. This
sensitivity to the assumed functional form of demand is understated in previous literature and particularly
problematic within this dataset due to the limited explainability of the feature set. For example, the baseline
logistic regression model only achieves a pseudo R2 of 0.29 and AUC of 0.83. In contrast, while πCQL

still exhibits sensitivity to the price-response model used for evaluating performance, the estimates lie in a
narrower range from 5% to 24% with an average of 13%. These results are consistent with the work of Rana
and Oliveira (2014) who test the effect of model misspecification on model-free reinforcement learning and

4See the Appendix for details on hyperparameters, train/val/test splits, and runtime as well as the estimated parameters of
the logistic regression price-response model.

5We restrict prices to be between 2.5% to 12.5% to speed up optimization, however, these constraints are not binding.

8

parametric learning algorithms using synthetic data and find similar sensitivity of parametric methods that
assume knowledge of demand.

06/01 06/15 07/01 07/15 08/01 08/15 09/01

Date

$0

$2M

$4M

$6M

$8M

$10M

$12M

C
u
m

u
la

ti
v
e

re
w

a
rd

CQL

Historic

(a) CQL

06/01 06/15 07/01 07/15 08/01 08/15 09/01

Date

$0

$2M

$4M

$6M

$8M

$10M

$12M

C
u
m

u
la

ti
v
e

re
w

a
rd

Opt

Historic

(b) Opt

Figure 2: Cumulative expected rewards over the test set for both the CQL and Opt policies evaluated using
different price-response models with a single seed. The dark blue line represents the estimated performance
using the logistic regression price-response model and the lighter blue lines represent results using alternative
price-response models. These include parametric and non-parametric approaches such as gradient boosting,
regularized logistic regression, and neural network models.

The fact that πCQL achieves performance comparable to πOpt is impressive given the relatively limited
change in prices from the historical policy. From Figure 3 we also observe that πCQL is able to implicitly
estimate the sensitivity of applicants to prices. Without knowledge of responses or rewards in the test set,
it produces a policy that reduces prices for applicants who would have rejected the historical price by an
average of 28% while for applicants that would have accepted it, the algorithm maintains prices on average
95% of what would have been quoted under πβ .

2% 4% 6% 8% 10%

Historical Price

2%

4%

6%

8%

10%

C
Q

L
P

ri
ce

0

1

(a) CQL

2% 4% 6% 8% 10%

Historical Price

2%

4%

6%

8%

10%

O
p

t
P

ri
ce

0

1

(b) Opt

Figure 3: Comparison of πOpt and πCQL against πβ on the test set for a single seed. The blue points
represent applications that did not accept the original price under πβ and the orange points represent loans
that were funded.

In addition to the conservative improvements over the historic pricing policy, the benefits of the CQL
algorithm also lie in its simplicity. Although we use estimates of the price-response curve and reward function
for evaluating its policy, all that is required for training the CQL algorithm is a static dataset with features,
offered prices, and rewards. In contrast, a profit-based pricing approach often requires estimation of a separate
price-response model, access to the reward function, and an optimization framework to price each application.

9

4.1.3 The value of conservatism

We assess the effect of distributional shift on performance by fixing different values of the trade-off parameter,
α, used to control the CQL regularization term in Equation (2). In the extreme case, where α is close to zero,
we recover an offline version of the SAC algorithm. In Figure 4 we observe that removing the penalty on
out-of-distribution actions results in substantial variation in prices compared to the historical policy as a
result of over-estimating the value of unseen state-action pairs. This dramatically reduces performance and
the algorithm is unable to learn an effective policy. As we increase the value α, we find that performance
improves dramatically and the agent is able to learn stably.

0 200 400 600 800 1,000

Step

$2M

$2M

$3M

$4M

$4M

$4M

$5M

C
u
m

u
la

ti
v
e

re
w

a
rd

1e-05

0.01

0.1

1.0

10.0

(a) Cumulative reward

0 200 400 600 800 1,000

Step

20%

30%

40%

50%

M
A

P
D

1e-05

0.01

0.1

1.0

10.0

(b) MAPD

Figure 4: CQL performance on the first 10,000 test set applications as a function of training step with
different fixed values of the trade-off parameter, α, averaged over three seeds. Cumulative reward is evaluated
using the baseline price-response model described in Section 3.3.1.

4.2 Synthetic Price Responses

For our second set of experiments, we create synthetic datasets from the historical auto loans data using
various price-response models. That is, we train a price-response model to estimate p(Accept t|st, at) on the
historical dataset and use the predicted probabilities to sample from the Bernoulli distribution and replace the
original accept decisions, Acceptt. We isolate California which is the largest market and has approximately
30,000 applications but otherwise follow the same approach as in the previous sections. We also compare
our approach against an additional profit-based pricing model with a demand formula similar to the one
introduced by Ban and Keskin (2021) that includes feature-dependent price effects (FDPE) by adding an
interaction term for each of the features with price.

4.2.1 Comparison against the optimal policy

With access to the true price-response model, we are able to measure the performance of the different pricing
policies against the optimal policy obtained by applying the profit-based optimization approach with the
true model. In Table 1 we see the performance of the policies across different synthetic datasets. When
there is no demand misspecification, i.e., the profit-based model’s price-response curve matches the dataset’s,
the profit-based pricing approaches are able to achieve near-perfect performance. In real-world pricing
applications, this is a strong assumption that is violated with the presence of non-stationarity, incomplete
information, or complex demand behavior (Cheung et al., 2021; Luo et al., 2021). For example, when we
allow the coefficients of the price-response model to vary by customer segment or use a more expressive neural
network model to represent demand behavior, the profit-based models are no longer able to achieve the same
level of relative performance. In these potentially more realistic scenarios, the CQL policy is able to achieve
the same level of performance with approximately 50% less price variation from the historical policy. While

10

this stability in prices does help mitigate the risks associated with demand misspecification, it limits the
effectiveness of the CQL algorithm when large variations in price are required to achieve optimal performance.

Table 1: Performance of the pricing policies on synthetic data created from five different price-response
models averaged over three seeds. πβ , πCQL, πOpt , and πOpt−FDPE refer to the historical policy, CQL
policy, profit-based optimization policy, and profit-based optimization policy with feature dependent price
effects, respectively. The logistic dataset uses the same price-response model from πOpt to generate the new
accept decisions. logistic-fdpe includes interactions with price for each of the features. segmented allows the
coefficients of the price-response model to vary for customer segments assigned by an unsupervised Gaussian
mixture model. time-varying allows the coefficients of the logistic regression in the test set to vary from the
training set. neural net uses a deep neural network as the true price-response model. MAPD is the mean
absolute percentage deviation in price relative to the historical pricing policy, πβ .

MAPD % of Optimal Return
Dataset πCQL πOpt πOpt−FDPE πβ πCQL πOpt πOpt−FDPE

logistic 16.2% 24.3% 23.9% 74.5% 90.7% 99.8% 99.3%
logistic (FDPE) 16.0% 24.4% 24.8% 72.6% 87.2% 95.2% 98.9%
segmented 16.0% 25.5% 24.8% 57.4% 86.1% 83.4% 84.0%
time-varying 16.0% 25.6% 25.5% 88.1% 92.1% 91.2% 91.1%
neural net 16.1% 23.0% 26.3% 76.9% 84.0% 83.1% 82.9%

4.3 Ethical considerations

Several key issues should be considered before deploying a pricing policy based on our proposed method.
In particular, our pricing agent is trained on a dataset of historical pricing decisions and may learn to
recreate any biases present within that data. This may need to be addressed with additional constraints or
appropriate data cleansing. Care must also be taken when selecting features such that they do not unfairly
target protected groups either directly or by proxying for protected characteristics.

5 Conclusion and Future Work

In this paper, we propose a model-free offline reinforcement learning approach to pricing consumer credit.
This approach makes no assumptions on the functional form of demand and introduces a formulation in
which actions may impact the future state of the environment and rewards. We also demonstrate using
synthetic and real data that this approach is able to improve on the existing pricing policy while showing
robustness to misspecification of the underlying demand behaviour.

One logical extension of our work is to consumer goods as well as other types of consumer debt products.
Future work may also seek to extend the action space to include the underwriting decision as well as
incorporate capital and maximum portfolio risk requirements. In addition, as the rewards are not realized
until the end of the loan term another challenge may be to develop an approach allowing for future customer
behavior to affect a previously learned policy.

Acknowledgements

Raad Khraishi’s research is currently funded by NatWest Group. We thank Greig Cowan, Graham Smith,
and Zachery Anderson for their valuable feedback and support. We would also like to thank Devesh Batra
for his feedback on earlier drafts.

11

References

Naoki Abe, Melissa Kowalczyk, Mark Domick, Timothy Gardinier, Prem Melville, Cezar Pendus, Chandan K.
Reddy, David L. Jensen, Vince P. Thomas, James J. Bennett, Gary F. Anderson, and Brent R. Cooley.
Optimizing debt collections using constrained reinforcement learning. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD ’10, page 75–84. ACM
Press, 2010. doi: 10.1145/1835804.1835817. URL https://doi.org/10.1145/1835804.1835817.

Gah-Yi Ban and N. Bora Keskin. Personalized dynamic pricing with machine learning: High-dimensional
features and heterogeneous elasticity. Manage. Sci., 67(9):5549–5568, September 2021. ISSN 0025-1909,
1526-5501. doi: 10.1287/mnsc.2020.3680. URL https://doi.org/10.1287/mnsc.2020.3680.

Hamsa Bastani, David Simchi-Levi, and Ruihao Zhu. Meta dynamic pricing: Transfer learning across
experiments. Available at SSRN 3334629, 2019. URL http://dx.doi.org/10.2139/ssrn.3334629.

Omar Besbes and Assaf Zeevi. Dynamic pricing without knowing the demand function: Risk bounds and
near-optimal algorithms. Oper. Res., 57(6):1407–1420, December 2009. ISSN 0030-364X, 1526-5463. doi:
10.1287/opre.1080.0640. URL https://doi.org/10.1287/opre.1080.0640.

Xi Chen, Zachary Owen, Clark Pixton, and David Simchi-Levi. A statistical learning approach to per-
sonalization in revenue management. Manage. Sci., January 2021. ISSN 0025-1909, 1526-5501. doi:
10.1287/mnsc.2020.3772. URL https://doi.org/10.1287/mnsc.2020.3772.

Wang Chi Cheung, David Simchi-Levi, and He Wang. Dynamic pricing and demand learning with limited
price experimentation. SSRN Journal, 65(6):1722–1731, 2014. ISSN 1556-5068. doi: 10.2139/ssrn.2457296.
URL https://doi.org/10.2139/ssrn.2457296.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Hedging the drift: Learning to optimize under
nonstationarity. Management Science, 2021. URL https://doi.org/10.1287/mnsc.2021.4024.

Maxime C. Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic pricing. Manage. Sci.,
66(11):4921–4943, November 2020. ISSN 0025-1909, 1526-5501. doi: 10.1287/mnsc.2019.3485. URL
https://doi.org/10.1287/mnsc.2019.3485.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. J. Mach.
Learn. Res., 6:503–556, 2005. URL https://www.jmlr.org/papers/volume6/ernst05a/ernst05a.pdf.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018.

Elena Krasheninnikova, Javier Garćıa, Roberto Maestre, and Fernando Fernández. Reinforcement learning for
pricing strategy optimization in the insurance industry. Eng. Appl. Artif. Intel., 80:8–19, April 2019. ISSN
0952-1976. doi: 10.1016/j.engappai.2019.01.010. URL https://doi.org/10.1016/j.engappai.2019.01.

010.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. CoRR, abs/2006.04779, 2020. URL https://arxiv.org/abs/2006.04779.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://arxiv.org/abs/2005.

01643.

Yuxi Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018. URL http://arxiv.org/abs/1810.

06339.

12

https://doi.org/10.1145/1835804.1835817
https://doi.org/10.1287/mnsc.2020.3680
http://dx.doi.org/10.2139/ssrn.3334629
https://doi.org/10.1287/opre.1080.0640
https://doi.org/10.1287/mnsc.2020.3772
https://doi.org/10.2139/ssrn.2457296
https://doi.org/10.1287/mnsc.2021.4024
https://doi.org/10.1287/mnsc.2019.3485
https://www.jmlr.org/papers/volume6/ernst05a/ernst05a.pdf
https://doi.org/10.1016/j.engappai.2019.01.010
https://doi.org/10.1016/j.engappai.2019.01.010
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339

Yiyun Luo, Will Wei Sun, et al. Distribution-free contextual dynamic pricing. arXiv preprint arXiv:2109.07340,
2021. URL https://arxiv.org/abs/2109.07340.

Lkhagvadorj Munkhdalai, Tsendsuren Munkhdalai, Oyun-Erdene Namsrai, Jong Lee, and Keun Ryu. An
empirical comparison of machine-learning methods on bank client credit assessments. Sustainability, 11
(3):699, January 2019. ISSN 2071-1050. doi: 10.3390/su11030699. URL https://doi.org/10.3390/

su11030699.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov, Ziyu
Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055, 2020. URL https://arxiv.org/abs/2007.09055.

Robert Phillips and Robin Raffard. Price-driven adverse selection in consumer lending. 2011. doi: 10.13140/
2.1.2901.6649. URL http://rgdoi.net//10.13140/2.1.2901.6649. Publisher: Unpublished.

Robert Phillips, A Serdar Şimşek, and Garrett Van Ryzin. The effectiveness of field price discretion: Empirical
evidence from auto lending. Management Science, 61(8):1741–1759, 2015. URL https://doi.org/10.

1287/mnsc.2014.2084.

Robert L Phillips. Pricing credit products. Stanford University Press, 2020.

Rupal Rana and Fernando S Oliveira. Real-time dynamic pricing in a non-stationary environment using
model-free reinforcement learning. Omega, 47:116–126, 2014. URL https://doi.org/10.1016/j.omega.

2013.10.004.

Takuma Seno. d3rlpy: An offline deep reinforcement library. https://github.com/takuseno/d3rlpy, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018. URL
http://www.incompleteideas.net/book/the-book.html.

Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh. Ad recommendation systems for
life-time value optimization. In Proceedings of the 24th International Conference on World Wide Web.
ACM, May 2015. doi: 10.1145/2740908.2741998. URL https://doi.org/10.1145/2740908.2741998.

Margaret S. Trench, Shane P. Pederson, Edward T. Lau, Lizhi Ma, Hui Wang, and Suresh K. Nair. Managing
credit lines and prices for bank one credit cards. Interfaces, 33(5):4–21, October 2003. ISSN 0092-2102,
1526-551X. doi: 10.1287/inte.33.5.4.19245. URL https://doi.org/10.1287/inte.33.5.4.19245.

Francesco Trovò, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Improving multi-armed bandit
algorithms in online pricing settings. Int. J. Approx. Reason., 98:196–235, July 2018. ISSN 0888-613X. doi:
10.1016/j.ijar.2018.04.006. URL https://doi.org/10.1016/j.ijar.2018.04.006.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy evaluation
for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019. URL https://arxiv.org/abs/1911.

06854.

13

https://arxiv.org/abs/2109.07340
https://doi.org/10.3390/su11030699
https://doi.org/10.3390/su11030699
https://arxiv.org/abs/2007.09055
http://rgdoi.net//10.13140/2.1.2901.6649
https://doi.org/10.1287/mnsc.2014.2084
https://doi.org/10.1287/mnsc.2014.2084
https://doi.org/10.1016/j.omega.2013.10.004
https://doi.org/10.1016/j.omega.2013.10.004
https://github.com/takuseno/d3rlpy
http://www.incompleteideas.net/book/the-book.html
https://doi.org/10.1145/2740908.2741998
https://doi.org/10.1287/inte.33.5.4.19245
https://doi.org/10.1016/j.ijar.2018.04.006
https://arxiv.org/abs/1911.06854
https://arxiv.org/abs/1911.06854

A Auto Lending Dataset

We use the period from July 2002 to August 2004 which is the latest month in which all offers expire before
the end of the dataset. In addition, we exclude <1,000 records with anomalous loan values less than $5,000,
missing values for state, or duplicate rows across ApproveDate, ApplyDate, Tier, FICO, CarType, State,
LoanType, Rate, Amount, and Term.

A.1 Data dictionary

Table 2: Auto lending data dictionary

Field Definition

Accept 1 for Funded, 0 for Non-funded
Rate Customer rate
FICO Fico score
Tier Segmentation based on fico scores
State Customer state
Type Finance/Refinance
ApplyDate Application date
ApproveDate Approval date
DaysSinceApp Days between application date and approval date
Term Approved term
Amount Loan amount approved
PreviousRate Previous interest rate for a refinanced car
CarType New, Used or Refinanced
CompetitionRate Competitor’s rate
PrimeRate Prime rate
Months Month indicator
TermClass Segmentation based on terms
PartnerBin Segmentation based on partners
DayOfWeek Day of week
MonthOfYear Month of year

A.2 Train/val/test split

Table 3: Train/val/test split. To assess out-of-sample performance we split our dataset into training,
validation, and testing sets. For hyperparameter selection we use data from May 2004 which is added to the
training set before assessing final performance on the test set.

Dataset Start End Observations % Accept Avg. Reward

Train 2002-07-01 2004-04-30 161,314 21.0% $324
Val 2004-05-01 2004-05-31 6,482 26.1% $447
Test 2004-06-01 2004-08-31 21,471 25.7% $417

14

B Reproducability

B.1 CQL Hyperparameters

Table 4: CQL Hyperparameters. We mainly use the default parameters from d3rlpy with the exception of
the hidden layers, discount rate, dropout, weight decay, and min-max scaling of the actions, features, and
rewards. The hidden layers and discount rate were tuned on the validation set described in Appendix A.2.
For the synthetic results in Section 4.2, we use the same hyperparameters but with only two hidden layers.

n epochs 20
batch size 256
hidden units [64, 64, 64, 64]
n steps 1
weight decay 0.0001
gamma 0.999
alpha threshold 10
conservative weight 5
dropout rate 0.2
n critics 2
use batch norm False
action scaler ’min max’
scaler ’min max’
reward scaler ’min max’
n action samples 10
actor learning rate 0.0001
critic learning rate 0.0003
temp learning rate 0.0001
alpha learning rate 0.0001
initial alpha 1
q func factory ’mean’

B.2 Runtime

Training the algorithm on the full dataset for 20 epochs takes approximately one hour running on CPU on a
2020 MacBook Pro with a 2 GHz Quad-Core Intel Core i5 processor while a single action prediction takes
approximately 640 microseconds.

B.3 Seeds

We use the following seeds in order when running our experiments: 333, 42, and 3.

15

C Baseline price-response model

Dep. Variable: Accept No. Observations: 189267
Model: Logit Df Residuals: 189252
Method: MLE Df Model: 14
Date: Sun, 09 Jan 2022 Pseudo R-squ.: 0.2946
Time: 14:09:56 Log-Likelihood: -69912.
converged: True LL-Null: -99105.
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]

Intercept 44.0661 1.632 26.996 0.000 40.867 47.265
C(CarType)[T.R] 0.2901 0.046 6.242 0.000 0.199 0.381
C(CarType)[T.U] 2.4328 0.021 116.143 0.000 2.392 2.474
C(PartnerBin)[T.2] -1.1915 0.024 -49.851 0.000 -1.238 -1.145
C(PartnerBin)[T.3] -0.3275 0.014 -22.728 0.000 -0.356 -0.299
C(Tier)[T.2] -0.1404 0.025 -5.710 0.000 -0.189 -0.092
C(Tier)[T.3] -0.0351 0.034 -1.036 0.300 -0.101 0.031
C(Tier)[T.7] 0.3245 0.053 6.145 0.000 0.221 0.428
rate -0.6599 0.010 -62.882 0.000 -0.680 -0.639
PrimeRate 0.8124 0.047 17.402 0.000 0.721 0.904
CompetitionRate 0.1619 0.024 6.744 0.000 0.115 0.209
PreviousRate 0.0021 4.78e-05 44.980 0.000 0.002 0.002
np.log(Amount) -1.7937 0.019 -94.566 0.000 -1.831 -1.756
np.log(FICO) -4.4786 0.243 -18.429 0.000 -4.955 -4.002
Term 0.0518 0.001 52.238 0.000 0.050 0.054

16

D Profit-based pricing example

2% 4% 6% 8% 10% 12%

Price

0%

20%

40%

60%

80%

R
es

p
o
n

se

(a) Price-response curve

2% 4% 6% 8% 10% 12%

Price

$0

$200

$400

$600

$800

R
ew

a
rd

(b) Expected reward

Figure 5: Profit-based price optimization for a single arbitrary customer. The plot on the left shows the
probability of a customer accepting a loan at different prices estimated using logistic regression. The plot on
the right uses these probabilities to estimate the expected reward at each price point. The grey dot represents
the historical price and the blue dot represents the reward maximizing price.

17

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Markov Decision Process
	3.2 Reinforcement Learning
	3.2.1 Offline Reinforcement Learning
	3.2.2 Conservative Q-Learning

	3.3 Performance Evaluation
	3.3.1 Offline Policy Evaluation
	3.3.2 Comparison

	4 Results
	4.1 Online Auto Lending
	4.1.1 Data Description
	4.1.2 The CQL Policy
	4.1.3 The value of conservatism

	4.2 Synthetic Price Responses
	4.2.1 Comparison against the optimal policy

	4.3 Ethical considerations

	5 Conclusion and Future Work
	A Auto Lending Dataset
	A.1 Data dictionary
	A.2 Train/val/test split

	B Reproducability
	B.1 CQL Hyperparameters
	B.2 Runtime
	B.3 Seeds

	C Baseline price-response model
	D Profit-based pricing example

