
Applying machine learning to fine classify construction and 

demolition waste based on deep residual network and 

knowledge transfer 

Abstract: Few studies reported using the convolutional neural network with transfer 

learning to finely classify the construction and demolition waste. Objectives: This study 

aims to develop a highly efficient method to realize the finely sorting the construction 

and demolition waste, which is a key step for promoting the recycling system to realize 

carbon neutrality in the waste management sector. Methodology: C&DWNet models, 

ResNet structures based on knowledge transfer and cyclical learning rate, were 

proposed to classify ten types of construction and demolition waste. Indexes (confusion 

metric, accuracy, precision, recall, F1 score, sensitivity, specificity and kappa) were 

adopted to evaluate the performance of various C&DWNet models. Results: 

Knowledge transfer can reduce the training time and improve the performance of the 

C&DWNet model. The average training time is increased with the increase of the layer 

of C&DWNet architecture from C&DWNet-18 (946.7 s) to C&DWNet-152 (1186.6 s). 

The accuracy of various C&DWNet models is approximately 72~74%, the best 

accuracy is 73.6% in C&DWNet-152. C&DWNet-18 is more suitable for the 

classification of construction and demolition waste in terms of training time, accuracy, 

precision, and F1 score. Moreover, the t-distributed stochastic neighbor embedding can 

distinctly separate each type of construction and demolition waste. Improvement: The 

environmental applications and limitations of the C&DWNet module were also 

discussed, which could provide a reference for the intelligent management of 



construction and demolition waste and promote the development of the circular 

economy. 
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Machine learning; Deep residual network; Knowledge transfer
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1 Introduction 1 

The rapid global urbanization and population growth have brought considerable 2 

quantities of construction material consumption and produced a large amount of 3 

Construction and Demolition (C&D) waste (Huang et al., 2020). Unfortunately, less 4 

than 5% of C&D waste was reused or recycled in China (Duan et al., 2015). Most of 5 

them were randomly dumped or transported directly to landfills without distinction 6 

(Duan and Li, 2016), which would pose threat to air, water, soil, and limited landfills. 7 

On the other hand, about 40% of global greenhouse gas (GHG) emissions are caused 8 

by construction-related activities (Huang et al., 2020). Thus, promoting the level of 9 

C&D waste recycling will help to realize carbon neutrality in the waste management 10 

sector. 11 

The traditional method of recycling C&D waste is very time-consuming and labor-12 

intensive, leading to inefficient C&D waste management (Wang et al., 2020). In recent 13 

decades, smart classification, as means to improve the efficiency of waste classification, 14 

has become quite popular with the development of machine learning (Achu et al., 2021; 15 

Khosravi et al., 2019; Mao et al., 2021; Yan et al., 2021). Convolutional Neural 16 

Network (CNN), one of the state-of-the-art machine learning structures, was widely 17 

used for the task of computer vision like image classification, object detection, and 18 

semantic segmentation. This algorithm is being caught attention to classify the waste to 19 

improve waste management. 20 

To be exact, Support Vector Machine (SVM) with scale-invariant feature transform 21 

and ResNet-50 with SVM was employed to classify the TrashNet, the dataset about the 22 
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image of recyclable waste, and achieved an accuracy of 63% and 87%, respectively 23 

(Yang and Thung, 2016). ResNet-18 was integrated with a self-monitoring module for 24 

recyclable waste classification, which can recognize the six waste types in TrashNet 25 

with an accuracy of 95.87% (Zhang et al., 2021). A series of research like classifying 26 

wet waste (Yanai and Kawano, 2015), plastic waste (Bobulski and Kubanek, 2021; 27 

Sreelakshmi et al., 2019) and meal waste (Frost et al., 2019) have been carried out, 28 

while few studies have used the ResNet structure to classify the C&D waste. It is worthy 29 

to note that the essence of the CNN or ResNet model is a data-driven model and needs 30 

extensive information to achieve state-of-the-art performance (Lin et al., 2022).  31 

Thus, measures of data augmentation and Knowledge Transfer (KT) may improve 32 

the performance of CNN algorithms. KT (so-called “transfer learning”) is a kind of 33 

machine learning technique, which can be applied to transfer knowledge in different 34 

physical scenarios (Sinno and Qiang, 2010). KT combined with CNN structures is 35 

transferrable and applicable to traffic object detection (Zhang et al., 2018) and 36 

recyclable garbage classification (Aral et al., 2018). However, to our best knowledge, 37 

limited literature has reported adopting KT integrated with ResNet structures for fine 38 

classification of C&D waste. 39 

Notably, deep machine learning needs to identify the most suitable learning rate, 40 

which is one of the most hyper-parameters for the training process of CNN, as small or 41 

large learning rates will cause slow convergence or divergence in training algorithms 42 

(Y.Bengio, 2012). But to realize this, a large amount of computing sources is needed. 43 

Leslie (N.Smith, 2017) proposed the cyclical learning rate and proved its effectiveness 44 
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in deep neural networks training. 45 

This study aims to develop C&DWNet models based on ResNet structure and 46 

knowledge transfer to realize the fine classification of C&D waste. The technology of 47 

data augmentation and cyclical learning rate was applied to improve the training 48 

efficiency. Several evaluation metrics like confusion matrix, accuracy, precision, recall, 49 

F1 score, sensitivity, specificity, kappa and ROC also were used to evaluate the 50 

performance of C&DWNet models. In addition, algorithms of Principle Component 51 

Analysis (PCA) and t-Stochastic Neighbor Embedding (t-SNE) were applied to extract 52 

the representation of C&D waste images. The result of this study would provide the 53 

reference for the design of the C&DWNet models for the fine classification of C&D 54 

waste and promote the idea for the intelligence of C&D waste management. 55 

 56 

2 Materials and Methods 57 

2.1 Data Collection 58 
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Fig. 1 Example of C&D waste: concrete, brick, stone, ceramic tile, glass, metal 59 

scrap, gypsum board, wood, plastic, and paper 60 

The C&D waste image dataset was manually collected from Google search or taken 61 

by authors’ cameras. This dataset with a total of 2836 images was manually grouped 62 

into 10 categories: concrete, brick, stone, ceramic tile, glass, metal scrap, gypsum board, 63 

wood, plastic and paper (Fig. 1). 64 

2.2 Data augmentation 65 

Measures of color space transformation, flipping, rotation, and noise injection were 66 

taken to augment image samples, as shown in Fig. S1. After data augmentation, the 67 

number of concrete, brick, stone, ceramic tile, glass, metal scrap, gypsum board, wood, 68 

plastic and paper images was enlarged to 5526, 10908, 1116, 2430, 2376, 10224, 4500, 69 

8568, 3402 and 1944, respectively. The size of C&D waste images was changed from 70 
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2836 to 50992. In addition, the size of the training dataset, validation dataset and test 71 

dataset was 36711, 4080 and 10203, respectively. The pixel size of all C&D waste 72 

images was reshaped as 224×224 (height)×(width) for training the neural network. 73 

2.3 C&DWNet 74 

C&DWNet models, five ResNet structures (ResNet-18, ResNet-34, ResNet-50, 75 

ResNet-101 and ResNet-152) based on knowledge transfer, were proposed to classify 76 

ten types of C&D waste images. 77 

2.3.1 Deep residual network (ResNet) 78 

ResNet was proposed by He et al. (2016), it presented the best performance in 79 

ImageNet classification. ResNet is a network-in-network architecture with a large 80 

number of stacked residual units (Garcia-Garcia et al., 2018). The various ResNet 81 

structures were given in SI (Fig. S2), which include two deep building blocks: 82 

bottleneck 1 and bottleneck 2. Bottleneck 1 was applied to stack the structure of 83 

ResNet-18 and ResNet-34, while ResNet-50, ResNet-101 and ResNet-152 were 84 

stacked by bottleneck 2. In comparison to bottleneck 1, bottleneck 2 includes three 85 

layers 1×1, 3×3 and 1×1 convolutional layer, where the function of 1×1 layer is applied 86 

to reduce and increase the dimension of input, making the bottleneck of 3×3 layer with 87 

small input/output dimensions.  88 

Identity mapping is a measure to address the degradation problem. The details of 89 

how it works were introduced as follows (Fig. S2 and equation (2-3)). As shown in 90 

bottleneck 1 in Fig. S2, x, F(x,{wi})+x, and F(x,{wi}) are represented the input, output 91 

vectors, and residual mapping for learning, respectively. The y in equation (2-1) is equal 92 

to F(x,{wi}) + x, which operation is conducted by a shortcut connection (Fulkerson, 93 
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1996) and element-wise addition. 94 

y=F(x,{wi})+x (2-1) 

What is noteworthy is that average pooling was introduced and linked to the fully 95 

connected layer in Conv5_x, where the activation function of the rectified linear unit 96 

(ReLu) was used to predict classes based on the highest probability given the input data, 97 

which can be expressed in the mathematics form (2-2): 98 

Pr (Y=i|v, W, b)= Softmaxi(Wv)+b=
ewiv+bi

∑ ewjv+bj
j

 (2-2) 

Where elements of w and b refer to the weights and bias, respectively. Index j is 99 

applied to normalize the posterior distribution. The model prediction was the class with 100 

the highest probability, as presented in Equation (2-3): 101 

y
prediction

= argmax
i
Pr(Y= i | v, W, b) (2-3) 

The elements of weights and bias in deep ResNet structures were also optimized by 102 

the error backpropagation algorithm, which adopted an error metric to calculate the 103 

distance between true class labels and the predicted class labels. The Cross-Entropy 104 

function (2-4) was chosen as the loss function to be minimized for dataset V. 105 

L=
1

N
∑ ∑ y

ic

M

c=1
I

log(p
ic

) (2-4) 

Where L denotes the loss function; Here, V={v(1),v(2),v(3),...,v(n)} refers to the set 106 

of input samples in the training dataset;  Y={y(1),y(2),...,y(10)}  presents the 107 

corresponding labels: brick, …, wood.  108 

2.3.2 Knowledge transfer 109 

Usually, knowledge transfer may significantly enhance the performance of learning 110 
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by reducing the efforts of data labeling. Considering the explanation of concepts of 111 

domain and task in knowledge transfer, for instance, given a source domain, ImageNet 112 

(Xs) and a corresponding source task, Image label (Ys), there will be marginal 113 

probability distribution Px(x,y) between Xs and Ys. For the task of C&D waste sorting, 114 

there is also a target domain, the C&D waste image dataset (XT), as well as a target task, 115 

the corresponding image label (YT). The main purpose of knowledge transfer is to learn 116 

the target probability distribution PT(x,y) in XT with the knowledge gained from Xs and 117 

Ys.  118 

The knowledge transfer was applied to obtain pre-trained ResNet models. The 119 

weights and biases from ImageNet were also adopted. Fine-tuning the ResNet model 120 

was taken by truncating the original softmax layer and changing 1000 categories to 10 121 

categories. This method can obtain the pre-trained parameters and deal with the task of 122 

C&D waste classification. 123 

2.4 Cyclical learning rate 124 

The cyclical learning rate includes base learning rate and max learning rate, cycle, 125 

step size, batch size, batch, or iteration. Base learning rate and max learning rate define 126 

the boundaries of a range, where the learning rate will fluctuate (Vidyabharathi et al., 127 

2021). The value of base learning rate and max learning rate was set as 10-8 and 10, 128 

respectively. The triangular policy was adopted for the variations in cyclical learning 129 

rate. In this research, the value of cycle, step size, batch size and iteration was 100, 50, 130 

32 and 100, respectively. The learning rate either increases or decreases based on the 131 

outcome from the latest batch in the epoch (Samudre et al., 2022). After getting the 132 



10 
 

learning rate, combined with the data distribution, the learning rate of each experiment 133 

was set one by one. As shown in Fig. S3, the value of the learning rate for C&DWNet-134 

18, C&DWNet-34, C&DWNet-50, C&DWNet-101 and C&DWNet-152 was 5.0×10-4, 135 

7.5×10-4, 7.0×10-4, 8.0×10-4 and 7.5×10-4, respectively. 136 

2.5 Model evaluation metrics 137 

Confusion matrix, recall, precision, F1 score, accuracy, Receiver Operating 138 

Characteristic (ROC), and Area Under the Curve (AUC) were used to evaluate the 139 

performance of C&DWNet. Recall, precision, F1 score, and accuracy were defined as 140 

follows: 141 

Recall= 
TP

TP+FN
 (2-5) 

Precision=
TP

TP+FP
 (2-6) 

F1 score=
2×TP

2×TP+FP+FN
 (2-7) 

Accuracy = 
TP+TN

TP+FN+TN+FP
 (2-8) 

Sensivity = 
TP

TP+TN
 (2-9) 

Specificity = 
FN

FN+FP
 (2-10) 

Kappa = 
n ∑ (TNi×ai)- ∑ (ai×bi)

10
1

10
1

n2- ∑ (ai×bi)
10
1

 (2-11) 

Where TP, TN, FN, FP, n, ai and bi present the numbers of true positives, true 142 

negatives, false negatives, false positives, the number of the tested sample, the number 143 

of true samples of each class and the number of predicted samples of each class, 144 

respectively. 145 
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2.6 Visualization 146 

2.6.1 PCA 147 

PCA was employed to represent data of waste sorting in a low-dimensional way 148 

(Thomaz and Giraldi, 2010). The matrix X of m × n training includes m input samples 149 

(C&D waste images) and n pixels (or variables). The covariance matrix C of the data 150 

matrix can be obtained by Equation (2-12): 151 

C = 
1

m
XXT (2-12) 

The eigenvector P and eigenvalue Ʌ of covariance matrix C can be calculated 152 

according to Equation (2-13): 153 

PTCP= Ʌ (2-13) 

Therefore, such a set of eigenvectors P for the training set matrix X was regarded as 154 

the principal component. 155 

2.6.2 t-SNE 156 

t-SNE is a kind of technology that can reduce dimensionality tasks by minimizing 157 

the divergence between the pairwise similarity distribution of input points and low-158 

dimensional embedding points (Maaten and Hinton, 2008; Retsinas et al., 2017). 159 

Considering the input points as {x1,x2,x3,...,xn} and their corresponding embedding 160 

points as {y1,y
2
,y

3
,...,y

n
} , the pairwise similarity between points xi and xj can be 161 

obtained by using the joint probability, pi,j, as presented in Equations (2-14) and (2-15): 162 

p
j|x

=
exp( − d(xi,xj)

2
/2σi

2)

∑ exp( − d(xi,xj)
2
/2σi

2)k≠i

 (2-14) 

Pij=
p

j|i
+p

i|j

2N
 (2-15) 
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where d(xi,xj) represents Euclidean distance function. 163 

Using a similar method to get the pairwise similarity between points yi and yj in the 164 

embedding space (Equations (2-16)).  165 

q
j|x

=
exp(- ‖y

i
-y

j
‖

2

)

∑ exp(- ‖y
i
-y

j
‖

2

)k≠i

 (2-16) 

The Kullback-Leibler divergence was minimized to calculate the embedding Y, 166 

which considers the pairwise similarity distribution for both initial and the embedding 167 

spaces as follows: 168 

∁(Y)=KL(P∥Q)= ∑ ∑ p
ij

log
p

ij

q
ijji

 (2-17) 

Gradient descent method was used to find an embedding Y to minimize the 169 

divergence, while the gradient of the divergence for each point of the embedding space 170 

was obtained according to Equation (2-18): 171 

δC

δy
i

=2 ∑ (p
j|i

-q
j|i

+p
i|j

-q
i|j

)

j

(y
i
-y

j
) (2-18) 

2.7 Research flow and Experimental platform 172 

The details of the research flow and the experimental platform were presented in Fig. 173 

S4 and Table 1, respectively. 174 

Table1 Experimental platform for training C&DWNet models 175 

Item Parameters 

CPU Intel (R) Core (TM) i9-10900K @ 3.70 GHz 

Language Python 3.8; Pytorch 1.7.1+cul10 

Hard drive 2T 
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Operating system Window 10 

Random-Access Memory (RAM) 128 G 

Graphic Processing Unit (GPU) NVIDIA GeForce RTX 3080 

3 Results and Discussion 176 

3.1 Effect of knowledge transfer on the performance of C&DWNet-18 for the 177 

classification of C&D waste 178 

Fig. S5 shows the effect of knowledge transfer (KT) on the performance of 179 

C&DWNet-18. As shown in Fig. S5 a) and b), the average training time in C&DWNet-180 

18 without KT and C&DWNet-18 is 951.5 s and 946.7 s, respectively. It means that KT 181 

can slightly increase the efficiency of C&DWNet model training. As shown in Fig. S5 182 

c) and d), the training loss and validation loss in C&DWNet-18 are much lower than in 183 

C&DWNet-18 without KT. They decrease with the increase of the epoch number in 184 

C&DWNet-18, which decreases from 1.48 (at epoch 1) to 0.12 (at epoch 10). While the 185 

training loss and validation loss in C&DWNet-18 increase from 0.54 (at epoch 1) to 186 

0.65 (at epoch 3) and then decrease to 0.04 (at epoch 10). 187 

The accuracy rates of the training dataset and validation dataset present an upward 188 

trend with the increasing epoch (Fig. S5 e) and f)). The accuracy from C&DWNet-18 189 

in the training dataset and validation dataset is more than 80% since the 1st epoch and 190 

reaches 99.99% in the 10th epoch. While the accuracy of C&DWNet-18 without KT is 191 

less than 50% at the 1st epoch and increases to 99.83% in the 10th epoch. The result 192 

suggested that KT could promote efficiency and enhance the accuracy of C&D waste 193 

sorting. 194 

In comparison to C&DWNet-18 without KT in Fig. S5 g), more C&D waste images 195 
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like brick (1619), concrete (795), glass (409), gypsum board (676), metal scrap (1719), 196 

paper (266), plastic (308) and wood (1343), were found on the diagonal line in 197 

C&DWNet-18 in Fig. S5 h), indicating that KT can enhance the performance of 198 

C&DWNet-18 on the test dataset. 199 

As shown in Fig. S5 i) and j), The area under the ROC curve (AUC) is regarded as 200 

an indicator for the effect of classification. The macro-average AUC of C&DWNet-18 201 

(0.82) is higher than the C&DWNet-18 without KT (0.77), indicating that KT can 202 

improve the effect of C&D waste sorting. 203 

The precision, recall, F1 score, accuracy, sensitivity, specificity and kappa were used 204 

to assess the performance of the C&DWNet-18 without KT and C&DWNet-18 model. 205 

The performance evaluation of C&DWNet-18 without KT and the C&DWNet-18 206 

model was given in Table 2. The accuracy of C&DWNet-18 without KT on the C&D 207 

waste test dataset is 64.7%. C&DWNet-18 has a better performance on C&D waste 208 

sorting in terms of accuracy (73.3%), precision (73.7%), recall (73.3%), F1 score 209 

(73.1%), sensitivity (73.4%), specificity(4.9%) and kappa (69.8%). 210 

In conclusion, the method of KT can shorten the training time and improve the 211 

performance of the C&DWNet-18 model on the classification of C&D waste. 212 

 213 
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Table 2 Performance evaluation of C&DWNet-18 without/with knowledge transfer on C&D waste test dataset (Note: FS, CT, GB, MS and WA 214 

represent F1 Score, Ceramic Tile, Gypsum Board, Metal Scrap and Weighted Average ) 215 

C&DW 

Categories 

C&DWNet-18 without knowledge transfer C&DWNet-18 

Precision Recall FS Accuracy Sensitivity Specificity Kappa  Precision Recall FS Accuracy Sensitivity Specificity Kappa 

Brick 0.704 0.632 0.666 

0.647 

0.703 0.133 

0.587 

0.794 0.742 0.767 

0.733 

0.794 0.088 

0.698 

CT 0.568 0.570 0.569 0.568 0.032 0.636 0.558 0.594 0.590 0.029 

Concrete 0.568 0.657 0.610 0.568 0.061 0.554 0.719 0.626 0.554 0.044 

Glass 0.679 0.674 0.677 0.678 0.024 0.911 0.859 0.884 0.911 0.008 

GB 0.649 0.671 0.660 0.648 0.047 0.830 0.751 0.789 0.830 0.029 

MS 0.726 0.792 0.758 0.726 0.079 0.759 0.841 0.798 0.759 0.042 

Paper 0.653 0.517 0.577 0.653 0.029 0.806 0.684 0.740 0.806 0.016 

Plastic 0.514 0.278 0.360 0.514 0.071 0.653 0.452 0.534 0.653 0.048 

Stone 0.259 0.321 0.287 0.259 0.023 0.365 0.308 0.334 0.365 0.021 

Wood 0.645 0.709 0.675 0.644 0.084 0.753 0.784 0.768 0.752 0.047 

WA 0.647 0.647 0.643 - 0.647 0.078 - 0.737 0.733 0.731 - 0.734 0.049 - 

216 
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3.2 Comparison of various C&DWNet structure performance in training and 217 

validation dataset 218 

Fig. S5 shows C&DWNet performances on various cases of C&D waste sorting. The 219 

average training time increases along with the increase of the layer of C&DWNet 220 

architecture. Namely, the training time in C&DWNet-18, C&DWNet-34, C&DWNet-221 

50, C&DWNet-101 and C&DWNet-152 is 946.7, 951.6, 968.2, 1042 and1186.6 s, 222 

respectively. This occurrence is due to the fact that much more parameters are needed 223 

to be trained, as the layer increases. 224 

The loss in C&DWNet-34, C&DWNet-50 and C&DWNet-101 shows a similar trend, 225 

it decreases with the epoch number increase. By contrast, the loss in C&DWNet-18 and 226 

C&DWNet-152 increases at the early stage and then decreases. The trend of accuracy 227 

in various C&DWNet architectures has little difference with the iteration of the epoch.  228 

3.3 Model performance in the test datasets 229 

3.3.1 Confusion matrix 230 

The confusion matrix of the assessment used for C&DWNet models’ (C&DWNet-231 

18, C&DWNet-34, C&DWNet-50, C&DWNet-101 and C&DWNet-152) performance 232 

was shown in Fig. 2. The values of the C&D waste on the diagonal line represent correct 233 

classification, in contrast, the values outside the diagonal line represent unpaired labels 234 

and images. For example, the brick in C&DWNet-152, 1620 images were accurately 235 

sorted, on the contrary, 33 images of ceramic tile, 321 images of concrete, 2 images of 236 

gypsum board, 30 images of metal scrap, 10 images of paper, 3 images of plastic, 25 237 

images of stone and 138 images of wood were wrongly identified as the brick (Fig. 2 238 

e)). 239 
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Compared with other C&DWNet models in Fig. 2, most the C&D waste like brick 240 

(1620), ceramic tile (290), glass (439), plastic (346), stone (101) and wood (1410) are 241 

found on the diagonal line in C&DWNet-152, indicating that C&DWNet-152 can 242 

provide better performance on these C&D waste sorting. While most of the gypsum 243 

board (705) and paper (295) are found on the diagonal line in C&DWNet-101 and 244 

C&DWNet-50, respectively. As for concrete and metal scrap, C&DWNet-18 can 245 

provide better performance. Thus, different C&DWNet models are suitable for different 246 

kinds of C&D waste. 247 
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Fig. 2 Confusion matrices of C&DWNet 

model performance: a) C&DWNet-18; 

b) C&DWNet-34; c) C&DWNet-50; d) 

C&DWNet-101; e) C&DWNet-152 

 

 248 

3.3.2 Accuracy, Precision, Recall, F1 score, Sensitivity, Specificity and Kappa 249 

Several indexes were applied to quantitatively assess the performance of C&DWNet 250 

models for C&D waste sorting (Fig. 3). The accuracy of various C&DWNet models is 251 

approximately at 72~74%, the best accuracy is 73.6% in C&DWNet-152 in Fig. 3 a). 252 

However, there are limitations for the indicator of accuracy due to the unbalanced data 253 

(Dhillon and Verma, 2019). Thus, precision, recall, F1 score, sensitivity, specificity and 254 

kappa were also applied to assess the performance of C&DWNet models. 255 

Precision represents the proportion of correctly predicted positive items to the total 256 

predicted items. As shown in Fig. 3 b), C&DWNet-18 and C&DWNet-152 show a 257 

better performance than other C&DWNet models in terms of weighted average at about 258 

(79%). Although both two models show a good performance, they still have room for 259 

improving their performance, especially for glass (36.5%) and wood (55.4%) in 260 

C&DWNet-18. 261 

The recall value refers to the number of positive items correctly identified. As shown 262 

in Fig. 3 c), the weighted average of C&DWNet-18, C&DWNet-101 and C&DWNet-263 

152 are at about 74%, these three models show a similar and a little better performance 264 
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than other C&DWNet models. 265 

F1 score represents a balance between recall value and precision. As shown in Fig. 5 266 

d), the weighted average of F1 score is followed in this order: 76.7% (C&DWNet-18) > 267 

76.4% (C&DWNet-152) > 75.6% (C&DWNet-101) > 72.1% (C&DWNet-34) > 69.9% 268 

(C&DWNet-50). This means that most of the C&D waste can be well classified by the 269 

model of C&DWNet-18 and C&DWNet-152. However, the F1 score of the gypsum 270 

board and glass in all the C&DWNet models are less than 60%, their classification 271 

performance needs to be improved.  272 

The sensitivity of various C&DWNet models is almost at 71.6~73.6%, the best 273 

sensitivity is 73.6% in C&DWNet-152 in terms of weighted average in Fig. 3 e), while 274 

the specificity of various models follows this order in weighted average: C&DWNet-275 

50 (5.6%) > C&DWNet-34 (5.5%) > C&DWNet-101 (5.1%) > C&DWNet-152 (5.0%) > 276 

C&DWNet-18 (4.9%). In addition, the index of kappa was also taken to evaluate the 277 

performance of various C&DWNet models, as shown in Fig. S6. The max value of 278 

kappa was 69.8% in C&DWNet-18, followed by 66.8% in C&DWNet-34, 66.6% in 279 

C&DWNet-101 and 66.5% in C&DWNet-18, and the mix value of kappa was 65.9% 280 

in C&DWNet-101, which indicated the result of various C&DWNet models showed 281 

well consistency (Hayden and Ghosh, 2014). 282 
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Fig. 3 Comparison of different C&DWNet performances in terms of accuracy, 

precision, recall, F1 score, sensitivity, specificity and F1 score: a) Accuracy; b) 

Precision; c) Recall; d) F1 score; e) Sensitivity; f) Specificity. Note: CT, GB, MS and 

WA represent ceramic tile, gypsum board, metal scrap and weighted average, 

respectively. 

 283 

3.3.3 ROC 284 

The area under the ROC curve (AUC) is an indicator for assessing the classification 285 
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performance (Ahmad et al., 2020; Zhang et al., 2021). All the macro average AUC of 286 

C&DWNet models are 0.82 (Fig. 4). In Fig. 6, class 0, class 1, class 2, class 3, class 4, 287 

class 5, class 6, class 7, class 8, class 9 represent brick, ceramic tile, concrete, glass, 288 

gypsum board, metal scrap, paper, plastic, stone, wood, respectively. 289 

As shown in Fig. 4, all the C&DWNet models show a similar performance. Almost 290 

all the AUC values are higher than 0.8, except for the AUC value of ceramic tile, plastic, 291 

and stone. The maximum AUC value of ceramic tile, plastic, and stone are 0.79, 0.75, 292 

and 0.72, respectively. The reason is that the ceramic tile, and stone waste images often 293 

were wrongly identified as gypsum board and concrete, respectively (Fig. S7). 294 

Therefore, the results demonstrate that most C&D waste can be well classified by the 295 

C&DWNet models, and the classification effect of ceramic tile, plastic and stone should 296 

be improved. 297 

On the other hand, the result also suggested that different C&DWNet models show 298 

a good performance in different kinds of C&D waste. This is different from the 299 

conclusion of the ImageNet application, which indicated that the deeper ResNet 300 

structures, the better performance. This phenomenon can be ascribed to the dataset of 301 

C&D waste being not as complex as these from the ImageNet (Yang et al., 2021). Those 302 

results suggested that the structure and depth choice of C&DWNet models should be 303 

made according to the practical application. 304 

Considering the index of accuracy, precision, recall, F1 score, sensitivity, specificity, 305 

kappa and AUC, the performance of C&DWNet models does not show obvious 306 

improvement in C&D waste sorting, but the training time would increase with the layer 307 
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of increase. This would spend more and consume resources. Therefore, C&DWNet-18 308 

is more suitable for the classification of C&D waste. 309 

    

  

 

Fig. 4 ROC from C&DWNet models: a) 

C&DWNet-18; b) C&DWNet-34; c) 

C&DWNet-50; d) C&DWNet-101; e) 

C&DWNet-152. Note: Class 0, Class 1, 

Class 2, Class 3, Class 4, Class 5, Class 6, 

Class 7, Class 8, Class 9 represent brick, 

ceramic tile, concrete, glass, gypsum 

board, metal scrap, paper, plastic, stone, 

wood, respectively. 

 

 310 

3.4 Visual explanation by using PCA and t-SNE  311 

Methods of PCA and t-SNE were applied to present the distribution of the C&D 312 

waste image dataset in the C&DWNet-18 model. Fig. 5 a) shows 2-dimension extracted 313 

representations from the last layer of the C&DWNet-18 model obtained from the PCA 314 

algorithm. The features from the C&DWNet-18 model demonstrate an obscure 315 
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semantic clustering. There is some overlap of C&D waste’s features, which means there 316 

exists confusion. 317 

Fig. 5 b) presents C&D waste representations that were better separated by t-SNE in 318 

comparison to PCA. The features of brick, ceramic tile, concrete, glass, gypsum board, 319 

metal scrap, paper, plastic, stone and wood were distinctly separated. Therefore, 320 

considering the advantages of t-SNE, it can be applied to accurately present the features 321 

of C&D waste sorting (Gisbrecht et al., 2015). 322 

  

Fig. 5 A 2-D feature visualization of an image representation of waste images by the 

method of PCA and t-SNE for the last layer of C&DWNet-18: a) PCA; b) t-SNE. 

Note: Each color illustrates a different class in the dataset. PCA refers to Principal 

component analysis; t-SNE refers to t-distributed stochastic neighbor embedding 

3.5 Environmental implications and future perspective 323 

The study suggested that different C&DWNet models show a good performance in 324 

different kinds of C&D waste. Namely, the structure of C&DWNet can be designed 325 

according to the composition of C&D waste. For example, C&DWNet-152 may be a 326 

good choice for the classification of glass (F1 score was 0.893). C&DWNet module 327 

can be implemented with a mechanical arm to realize C&D waste sorting automatically. 328 

While this is related to C&D waste classification, object detection, and semantic 329 

segmentation, they would be explored in the future. In addition, the C&DWNet module 330 
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can be also integrated with GIS or Drone to detect the behavior of dumping to 331 

strengthen the enforcement efforts. 332 

However, the C&DWNet model has some limitations, which can be improved in 333 

future work. The training time of C&DWNet is slower due to the millions of parameters 334 

that are needed to be trained, it can be adjusted according to the structure of the ResNet 335 

model, aiming to reduce the number of parameters. In addition, the performance of the 336 

C&DWNet model still has great room for improvement, which can be combined with 337 

other algorithms like genetic algorithms, DenseNet and VGGNet to enhance accuracy, 338 

precision and recall. 339 

4 Conclusion 340 

C&DWNet models, five ResNet structures (ResNet-18, ResNet-34, ResNet-50, 341 

ResNet-101 and ResNet-152) based on knowledge transfer, were proposed to classify 342 

ten types of C&D waste. The cyclical learning rate was applied to quickly find the 343 

best global learning rate. The results showed that KT can reduce the training time and 344 

improve the performance of the C&DWNet model. The average training time 345 

increases with the increase of the layer of C&DWNet architecture from C&DWNet-346 

18 (946.7 s) to C&DWNet-152 (1186.6 s). The accuracy of various C&DWNet models 347 

is approximately 72~74%, the best accuracy is 73.6% in C&DWNet-152. C&DWNet-348 

18 is more suitable for the classification of C&D waste. The structure and depth choice 349 

of C&DWNet models should be made according to the practical application. 350 

Moreover, in comparison to PCA, the algorithm of t-SNE can distinctly separate each 351 

type of C&D waste. In addition, the C&DWNet module can be also integrated with 352 
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GIS or Drone to detect the behavior of dumping to strengthen the enforcement efforts. 353 

Through the C&D waste classification, it helps to promote the development of the 354 

circular economy. The code is available on: (Annyulin/C-D-waste-classification-by-355 

ResNet (github.com)). 356 
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