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A principal has to take a binary decision. She relies on information pri-
vately held by an agent who prefers the same action regardless of his
type. The principal cannot incentivize with transfers but can learn
the agent’s type at a cost. Additionally, the principal privately observes
a signal correlated with the agent’s type. Transparent mechanisms are
optimal: the principal’s payoff is the same as if her signal was public. A
simple cutoff form is optimal: favorable signals ensure the agent’s pre-
ferred action. Signals below this cutoff lead to the nonpreferred action
unless the agent appeals. An appeal always triggers type verification.
I. Introduction
Aprincipal has to take a binary decision.Her preferences are determined
by an agent’s private type. The agent prefers one of the two actions in-
dependent of his type. The principal cannot use monetary transfers to
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incentivize the agent to reveal his type. Instead, she privately observes a
costless imperfect signal about the agent’s type and can verify his exact
type at a cost.
Applications covered by this setting include (1) a human resources

department decides whether to hire a candidate, (2) a judge decides
whether to acquit or convict a defendant, and (3) a competition authority
decides whether to grant or deny a company permission to acquire or
merge with another firm.
The agent has a clear preference toward one action: the candidate

wants to be hired, the defendant wants to be acquitted, and the company
wants to merge. The principal’s preferences depend on the agent’s pri-
vate type: the candidate’s ability, the defendant’s guilt, or the company’s
competitive position in the market.
Inmany environments, monetary transfers to elicit the agent’s type are

not feasible;1 beyond the above-mentioned applications,monetary incen-
tive schemes are rarely observed in bureaucracies and public sector deci-
sions. In these environments, the principal can often learn the agent’s
type through verification, for example, conducting an assessment center,
a trial, or a market analysis. Verification is costly, so the principal wants to
economize on it.
Typically, costly information acquisition is not the only way to learn

about the agent’s private type. The human resources department receives
references from previous supervisors, the judge sees the outcome of pre-
trial investigations, and the competition authority has sector-specific
knowledge from its supervisory function. That is, the principal privately
observes a signal about the agent’s type.
Private information and costly verification are natural instruments in

bureaucracies whenmonetary transfers are absent. In this paper, we want
to explore how the principal can use her private information to mini-
mize verification costs and decision inefficiencies. To this end, we analyze
principal-optimal mechanisms in this setting.
As the principal’s signal is private, the agent forms a belief over the sig-

nal realization. As signal and type are correlated, this belief varies with the
agent’s type. Can the principal benefit from secrecy to screen the agent
1 The assumption is that payments cannot depend on the agent’s report. Even though a
public sector job entails payments, if the payment is fixed, it cannot be used to incentivize
truthful reports of the candidate’s ability.
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along the various beliefs, or should shemake her private signal public be-
fore interacting with the agent? This question is relevant in practice, as it
determines whether secret procedures perform better than transparent
procedures. In sharp contrast to settings in which money can be used
to screen the agent, we show that transparent procedures are optimal.
Results.—The principal’s benefit from choosing the agent-preferred

action over the alternative increases in the type. We show that among
all Bayesian incentive-compatible (BIC) mechanisms, it is optimal for
the principal to commit to a simple cutoff-with-appeal procedure: if the sig-
nal makes her sufficiently certain that the agent’s type is high, she takes
his preferred action without communicating with him. If the signal falls
below this cutoff, she takes the nonpreferred action by default but gives
the agent the possibility to appeal. Upon appeal, the principal verifies the
agent’s type and revises her decision whenever the type exceeds a certain
threshold. The optimal appeal threshold is such that for all types above
the threshold, the principal’s benefit from revising her decision exceeds
the verification cost.
An important feature of this mechanism is that it does not require the

principal’s signal to be secret. Therefore, the principal cannot profit from
strategically hiding or releasing parts of her information. This makes the
case for transparency. For the applications mentioned above, this implies
that the human resources department showing the references to the can-
didate, the judge informing the defendant of pretrial investigation re-
sults, or the competition authority publicizing her market assessments
does not constrain the implementation of optimal procedures.
The question whether procedures and institutions should be transpar-

ent has gained a lot of attention in the past decades in politics, corporate
governance, and law; see Bushman, Piotroski, and Smith (2004), Prat
(2005), and references therein for contributions by economists. Transpar-
ent procedures have many advantages, most prominently accountability
andpredictability. Considering these advantages, any nontransparent pro-
cedure must be justified. Often, these justifications invoke efficiency con-
cerns, as in Prat (2005). Our paper contributes to this discussion by show-
ing, for a natural class of problems, that transparency does not conflict
with efficiency. Therefore, efficiency cannot justify secrecy.2 Our findings
are in line with the continual advancement of transparency in the private
and public sectors. One example is the evolution of codes of criminal pro-
cedure in continental Europe. While modern codes prescribe the disclo-
sure of all potential charges to the defendant, this was not always the case.3

Moreover, the cutoff-with-appealmechanism is deterministic. Together
with transparency, this absence of randomization implies that the procedure
2 One alternative justification beyond our model could be privacy concerns. For a broad
discussion, see Hood and Heald (2006).

3 See sec. III.B for a discussion of the development of the Austrian code of procedure.
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is fully predictable for the agent.Oncehe learns the signal, he canperfectly
predict the outcome. This enables the public to hold institutions account-
able in case of deviations.
As the first step in the analysis, we combine a revelation principle with

optimality arguments to show that it is optimal for the principal to use a
truthful direct mechanism. A direct mechanism specifies, for any combi-
nation of type report and signal realization, a probability of verification
and a probability that the agent-preferred action is taken. Whenever ver-
ification reveals that the agent’s reported type is different from his true
type, he is punished with the nonpreferred action. In the remainder,
we take the principal’s decision to be an allocation choice (where the
agent-preferred option is to allocate). Since the agent does not know
the signal realization, from his perspective, every report leads to an allo-
cation lottery. A direct mechanism is BIC if reporting his true type max-
imizes the agent’s expected payoff.
The standard approach under independence—to characterize mech-

anisms in their reduced form with interim expectations—does not apply
to our setting because different types hold different beliefs about the sig-
nal realization. This belief heterogeneity requires new techniques to
characterize optimal mechanisms. We show that it is without loss for
the principal to use transparent procedures. In a transparent procedure,
publishing the signal eliminates the belief heterogeneity.
The optimality of transparency stands in stark contrast to existing re-

sults on mechanism design with transfers where belief heterogeneity is
used to eliminate agency costs.4 To explain this contrast, we illustrate
how the principal could potentially exploit secrecy to increase efficiency.
We present mechanisms that can be implemented under secrecy but are
infeasible when the signal is public. However, our main conceptual con-
tribution shows that the optimal mechanism does not make use of secrecy.
It satisfies three properties that eliminate the benefit from secrecy: it is de-
terministic, and the allocation is pointwise increasing in the agent’s type
and pointwise increasing in the principal’s signal. Our transparency result
follows by verifying that these properties indeed eliminate any benefit
from secrecy. To the best of our knowledge, this is the first result of this
kind under correlated information.5

In many applications the verification technology may be imperfect.
Take the hiring example mentioned above. First, a low-ability type may
sometimes achieve a high test score by luck. Second, the variety of ability
types of a job candidate may exceed the available degrees and certificates
4 See Myerson (1981), Crémer and McLean (1988), and McAfee and Reny (1992). See
sec. VI for a discussion of the related literature.

5 While Crémer and McLean (1988) demand dominant incentive compatibility in the
second stage, the surplus extraction in the first stage crucially exploits that agents do not
know the realization of the correlated information.
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that can be verified.We call the first formof imperfection noisy verification
and the second form, in which different types remain indistinguishable in
the verification process, coarse verification. In both cases, we characterize
optimal transparent mechanisms. Under noisy verification, the optimal
transparent mechanism shows small interior allocation probabilities for
some types, violating the nonrandomness property. As a consequence,
the principal can beneficially shift these small probabilities across signals
under secrecy. This benefit from secrecy is negligible for small noise in the
verification. In particular, it vanishes linearly in the verification error. Un-
der coarse verification, the optimal transparent mechanism satisfies the
three properties above—monotonicity in type and signal and nonran-
domness—and is also optimal in the larger class of secret mechanisms.
There is no loss from transparency.
In the online appendix, we analyze the cases when the agent also incurs

a cost from verification and when the principal’s signal has a direct effect
on her preferences. Again, the three properties introduced above help us
to determine whether transparency is optimal. In the case when the
agent’s verification cost makes false appeals less attractive, the principal
can save costs by slightly lowering the verification probability. The result-
ing mechanism is not deterministic, and the principal can benefit from
secrecy. This benefit is negligible for small agent costs. In particular, it van-
ishes linearly in the agent’s cost. Finally, suppose that the principal’s sig-
nal has a direct effect onher payoffs.When this effect is positive, our result
carries over: transparency comes without loss for the principal. If, in con-
trast, the direct effect is negative, the principal benefits from secrecy be-
cause the optimal transparent mechanism is decreasing in the signal.
Section II contains themodel and the revelation principle (theorem 1).

Section III presents the optimal mechanism (theorem 2). The proof is
contained in section IV: proposition 1 establishes our transparency re-
sult, and proposition 2 characterizes optimal transparent mechanisms.
In section V, we analyze imperfect verification, and section VI discusses
related literature.
II. Model

A. Setup
The principal (she) decides whether to allocate a single, indivisible good
to the agent (he). Her allocation preferences depend on the agent’s pri-
vate type t. The set of possible types T is finite and ordered.
While t is unknown to the principal, she receives costless information

about it in form of a private signal s ∈ S , finite and ordered. Type t and
signal s are jointly distributed with probability f ðt, sÞ > 0 for all t ∈ T ,
s ∈ S . The signal satisfies the monotone likelihood ratio property (MLRP):
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for all t < t 0 ∈ T , the ratio f ðt 0, sÞ=f ðt, sÞ is increasing in s. This implies that
a higher signal is more indicative of a higher type.6 In addition to the cost-
less information, the principal has the option to learn t at verification cost
c > 0. Verification is perfect; she learns the exact type.7

The principal derives valuation vðtÞ ∈ R when allocating the good to
type t. The value she derives from not allocating is 0. Therefore, v repre-
sents the net value for the principal. Valuation v(t) is nondecreasing in t,
and there are t 0, t 00 ∈ T , with vðt 0Þ < 0 < vðt 00Þ.8 When the agent has type t,
he receives utility uðtÞ > 0 from the good. His utility from not receiving
the good is always zero.
B. Mechanisms
We study the interaction between principal and agent in a mechanism-
design setting and characterize mechanisms that maximize the princi-
pal’s expected valuation net of verification costs. The principal can de-
sign arbitrary mechanisms, and the agent plays a Bayesian best response
after learning his type. A key question in this setting is, Can the principal
use her private information—the signal—to elicit the agent’s informa-
tion? We give the principal maximal flexibility to use her information
and assume that the signal is contractible. She can commit tomechanisms
that are contingent on the signal realization.9 In the appendix, we define
a broad class of dynamic mechanisms that allow the principal to release
garblings of her information at any point of the interaction. This covers
any potential for information design by the principal. Theorem 1 shows
that this can be capturedwithout loss within a simple class ofmechanisms.
A direct mechanism specifies for any type-signal pair (t, s) two probabil-

ities, x(t, s) and z(t, s), and proceeds as follows. It asks the agent to report
his type. On the basis of this report t and the signal realization s, one of
three distinct events occurs:

1. with probability x(t, s), the good is allocated to the agent, and he is
not verified;

2. with probability z(t, s), the agent is verified; then, the good is allo-
cated to him if and only if he is found to have reported truthfully;
6 The MLRP is equivalent to requiring that t and s be affiliated.
7 Whether the verification technology reveals the true type of the agent or just confirms

for a specified type whether the agent has this type or not does not alter our results.
8 Otherwise, the principal can implement the optimal allocation without the agent’s

information.
9 She can commit to truthfully communicate her signal realization to the mechanism.

An alternative approach would be to consider the informed-principal problem, requiring
the mechanism to make truthful communication incentive compatible for her. We show in
sec. VI that our results are robust to this modeling choice. The optimal mechanism consti-
tutes an equilibrium in the informed-principal problem.
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3. with probability 1 2 xðt, sÞ 2 zðt, sÞ, the good is not allocated to the
agent, and he is not verified.

Feasibility requires the total allocation probability xðt, sÞ 1 zðt, sÞ not to
exceed 1. In the remainder, we refer to x(t, s) as the nonverified allocation
probability. A mechanism is called truthful if reporting truthfully is a best
response for all types. The theorem below combines a revelation princi-
ple with optimality considerations.
Theorem 1. There is a direct truthful mechanism that maximizes

the principal’s expected valuation net of verification costs.
In the proof in appendix A, we first derive a revelation principle—rem-

iniscent of Ben-Porath, Dekel, and Lipman (2014) and Akbarpour and Li
(2020)—for our setting with correlated information. Then, we exploit
that any optimalmechanismhas to satisfy two intuitive properties: (1)maxi-
mal punishment : after verification reveals a misreport, the agent does not
receive the good; and (2) minimal verification: after his report is verified
to be true, the agent receives the good for sure.
Truthful directmechanisms donot restrict the principal’s ability to stra-

tegically release information. Take amechanism that is not in direct form.
Suppose that themechanism reveals a garbling of the signal and then asks
the agent to send amessage. Different realizations of the garbling induce
different beliefs about the signal before the agent sends hismessage. The-
orem 1 shows that this information-design mechanism can be replicated
by a directmechanism.10 The directmechanism asks the agent forhis type
and then internally simulates the original mechanism, with the agent’s
best response corresponding to the reported type. Although the agent
does not receive the information from the garbling before his report in
a direct mechanism, when evaluating the expected utility from different
reports, he takes the perspective of the simulated agent. Through this
channel, the information design in the original mechanism affects the in-
centives of the agent to report truthfully in the direct mechanism.
C. Incentive Compatibility
In standardmechanism-design problems, the set of feasible allocations is
pinned down by the incentive-compatibility (IC) constraints through the
integral characterization by Myerson (1981). Our design setting is non-
standard in two ways: the absence of transfers and the presence of corre-
lated information. Ben-Porath, Dekel, and Lipman (2014) show that the
absence of transfers impedes the integral characterization, and they pre-
sent another tractable characterization for this case when information
is independently distributed. In contrast to our setting, there, interim
10 We discuss this formally in the appendix (see corollary 1).
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expectations are sufficient to characterize payoffs. Correlated informa-
tion impedes this approach (see example 1 below) and requires an alter-
native methodology.
1. Bayesian Incentive Compatibility
Absent monetary transfers, the agent cares solely about the probability of
receiving the good. Consider the incentives of an agent of type t. He does
not know the signal realization. If he reports truthfully, he faces the ran-
dom allocation probability xðt, sÞ 1 zðt, sÞ, which depends on the ran-
dom variable s. Whether his report is verified is irrelevant for him. If,
however, type t makes a report t̂ ≠ t, he receives the good with random
probability xðt̂ , sÞ, that is, only if he is not verified. Therefore, type t pre-
fers reporting t to reporting t̂ if

uðtÞ � Es xðt, sÞ 1 zðt, sÞjt½ � ≥ uðtÞ � Es xðt̂, sÞjt½ �:

Since every type derives strictly positive utility from the good (uðtÞ > 0),
type t’s preference intensity can be eliminated from the IC constraint. The
agent simply maximizes his expected allocation probability, and the Bayes-
ian incentive constraints can be expressed as follows: for all t, t̂ ∈ T ,

Es xðt, sÞ 1 zðt, sÞ 2 xðt̂ , sÞjt½ � ≥ 0: (BICt,t)

In our model with correlated information, different types hold differ-
ent beliefs about s, so that the interim expected allocation probability
from a given report is different for different types. Hence, with correla-
tion, one must consider the interim expectations for all combinations
of true type and report. This is different with independent information,
where the expected utility of any misreport can be treated as indepen-
dent of the true type. By independence, in Ben-Porath, Dekel, and
Lipman (2014), incentive compatibility holds whenever the type with
the lowest expected allocation probability does not want to misreport.
The following example illustrates that this does not hold with correla-
tion; the example will be revisited below to build intuition for our results.
Example 1. The agent’s type is either high or low, t ∈ fL,Hg. The

principal observes signal s ∈ f‘, hg. Type and signal are jointly distrib-
uted according to

f ðL, ‘Þ f ðL, hÞ

f ðH , ‘Þ f ðH , hÞ

 !
5

1

6

2 1

1 2

 !
: (1)

Consider the following nonverified allocation probabilities,

x 5 xðL, ‘Þ, xðL, hÞ, xðH , ‘Þ, xðH , hÞð Þ 5 0
ðL,‘Þ

, 1
ðL,hÞ

, 1
ðH ,‘Þ

, 0
ðH ,hÞ

� �
, (2)

BICt;t̂ð Þ



costless information and costly verification 000
which allocate if and only if report and signal do notmatch. Suppose that
there is no verification. This mechanism is not incentive compatible.
Both types prefer to misreport because they put higher probability on
the matching signal. For both types, the interim expected allocation
probability from truth telling is 1/3, while misreporting yields 2/3.
A general characterization of incentive compatibility with belief hetero-

geneity remains an open question. Instead of characterizing all incentive-
compatible mechanisms explicitly, Crémer and McLean (1988) and
McAfee and Reny (1992) show that, with money, the belief heterogeneity
allows the principal to extract all surplus from the agents.11 Since full sur-
plus extraction is not feasible in our setting, we consider the following,
more restrictive incentive constraints as an intermediate step toward char-
acterizing optimal mechanisms.
2. Ex Post Incentive Compatibility (EPIC)
and Transparency
We call a mechanism transparently implementable if there is an imple-
mentation that starts with the principal making her information public.
For direct mechanisms, transparency requires that, after observing any
signal s, all types t report truthfully. This is, thus, equivalent to requiring
EPIC: for all t, t̂ ∈ T and for all s ∈ S ,

xðt, sÞ 1 zðt, sÞ 2 x ð̂t, sÞ ≥ 0: (EPIC(s)t,t)

Every Bayesian incentive constraint ðBICt ,̂tÞ is a weighted sumof the cor-
responding ðEPICðsÞt ,̂tÞ constraints. Therefore, every incentive-compatible
transparent mechanism is also BIC. In example 1, after learning the sig-
nal, both types agree which report is most profitable (the report contrary
to the signal).With transparency, when all types learn the signal, the belief
heterogeneity is resolved. This facilitates the characterization of optimal
transparent mechanisms (sec. IV.B). Paired with our main conceptual
contribution (sec. IV.A)—that any BICmechanism can bemade transpar-
ent without loss for the principal—this yields optimal mechanisms in the
larger class of BIC rules.

ðEPICðsÞt;t̂Þ
III. Optimal Mechanisms
The principal designs a mechanism that maximizes her expected utility
from the allocation net of the cost of verification. If the good is assigned
without verification, she gains v(t). In the case of allocation with prior ver-
ification, she additionally pays cost c. Hence, the principal’s problem can
be stated as the following linear program:
11 They establish the existence of an incentive-compatible mechanism that allocates ef-
ficiently and extracts all surplus and, therefore, must be optimal.



000 journal of political economy
max
ðx,zÞ≥0

E½xðt, sÞvðtÞ 1 zðt, sÞðvðtÞ 2 cÞ�,

subject to 8t, t̂ ∈ T : BICt ,̂tð Þ

and 8t ∈ T , s ∈ S : xðt, sÞ 1 zðt, sÞ ≤ 1:

(LP)

Note that the principal optimizes subject to the Bayesian incentive con-
straints (not to the stronger transparency constraints). The principal’s
value from an incentive-compatible transparent mechanism cannot ex-
ceed the value from the above problem. The following class of mecha-
nisms plays an important role in the ensuing analysis:
Definition 1. A mechanism (x, z) is called “cutoff with appeal” if

there exists a cutoff �s and an appeal threshold �t such that

(i) if s ≥ �s, then xðt, sÞ 5 1 for all t and zðt, sÞ 5 0 for all t;

(ii) if s < �s, then xðt, sÞ 5 0 for all t and zðt, sÞ 5
� 1 for t ≥ �t,
0 for t < �t:

Figure 1 sketches a cutoff-with-appeal mechanism. If the signal realiza-
tion is above the cutoff�s, the principal allocates the good to the agent irre-
spective of his reported type and without verification (x 5 1). If the signal
is below the cutoff, the agent can receive the good only after his type report
is verified (z 5 1) to be above the threshold�t. Note that appeal threshold�t
is the same after all signals. We call this class “cutoff with appeal” because it
can be implemented by the following procedure. For signals above �s, the
principal allocates without eliciting any information from the agent. For
signals below �s, the default is not to allocate, but the principal gives the
agent the opportunity to appeal. An appeal is granted only after the type
is verified to be above the threshold. Our main result shows that the opti-
mal mechanism can be found in this class and specifies the optimal cutoff
for the signal and the optimal appeal threshold for the type.
Theorem 2. The principal’s problem is solved by the cutoff-with-appeal

mechanism with cutoff �s and appeal threshold �t given by12

�s 5 min sjEt ½vðtÞjs� > Et ½ðvðtÞ 2 cÞ1js�
� �

and

�t 5 min tjvðtÞ 2 c > 0f g:

By the positive correlation (MLRP), higher signals make the principal
more optimistic about the agent’s type. If the signal exceeds the cutoff �s,
she is sufficiently optimistic and allocates without eliciting any further infor-
mation from the agent. If the signal is below the cutoff, the principal is pes-
simistic and makes the allocation type dependent. To prevent misreports,
12 For r ∈ R, we denote the positive part by ðr Þ1 5 maxfr , 0g.
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she allocates only after type verification. The threshold �t is such that for
all higher types the principal profits from allocating, even accounting for
the verification costs (i.e., when vðtÞ 2 c > 0). Therefore, given a signal s
below the cutoff, the principal’s expected value is Et ½ðvðtÞ 2 cÞ1js�. The op-
timal cutoff �s is set such that the principal prefers this valuewhen the signal
falls below �s and prefers the expected value from allocating to all types
Et ½vðtÞjs� otherwise.
In this optimal mechanism, the principal does not exploit the hetero-

geneous beliefs for information elicitation. In particular, the agent would
report his type truthfully, given any belief about the signal. Hence, the
cutoff-with-appeal procedure does not entail complex surplus-extracting
schemes as the literature suggests for optimal mechanisms in settings
with correlation and money (Crémer and McLean 1988). This does not
mean that benefiting from belief heterogeneity is generally impossible
in our setting (see sec. IV.A). Theorem 2 shows that when the objective
FIG. 1.—Cutoff with appeal.
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is to allocate efficiently, the transparent cutoff-with-appeal mechanism
outperforms these complex procedures that would require secrecy.
Theproof of theorem2 is outlined in section IVand consists of two steps.

The first step contains themain conceptual contribution of the paper: the
principal can achieve her optimum in the class of BICmechanisms with a
transparently implementable mechanism. Thus, transparency entails no
loss. The second step completes the proof by showing that the cutoff-with-
appeal mechanism in theorem 2 is optimal in the class of transparent
mechanisms. Before presenting the proof, we collect important features
of the optimal mechanism and demonstrate how our result applies to the
optimal design of court procedures.
A. Features
Transparency.—The cutoff-with-appeal mechanism can be implemented
transparently. The principal could first reveal her signal to the agent
and then ask him to report his type. To see why, consider figure 1. If
the signal exceeds the cutoff �s , the allocation is independent of the report
(blue area). If the signal is below �s, the agent can get the good only after
being verified (yellow area), so that misreporting cannot be beneficial
even when the agent knows the signal. In a transparent mechanism, the
agent does not have to form beliefs about the principal’s signal to deter-
mine his best response. Thus, the mechanism remains incentive compat-
ible for any potentially misspecified prior.
Predictability.—The optimal cutoff-with-appeal mechanism does not re-

quire randomization. Allocation and verification probabilities take only val-
ues in {0, 1}. Therefore, when the signal ismade transparent, the decision-
making process is fully predictable for the agent. Hence, the public can
hold the principal accountable for violations of the announced proce-
dure. This promotes commitment power, as covert deviations from the
established rules are not possible.
Communication.—In the cutoff-with-appeal mechanism, there is com-

munication from the agent to the principal. The principal does not learn
only from her signal and from verification. To contrast, consider the fol-
lowing no-communication mechanism, which would be optimal if the
principal could not exchange messages with the agent. There are three
signal regions. If the signal is high, the principal allocates without verifi-
cation. If the signal is intermediate, the principal verifies the agent’s type
and allocates if and only if vðtÞ > 0. If the signal is low, the principal never
allocates or verifies.13 The cutoff-with-appeal mechanism improves upon
this through communication in two instances. (i) When the signal is in-
termediate and the agent reports that his type is below the threshold,
13 We thank a referee for suggesting this illuminating example.



costless information and costly verification 000
so that v(t) is below c, it saves verification costs. (ii) When the signal is
low but the agent reports a type above the threshold, the principal’s value
of allocation net the verification cost is positive, so it is beneficial for the
principal to verify and allocate. The communication in the optimal
mechanism can be reduced to a binary message after the principal provi-
sionally decides not to allocate: {appeal, not appeal}.
Unique implementation.—If his type is below the threshold, the agent’s

chances of getting the good are unaffected by his report. Hence, he is in-
different between appealing and not appealing. To make not appealing
the unique best response, consider the following amendment of the op-
timalmechanism. The principal offers a small allocation probability e > 0
when the agent does not appeal and the signal falls below the cutoff.
Then, the agent has strict incentives to appeal truthfully for any type.
By choosing e arbitrarily small, the cutoff-with-appealmechanism achieves
the supremum payoff among all mechanisms in which the agent has a
unique best response.14 The amended mechanism above is also the opti-
mal transparent mechanism when the verification fails with small proba-
bility e (see sec. V).
Futility of information design.—The contractability of the signal gives the

principal maximal flexibility to use her private information. Neverthe-
less, the optimality of a transparent mechanism implies that the principal
does not profit frompersuading the agent to reveal the truth through any
form of information design. With less flexibility, for example, when the
signal is not contractible, information design remains futile. Hence,
our mechanism solves the informed-principal problem (see sec. VI).
B. Informing the Defendant
Consider the following application of our model. A judge has to decide
whether to acquit or convict a defendant. The defendant privately knows
whether he is guilty or innocent. When the defendant is charged, the
judge observes the result of a prior investigation and decides whether
to conduct a full trial, which will reveal whether the defendant is guilty
at a cost. The judge wants to acquit the defendant if and only if he is in-
nocent, while the defendant prefers being acquitted irrespective of his
guilt. When we model the defendant as the agent, the judge as the prin-
cipal, and the decision to acquit as the allocation (x 5 1), we can identify
the agent being innocent with t 5 1 and the agent being guilty with t 5 0.
Capture the preferences of the judge by vðtÞ 5 t21=2.15
14 This set of unique-best-response mechanisms is not closed, and it has no maximizer.
15 If an innocent agent (t 5 1) is convicted (x 5 0), the net utility loss is given by

0 2 vð1Þ 5 21=2. If a guilty agent (t 5 0) is acquitted (x 5 1), it is given by vð0Þ 5
21=2.



000 journal of political economy
The optimal mechanism in theorem 2 resembles the proceeding of a
pretrial. The case is dismissed if the signal for the defendant’s innocence
is strong enough, that is, the charge is weak. If the signal for innocence is
below this cutoff, the agent can plead guilty and is convicted, or he can
request a trial by pleading not guilty, after which he is acquitted if indeed
found to be not guilty and convicted otherwise.
An important implication of our transparency result is that the justice

system does not profit from keeping the discovery of pretrial investiga-
tions secret. Transparent discovery is established practice in modern
codes of procedures, but this was not always the case. See Brady v. Mary-
land (373 U.S. 83, decided 1963) for the case of US federal law,16 or con-
sider today’s Austrian criminal code of procedure (StPO 1975, §6 (2))
and the code of 1803 (Franz II 1803, §331). While themodern code guar-
antees the defendant’s right to learn about all potential charges, the ver-
sion from 1803 grants the court much more discretion in the extent of
information released to the defendant, stating that he has to be informed
only as far as necessary to notify him that he is accused.17

If one extends themodel and allows formore types of the agent—that is,
guilty (t 5 0), guilty of a minor crime (t 5 3=4), and innocent (t 5 1)—
another feature of court proceedings arises in our optimal mechanism.
When a defendant who is guilty of the minor crime triggers a trial by mis-
representing his type as innocent, he cannot hope for acquittal in the trial.
The judge is committed to punish her for having lied, even if this is ex post
inefficient (vð3=4Þ 5 1=4 > 0). This feature is reflected by the harsh pun-
ishments that lying in court usually entails.
IV. The Proof of Theorem 2

A. The Case for Transparency
This subsection presents the main conceptual insight of our paper: the
principal cannot exploit the secrecy of a private signal that is correlated
with the agent’s type to reduce his information rents. This stands in
marked contrast to settings with transfers, where secrecy and correlation
permit full elimination of information rents.
16 The prosecution did not inform the defendant Brady of his companion’s previous
confession to the actual killing. The US Supreme Court ruled that “the government’s with-
holding of evidence that is material to the determination of either guilt or punishment of a
criminal defendant violates the defendant’s constitutional right to due process.”

17 This is in line with the broader development in continental Europe from medieval in-
quisitorial proceedings with secret charges to modern criminal law proceedings (Kittler
2003). The most famous defendant whose charges are kept secret may be Josef K., the pro-
tagonist in Franz Kafka’s novel Der Proceß (The Trial). In fact, Kittler (2003) suggests that
Kafka, who was a legal scholar, based his Proceß not on his contemporary but the medieval
proceeding standards.
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Proposition 1. It is without loss of optimality for the principal to use
a transparent procedure. Formally, consider any mechanism (x, z) that is
feasible in the principal’s problem. There exists a feasible mechanism
ð~x, ~zÞ that satisfies ðEPICðsÞt,t̂Þ for all s, t, t̂ and delivers a payoff to the
principal no lower than (x, z).
The formal proof of this proposition can be found in appendix A.

There are two channels through which the principal can potentially ex-
ploit secrecy. We revisit example 1 to illustrate for each channel (i) how it
allows the principal to lower the verification costs required to implement
some allocation rules and (ii) why the optimal allocation rule renders this
channel futile.
Example 1 continued (a). Consider the environment from exam-

ple 1 with distribution as in equation (1). The cost-minimal transparent
verification schedule to implement the total allocation in equation (2)
verifies with probability one whenever the good is allocated, that is,

z 5 0
ðL,‘Þ

, 1
ðL,hÞ

, 1
ðH ,‘Þ

, 0
ðH ,hÞ

� �
:

The agent’s ex post incentive constraint is binding when his type and the
signal match (and he does not get the good), and it is slack otherwise.
Under secrecy, the total allocation in equation (2) is optimally imple-
mented by the verification schedule

z 5 0
ðL,‘Þ

, 0:5
ðL,hÞ

, 0:5
ðH ,‘Þ

, 0
ðH ,hÞ

� �
:

This creates verification costs only half of those with transparency.
With the second, cheaper verification schedule, the allocation is not

transparently implementable. If type L knows that the signal is ‘, he can
get allocation with probability 1/2 by misreportingH. In this example, se-
crecy allows the principal to “reuse” excess allocation probability across
different signals when the agent is unaware of its realization.Whydoes this
not work in the optimalmechanism?When the total allocationprobability
is nondecreasing in t for all s, an improvement as above is not possible.
First, monotonicity implies that only upward incentive constraints mat-
ter.18 Second, if an EPICðsÞt ,̂t constraint at a signal s binds for some type
t, under monotonicity it must also bind for all lower types t 0 < t at this sig-
nal. It follows that, in an optimal transparentmechanism, the lowest type’s
EPIC constraint must bind at all signals, so no slack can be reused under
18 Indeed, the first step of the proof consists of presenting a relaxation of the principal’s
problem discarding, among others, all downward incentive constraints. Establishingmono-
tonicity directly is complicated with belief heterogeneity.
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secrecy. Note that the gain in flexibility to reuse excess utility across signals
did not depend on correlation. This advantage of Bayesian versus ex post
implementation is present for general distributions. In the case of inde-
pendent types, however, it is precisely the pointwise monotonicity of allo-
cations in types that leads to the BIC-EPIC equivalence (Manelli and Vin-
cent 2010; Gershkov et al. 2013; Ben-Porath, Dekel, and Lipman 2014).
With correlation, monotonicity in t is not sufficient to conclude that

transparency is optimal. The belief heterogeneity creates an additional
channel to benefit from secrecy. The following two examples illustrate
how the principal can exploit this when the total allocation is either non-
monotone in s or not deterministic.
Example 1 continued (b). Consider the total allocation probabilities

x 1 z 5 1
ðL,‘Þ

, 0
ðL,hÞ

, 1
ðH ,‘Þ

, 1
ðH ,hÞ

� �
: (3)

The optimal verification probabilities to implement this transparently are

z 5 0
ðL,‘Þ

, 0
ðL,hÞ

, 0
ðH ,‘Þ

, 1
ðH ,hÞ

� �
:

Given the distribution in equation (1), this results in verification costs of
ð2=6Þ � 1 � c 5 ð1=3Þc. Without observing the signal, the agent updates
his belief conditional on his type. With the distribution in equation (1),
typeL’s subjective belief on signal ‘ is 2/3. ConsiderL’s Bayesian incentive
constraint:

2

3
� 1 1

1

3
� 0 ≥

2

3
� 1 2 z H , ‘ð Þð Þ 1 1

3
� 1 2 z H , hð Þð Þ: (BICL,H)

The principal can exploit that type L puts more weight on signal ‘ and
shift verification probability from the type-signal combination (H, h) to
(H, ‘). Under secrecy, the allocation above is optimally implemented with
verification probabilities

z 5 0
ðL,‘Þ

, 0
ðL,hÞ

, 0:5
ðH ,‘Þ

, 0
ðH ,hÞ

� �
: (4)

These create verification costs of only ð1=6Þ � 0:5 � c 5 ð1=12Þc.
This improvement is different from the one in example 1(a), as it re-

lies on correlation. The principal benefits from secrecy by exploiting the
agent’s belief heterogeneity when shifting verification probability from
the high to the low signal. This reduces the overall verification probability
because the relevant incentive constraint is for typeLnot to reportH, and
type L’s subjective belief puts more weight on the low signal. Why does
this not work in the optimal mechanism? The profitable shift in verifica-
tion probability when we move from transparency to secrecy requires

ðBICL;HÞ
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nonmonotonicity of the total allocation in the signal. However, in any op-
timal transparent mechanism, the allocation must be pointwise mono-
tone in s for all t. Moving allocation probability toward higher signals
for any given type relaxes the upward incentive constraints. As the signal
s does not affect the principal’s value directly, she is indifferent as to
which signals carry allocation probability. This is different in the exten-
sion in which s has a direct effect on the principal’s value (see app. D).
However, pointwisemonotonicity in both type and signal are not enough

to obtain transparency. The following example shows that secrecy can also
be beneficial when allocation probabilities are interior.
Example 1 continued (c). Consider the total allocation probabilities

x 1 z 5 0:5
ðL,‘Þ

, 0:5
ðL,hÞ

, 1
ðH ,‘Þ

, 1
ðH ,hÞ

� �
: (5)

If the principal has to implement this allocation with a transparent pro-
cedure, the cost-minimal verification schedule is

z 5 0
ðL,‘Þ

, 0
ðL,hÞ

, 0:5
ðH ,‘Þ

, 0:5
ðH ,hÞ

� �
:

This results in verification costs of ð1=6Þ � 0:5 � c 1 ð2=6Þ � 0:5 � c 5
ð1=4Þc. Just as in example 1(b), the principal can exploit that type L puts
more weight on signal ‘. The cost-minimal verification probabilities un-
der secrecy,

z 5 0
ðL,‘Þ

, 0
ðL,hÞ

, 0:75
ðH ,‘Þ

, 0
ðH ,hÞ

� �
,

ensure truthful reporting at lower costs ð1=6Þ � 0:75 � c 5 ð1=8Þc.
Interior probabilities give the principal more flexibility in shifting ver-

ification probability across signals and allow her to benefit from secrecy.
In the proof of proposition 1, we show that it is optimal for the principal
to use deterministic procedures.
This concludes the intuition for our transparency result under correla-

tion. In general, secrecy enables theprincipal to exploit theheterogeneous
beliefs of agents of different types. However, as the optimal transparent
mechanism is monotone in type and signal and nonrandom, there is no
room to exploit the channels identified above. For clear illustration, the
chosen examples feature fixed allocations, and we present changes in ver-
ification only. In the formal proof, instead of decomposing the program,
we solve for optimal allocation and verification jointly. This solution strat-
egy is more effective in our setting, as characterizing optimal verification
rules for arbitrary allocations is tedious because of the belief heterogeneity.
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B. Optimal Transparent Mechanisms
To complete the proof of theorem 2, we need to solve the principal’s
problem subject to the EPIC constraints.
Proposition 2. The cutoff-with-appeal mechanism presented in the-

orem 2 maximizes the principal’s payoff among all transparently imple-
mentable mechanisms.
The formal proof is relegated to appendix A. Solving the problem un-

der EPIC constraints is significantly simpler, as the belief heterogeneity
plays no role once the agent knows the signal. In fact, the principal’s
problem can be solved independently for each signal realization s. Each
subproblem corresponding to s is analogous to the degenerate case of a
single player in Ben-Porath, Dekel, and Lipman (2014). Hence, proposi-
tion 1 creates a link between the cases of correlated and independent in-
formationby establishing that the principal voluntarily forgoes the screen-
ing potential of heterogeneous beliefs. This is in sharp contrast to settings
with money, where the optimal mechanism under independence and
the optimal mechanism with the slightest correlation are fundamentally
different.
V. Imperfect Verification
Here, we consider imperfect verification. We distinguish two forms of im-
perfect verification that arise in applications, noisy and coarse verification.
A. Noisy Verification
One cause of imperfect verification in applications is that the technology
might occasionally produce incorrect results. For example a low-ability
job candidate may sometimes achieve a high test score by luck. As a con-
sequence, verification is noisy. This subsection confirms that the key in-
sights from themain part are robust to small noise. In particular, the gain
from secrecy is negligible when the noise is small.
Consider a broad class of noisy verification technologies, represented

by a family of probabilities aðt̂ jtÞ, specifying the probability that true type
t can pass as type t̂ without being detected in the verification process. We
rule out false detections and set aðtjtÞ 5 1 for all t. Hence, for t̂ ≠ t,
aðt̂ jtÞ ∈ ½0, 1� denotes the verification error, and we denote the largest
verification error for a given technology by ε 5 maxðt̂,tÞ : t̂ ≠taðt̂ jtÞ.19 Given
this noisy technology, we present a revelation principle in appendix B
19 A microfoundation for this reduced-form stochastic verification model, based on pass/
fail tests chosen by the principle, can be found in Ball and Kattwinkel (2019). This micro-
foundation implies additional structure on að̂tjtÞ.
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that allows us to focus on the same class of direct truthful mechanisms de-
fined by (x, z).
The “noisy” Bayesian incentive constraints (NBIC) read, for all t, t̂ ∈ T ,

Es xðt, sÞ 1 zðt, sÞjt½ � ≥ Es xðt̂, sÞ 1 aðt̂ tÞzðt̂, sÞj jt½ �: (NBICt,t)

When there is noise, with some small probability types can successfully
mimic other types, even if the report is verified. Under perfect verifica-
tion, the optimal mechanism (theorem 2) makes types below the thresh-
old just indifferent between reporting truthfully and lying. This mecha-
nism would not be incentive compatible if verification were noisy: the
low types would misreport a type above the threshold, hoping that the
noisy verification will not detect this lie. To restore incentive compatibil-
ity, type reports below the threshold must be compensated for with a
small allocation probability. As a consequence, the optimal transparent
mechanism under noisy verification violates the deterministic property
discussed in section IV.A.
To illustrate, consider theworst-case technology amongall specifications

with largest verification error ε. That is, letaðt̂ jtÞ 5 ε for all t̂ ≠ t.20 The op-
timal transparentmechanismwith this uniform-error technology is charac-
terized as follows.
Proposition 3. Suppose that the verification technology has uniform

error probability ε ∈ ð0, 1Þ. Then, the optimal transparent mechanism is
as follows: there are cutoffs sε < �s ε and an appeal threshold �t ε such that

(i) if s ≥ �sε, then xðt, sÞ 5 1 for all t and zðt, sÞ 5 0 for all t;

(ii) if s ∈ ½sε,�s εÞ,

then xðt, sÞ 5
(
0 for t ≥ �t ε

ε for t < �t ε
and zðt, sÞ 5

(
1 for t ≥ �t ε,

0 for t < �t ε;

(iii) if s < sε, then xðt, sÞ 5 0 for all t and zðt, sÞ 5 0 for all t.

ðNBICt;t̂Þ
In all three cases,

�t ε 5 min tjvðtÞ 2 c

1 2 ε
> 0

n o
,

�sε 5 min sjEt ½vðtÞjs� 2 Et vðtÞ 2 c

1 2 ε

� �1

js
h i

> 0
n o

, and

sε 5 min sjEt ½vðtÞjs� 1
1 2 ε

ε
Et vðtÞ 2 c

1 2 ε

� �1

js
h i

> 0

� 	
:

20 This is the worst case for the principal: consider any mechanism that is incentive com-
patible when aðt̂ jtÞ 5 ε for all t̂ ≠ t. This mechanism is also incentive compatible under
any verification technology for which the largest verification error is ε.
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Figure 2 depicts a mechanism defined in the result above. To see the
differences with the optimal mechanism under perfect verification (the-
orem 2), consider a signal between the two cutoffs, s ∈ ðsε,�sεÞ: in this case,
reports above the threshold �t ε are verified and get the good. Tomake sure
that types below the threshold do notmisreport and hope to get the good
with probability ε after (failed) verification, the mechanism gives alloca-
tion probability ε for type reports below the threshold �t ε. Given the s, the
principal’s expected payoff from this additional allocation probability is
εE½vðtÞ1ft<�t εgjs�, which is negative for s < �s ε. Thus, the noise causes an ad-
ditional, indirect cost of verification. Therefore, the appeal threshold �t ε

must be higher than with perfect verification. The above result shows that
the threshold with error ε is equal to the optimal threshold under perfect
verification if the cost c were increased to c=ð1 2 εÞ. The same is true for
the upper signal cutoff �sε. For low signals s, the expected costs of verifica-
tionmay nowoutweigh the expected benefit fromallocating to types t ≥ �t ε.
FIG. 2.—Noisy verification.
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This leads to another difference with respect to the optimal mechanism
under perfect verification: there is an additional cutoff sε such that for sig-
nals s < sε, the mechanism does not allocate or verify after any report.
Note that the lower cutoff sε is increasing in the error probability ε; in par-
ticular, if ε is close enough to 0, then sε 5 min S and case (iii) in proposi-
tion 3 is never met.
The optimal mechanism above, together with the illustrations in sec-

tion IV.A, already indicates that the gain from secrecy under noisy verifi-
cation is not zero. For ε ∈ ð0, 1Þ, the optimal transparent mechanism is
not deterministic, violating one of the three properties that rule out gains
from secrecy. On the basis of example 1(c), it is easy to construct an im-
provement for the principal that exploits secrecy by shifting the allocation
probabilities ε across signals to exploit the agent’s belief heterogeneity.
However, this modification and the resulting gain from secrecy are only

of the order of magnitude of the noise in verification. In particular, our
key results are robust to small noise, in that the gain from secrecy vanishes
linearly in the verification error ε.
Proposition 4. Let ε be the largest verification error. The gain from

secrecy is bounded by

ε � Et ½2vðtÞ1 t<�tf g1 s<�sf g�, (6)

where �s and �t are defined in theorem 2.
Transparentmechanisms havemany advantages (as discussed in sec. III).

This proposition guarantees that the loss for the principal from using a
transparent procedure is small when the verification error is small. Propo-
sition 4 is thus a generalization of our transparency result, proposition 2.21

The gains from secrecy under noisy verification arise from exploiting
the agent’s belief heterogeneity to shift the (interior) compensation prob-
abilities ε across signals. The gain from these shifts can therefore be
bounded by equation (6), which measures exactly the indirect cost the
principal incurs from these compensation probabilities.
The proof of proposition 4 in appendix A establishes the following,

tighter, bound:

ε �o
s<�s

P½s�min
1

ε
Et ½ðvðtÞ 2 cÞ1 s�; Et ½2vðtÞ1 t<�tf gj js�

� 	
:

Theminimum is equal to its first termwhen the indirect cost of allocating
with probability ε to types below the threshold exceeds the benefit from
verifying and allocating above the threshold (case (iii) in proposition 3).
21 Note that the definition of �s implies that the bound (6) is positive.
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The uniform error is a worst-case scenario. The optimal transparent
mechanism in proposition 3 is also incentive compatible in any other
scenario with maximal verification error ε. That is why the bound in
proposition 4 holds across all specifications of noisy verification with
maximal error probability ε.
B. Coarse Verification
Another formof imperfection arises in applicationswhen verification is im-
plemented through the presentation of hard evidence: depending on his
type, the agent has different pieces of evidence at his disposal, whichhe can
present to the principal. The perfect verification from themain part would
correspond to an evidence structure in which for every type there is some
evidence that only this type can present. Oftentimes, however, some differ-
ent types have access to the same pieces of evidence. For example, the pos-
sible ability levels of a job candidate are usually more complex than the
available degrees and certificates that canbe demanded to verify his claims.
As a consequence, verification in these cases is coarse, such that some
groups of types remain indistinguishable in the verification process.
We incorporate this form of imperfection, assuming that some neigh-

boring types are indistinguishable. Formally, consider a partition T of the
type spaceT into discrete intervals t containing successive types who hold
the same pieces of evidence, that is, T 5 ft1, ::: , tng, where for any
ti < tj < tk ∈ T , if ti, tk ∈ t, then also tj ∈ t. Denote by t(t) the interval in
the partition that contains type t. If the principal verifies and the agent’s
type is t, the principal learns t(t).22 The principal’s problem has the same
objective as the original (LP). The “coarse Bayesian” IC constraints
(CBIC) are as follows: for all t, t̂ with t̂ ∉ tðtÞ, ðBICt ,̂tÞ, and, additionally,
for all t, t̂ with t̂ ∈ tðtÞ:

Es xðt, sÞ 1 zðt, sÞjt½ � ≥ Es xðt̂ , sÞ 1 zðt̂, sÞjt½ �: (CBICt,t)

If type t reports a type t̂ ∈ tðtÞ with the same evidence, t receives the good
with the same probabilities as t̂, independent of whether report t̂ is veri-
fied or not. Clearly, constraints ðCBICt,t̂ Þ are more demanding than con-
straints ðBICt,t̂ Þ. Nevertheless, the optimal mechanism can still be imple-
mented transparently.

ðCBICt;t̂Þ
22 We could modify this setting and assume that each type, in addition, has all the evi-
dence pieces of any lower type. Formally, t0ðtÞ 5 [~t≤ttð~tÞ. This formulation captures the
idea that a more capable job candidate can produce all certificates a less capable candidate
can produce. Our results remain unchanged under this specification.
See Bull andWatson (2004) and Green and Laffont (1986) for general treatments of ver-

ifiable evidence where access differs across types. Our specification satisfies the normality
(or nested-range) condition, which these papers show to be sufficient to focus on truthful
direct mechanisms.
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Proposition 5. The principal’s problem under coarse verification is
solved by the cutoff mechanism with signal cutoffs s*c ,�sc and type thresh-
old �t such that

(i) if s ≥ �sc, then xðt, sÞ 5 1 for all t and zðt, sÞ 5 0 for all t;
(ii) if s*c ≤ s < �sc, then xðt, sÞ 5 0 for all t and

zðt, sÞ 5
(
1 if t ≥ minðtð�tÞÞ,

0 otherwise;

(iii) if s < minfs*c ,�scg, then xðt, sÞ 5 0 for all t and

zðt, sÞ 5
(
1 if t > maxðtð�tÞÞ,
0 otherwise,

where �t 5 minftjvðtÞ 2 c > 0g, as in theorem 2, and �sc and s*c are de-
fined as follows:

�sc 5 min sjEt ½vðtÞjs� > Et ½ðvðtÞ 2 cÞ1 t>maxðtð�tÞÞf gjs� 1 Et ½ðvðtÞ 2 cÞ1 t∈tð�tÞf gjs�ð Þ1
� �

, and

s*c 5 min sjEt ½ðvðtÞ 2 cÞ1 t∈tð�tÞf gjs� > 0
� �

:

This mechanism is transparent.
Figure 3 sketches an optimal mechanism under coarse verification for

the case�sc > s*c . If the signal realization is above the cutoff�sc, the principal
allocates the good to the agent irrespective of his reported type and with-
out verification (x 5 1). If the signal is below the cutoff �sc, the agent can
receive the good only after his type is verified (z 5 1) to be high enough.
For s ∈ ½s*c ,�scÞ, all types in tð�tÞ and in all intervals above receive the good
after verification. For s < s*c , only types in the intervals strictly above tð�tÞ
receive the good after verification.
Note that in the optimal mechanism under perfect verification (theo-

rem 2), the verification threshold is independent of the signal; types
above �t are verified, as their value v(t) is above c. In contrast, coarse ver-
ification reveals only the agent’s partition interval. Within the interval
tð�tÞ, v(t) may be below or above c. The information about t contained
in the signal affects the conditional expectation of v(t). Hence, types in
tð�tÞ are verified only if the expected value of allocating to all types within
tð�tÞ (conditional on s) is worth paying the verification cost c. As a conse-
quence, the mechanism has an additional signal cutoff s*c .23

Proposition 5 confirms that this mechanism is transparent. One can
easily verify that the three properties introduced above—monotonicity
23 Note that when �t 5 minðtð�tÞÞ, we have s*c 5 minðSÞ, and the optimal mechanism
characterized in proposition 5 is the same as the optimal mechanism under perfect verifi-
cation. Intuitively, whenever the (coarse) verification technology allows the principal to
distinguish whether the type is below the optimal appeal threshold �t or not, the principal
can implement the optimal mechanism from theorem 2. Whenever feasible, this must be
optimal in the more restrictive principal’s problem under coarse verification.
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in type,monotonicity in signal, and nonrandomness—are satisfied. There
is no loss from transparency.
VI. Literature

A. Mechanism Design with Correlation
The role of correlated information in mechanism design with monetary
transfers was first studied in Myerson (1981) and Crémer and McLean
(1988).24 In these papers, the principal exploits correlation to screen the
agent’s type through his heterogeneous beliefs. With unbounded mone-
tary transfers, this allows the principal to elicit the agent’s private infor-
mation without paying him any information rent. On rent-free elicitation
of all private information, Neeman (2004, 56) notes, “This implication has
made several economists uncomfortable,” as it implies that the agent’s
FIG. 3.—Coarse verification.
24 See also Riordan and Sappington (1988), Johnson, Pratt, and Zeckhauser (1990), and
McAfee and Reny (1992).
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private information is irrelevant. We present a setting in which rent-free
information elicitation is not possible despite the “beliefs-determine-
preferences” (Neeman 2004) property being fulfilled. More than that, in
our optimal mechanism, the principal abstains from exploiting the belief
heterogeneity altogether by making her signal public. Demougin and
Garvie (1991) show that the qualitative insights fromCrémer andMcLean
(1988) also apply in the case of bounded transfers or limited liability. There-
fore, different from our setting, the principal gains from keeping her signal
secret.25

Milgrom and Weber (1982) and Eső and Szentes (2007) also study dif-
ferent informational regimes in mechanism design and find that infor-
mation revelation can benefit the principal. However, the question about
transparency we seek to address is distinct from the comparisons in these
papers. We ask whether the principal profits from concealing her avail-
able private information from the agent. They ask whether the principal
profits from creating additional information that is observed by the
agents and can otherwise not be used by the principal.26 In these settings,
raisingmore information entails a trade-off between increasing efficiency
and increasing information rents. In our setting, the principal can always
observe and condition the mechanism on her signal so a more informa-
tive signal is always beneficial for her, and it is immediate that she weakly
prefers concealing her information. Our main result shows that she does
not strictly prefer concealing. Our perspective is parallel to Jehiel’s
(2015, 736) question: “When is it best for the Principal to commit to
not disclosing all that he/she knows in moral hazard interactions?” In
contrast, we analyze an adverse-selection problem and find that secrecy
is never strictly beneficial.
B. Costly State Verification
Costly state verification, the possibility for the mechanism designer to
learn the agent’s private information at a cost, was first introduced by
Townsend (1979) to a principal-agent model of optimal debt contracts.27

More recently, the verification technology proposed by Townsend (1979)
has been analyzed in models without transfers by Ben-Porath, Dekel, and
25 In the absence of monetary transfers, Bhargava, Majumdar, and Sen (2015) show that
positively correlated beliefs among voters eliminate the impossibility of nondictatorial vot-
ing rules established by Gibbard (1973) and Satterthwaite (1975).

26 In Eső and Szentes (2007), the additional information is privately observed by the
agents. In Milgrom and Weber (1982), the auction mechanism is exogenously fixed; in
sec. 7 of their paper, the authors allow the principal to set a reserve price contingent on
the additional information, but only when the information is also revealed to the agents.
McAfee and Reny (1992) show that if the principal could design any mechanism, not re-
vealing the signal to the agents would allow her to extract all surplus, outperforming the
auctions discussed in Milgrom and Weber (1982).

27 See also Gale and Hellwig (1985) and Mookherjee and Png (1989).



000 journal of political economy
Lipman (2014), Beshkar and Bond (2017), Erlanson and Kleiner (2020),
Halac and Yared (2020), and Li (2020).28 Our model is most closely related
to that of Ben-Porath, Dekel, and Lipman (2014), who study an allocation
problem with multiple agents. Our main departure from this literature
lies in the correlated information. Just as with monetary transfers, the be-
lief heterogeneity induced by correlation impedes the standard approach
to characterize mechanisms through interim expectations. New tech-
niques are required. Perhaps surprisingly—and unlike with monetary
transfers—optimal mechanisms share the qualitative features discovered
in the above papers where correlated information is absent: a simple cutoff
structure is optimal, andmechanisms areEPIC; that is, the agent would also
report truthfully if he were informed about the signal before his report.29

The equivalence between BIC and EPIC mechanisms in verification
settings under independent information holds more generally rather
than only for optimal mechanisms (see Erlanson and Kleiner 2020).30

Our paper illustrates the importance of the independence assumption
for this question. Correlation creates an additional potential benefit of
secrecy in BIC mechanisms. We establish conditions that determine
whether this benefit for the designer exists. We discuss the implications
of our results for court procedures. Silva (2019) and Siegel and Strulovici
(2020) also consider the role of verification in this context.
As the principal has private information, ourmodel is also related to the

informed-principal problem; see Myerson (1983) and Maskin and Tirole
(1990). A priori, the assumption that the principal’s signal is contractible
sets us apart from this strand of literature, as it allows the principal to com-
mit to a mechanism before learning the signal. Thus, the proposed mech-
anism does not convey any information to the agent. However, since the
optimal mechanism we derive is EPIC, it also constitutes a solution to
the informed-principal game in which the principal proposes a mecha-
nism only after observing her private signal: this game has a separating
equilibrium in which the principal proposes one mechanism for each sig-
nal realization and, thus, the agent perfectly learns the signal from the
28 Mechanism design with alternative verification technologies or evidence is studied in
Green and Laffont (1986), Bull and Watson (2004), Glazer and Rubinstein (2004),
Deneckere and Severinov (2008), Kartik and Tercieux (2012), Hart, Kremer, and Perry
(2017), Mylovanov and Zapechelnyuk (2017), Ball and Kattwinkel (2019), Ben-Porath,
Dekel, and Lipman (2019), Epitropou and Vohra (2019), and Koessler and Perez-Richet
(2019), as well as Rappoport (2020). More recently, Silva (2021) studies a model with an
analogous informational setup where the principal’s verification is costless but yields im-
perfect results. This relates to our extension in sec. V.A.

29 Allocation mechanisms without money or verification are the focus of Börgers and
Postl (2009), Goldlücke and Tröger (2018), and Ortoleva, Safonov, and Yariv (2021) under
independence and of Kattwinkel (2020) under correlation.

30 This relates to Manelli and Vincent (2010) and Gershkov et al. (2013), who show
equivalence between BIC and dominant-strategy IC mechanisms in settings with monetary
transfers and independent information.
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proposal.31 With monetary transfers, Cella (2008) and Severinov (2008)
show that correlated information allows for an efficient solution to the
informed-principal problem. Skreta (2011) analyzes when an informed prin-
cipal can generate exploitable correlation between the agents by partial infor-
mation disclosure. In our setting, without monetary transfers, the informed
principal cannot exploit the secrecy of her signal. In Ottaviani and Prat
(2001), an informedmonopolist is assumed to propose amenu before elic-
iting the buyer’s type. In this restricted informed-principal problem, the mo-
nopolist benefits from revealing her private information to the buyer. They
note that under the classical informed-principal approach, their monopolist
would pull a Crémer-McLean and extract all the surplus by keeping her infor-
mation secret.
VII. Conclusion
This paper studies the role of correlated information in a mechanism-
design model in which the principal may use costly verification instead
of monetary transfers to incentivize the revelation of private information.
We show that a transparent mechanism is optimal. It is without loss for the
principal to make her information public before contracting with the
agent. Our result gives a rationale for the use of transparent procedures
in a variety of applications fromhiring to procedural law. This is in contrast
with results on correlation in mechanism-design problems with money.
We confirm that our results are robust to small imperfections in the

verification technology.
In the online appendix, we present two extensions of ourmodel. First, we

consider the case in which the agent also bears some cost of being verified.
Again, we show that our findings are robust to small agent costs. Second, we
allow for the principal’s signal to have a direct effect on her payoffs. When
this effect is positive, our result carries over: transparency comes without loss
for the principal. When, in contrast, the direct effect is negative, the princi-
pal benefits from secrecy. This reveals that correlated information poses a
limitation to the general equivalence betweenBIC and EPICmechanisms.

Appendix A

Omitted Proofs

A1. Proof of Theorem 1

The proof of theorem 1 consists of a revelation principal (lemma 1) and optimal-
ity arguments (lemma 2) to further reduce the class of mechanisms.
31 In this separating equilibrium, the mechanisms proposed by the principal are in-
dexed by the signal realizations, although different realizations may lead to the same
mechanism. Alternatively, there is an equilibrium in which the principal proposes only
two mechanisms, for signals below and above the cutoff.
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The principal faces the fundamentals (X, T, S, f, u), where X 5 Δðf0, 1gÞ de-
notes the feasible outcomes (allocation probabilities) and T and S are type and
signal spaces with joint distribution f. Themarginals of f are denoted by fS ∈ ΔðSÞ
and fT ∈ ΔðT Þ. Finally, u is the agent’s utility function. Given these fundamentals,
the principal designs an extensive game form G 5 hH , ≺, A,A, P , dC , I , g i. We
borrow the formal definition from Akbarpour and Li (2020) and extend it to al-
low for verification stages and chancemoves as part of the game. The player func-
tion P, with P ðhÞ ∈ f1, V , Cg, states for every nonterminal history h whether the
agent (player 1) is called to play, verificationhappens (playerV), or chance (player
C) is called to play. If P ðhÞ 5 1, the agent chooses an action from A(I), where in-
formation set I is the element of the partition I of fh0 : P ðh0Þ 5 1g, which contains
h. If P ðhÞ 5 V , verification occurs. This means that the game’s structure from this
history onwardmay dependon the real agent type t.32 If PðhÞ 5 C , the successor of
history h, that is, h0 ≽ h, is chosen according to the predetermined probability mea-
sure dC(h). Since the principal has commitment power when designing the game,
it is without loss to let the game start with the draw of the signal. That is, P ðh∅Þ 5 C
and dCðh∅Þ 5 fS .

Lemma 1 (revelation principle). For any pair (G, j) of extensive-form game
G and equilibrium strategy j, there is an incentive-compatible and outcome-
equivalent direct mechanism of the following form: there are functions
e : T � S → ½0, 1� and a : T � S � T [ f∅g→ ½0, 1�.

1. The agent reports type t̂ ∈ T .
2. Given report t̂ and signal s, verification occurs with probability eðt̂ , sÞ and

reveals the agent’s real type, t.
3. Allocation probability is aðt̂ , s, tÞ if verification took place and aðt̂ , s,∅Þ if

no verification took place.
Proof. Consider game G together with a collection of strategies j 5 ðjtÞt∈T ,
where for each t, strategy jt : I → A, such that jtðI Þ ∈ AðI Þ for all I ∈ I and jt is
a best response.33 The following proof reduces the pair (G, j) to a direct mecha-
nism of the above class such that (i) each type prefers to report truthfully and
(ii) given truthful reporting, the verification probabilities and expected allocation
outcomes resulting from the direct mechanism are equivalent to the ones in the
original game.

After report t̂ and signal realization s, the direct mechanism specifies verifica-
tion probability e ð̂t , sÞ. To determine e ð̂t, sÞ, the principal simulates the play of
game G from signal realization s onward, assuming that the agent plays strategy
32 This verification technology assumes that verification results in exact knowledge of
the agent’s type. Alternatively, we may define verification as a technology that requires a
type report from the agent and reveals whether this report and the true type coincide.
All results in the paper are unaffected by this choice.

33 The restriction to pure strategies is without loss for our purposes. Any pair of single-
player game and equilibrium strategy in mixed strategies can be equivalently designed as a
game of pure strategies where the agent’s mixed action is replaced by a chance move that
simulates the mixing.
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jt̂ , and chooses e ð̂t , sÞ equal to the probability that the simulated equilibriumpath
entails at least one verification stage.34

Subsequently, the allocation is chosen depending on whether the result of the
verification is “no verification” (∅), “truthful report” (t̂ ), or “misreport”
ðt ∉ f∅, t̂ gÞ. In the first case, aðt̂, s,∅Þ is chosen equal to the expected allocation
probability that results from the simulated play, conditional on the event that no
verification stage was reached. In the second case, aðt̂, s, t̂Þ is determined by sim-
ulating play conditional on verification with strategy jt̂ and choosing the contin-
uation game after any verification stage that corresponds to real type t̂. Finally, in
the case of a detected misreport, aðt̂ , s, tÞ is determined as follows. The principal
simulates play, conditional on verification, with strategy jt̂ until the first verifica-
tion stage. After this stage, play of the continuation game corresponding to t is
simulated with strategy jt. Strategy jt may rule out reaching the above path. How-
ever, as any strategy specifies action choices for all information sets of the game,
probability aðt̂, s, tÞ is well defined.

This construction (i) ensures truthful reporting: when t is reported truthfully
in the direct mechanism, the agent’s expected payoff is equal to the one resulting
from strategy jt in the original game. Furthermore, the outcome resulting from a
misreport t̂ ≠ t in the direct mechanism was available to type t in the original
game by playing strategy jt̂ until the first verification (if any) and playing accord-
ing to jt afterward. Furthermore, it follows from the construction that (ii) the ver-
ification and allocation probabilities, and therefore all expected payoffs, in the
original game equilibrium and the direct mechanism coincide. QED

Corollary 1 (information design). The extensive game form allows fully
flexible information design by designing chancemoves that depend on signal re-
alization s and the design of information sets for the agent. By the revelation prin-
ciple, any benefit from information design can be achieved within the reduced
class of direct mechanisms.

To exemplify this, recall that the first stage of the game was chosen to be the sig-
nal realization.Theflexibility to design the rest of the gameG with arbitrary chance
moves and information sets for the agent allows the principal to freely design any
communication about the signal. For example, assuming that the agent is called to
play after the signal draw (history hs), specifying I ðhsÞ 5 hs for all s represents the
situation where the agent learns the signal realization directly, whereas I ðhsÞ 5
fhsgs∈S gives no information to the agent. More complex, the principal may design
different chancemoves dC(hs) for each realization s and collect the following histo-
ries into information sets to achieve any Bayes-plausible interim belief distribution.

The next observation uses the principal’s objective to further restrict the set of
direct mechanisms, ruling out some strictly suboptimal mechanisms.

Lemma 2 (maximal punishment and minimal verification). It is without loss
of optimality for the principal to restrict the class of direct mechanisms to fulfill
the following properties:

1. maximal punishment: if t ∉ f∅, t̂g, then að̂t, s, tÞ 5 0; and
2. minimal verification: if eðt, sÞ > 0, then aðt, s, tÞ 5 1.
34 Reaching multiple verification stages will not be part of a principal-optimal game, but
for the revelation principle is formulated for general games.
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Proof. For the first property, note that detecting a misreport t ∉ f∅, t̂g is an off-
path event in the direct mechanism, so that modifying the allocation probability
has no effect on the principal’s payoff. For the agent, setting the allocation after a
misreport as low as possible decreases incentives to misreport while maintaining
the payoff of any truth-telling type unchanged.

Second, suppose that eðt, sÞ > 0 and aðt, s, tÞ < 1. One could now lower the
probability of verification eðt, sÞ ↓ while increasing the probability of allocation
after confirming the report as true aðs, t, tÞ ↑ such that e(t, s)a(t, s, 1) remains
constant.

Lowering the verification probability would increase the incentives to misre-
port and the overall allocation probability after report t and signal s only if there
was allocation with positive probability conditional on no verification, that is,
aðt , s,∅Þ > 0. However, in this case, this allocation could be lowered aðt, s,∅Þ ↓
such that ð1 2 eðt, sÞÞaðt, s,∅Þ remains constant. Then, the incentives to misre-
port and the overall allocation probability would remain constant. As these pro-
cedures would save verification costs while keeping all unconditional allocation
probabilities constant, the fact that an optimal mechanism features nonmaximal
reward can be ruled out. QED

To conclude the proof of theorem 1, define by zðt, sÞ 5 eðt, sÞ the joint prob-
ability of verification and allocation and by xðt, sÞ 5 ð1 2 eðt , sÞÞaðt, s,∅Þ the
joint probability of no verification and allocation. The set of mechanisms de-
scribed by

ðxðt, sÞ, zðt, sÞÞt∈T ,s∈S j 8 t ∈ T 8 s ∈ S : 0 ≤ xðt , sÞ 1 zðt , sÞ ≤ 1f g

is equivalent to all minimal verification and maximal punishment direct mech-
anisms.35 QED

A2. Proof of Proposition 1

We present the following relaxation of the problem and show that it is solved by a
transparent mechanism that is also feasible in the original (LP). Define the set of
profitable types as those t with a positive allocation value,

T1 ; t ∈ T jvðtÞ > 0f g,

and the unprofitable types accordingly as T2 ; TnT1. Both sets are nonempty
by the assumption that v crosses 0. Otherwise, the optimal mechanism is trivial.
The relaxed problem includes only those incentive constraints that prevent types
in T2 from misreporting types in T1. Hence, it reads as follows:
35 The inverse mapping is given by

eðt, sÞ, aðt, s,∅Þð Þ 5 zðt, sÞ, xðt, sÞ= 1 2 zðt, sÞð Þð Þ:
Note that the value of a(t, s,∅) does not play any role in themechanism if eðt, sÞ 5 zðt, sÞ 5
1 and can therefore be chosen arbitrarily.
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max
ðx,zÞ≥0 o

t∈T
o
s∈S

f ðt, sÞ xðt, sÞvðtÞ 1 zðt, sÞðvðtÞ 2 cÞ½ �,

subject to 8 t, t̂ð Þ ∈ T2 � T1 : BICt ,̂tð Þ and

8 t, sð Þ ∈ T � S : xðt, sÞ 1 zðt, sÞ ≤ 1:

(LP.r)

In the remainder of the proof, we derive feasible changes to a solution to the
relaxed problem that do not lower the principal’s value and that finally lead to a
transparent cutoff mechanism. We make repeated use of the following notation:
we denote changes in the allocation probability by dx(t, s), so that the new prob-
ability after the change is given by xðt, sÞ 1 dxðt , sÞ, where dx(t, s) may be positive
or negative, and analogously for dz(t, s). Further, dðBICt ,̂tÞ denotes the change in
surplus utility that type t receives from reporting the truth rather than misreport-
ing t̂, which is induced by a change of the above form. Recall that the constraint
ðBICt ,̂tÞ reads as os f ðt, sÞ½xðt, sÞ 1 zðt, sÞ 2 x ð̂t, sÞ� ≥ 0, so that dðBICt ,̂tÞ denotes
the change to the left-hand side of this inequality.

The value for the principal is given by

V 5 o
t∈T
o
s∈S

f ðt, sÞ xðt , sÞvðtÞ 1 zðt, sÞðvðtÞ 2 cÞ½ �,

and dV will denote the induced change to this value.

A2.1. Step 1

The optimal mechanism in the relaxed problem features 8 t ∈ T2 8 s ∈
S : zðt, sÞ 5 0.

Suppose that zðt, sÞ > 0 for some type t ∈ T2. Shifting probability mass from
z(t, s) to x(t, s) such that the overall allocation probability stays constant,

0 < dxðt, sÞ 5 2dzðt, sÞ,
saves the principal verification costs and does not distort the incentives, as type
t’s incentive to misreport remains the same and all incentive constraints to mis-
report a type t ∈ T2 are ignored in the relaxed problem.

A2.2. Step 2

There is an optimal mechanism in the relaxed problem featuring a cutoff form
for x ð̂t, �Þ:

8 t̂ ∈ T1 ∃ ~sð̂tÞ ∈ S : x ð̂t, sÞ
5 0 if s < ~sð̂tÞ,

∈ ½0, 1Þ if s 5 ~sð̂tÞ,

5 1 if s > ~sð̂tÞ:

8>><>>:
Take a feasible IC mechanism of the relaxed problem featuring that for some t̂ ∈
T1, ∃ s < s 0 ∈ S such that xðt̂, sÞ > 0 and xðt̂, s 0Þ < 1.

Modify the mechanism only at two points, shifting allocation probability mass
from xðt̂, sÞ to xðt̂, s0Þ; that is, dxðt̂, sÞ < 0 and dxðt̂ , s0Þ > 0. Choose these shifts in a
proportion such that for the highest unprofitable type, ~t ; max T2, the incen-
tive to misreport t̂ remains unchanged:
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0 5
!
dðBIC~t ,t̂Þ 5 2f ð~t, sÞdxðt̂, sÞ 2 f ð~t, s0Þdx ð̂t, s 0Þ

5 0 ⇔ dxðt̂, sÞ 5 2
f ð~t, s0Þ
f ð~t , sÞ dxðt̂, s

0Þ:

For all types t ∈ T2, we have t ≤ ~t, and, therefore,

dðBICt,t̂Þ 5 2f ðt , sÞdxðt̂ , sÞ 2 f ðt, s0Þdxðt̂ , s0Þ

5 f ðt, sÞ f ð~t , s0Þ
f ð~t, sÞ 2

f ðt, s 0Þ
f ðt, sÞ


 �
dxðt̂ , s0Þ ≥ 0

by the MLRP. The principal’s value changes in the following way:

dV 5 f ðt̂ , sÞdxðt̂ , sÞvðt̂ Þ 1 f ðt̂, s0Þdxðt̂ , s0Þvðt̂ Þ

5 f ðt̂ , sÞ 2
f ð~t, s0Þ
f ð~t , sÞ dxðt̂, s

0Þ

 �

vðt̂ Þ 1 f ðt̂ , s0Þdxðt̂, s0Þvðt̂ Þ

5 f ðt̂ , sÞ f ðt̂, s 0Þ
f ðt̂, sÞ 2

f ð~t, s0Þ
f ð~t, sÞ


 �
dxðt̂, s 0Þvðt̂ Þ ≥ 0,

since dxðt̂, s 0Þ > 0 and t̂ ∈ T1, which implies both vðt̂ Þ ≥ 0 and t̂ > ~t. The pro-
posed shift is clearly feasible if in the original mechanism, xðt̂, s0Þ 1 zðt̂ , s0Þ < 1.
In the case that xðt̂, s0Þ 1 zðt̂, s0Þ 5 1, it can still be implemented by shifting in
addition mass from zðt̂, s0Þ to zðt̂, sÞ to ensure that xðt̂, s0Þ 1 zðt̂ , s0Þ and xðt̂, sÞ 1
zðt̂, sÞ remain constant:

dxðt̂, s0Þ 1 dzðt̂, s0Þ 5 0 and dxðt̂, sÞ 1 dzðt̂, sÞ 5 0:

This implies that dzðt̂, s0Þ < 0 and dzðt̂, sÞ > 0. This is feasible, as xðt̂, s0Þ < 1 and
xðt̂, s0Þ 1 zðt̂, s 0Þ 5 1 imply that zðt̂, s 0Þ > 0. As xðt̂ , sÞ > 0, we must further have
zðt̂, sÞ < 1 by feasibility. To maintain the total allocation probabilities constant,
the above changes in x are compensated for by the following changes in z:

dzðt̂, sÞ 5 f ð~t , s0Þ
f ð~t, sÞ ð2dzðt̂, s0ÞÞ:

The incentives for any lower type to misreport his type as t̂ are weakened in the
same way as above because zðt̂, sÞ and zðt̂, s0Þ do not play a role in the constraints
that prevent misreport t̂.

Finally, the principal’s value now changes by

dV 5 f ð̂t, sÞ dx ð̂t, sÞvð̂tÞ 1 dzð̂t, sÞðvð̂tÞ 2 cÞ½ � 1 f ð̂t, s0Þ
dx ð̂t, s0Þvð̂tÞ 1 dzð̂t, s0Þðvð̂tÞ 2 cÞ½ �

5 2c f ð̂t, sÞdzð̂t, sÞ 1 f ð̂t, s0Þdzð̂t , s0Þ½ �

5 2cf ð̂t , sÞ f ð~t, s0Þ
f ð~t, sÞ 2

f ð̂t, s 0Þ
f ð̂t, sÞ


 �
ð2dzð̂t, s0ÞÞ ≥ 0,

as, by the MLRP, the term in square brackets in the last line is negative and, by
assumption, 2 dzðt̂, s0Þ ≥ 0.
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A2.3. Step 3

There is an optimal mechanism in the relaxed problem featuring xðt̂ , �Þ 5 xðd̂t, �Þ
for all t̂, d̂t ∈ T1.

By the cutoff structure established in step 2, x ð̂t, �Þ 5 ð0, ::: , 0, xðt̂,~sðt̂ ÞÞ,
1, ::: , 1Þ for all t ∈ T1. Suppose to the contrary that xðt̂,~sðt̂ ÞÞ 1 os>~sð̂tÞ1 >
xðd̂t,~sðd̂t ÞÞ 1 os>~sðd̂t Þ1 for some t̂, d̂t ∈ T1. Replacing xðd̂t, �Þ with xðt̂, �Þ does not gener-
ate new incentives tomisreport, but it increases the principal’s expected value, as it
increases the allocation probability for profitable types. If feasibility is hurt—that is,
xðt̂, sÞ 1 zðd̂t, sÞ > 1 for some s ∈ S—decrease zðt̂, sÞ until xðt̂ , sÞ 1 zðd̂t , sÞ 5 1. This
is also a strict improvement for the principal, as she saves verification costs.
A2.4. Step 4

There is an optimal mechanism in the relaxed problem featuring xðt̂, �Þ 5 xðd̂t, �Þ
for all t̂, d̂t ∈ T1 [ T2.

Fix some unprofitable type t ∈ T2. By step 1, we have zðt , �Þ 5 0. Optimally, the
principal wants to choose the lowest possible allocation probability for the un-
profitable types. However, she needs to grant him at least the same interim allo-
cation probability that he could achieve by misreporting to be a profitable type
t̂ ∈ T1 (by steps 2 and 3, we know that xðt̂, �Þ is the same for all t̂ ∈ T1). As the
signal realization has no effect on the allocation value, the principal is indifferent
between any allocation vectors x(t, ⋅) that induce the same interim allocation
probability, E½xðt, sÞjt�, that is, E½vðtÞxðt , sÞjt� 5 vðtÞE½xðt , sÞjt�. Therefore, she
can grant the unprofitable types just the same allocation probability they would
face if they misreported a profitable type: xðt, �Þ 5 xðt̂, �Þ.

This step concludes the proof. If the nonverified allocation probability is inde-
pendent of the type report at each signal, the agent has no incentive to misreport
even if he knows the signal. QED
A3. Proof of Proposition 2

A3.1. Step 1

For any s ∈ S , the optimal (x(⋅, s), z(⋅, s)) can be determined separately, as all con-
straints involve only allocation and verification probabilities for the same signal
realization. The principal’s optimal expected value is the weighted sum of the
values of the subproblems

max
ðxð�,sÞ,zð�,sÞÞ≥0

Et ½xðt, sÞvðtÞ 1 zðt , sÞðvðtÞ 2 cÞjs�,

subject to 8 t, t̂ ∈ T : EPIC sð Þt ,t̂ð Þ and

8 t ∈ T : xðt, sÞ 1 zðt , sÞ ≤ 1:

(LP(s))

A3.2. Step 2

For any s ∈ S and for all t, t̂ ∈ T :, xðt, sÞ 5 xðt̂ , sÞ; that is, the allocation proba-
bility x(⋅, s) has to be constant in the report.



000 journal of political economy
Suppose to the contrary that there were reports t and t̂ with xðt̂ , sÞ > xðt, sÞ.
EPIC implies that for all ~t ∈ T , we have xð~t, sÞ 1 zð~t, sÞ ≥ xðt̂ , sÞ > xðt , sÞ. Hence,
there cannot be a type with a binding incentive constraint regarding the report t.
This, in turn, implies that optimally, zðt, sÞ 5 0. If it were positive, z(t, s) could be
lowered and x(t, s) could be increased, at least until the strict inequality above
binds. This leaves the allocation probabilities unchanged but lowers verification
costs. The incentive constraints of type t now take the form xðt , sÞ 1 0 ≥ xð~t, sÞ
for all reports ~t and, in particular, for report t̂, contradicting the above hypoth-
esis. Hence, we must have that for all t, t̂ : xðt, sÞ 5 xðt̂ , sÞ ; xs .
A3.3. Step 3

With constant x(⋅, s), all incentive constraints are automatically fulfilled, as the
unverified allocation probability is the same for any possible report. The princi-
pal’s problem reads as follows:

max
ðxs ,zð�,sÞÞ≥0 ot∈T f ðt, sÞ½xsvðtÞ 1 zðt, sÞðvðtÞ 2 cÞ�,

subject to 8 t ∈ T : xs 1 z t, sð Þ ≤ 1:

(LP(s))

In this simplified program, z(t, s) will be set as high as possible—that is, to 1 2 xs—

if ðvðt, sÞ 2 cÞ is positive and to 0 otherwise, yielding the following:

max
xs∈ 0,1½ �

xs �o
t∈T

f ðt, sÞvðtÞ 1o
t∈T

f ðt, sÞð1 2 xsÞðvðtÞ 2 cÞ1: (LP(s))

A3.4. Step 4

Expressed in terms of conditional expectations, the problem is linear in xs:

max
xs∈ 0,1½ �

xs � Et ½vðtÞjs� 1 ð1 2 xsÞ � Et ½ðvðtÞ 2 cÞ1js�: (LP(s))

Generically, the optimal value of xs is either 0 or 1, depending on which of the
expectations is larger. The optimality of the cutoff mechanism follows, as
Et ½vðtÞjs� 2 Et ½ðvðtÞ 2 cÞ1js� is increasing in s. QED
ε

A4. Proof of Proposition 3

A4.1. Step 1

Similar to the case with perfect verification, we can solve for the optimal transpar-
ent mechanism for each signal realization s separately where the incentive con-
straint now reads

xðt, sÞ 1 zðt , sÞ ≥ x ð̂t, sÞ 1 εzð̂t, sÞ: (EPIC(s)t,tEPIC sð Þet;t̂
� 
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A4.2. Step 2

For any s ∈ S and for all t , t 0 ∈ T : xðt, sÞ 1 εzðt, sÞ 5 xðt 0, sÞ 1 εzðt 0, sÞ, that is, the
expected allocation probability frommisreporting is constant in the (mis)report.

Suppose to the contrary that there are types t and t 0 with xðt, sÞ 1 εzðt, sÞ >
xðt 0, sÞ 1 εzðt 0, sÞ. Then, no other type can have a binding incentive constraint
regarding the misreport t 0. It follows that optimally zðt 0, sÞ 5 0. Otherwise, the
principal could benefit from decreasing z(t0, s) and increasing x(t0, s) at the same
rate until zðt 0, sÞ 5 0 or xðt 0, sÞ 1 εzðt 0, sÞ 5 xðt , sÞ 1 εzðt , sÞ. However, if
zðt 0, sÞ 5 0 and still xðt, sÞ 1 εzðt , sÞ > xðt 0, sÞ 1 εzðt 0, sÞ 5 xðt 0, sÞ 1 ε0, then also
xðt, sÞ 1 εzðt, sÞ > xðt 0, sÞ 1 zðt 0, sÞ, so that type t 0 would have a strict incentive
to misreport to type t.

A4.3. Step 3

Given that for all t we have xðt , sÞ 1 εzðt , sÞ 5 xs , all IC constraints are satisfied.
Thus, for any fixed value of xs ∈ ½0, 1�, the principal chooses the optimal level
allocation and verification probabilities for each t, subject to the feasibility con-
straint xðt, sÞ 1 zðt , sÞ ≤ 1 and to xðt, sÞ 1 εzðt, sÞ 5 xs. That is, the principal
chooses xðt, sÞ ∈ ½ðxs 2 εÞ1=ð1 2 εÞ, xs� and sets zðt, sÞ 5 ðxs 2 xðt, sÞÞ=ε.36 Now,
take any type t and consider the optimal distribution of xs over x(t, s) and z(t,
s). The principal’s allocation value from type t as a function of x(t, s) is

max
x∈½ðx2εÞ1= 12εð Þ,xs �

vðtÞ � x 1 ðvðtÞ 2 cÞ � xs 2 x

ε
, (A1)

where the last fraction is z(t, s), given that xðt, sÞ 5 x and x 1 εzðt, sÞ 5 xs . It is
easy to see that it is optimal for the principal to set

xðt, sÞ 5
xs if vðtÞ ≤

c

1 2 ε
,

ðx 2 εÞ1

1 2 ε
if vðtÞ > c

1 2 ε
:

8>><>>: (A2)

In words, there is a threshold type�t ε 5 minftjvðtÞ 2 ½c=ð1 2 εÞ� > 0g such that all
types below the threshold are allocated without verification only, while types
above the threshold are allocated after verification with maximal possible proba-
bility, given xs, and allocated without verification only when xs > ε.

A4.4. Step 4

Given the optimal choice of x(t, s) and z(t, s) in the previous step, the principal’s
optimal choice of xs solves

max
x∈½0,1�

x � Et vðtÞ1 t<�t εf gjs½ � (A3)

1 max
x 2 ε

1 2 ε
, 0

n o
� Et vðtÞ1 t≥�t εf gjs½ �1min

1 2 x

1 2 ε
,
x

ε

� 	
� Et



ðvðtÞ2 cÞ1 t≥�t εf g

����s�: (A4)
36 The lower bound for x, ðx 2 εÞ1=ð1 2 εÞ, is required, since whenever xs > ε, at least
part of the total expected allocation from misreporting has to come from x rather than z.
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The objective is piecewise linear in x with a kink at x 5 ε, and it is optimal to
choose xs such that

xs 5

1 if Et vðtÞjs½ � > Et vðtÞ 2 c

1 2 ε

� �1 ��� sh i
,

ε if Et vðtÞjs½ � ∈ 2
1 2 ε

ε
Et vðtÞ 2 c

1 2 ε

� �1 ��� sh i
, Et vðtÞ 2 c

1 2 ε

� �1 ���sh i� �
,

0 if Et vðtÞjs½ � ≤ 2Et vðtÞ 2 c

1 2 ε

� �1 ��� sh i
:

8>>>>>>>><>>>>>>>>:
(A5)

The three cases above correspond to the signal ranges defined by the cutoffs s ε

and �sε in proposition 3. QED

A5. Proof of Proposition 4

Fix an environment with noisy verification technology a such that ε 5
maxt̂,t ∈T : t̂≠tað̂tjtÞ constitutes the largest verification error across all type-misreport
combinations. To establish the boundon the principal’s gain from secrecy given in
the proposition, we give a lower bound on the principal’s value from the optimal
transparent—that is, EPIC—mechanism and an upper bound on the principal’s
value from the optimal mechanism in the larger class of BIC mechanisms.

A5.1. Step 1

Denote by V trans
ε the maximal payoff the principal can achieve from a transparent

mechanism. This value is determined by the linear program (LP) with the set of
IC constraints replaced by

xðt, sÞ 1 zðt, sÞ ≥ x ð̂t, sÞ 1 að̂tjtÞzð̂t, sÞ, for all t, t̂, s: (A6)

Let (x, z) be the optimal cutoff-with-appeal mechanism in the case of perfect
verification in theorem 2, and denote the principal’s value from that mechanism
by V trans

0 , where the subscript 0 indicates that the verification error is 0 in that case
of perfect verification. We apply two slight modifications to the original mecha-
nism (x, z). First, define a modified mechanism (x0, z0) such that x 0ðt , sÞ 5 ε for
all (t, s), with t < �t and s < �s, and x 0ðt, sÞ 5 xðt, sÞ, z0ðt, sÞ 5 zðt, sÞ for all remain-
ing (t, s). That is, the modified mechanism introduces (unverified) allocation
probability ε at all those type-signal combinations that lead to zero allocation
probability in the original cutoff-with-appeal mechanism under perfect verifica-
tion. Under mechanism (x0, z0), the principal’s conditional expected value after
any signal realization s < �s is equal to

Et ðvðtÞ 2 cÞ1js½ � 1 εEt vðtÞ1 t<�tf gjs½ �, (A7)

where the second term captures the change due to the introduced modification.
Note that the definition of �s implies that the second expectation is negative for
any s < �s. In particular, it may be that the entire expected value conditional on
s is negative for low enough signal realizations.

After such signals, the principal is better off not allocating to the agent at all
and never verifying independent of the agent’s report. Formally, construct the
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modification ð~x, ~zÞ by setting ~xðt , sÞ 5 ~zðt, sÞ 5 0 for all t and all s such that value
(A7) is negative, maintaining ~xðt, sÞ 5 x 0ðt , sÞ and~zðt, sÞ 5 z0ðt, sÞ for all other (t, s).

It is easily verified that the modified mechanism ð~x, ~zÞ satisfies the IC con-
straints in (A6), given that að̂tjtÞ ≤ ε for all combinations t̂ ≠ t. Therefore, the
modification is feasible in the principal’s problem with verification error, and
its value constitutes a lower bound for the principal’s value from any incentive-
compatible transparent mechanism under this noisy verification technology. De-
note the principal’s expected value from the modified mechanism by ~Vε, for
which we just showed that V trans

ε ≥ ~Vε

A5.2. Step 2

Denote by V secr
ε the maximal payoff the principal can achieve from any (i.e., po-

tentially nontransparent) mechanism. This value is given by the linear program
(LP) with the set of IC constraints replaced by

Es xðt , sÞ 1 zðt , sÞ 2 x ð̂t , sÞ 2 að̂t tÞzð̂t , sÞj jt½ � ≥ 0, for all t , t̂: (A8)

The above IC constraints are clearly more restrictive than the original ðBICt ,̂tÞ
constraints in (LP). As the objective of the program is unchanged, it follows that
the principal’s value from the optimal mechanism with verification error must be
bounded by the value from the optimal mechanism with perfect verification. In-
tuitively, the principal with perfect verification technology could always commit
to “simulate” any verification error internally by changing her reaction to verifi-
cation outcomes with appropriate probabilities. Thus, we must have V secr

ε ≤ V secr
0 ,

where the latter denotes the principal’s value from the optimal cutoff-with-appeal
mechanism in the case of perfect verification.

A5.3. Step 3

The gain from secrecy is defined as V secr
ε 2 V trans

ε . By steps 2 and 1 above, we have
V secr

ε 2 V trans
ε ≤ V secr

0 2 ~Vε. Finally, our transparency result proposition 1 tells us that
V secr

0 5 V trans
0 . The claim in proposition 4 follows by verifying that

V trans
0 2 ~Vε 5 ε �o

s<�s

P½s�min
1

ε
E½ðvðtÞ 2 cÞ1 s�; E½2vðtÞ1t<�tj js�

� 	
:

QED

A6. Proof of Proposition 5

We present the following relaxation of the principal’s problem under coarse ver-
ification and show that it is solved by a transparent mechanism that is also feasi-
ble in the original program. Divide the partition T into two or three subsets. The
set of partition elements for which all types are profitable is denoted

T 1 ; t ∈ T jvðtÞ > 0 8 t ∈ tf g:

The set of partition elements for which all types are unprofitable is denoted

T 2 ; t ∈ T jvðtÞ ≤ 0 8 t ∈ tf g:
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Finally, there may be one mixed partition element, tmix ∈ T =ðT 1 [ T 2Þ, that
contains both profitable and unprofitable types. Note that we can restrict atten-
tion to those cases in which at most one of the three sets above may be empty. If
two are empty, the principal-optimal allocation is either constant (all types have
positive or all types have negative value) or no verification is possible (all types
are contained in tmix). We slightly abuse notation below and write t ∈ T 1 to ex-
press that t ∈ t for some t ∈ T 1 and likewise for T 2.

The relaxed problem includes only upward incentive constraints, but not all of
them. We ignore all constraints that prevent misreports to types in T 2 from types
in other partition elements. Hence, it reads as follows:

max
x,z≥0 o

t∈T
o
s∈S

f ðt, sÞ xðt, sÞvðtÞ 1 zðt, sÞðvðtÞ 2 cÞ½ �,

subject to 8ðt , t̂Þ ∈ T � T 1 [ tmix
� �

with t < t̂ : ðBICt ,̂tÞ,

8ðt , t̂Þ ∈ T � T with t < t̂ and t̂ ∈ tðtÞ : ðCBICt ,̂tÞ,

8ðt , sÞ ∈ T � S : xðt, sÞ 1 zðt, sÞ ≤ 1:

(CLP.r)

A6.1. Step 1

In any solution to the relaxed problem, zðt, sÞ 5 0 for all t ∈ T 2 and all s ∈ S .
Suppose otherwise that for some t ∈ T 2 and some s ∈ S we have zðt, sÞ > 0.

Shifting probability mass from z(t, s) to x(t, s) such that the overall allocation
probability stays constant,

0 < dxðt, sÞ 5 2dzðt , sÞ,

saves the principal verification costs and does not distort the incentives. Type t’s
incentives to misreport remain the same, and the only incentive constraints to
misreport type t ∈ T 2 included in the relaxed problem are the intrainterval
(CBIC) constraints for which only the sum xðt , sÞ 1 zðt, sÞ matters.

A6.2. Step 2

There is an optimal mechanism in the relaxed problem featuring a cutoff for
x ð̂t, �Þ:

8 t̂ ∈ T 1 [ ftmixg ∃ ~sðt̂ Þ ∈ S : xðt̂, sÞ
5 0 if s < ~sð̂tÞ,

∈ ½0, 1Þ if s > ~sð̂tÞ,

5 1 if s 5 ~sð̂tÞ:

8>><>>:
Take a feasible mechanism in the relaxed problem and suppose that for some

t̂ ∈ T 1 [ ftmixg, ∃ s < s0 such that xðt̂, sÞ > 0, xðt̂ , s0Þ < 1. Modify this mechanism
at two points, shifting the allocation probability from xðt̂, sÞ to xðt̂, s 0Þ, that
is, dx ð̂t , sÞ < 0 and dxðt̂, s0Þ > 0. Choose these shifts in a proportion such that
for t̂, the expected allocation probability remains unchanged:
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0 5 f ðt̂, sÞdxðt̂ , sÞ 1 f ðt̂, s0Þdxðt̂, s 0Þ ⇔ dxðt̂, sÞ

5 2
f ð̂t, s0Þ
f ð̂t , sÞ dx ð̂t, s

0Þ:

For all types t < t̂, this reduces the incentive to report t̂ because

dðBICt ,̂tÞ 5 2f ðt, sÞdx ð̂t, sÞ 2 f ðt, s0Þdx ð̂t, s 0Þ

5 f ðt , sÞ f ð̂t, s0Þ
f ð̂t, sÞ 2

f ðt, s 0Þ
f ðt, sÞ


 �
dx ð̂t, s0Þ > 0

by the MLRP.
The proposed shift is feasible if in the original mechanism, x ð̂t, s0Þ1 zðt̂ , s0Þ < 1.

In the case that xðt̂ , s0Þ 1 zðt̂, s0Þ 5 1, it can still be implemented by shifting in
addition mass from zðt̂, s0Þ to zðt̂, sÞ to ensure that xðt̂, s0Þ 1 zðt̂ , s0Þ and xðt̂, sÞ 1
zðt̂, sÞ remain constant:

dxðt̂, s 0Þ 1 dzðt̂, s0Þ 5 0 and dxðt̂, sÞ 1 dzðt̂, sÞ 5 0:

This implies that dzðt̂, s 0Þ < 0 and dzðt̂, sÞ > 0. This is feasible, as xðt̂, s0Þ < 1 and
x ð̂t, s0Þ 1 zð̂t, s0Þ 5 1 imply that zðt̂, s 0Þ > 0. As x ð̂t , sÞ > 0, we must further have
zð̂t, sÞ < 1 by feasibility. To maintain the total allocation probabilities constant,
the above changes in x are compensated for by the following changes in z:

dzð̂t, sÞ 5 f ð̂t, s0Þ
f ð̂t , sÞ ð2dzð̂t, s0ÞÞ:

The incentives for any lower type from a different partition element to misreport
type t̂ are weakened in the same way as above because zð̂t, sÞ and zð̂t , s0Þ do not
play a role in the constraints that prevent misreport t̂. For the types in the same
partition element, the total allocation x 1 z has not changed, so their incentive
to report t̂ remains unchanged.

A6.3. Step 3

There is an optimal mechanism in the relaxed problem featuring a cutoff in
zð̂t , �Þ:

8 t̂ ∈ T 1 [ ftmixg ∃ sð̂tÞ ∈ S with sð̂tÞ ≤ ~sð̂tÞ,

subject to zð̂t, sÞ

5 0 if s ∉ ½sð̂tÞ,~sð̂tÞ�,

∈ ½0, 1Þ if s 5 sð̂tÞ,

5 1 if sð̂tÞ < s < ~sð̂tÞ,

5 1 2 x ð̂t , sÞ if sð̂tÞ < s 5 ~sð̂tÞ:

8>>>>><>>>>>:
Given the cutoff in x from the previous step, apply the same shifts from lower

to higher signals to verification probability z. For any report t̂, the incentive
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constraints for true types not in tð̂tÞ are unaffected. The upward constraints for
any type t ∈ tð̂tÞ with t < t̂ are relaxed. The principal’s payoff is unchanged.

A6.4. Step 4

The x cutoff is the same for all profitable types, that is, xðt, sÞ 5 xðt 0, sÞ for all
t, t 0 ∈ T 1 and all s ∈ S . Further, xðt, sÞ ≥ xð~t, sÞ for all ðt,~tÞ ∈ T 1�tmix.

Take the report t̂ among profitable types with the largest x allocation (with
the signal cutoff farthest to the left); that is, take t̂ 5 argmint∈T 1ð~sðtÞÞ. If the set
is not a singleton, choose any among the ones for which x ð̂t ,~sð̂tÞÞ is maximal.
Now set xðt, sÞ 5 x ð̂t , sÞ for all t ∈ T 1 and all s ∈ S . If this change results in
xðt, sÞ 1 zðt, sÞ > 1, reduce verification to zðt, sÞ 5 1 2 x ð̂t, sÞ. This change is
profitable for the principal, as it increases allocation probability to profitable
types and decreases verification probability. The resulting mechanism is also in-
centive compatible in the relaxed problem. For any report t ∈ T 1, any type
~t ∉ tðtÞ gets the same outcome from reporting t he could already get by report-
ing t̂ before the modification. For lower types ~t < t in the same partition element
t(t), the cutoff structure implies that for all s, either xðt, sÞ 1 zðt, sÞ remains un-
changed or zð~t, sÞ 5 zðt, sÞ 5 0 and xð~t, sÞ 5 xðt , sÞ, so that incentive compatibil-
ity is preserved by this modification.

Finally, note that any optimal mechanism in the relaxed problemmust feature
xðt, sÞ ≥ xð~t, sÞ for all t ∈ T 1 and ~t ∈ tmix. If this were not the case, we could in-
crease x on T 1 without violating any IC constraints and thereby either increase
the allocation probability for strictly positive types or decrease the verification
probability.

A6.5. Step 5

For all t , t 0 ∈ tmix, we have xðt , sÞ 5 xðt 0, sÞ and zðt, sÞ 5 zðt 0, sÞ for all s.
The cutoff structure from steps 2 and 3, together with the upward incentive

constraints within tmix, imply that for any type pair t < t 0 within tmix, we must have
xðt, sÞ 1 zðt, sÞ ≥ xðt 0, sÞ 1 zðt 0, sÞ for all s.

We first show that any solution in the relaxed problem must have
xðt 0, sÞ ≥ xðt , sÞ. Suppose that this was not the case. Then there must be a pair of
consecutive types t 0 < t 00 with xðt 00, sÞ < xðt 0, sÞ. Let t 0, t 00 be the lowest such pair.
Then it must be that zðt 00, sÞ 5 0 for all s, because no type from a lower partition
element can have a binding IC constraint to report t 00 without having a strict incen-
tive to misreport t 0. This, in turn, implies that for all types t ∈ tmix with t > t 00, we
have zðt , sÞ 5 0 for all s. That is because xðt , sÞ 1 zðt, sÞ ≤ xðt 00, sÞ 1 zðt 00, sÞ 5
xðt 00, sÞ < xðt 0, sÞ, so no binding constraint from another partition element could
justify the verification cost. Now by t 0 < t 00, either vðt 00Þ > 0 or vðt 0Þ ≤ 0. In the first
case, if vðt 00Þ > 0, then optimality requires that xðt 00, sÞ 5 xðt 0, sÞ, contradicting
xðt 00, sÞ < xðt 0, sÞ. In the second case, if vðt 0Þ ≤ 0, then vð~tÞ 2 c < 0 for all ~t ≤ t 0.
In that case, optimality requires that zð~t, sÞ 5 0 for all~t ≤ t 0 and all s. By incentive
compatibility and given that x(t, s) is monotone in t below t 0, it must hold that
zðt 0, sÞ 5 0 and xð~t , sÞ 5 xðt 0, sÞ for all~t ≤ t 0 and all s. Again, incentive compatibil-
ity then specifies that xðt 0, sÞ 5 xðt 00, sÞ (so that all x are equal on tmix), again con-
tradicting xðt 00, sÞ < xðt 0, sÞ. Hence, within tmix, x(t, s)must bemonotone increasing
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in t for all s. It follows immediately that x(t, s) must be constant in t for all s. If this
were not the case, there would be t < t 0 with xðt, sÞ < xðt 0, sÞ for some s. For t not to
misreport t 0, this requires that zðt, sÞ > 0. This cannot be optimal, given that replac-
ing z(t, s) with x(t, s) would be incentive compatible and save verification costs.

Second, we show that zðt , sÞ 5 zðt 0, sÞ for all t and t 0 in tmix and all s. Given that x
is constant on tmix, the upward incentive constraints within tmix imply that the z(t,
s) must be weakly decreasing in t within tmix for all s. Suppose that z(t, s) is strictly
decreasing in t for some s; that is, for t < t 0, we have zðt, sÞ > zðt 0, sÞ. Since t < t 0,
either vðtÞ 2 c ≤ 0 or vðt 0Þ 2 c > 0. In the first case, it is optimal to decrease z(t,
s); in the latter case, it is optimal to increase z(t 0, s). Both changes preserve incen-
tive compatibility as long as we maintain zðt, sÞ ≥ zðt 0, sÞ.

A6.6. Step 6

The x cutoff is the same for T 1 and tmix.
For all s, the x(t, s) are constant in t both on T 1 and on tmix. Suppose that

the two are different. By step 4, then there must be some s such that for
ðt, t 0Þ ∈ tmix � T 1: xðt , sÞ < xðt 0, sÞ. Then, incentive compatibility for type t in tmix

requires that zðt, sÞ > 0. This cannot be optimal, given that replacing z(t, s) with
x(t, s) would be incentive compatible and save verification costs.

A6.7. Step 7: Cutoff in x for T 2

Finally, since vðtÞ < 0 for all types in T 2, it is easy to see that their allocation x
must be chosen as low as permitted by incentive compatibility. This results in
xðt, sÞ 5 xðt 0, sÞ for all pairs ðt, t 0Þ ∈ T � T and all s.

With the last step, we arrive at an optimalmechanism for which the nonverified
allocation probability x is constant for all types and the verified allocation prob-
ability z is constant within all partition elements. Any such mechanism clearly sat-
isfies the constraints that were ignored in the relaxed problem, so that it solves the
original problem. Furthermore, any such mechanism is transparently imple-
mentable; that is, it satisfies the pointwise constraints ðEPICðsÞt ,̂tÞ for all ðt, t̂Þ as
well as the pointwise constraints analogous to ðCBICt ,̂tÞ for all pairs ðt , t̂Þ with
t̂ ∈ tðtÞ.

To derive the optimal mechanism given in proposition 5, we can establish the
principal-optimal mechanism under coarse verification for each signal s separately.
The steps are analogous to those in the proof of proposition 2. Finally, we verify
that the cutoffs sc* and �sc are well defined. For sc*, it follows immediately from the
MLRP that Et ½ðvðtÞ 2 cÞ1ft∈tð�tÞgjs� crosses 0 atmost once. To verify this, we can divide
the expression by P½t ∈ tð�tÞjs� > 0 and confirm that the conditional expectation
Et ½ðvðtÞ 2 cÞjt ∈ tð�tÞ; s� is increasing in s. For �sc, we can write the expression in
the definition,

Et ½vðtÞ s� 2 Et ½ðvðtÞ 2 cÞ1 t>maxðtð�tÞÞf g
�� ��s� 2 Et ½ðvðtÞ 2 cÞ1 t∈tð�tÞf gjs�ð Þ1

as

min Et ½vðtÞ s� 2 Et ½ðvðtÞ 2 cÞ1 t>maxðtð�tÞÞf g
�� ��s�; Et ½vðtÞ s� 2 Et ½ðvðtÞ 2 cÞ1 t≥minðtð�tÞÞf g

�� ��s�� �
:
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This expression crosses 0 atmost once, because both elements in theminimumop-
erator cross 0 atmost once and from below.We show this for the case of the second
expression; the steps for the first expression follow analogously. We can rewrite

Et ½vðtÞ s�2 Et ½ðvðtÞ2 cÞ1 t≥minðtð�tÞÞf g
�� ��s�5 Et ½vðtÞ1 t<minðtð�tÞÞf g s�1 c � P½t ≥ minðtð�tÞÞj js� :

Dividing this expression by 1 2 P½t ≥ minðtð�tÞÞjs� 5 P½t ≥ minðtð�tÞÞjs� > 0 gives

Et ½vðtÞjt < minðtð�tÞÞ; s� 1 c � P½t ≥ minðtð�tÞÞjs�
1 2 P½t ≥ minðtð�tÞÞjs� :

Both terms are increasing in s, as a result of theMLRP, so that it can cross 0 atmost
once and from below. QED
Appendix B

Revelation Principle with Noisy Verification

We consider the following model of noisy verification. For any pair of type t and
type report t̂ , we specify a probability, að̂tjtÞ, of type t passing as type t̂. If the agent
reports truthfully, he passes the verification process for sure, aðtjtÞ 5 1. We study
direct mechanisms that specify, for any type report t and signal realization s,

• a probability of verifying the report: e ð̂t , sÞ;
• an allocation decision when the report is not verified: að̂t, s,∅Þ;
• an allocation when the type passes as the reported type: að̂t, s, 1Þ;
• and an allocation when the reported type fails the verification: að̂t, s, 0Þ.

Ball and Kattwinkel (2019) show how this reduced-form model can be micro-
founded by a setting in which—in addition to the standard form of cheap-talk
communication—there exists a set of pass/fail tests (with type-dependent passing
probabilities) from which the principal can choose one and conduct it on the
agent.37 They show that in this setting it is furthermore without loss to restrict
to direct mechanisms that induce truthful reporting. With that, our focus on
the direct mechanisms introduced above is without loss of generality.

Analogously to the case with perfect verification, we can use optimality argu-
ments to restrict the set of relevant mechanisms further.

Lemma 3 (maximal punishment and minimal verification). It is without loss
of optimality for the principal to restrict the class of direct mechanisms to fulfill
the following properties:

1. maximal punishment: aðt, s, 0Þ 5 0; and
2. minimal verification: if eðt , sÞ > 0, then aðt, s, 1Þ 5 1.
Proof. First, sinceaðtjtÞ 5 1,misreporting is an off-path event, and therefore the
allocation probability after a misreport is detected, a(t, s, 0), does not affect the
37 They show that the microfoundation inherently puts a structure on the passing rate:
aðt3jt1Þ ≥ aðt2jt1Þaðt3jt2Þ.
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principal’s payoff. For the agent, setting the allocation after a misreport as low
as possible decreases incentives to misreport while maintaining the payoff of any
truth-telling type unchanged.

Second, suppose that eðt, sÞ > 0 and aðt, s, 1Þ < 1. One could now lower the
probability of verification eðt, sÞ ↓ while increasing the probability of allocation
after confirming the report as true aðs, t, 1Þ ↑, such that e(t, s)a(t, s, 1) remains
constant. Note that for any misreporting type ~t, eðt, sÞaðt, s, 1Þaðtj~tÞ also remains
constant by this operation.

Lowering the verification probability would, therefore, increase the incentives
to misreport and the overall allocation probability only after report t and signal s,
if there was allocation with positive probability conditional on no verification,
that is, aðt, s,∅Þ > 0. However, in this case, this allocation could be lowered
aðt, s,∅Þ ↓, such that ð1 2 eðt, sÞÞaðt, s,∅Þ remains constant. Then, the incentives
to misreport and the overall allocation probability would remain constant. As
these procedures would save verification costs while keeping all unconditional al-
location probabilities constant, the fact that an optimal mechanism features
nonmaximal reward can be ruled out. QED
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