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1 PSEUDOCODE

See Figure 5 for the pseudocode of our method.

2 RELAXING CLASSICAL MEASUREMENT ERROR ASSUMPTIONS

In Hu and Sasaki [2015], the authors assume the noise on the second measurement N , is an unknown monotonic polynomial
function of X with additive noise. The estimation procedure amounts of first identifying the polynomial function of X ,
before applying a technique similar to Schennach [2004]. In this work we take the first step to extend the estimator of
Schennach [2004] to the confounded setting, and leave for future work the relaxation on the assumptions of the second
measurement.

3 FURTHER ASSUMPTIONS ON KERNEL IDENTIFICATION

We also employ the following technical assumptions to enable causal effect estimation in the latent treatment setting.
Assumption 8 Z,X ,M,N ,Y are measurable, separable Polish spaces.

Assumption 8 is a regularity condition that allows us to define the conditional mean embedding operator.
Assumption 9 Y is bounded.
Assumption 10 k(x, ·), k(m, ·), k(n, ·) are continuous, bounded by κ > 0, and their feature maps are measurable. (ii)
k(x, ·), k(m, ·), k(n, ·) are characteristic kernels.

Assumption 10 is a standard assumption employed in kernel causal learning (Singh et al. [2019] Mastouri et al. [2021]).

4 s−SAMPLE ESTIMATES

For clarity, we state the s−sample estimates for ψ̂PX|z (α), ψ̂PN|z (α), ψ̂PM,N|z (υ, α), which are obtained from Kernel
Ridge Regression, and the relevant derivatives below:

ψ̂PX|z (α) =

s∑
j=1

γ̂X(z)je
iαxj (29)

ψ̂PN|z (α) =

s∑
j=1

γ̂X(z)je
iαnj (30)

ψ̂PM,N|z (α) =

s∑
j=1

γ̂M,N (z)je
i(υmj+αnj) (31)
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Algorithm 1 MEKIV training
Input: M1, M2, N1, N2, Z1, Z2, Y1, Y2 , kernel-
Type:=RBF kernel

Step 1 Input: M1, N1, Z1, kernelType
1: γ̂N ← KRR(N1, Z1, kernelType) [Singh et al.,

2019, Stage 1 estimate]
2: Stack M1 and N1 to get M1N1.
3: γ̂MN ← KRR(M1N1, Z1, kernelType)
4: return γ̂MN , γ̂N

Step 2 Input: kernelType, γ(s1)N , γ(s1)MN , M1, N1,
Z2, number of α samples := C,

1: Take q(α) as the Inverse Fourier Transform of
the kernel rescaled by 1

2π .
2: Take {žj}s2j=1 to be the set of data points in Z2.

3: {x̂j}s1j=1, λ̂X ← OptimiseX1(q(α), γ
(s1)
N ,

γ
(s1)
MN , M1, N1, {žj}s2j=1, C)

4: return {x̂j}s1j=1, λ̂X

Step 3 Input: {x̂j}s1j=1, λ̂X , Y2, Z2, Z1

1: ξ ← KIVStage2Validation [Singh et al., 2019,
A.5.2]

2: f̂ ← KIVStage2({x̂j}s1j=1, λ̂X , Y2, Z2, Z1, ξ)
3: return f̂

Algorithm 2 Step 2: Learning the CME for PX|Z

Input: q(α), γ(s1)N , γ(s1)MN , M1, N1, number of α samples := s2,
{žj}s2j=1,

1: function OPTIMISEX1
2: {αj , žj , (wMN )j}(s2)

2

j=1 = CreateTrainData(q(α), γ̂N , γ̂MN ,
M1, N1 )

3: initialize X̂ = (M1 +N1)/2

4: initialize λ̂X = λ̂N
5: while not converged do
6: Use Eq. (19) to calculate {(wX)j}(s2)

2

j=1 from {αj , žj}(s2)
2

j=1 .

7: Compute loss = MSE({(wX)j , (wMN )j}(s2)
2

j=1 ) ▷ Eq.(25)
8: Compute∇X̂(loss), ∇λ̂X

(loss)

9: X̂ ← X̂−step×∇X̂(loss); λ̂X ← λ̂X−step×∇λ̂X
(loss)

10: end while
11: return X̂ , λ̂X
12: end function

13: function CREATETRAINDATA
14: Sample {αj}Cj=1 from q(α)

15: Take all pairs in {αj}Cj=1 × {žj}
s2
j=1 to get {(αj , žj)}C×s2

j=1

16: Substitute {(αj , žj)}C×s2
j=1 , along with M1, N1, γ̂N , γ̂MN into

Eq. (20) to calculate the labels {wj}C×s2
j=1 .

17: return {αj , žj , wj}C×s2
j=1

18: end function

Figure 5: Our proposed algorithm. Algorithm 1 outlines the end-to-end algorithm from training data to the structural estimator f̂ .
Algorithm 2 outlines our main contribution, step 2 of the algorithm where we learn the CME for the latent variable X .

With:

γ̂X(z) = (KZZ + sλ̂XI)
−1KZz (32)

γ̂N (z) = (KZZ + sλ̂NI)
−1KZz (33)

γ̂M,N (z) = (KZZ + sλ̂M,NI)
−1KZz (34)

And the derivatives:

∂

∂α
ψ̂PX|z (α) =

s∑
j=1

ixj γ̂X(z)je
iαxj (35)

∂

∂υ

∣∣∣∣
υ=0

ψ̂PM,N|z (α, υ) =

s∑
j=1

imj γ̂M,N (z)je
iαnj (36)

5 DEMAND DESIGN - FURTHER RESULTS

See Figure 6 for further results on Demand design with Gaussian measurement error.

6 PROOFS

Proof of Theorem 1.
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Figure 6: Demand design - Gaussian Measurement Error.

Proof. First we note that by Fubini’s theorem the Fourier Transform of the (ground truth) conditional mean embedding
µPX|z can be computed as:

µ̃PX|z (α) = q(α)ψPX|z (−α) (37)

∥µ̂(s)
PX|z

− µPX|z∥HX (38)

=

∫ ∞

−∞

∣∣∣ ˜̂µ(s)
PX|z

(α)− µ̃PX|z (α)
∣∣∣2

q(α)
dα (39)

=

∫ ∞

−∞
q(α)

∣∣∣ψ̂(s)
PX|z

(−α)− ψPX|z (−α)
∣∣∣2 dα (40)

Since k is a symmetric kernel i.e. even function, q(α) = 1
2π k̃(α) is a real and even measure, so∫ ∞

−∞
q(α)

∣∣∣ψ̂(s)
PX|z

(−α)− ψPX|z (−α)
∣∣∣2 dα (41)

=

∫ ∞

−∞
q(α)

∣∣∣ψ̂(s)
PX|z

(α)− ψPX|z (α)
∣∣∣2 dα (42)

= ∥ψ̂(s)
PX|z

(α)− ψPX|z (α)∥L2(R,q) (43)

Consequentially, whenever ∥µ̂(s)
PX|z

− µPX|z∥HX < ϵ, ∥ψ̂(s)
PX|z

− ψPX|z∥L2(R,q) < ϵ. and vice versa. Therefore, ψ̂(s)
PX|z

−→
ψPX|z in L2(R, q) if and only if µ̂(s)

PX|z
−→ µPX|z inHX . Moreover, if they converge, the convergence happen at the same

rate.

Proof of Theorem 2.

Proof. Since there is a bijection between characteristic functions and probability distributions, we only have to show that
the characteristic function satisfying Eq. (17) is unique.

Now Eq. (17) can be rewritten as

dψPX|ž (α)/dα

ψPX|ž (α)
= ig(α) (44)

d

dα
log

(
ψPX|ž (α)

)
= ig(α) (45)

with g(α) =
E[MeiαN |ž]
E[eiαN |ž]

(46)



1.5 1.0 0.5 0.0 0.5 1.0 1.5
Income level (standardised)

0.4

0.2

0.0

0.2

0.4

Co
gn

iti
ve

 a
bi

lit
y 

(s
ta

nd
ar

di
se

d)

truth
KIV-oracle
MEKIV
KIV-M
KIV-MN

Figure 7: Dahl-Lochner Income on Cognitive outcome

Now suppose there is another characteristic function ψ(α) which also satisfies Eq. (17) for all α ∈ R, i.e.

d

dα
log(ψ(α)) = ig(α) (47)

Let f(α) = log
(
ψPX|z (α)

)
, g(α) = log(ψ(α)). f ′ = g′. But since characteristic functions are always 1 at α = 0,

f(0) = g(0) = log(1) = 0. So by Lemma 1 f = g. Since log is an invertible function whose inverse is exp, we must have
ψPX|z = exp(f) = exp(g) = ψ. i.e. the solution to Eq. (17) is unique.

7 REAL-WORLD EXPERIMENT: INCOME ON CHILDREN’S OUTCOME

Method MSE
KIV-Oracle 0.0345 ± 0.0190

MEKIV 0.0295 ± 0.0144
KIV-M 0.0318 ± 0.0199

KIV-MN 0.0310 ± 0.0142

Table 1: MSE, income-on-children’s-outcome data

As described in Section 6 of the main paper, we apply our algorithm to the dataset described in Dahl and Lochner [2012]. In
order to obtain causal ground truth, we fit a simulation model to the observed data, obtaining the structural equation f . We
then generate data from the fitted simulation model, for which we now have access to causal ground truth. We then run
MEKIV along with the baselines on the generated dataset. Table 1 present the results. We observe that the performance
across all methods do not differ much, and in particular the perturbations around the average MSE overlap. This prompts
us to look into the performance of the learnt estimators and we plot the estimated E[Y |do(A)] in Figure 7. In Figure 7,
we observe that in fact none of the methods work well, including KIV-oracle. This suggests that the instrumental variable
is only weakly associated with the input. A simple analysis on the dataset suggests exactly this: the average increase in
average yearly income from 1985 to 2000 is around $2000, whereas the largest increase between the EITC credit rate of two
consecutive years is about 10%, which corresponds to only a 10% portion of the increase in income.
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