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ABSTRACT
Audio quality degradation can have many causes. For musical ap-
plications, this fragmentation may lead to highly unpleasant expe-
riences. Restoration algorithms may be employed to reconstruct
missing parts of the audio in a similar way as for image reconstruc-
tion — in an approach called audio inpainting. Current state-of-the
art methods for audio inpainting cover limited scenarios, with well-
defined gap windows and little variety of musical genres. In this
work, we propose a Deep-Learning-based (DL-based) method for
audio inpainting accompanied by a dataset with random fragmen-
tation conditions that approximate real impairment situations. The
dataset was collected using tracks from different music genres to
provide a good signal variability. Our best model improved the qual-
ity of all musical genres, obtaining an average of 12.9 dB of PSNR,
although it worked better for musical genres in which acoustic
instruments are predominant.
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1 INTRODUCTION
Audio quality degradation can have many causes. Signals can be
disturbed by noise, or information can be corrupted by packet losses
during transmission (e.g. voice-over-IP transmission), audio capture
devices may exhibit many kinds of malfunctioning as well physical
media may sometimes be partially damaged [? ]. While for some
applications short gaps in audio might be acceptable, for music
applications this fragmentation may lead to highly unpleasant ex-
periences. Restoration algorithms may be employed to reconstruct
missing parts of the audio in a similar way as for image reconstruc-
tion. Adler et. al.[? ] were the first to address this problem as an
analogous to the image inpainting task — an approach called audio
inpainting.

State-of-the-art methods for audio inpainting are usually based
on Deep Learning (DL). Some of these methods are applied to the

task of speech [? ? ? ] or music [? ? ? ] quality enhancement. How-
ever, such works cover limited scenarios, with well-defined gap
windows and little variety of musical genres. This work investigates
the application of benchmarking DL models for audio inpainting
accompanied by a music dataset with random fragmentation condi-
tions that approximate real impairment situations.

Given a fragmented audio signal, our model can predict the audio
frequencies that were lost. Unlike in other methods, in our approach,
we can predict frequencies in gaps of variable-sized windows and
in random positions. Another contribution of this work is the con-
struction of a dataset for the music quality enhancement task with
many advantages over existing ones, as it has a more significant
amount of music (13,583 tracks), and exhibits a greater variety of
musical genres. Additionally, we analyzed the performance of DL
models in each of the musical genres.

The remainder of this paper is organized as follows. Section 2
summarizes how recent work has been successfully applying DL-
based methods in order to increase audio quality. Next, Section 3
describes the construction of our dataset. In Section 4 we intro-
duce our proposal that incorporates the DL model to recover lost
frequencies from fragmented audio signals, followed by Section 5
where we describe the experiments conducted to evaluate the effec-
tiveness of our proposal. Section 6 is devoted to our final remarks
and conclusions.

2 RELATEDWORK
Adler et al. [? ] were the first to define the audio reconstruction task
as an audio inpainting problem, analogous to the image inpaint-
ing task. They define the reconstruction as the inverse problem of
overlapping time-domain frames. Each inverse problem is solved
using a sparse representation with the Orthogonal Matching Pursuit
algorithm and the discrete cosine or Garbor dictionary. Although
they only use linear methods for reconstruction, their work has
brought a significant contribution by defining a previously unex-
plored problem.

Recent work investigating audio enhancement employs deep-
learning-based such as Autoencoders [? ], Generative Adversarial
Networks (GANs) [? ], and Long-Short Term Memory (LSTM) [? ].

Lim et al. [? ] present a super-resolution method for spectrogram
band quality enhancement. They considered that the autoencoder
strategy could achieve a satisfactory result using the frequency
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and time domain representations. The autoencoder, called Time-
Frequency Network (TFNet), has a branch for each representation,
which in the last layer are merged into a high-resolution signal.

Marafioti et al. [? ] focuses on temporal gaps reconstructions
of audio with a fixed duration of 64 milliseconds. They built a
controlled environment to demonstrate that the context associated
with the lost signal facilitates the reconstruction process. Their
dataset was composed exclusively of instrumental genre music,
and the approach consisted of extracting features, such as linear
prediction coding (LPC) and spectrogram. For each 320 ms, they
applied a 64 ms gap in the center of the interval. Thereafter, a deep
convolutional neural network acts as a context encoder to complete
the produced central gaps. Finally, the reconstructed tracks were
evaluated using the Objective Difference Grades (ODG) metric [? ]
that measures the human perception of the reconstruction.

Subsequently, Marafioti et al. [? ] presented a GAN-based audio
painting strategy for restoring long temporal gaps in music tracks.
Their solution, called GACELA, considers two main aspects for
reconstruction. Firstly, it determines five parallel discriminators to
evaluate the reconstruction at five different context scales of the
central gap. Secondly, it evaluates each context to determine the
latent variables of the conditional GAN. They performed tests with
gaps ranging from 320 ms to 1,500 ms, still centrally positioned in a
larger context. However, they conclude that the artifacts generated
during the reconstruction process remain noticeable.

Ebner et al. [? ] presented a GAN-based reconstruction strategy
for working with long gaps up to 500 ms. In their approach, gaps
need to be centered in a specific period larger than the region
to be repaired. They propose a Wasserstein GAN [? ] with two
discriminators, to evaluate a short and a long context prediction
respectively. Then, these short and long context predictions are
merged in an attempt to generate as little noise as possible for the
listener. To demonstrate their results, they used instrumental music
tracks from popular datasets such as MAESTRO [? ] and evaluate
the reconstruction using the ODG perception metric.

Morrone et al. [? ] showed that audio inpainting tasks can also
be performed in a multimodal way. They use both audio and video
features concatenated frame-by-frame as inputs to a stacked Bi-
directional LSTM (BLSTM). Their dataset contains a controlled
content of an actor speaking to a camera positioned in front of
him. Although the gaps to be filled in this strategy were randomly
positioned, it is essential to point out that during the reconstruction
process, the positions were known. They showed that when the
gaps are too long, audio features are not enough for reconstruction,
requiring the injection of visual features.

Unlike previous work, we propose an audio inpainting strategy
that does not know gap positions. Moreover, by using autoencoders,
our approach aims to generalize the inpainting process across dif-
ferent music genres.

3 DATASET
In this work, we use a part of the Free Music Archive (FMA)
dataset [? ] and adapt it for the audio reconstruction task. FMA is a
large-scale dataset for evaluating several tasks in Music Informa-
tion Retrieval (MIR). It provides full-length and high-quality audio,
permissive license, pre-computed features, together with track- and

user-level metadata, tags, and free-form text such as biographies.
It consists of 343 days of audio from 106,574 tracks from 16,341
artists and 14,854 albums arranged in a hierarchical taxonomy of
161 genres.

To compose our dataset, we selected an FMA subset with 13,583
tracks distributed across 16 musical genres. Following the study
done in [? ], we selected the eight most representative musical
genres to compose the training, validation, and part of the test set:
Electronic, Experimental, Rock, Hip-Hop, Folk, Instrumental, Pop,
and International. Additionally, we selected eight music genres
in order to measure the model’s generability: Classical, Historic,
Jazz, Country, Soul-RnB, Spoken, Blues, and Easy Listening. Table
1 describes the distribution of each musical genre in the training,
validation, and test sets.

Table 1: Distribution of musical genres in the training, vali-
dation and test sets.

Genre Audio Qtdy Train. Valid. Test
Electronic 1637 800 200 637

Experimental 1624 800 200 624
Rock 1608 800 200 608

Hip-Hop 1585 800 200 585
Folk 1518 800 200 518

Instrumental 1349 800 200 349
Pop 1186 800 200 186

International 1018 800 200 18
Classical 619 0 0 619
Historic 510 0 0 510
Jazz 384 0 0 384

Country 178 0 0 178
Soul-RnB 154 0 0 154
Spoken 118 0 0 118
Blues 74 0 0 74

Easy Listening 21 0 0 21

We have reduced the audio sampling rate to facilitate the task
of predicting frequencies. Originally, FMA dataset provides the
audios in the MP3 stereo format of 44 kHz and bitrate 320 kbps. We
converted the selected audio to the WAV mono format of 16 kHz
and bitrate of 256 kbps. Next, we extracted the spectrogram from
each audio using the Short-Time Fast Fourier (STFT) algorithm of
the Tensorflow library.1 This process generates spectrograms with
dimensions of 7500 × 128 for each audio. The computational power
to train any model with these input dimensions is very high. So, we
have split each spectrogram into patches of size 128 × 128, which
represent 512 ms of the original audio. Finally, to generate the input
for the prediction models, we perform a process to create random
gaps, illustrated in Figure 1.

To create the gaps, we delete audio frequencies in windows of
random sizes between 10% and 70% of the size of each patch. It
was done in three steps: (1) The spectrogram is extracted from the
audio using the STFT; (2) The spectrogram is split into patches of
common size, these patches correspond to the set Y (ground truth);

1https://www.tensorflow.org/api_docs/python/tf/signal/stft
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