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Abstract  9 

Despite the advantages of the Anaerobic Digestion (AD) technology for organic waste 10 

management, low system performance in biogas production negatively affects the wide spread 11 

of this technology. This paper develops a new artificial intelligence-based framework to predict 12 

and optimise the biogas generated from a micro-AD plant. The framework comprises some 13 

main steps including data collection and imputation, recurrent neural network/ Non-Linear 14 

Autoregressive Exogenous (NARX) model, shuffled frog leaping algorithm (SFLA) 15 

optimisation model and sensitivity analysis. The suggested framework was demonstrated by 16 

its application on a real micro-AD plant in London. The NARX model was developed for 17 

predicting yielded biogas based on the feeding data over preceding days in which their lag 18 

times were fine-tuned using the SFLA. The optimal daily feeding pattern to obtain maximum 19 

biogas generation was determined using the SFLA. The results show that the developed 20 

framework can improve the productivity of biogas in optimal operation strategy by 43% 21 

compared to business as usual and the average biogas produced can raise from 3.26 to 4.34 22 

m3/day. The optimal feeding pattern during a four-day cycle is to feed over the last two days 23 

and thereby reducing the operational costs related to the labour for feeding the plant in the first 24 

two days. The results of the sensitivity analysis show the optimised biogas generation is 25 
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strongly influenced by the content of oats and catering waste as well as the optimal allocated 26 

day for adding feed to the main digester compared to other feed variables e.g., added water and 27 

soaked liner. 28 

Keywords: Anaerobic digestion; Artificial intelligence framework; Biogas generation; 29 

Optimised operation strategy; Organic waste; Recurrent neural network.  30 
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1. Introduction 31 

Over the years, the world has been subjected to unprecedented population growth, economic 32 

development, and rapid urbanisation. These series of development have given rise to a constant 33 

increase in organic waste generation globally. This constant increase in the generation of 34 

organic wastes has become a major source of concern globally following its negative impacts 35 

(Arun and Sivashanmugam, 2017). Organic wastes account mainly for approximately 105 36 

billion tonnes of the total municipal solid waste generated on an annual basis globally (WBA, 37 

2021). Lack of proper and efficient waste management strategies can lead to a series of 38 

environmental problems such as emerging pollution, ecosystem destruction, harm to human 39 

health and depletion of natural resources (Kumar et al., 2021). The poor management of 40 

organic wastes also has the potential to contribute to climate change through the emission of 41 

greenhouse gases into the atmosphere (CIWEM, 2021). The effect of this has compelled 42 

nations and governments to invest more financial and material resources for the remediation of 43 

organic wastes in recent years (Wainaina et al., 2020).  44 

Presently, efforts are being made to revolutionise the waste management industry towards 45 

achieving sustainability and profitability (Abdallah et al., 2020). This has led to the application 46 

of advanced recycling technologies such as anaerobic digestion (AD), composting and 47 

incineration amongst others in treating and managing wastes that having been identified to be 48 

better alternatives to landfill systems (Wainaina et al., 2020). AD technology has been regarded 49 

as an established biological processing technique suitable for stabilising a plethora of organic 50 

solid wastes that also results in resource recovery of energy (i.e., methane biogas) and useful 51 

nutrients (i.e., organic fertilisers) (Wainaina et al.,2020). More specifically, the AD technology 52 

can deliver both de-fossilisation and decarbonisation, i.e., avoided GHG (greenhouse gases) 53 

emissions through converting organic wastes to (1) renewable energy thereby reducing the 54 

need for fossil fuel utilisation and (2) organic fertilisers reducing the need for chemical 55 
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fertilisers (WBA., 2021). In addition, compared to other technologies such as incineration that 56 

may result in air pollution and GHG emissions, the ability of the AD technology for converting 57 

waste to useful energy and organic nutrients without causing any form of environmental 58 

pollution, i.e., avoided embodied energy/carbon and hence avoided GHG emissions, makes it 59 

a preferable option (Liang et al., 2022). The multi-faceted nature of the AD technology has 60 

rendered it as a highly ranked technique in the waste management industry and an excellent 61 

tool for the realisation of circular economy (WBA., 2021).  62 

Evidently, the performance of the AD technology is mainly evaluated based on the biogas 63 

generation as the most valuable output which is the result of processes in four stages including 64 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Shahsavar et al., 2021). Despite 65 

the plethora of advantages in the AD technology, its performance especially for biogas 66 

generation is heavily dependent upon the balanced mix of the waste and microbial groups and 67 

hence is highly sensitive to organic compounds and may result in process instability and failure 68 

(Cruz et al., 2022).  In addition, long residence time and low removal efficiency of organic 69 

compounds are other limitations that hinder the wide application and adoption of this 70 

technology to full potential (Xu et al., 2021). All this can directly affect the efficiency of the 71 

biogas production. Therefore, modelling AD processes are of paramount importance and useful 72 

tool to first estimate and then optimise the AD performance (i.e., projection of biogas 73 

production and organic fertilisers). Although several conventional mathematical models (e.g., 74 

theoretical, analytical and statistical) are available, their application is limited due mainly to 75 

the complexity of their development, data demanding and challenges with model calibration 76 

(Cruz et al., 2022). Hence, these models are widely used as useful tools for the AD planning 77 

and design such as AQUASIM, GRAINIT BIOGAS, ANESSA and ADM1 (Carlini et al., 78 

2020). However, the reliability of these models within the operation phase of AD plants is more 79 

challenging as the operation conditions of AD processes can be highly variable and rapid 80 
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changes in control parameters are inevitable especially depending on waste composition 81 

(Cheela et al., 2021). As a result, due to changes in various microbial species and the complex 82 

metabolic pathways, the above mathematical models are unable to properly estimate the model 83 

performance. However, data driven models such as Artificial Intelligence (AI) can be 84 

introduced as a good surrogate for process-based modelling that are dependent of complex 85 

physico-chemical processes. In other words, the AI-based models are developed based on 86 

historic data of the system variables and can be used for real-time operation of AD plants by 87 

using online data (Piadeh et al., 2022).  88 

Several research works have studied the application of AI methods to the AD processes for 89 

modelling the relevant non-linear and complex relationships by focusing on optimising particle 90 

size of organic matters, organic loading rate, ratio of carbon to nitrogen (C/N), pH and 91 

temperature, and residence time (Zhang et al., 2019). These research studies mainly followed 92 

three approaches: (1) using classification machine learning (ML) methods such as support 93 

vector machine, random forest (RF), K-nearest neighbourhood (KNN) to predict the corrected 94 

operation, (2) optimising parameters by particle swarm and genetic algorithm, and (3) 95 

employing various artificial neural networks (ANN) to predict control parameters (Cruz et al. 96 

2022). To increase the rate of biogas yield, AI-based methods have been widely used in 97 

agricultural and industrial application (Kunatsa and Xia, 2022). However, to the best of our 98 

knowledge, few research works have presented an AI-based framework for developing 99 

operation strategies to improve the AD performance in producing biogas from the food waste 100 

generated in an urban area. More specifically, the KNN method employed by Wang et al. 101 

(2020) and RF used by Long et al. (2021) separately classify and find the regression between 102 

different operational control measurements and biogas generation. Tufaner and Demirci (2020) 103 

used simple ANN to predict biogas generation in a laboratory scale AD by using pH, alkalinity, 104 

organic load rate, chemical oxygen demand (COD) and total solid (TS) Park et al. (2021) 105 
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similarly used pH, alkalinity, COD removal and volatile solids as input variables for ANN to 106 

predict biogas yield. More recently, Pei et al. (2022) used data mining and ANN models to 107 

estimate biogas generation based on TS, C/N, pH and acid concentration. These efforts aimed 108 

at estimating the AD outputs especially biogas production based on the system variables 109 

especially pH, alkalinity, and effluent pollution. Although the development of smart and 110 

decision-making frameworks in waste management have recently attracted more attention by 111 

researchers (Shahsavar et al., 2021, Shahsavar et al., 2022), none of the previous works either 112 

developed a framework for the AD operation based on the ANN models or carried out proper 113 

investigations on the effect of different waste compositions and the water added to the AD on 114 

biogas yield. Furthermore, those previously developed models mainly used simple ML or ANN 115 

whereas the performance of the AD procedure may fit in better with simulation of time-series 116 

models that rely on earlier timesteps. This is particularly important because AD systems are 117 

operated continuously and are highly dependent on sequential and continuous input waste load 118 

(Yang et al., 2022; Chozhavendhan et al., 2023). This type of modelling can be envisaged 119 

through the application of a recurrent neural network (RNN) model for monitoring the 120 

performance of the AD processes (Offie et al., 2022). Hence, this study aims to develop a new 121 

smart framework for optimal operation performance of micro-AD plants located in a residential 122 

area based on Recurrent Neural Network (RNN) and optimisation techniques. It is also aimed 123 

at determining the maximum volume of biogas that can be generated from the micro-AD plant. 124 

This framework is demonstrated by its application to historic data obtained from a real case of 125 

a micro AD plant in London, UK.  126 

This paper is organised as follows: in section 2, the features of the micro-AD plant used as the 127 

pilot study as well as the description of the micro-AD site location will be clearly stated. The 128 

nature of data collected from the micro-AD plant and different techniques adopted for data 129 

imputation will be then presented. In addition, the type of artificial neutral networks (ANN)-130 
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based model developed for monitoring and improving the efficiency of the micro-AD plant 131 

will also be presented and described in detail alongside the sensitivity and uncertainty analysis 132 

carried out to assess the performance of the developed ANN model. The results obtained from 133 

infilling the missing data and the ANN model development and testing will be presented and 134 

discussed in detail in section 3 followed by finally summarising key findings and remarking 135 

notes in section 4.  136 

2. Methodology 137 

This study presents a new AI-based framework for the simulation and optimisation of micro-138 

AD plants based on data-driven models. Figure 1 shows the methodology in this study 139 

comprising three main steps as data collection/preparation, model development and 140 

performance assessment. These steps are commonly used for developing most data-driven 141 

environmental models (Piadeh et al., 2022). The AI-based framework is mainly used as the 142 

core tool for estimating and optimising biogas generation based on the feed data collected over 143 

preceding days. All steps of the framework were carried out using MATLAB 2021b software 144 

which provides functions for estimation and optimisation of the system performance. These 145 

steps follow a series of procedures after collecting data from the micro-AD plant, which are 146 

described below with more details. 147 

2.1 Data collection and preparation  148 

This stage entails data collection and imputation for infilling missing data using some data-149 

mining-based techniques, selection of relevant data for model development. The data in this 150 

study was collected from a micro-AD plant located in Camley Street Natural Park Central 151 

London, United Kingdom (UK) with the schematic diagram shown in Figure 2 (Walker et al., 152 

2017). The micro-AD plant in this site had a pre-feed tank consisting of a chopper mill, mixing 153 

pre-feed tank on load cells and a feed pump. It also had a main anaerobic digester containing 154 
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an automated mechanical mixer and heater by an internal water heat exchanger. Other main 155 

components of the micro-AD plant as shown in the figure include the hydrogen sulphide 156 

scrubber filled with activated carbon pellets, floating gasometer for biogas storage, digestate 157 

sedimentation tank, digestate liquor storage tank. The micro-AD plant was monitored for a 158 

period of 310 days during which the operational parameters, biological stability, and energy 159 

requirements of the micro-AD plant were evaluated. 160 

The data collected from the micro-AD plant include temperature, pH, volatile solids, total 161 

solids, feed into the main digester, feed composition into the pre-feed tank. The feed 162 

composition comprises apple, catering and coffee, coffee, digestate, green waste, oats, soaked 163 

peanuts and muesli, tea, tea leaves, tea bags, oil, soaked muesli, soaked liners, and catering. 164 

Other data collected are the water added to the pre-feed tank and the volume of biogas 165 

generation. The feed into either the pre-feed tank or the main digester was usually done every 166 

few days when both feed amounts and biogas volume in the storage were recorded. Hence, out 167 

of the monitoring period of 310 days of the micro-AD plant, there were days when no feed was 168 

added to either the pre-feed tank or the main digester and no recording of biogas generation 169 

while daily continuous data for both feed and biogas are necessary for developing a time-series 170 

ANN model that considers lag days. In addition, there were some days with missing output 171 

data (i.e., there was feed but there was no reading for biogas generation). This effect can hinder 172 

the model accuracy of the micro-AD plant especially for the prediction of the biogas volume 173 

generated. Hence, some data-mining techniques were first analysed in this study for estimating 174 

the missing data to determine the most suitable one for infilling the missing data. Note that 175 

missing data in this study refer to the absence of biogas readings in two types: (1) data samples 176 

with feed values available (input) but no reading for biogas generation (output); and (2) data 177 

samples with feed value equal to zero but no reading for biogas generation. Therefore, the 178 

entire dataset was first divided into two groups of data with feeding inclusive and data without 179 
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feeding. Some data mining techniques were then tested to identify the relationship between the 180 

feed data and the generated biogas for data groups with feeding data. Out of those techniques, 181 

the best one was selected for infilling the missing data of the first type (i.e., data with feed 182 

values but no biogas values). The second type of missing data (i.e., data where feeding is zero 183 

and biogas is unavailable) were infilled based on the linear regression of the remaining total 184 

biogas data read. The data mining techniques explored here include Random Forest (RF), K-185 

Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), Kriging, Feed 186 

Forward Neural Network (FFNN) and Linear Regression (LR).  187 

Sequel to this, a sensitivity analysis was carried out for each of the operational feed variables 188 

to determine their correlation and impact on the volume of biogas generation. Based on the 189 

cross-correlation analysis of all input variables (demonstrated as Figure A1 and Table A1 in 190 

the Appendix), the daily feed into the digester, the water added to the digester showed 191 

significant correlation and corresponding impact on the biogas volume generated. In addition, 192 

out of various waste compositions, only oats, soaked liners, and catering were selected whereas 193 

other waste compositions were negligible as they had no significant correlation and hence no 194 

meaningful impact on the volume of the biogas generated. In addition, the volatile solids, total 195 

solids, pH, and temperature were measured but observed to be relatively constant during the 196 

operation and hence these parameters were also excluded from the analysis for estimating 197 

biogas generation. 198 

2.2 Model development 199 

To estimate biogas generation, a type of time-series RNN model known as Non-Linear 200 

Autoregressive Neural Network (NARX) was developed here with three hidden 10-neuron 201 

layers with the architecture shown in Figure 1. This model was developed based on the selected 202 

input variables of the micro-AD plant including the actual/estimated daily feed added to the 203 
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main digester (X1), the feed composition comprised of catering (X2), oats (X3), and soaked 204 

liners (X4) added to the pre-feed tank (i.e. the top three highly correlated variables with biogas 205 

generation), the water added to the pre-feed tank (X5), and the volume of biogas generation 206 

(Y). The model settings are as follows: Levenberg-Marquardt method used for training process; 207 

mean square error as the indicator to evaluate the model performance, and 6 epochs (iterations) 208 

adjusted for training failure. The database used for model development is divided into three 209 

parts as 70% for training, 15% for validation and 15% for test as a common practice (Eghbali 210 

et al. 2017). The trained model was then used to predict the biogas generation (Yp) for the 211 

micro-AD plant in the case study.  212 

As the NARX model needs lag time specification in day (known as delay factor Fi), i.e., range 213 

of input variables for previous timesteps to use for estimation of biogas generation at one 214 

timestep ahead (Yt+1) based on input data (decision variables), an optimisation method is used 215 

to find the optimal lag time for each decision variable, as a model tunning, to obtain the most 216 

accurate output data i.e., biogas generation. To this effect, the optimisation model was 217 

developed using shuffled frog leaping algorithm (SFLA). This is a memetic and nature-based 218 

algorithm with the ability to search in both local and global search space where each lag time 219 

represents one frog (Bui et al., 2020). Here, each frog, i.e., decision variable, represents a lag 220 

time to find the minimum root mean square error (RMSE) and the highest Normalized Nash-221 

Sutcliffe Efficiency (NNSE) in this optimisation approach. 4 trials for exploration and 4 trials 222 

for exploitation were set for each iteration of optimisation, and stopping criteria being set to an 223 

improvement of less than 1%. Each of the six decision variables (i.e., F0-F5 in Figure 1) is an 224 

integer value ranging between 0 and 10 due to the results of cross-correlation analysis on inputs, 225 

provided in Figure A1 in the appendix. Thus, this approach can be used to determine the delay 226 

factor (range of previous Xi data) for each input data/decision variable. 227 
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This algorithm was then used again to specify the required weights for the daily feeds added to 228 

the main digester, daily feed compositions and the water added to the pre-feed tank to maximise 229 

the output (i.e., maximum volume of biogas generation from the micro-AD plant) for each of 230 

the days in a cyclic period of feeds. Note that the cyclic period is based on the (lag time) delay 231 

factor specified in the first optimisation model. While stopping criteria and trials are set 232 

similarly, each NARX input for each day are selected as decision variables. To simulate the 233 

real operation and put a cap for the feeds/water added to the plant, constraints are defined based 234 

on the historic operation of the plant as follows: (1) maximum feed equals to 80 kg every 4 235 

days. Note that 4 days is based on the cyclic period of 5 days (as four days input data and biogas 236 

generation in day 5) specified as a result of the optimisation model for the largest lag time (see 237 

the result section); (2) total weight of the feed and all pre-feeding compositions should be 238 

equalled during the optimisation; (3) added water is limited to 30% of the total feed weight, (4) 239 

all decision variables need to be either zero or positive values.  240 

2.3 Performance assessment 241 

Two metrics i.e., RMSE and NNSE are used in this study to evaluate the performance of the 242 

developed NARX model. The developed model is also evaluated using both the sensitivity 243 

analysis and uncertainty analysis. The sensitivity analysis is carried out to show the 244 

significance of each input variable for yielding the predicted output (biogas) by removing one 245 

input parameter and running the model afterwards with NNSE and RMSE both for 246 

observations. The uncertainty analysis on the other hand was done to show how the relative 247 

accuracy is changed when running the model with dataset reduction. When carrying out the 248 

sensitivity analysis, the optimal waste composition is taken into consideration where the impact 249 

of each waste composition is analysed and evaluated to determine the significant impact of 250 

each waste composition on the generation of biogas. Further analyses are also carried out on 251 

the feed data to further evaluate its importance in the performance of the developed model. 252 
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3. Results and discussion 253 

3.1. Data imputation results 254 

Figure 3 shows the performance of the data mining techniques applied for infilling the missing 255 

data. The performance of these techniques is shown for RMSE of the test data based on the 256 

cross-validation method in which all data samples participate in the evaluation of the test set 257 

(Eghbali et al., 2017). The 6-fold cross-validation method was used in this study for the 258 

performance assessment of infilling the missing data. Based on the results presented, it is 259 

evident that the Kriging technique had the least range of fluctuations amongst other data mining 260 

techniques with an average RMSE value of 1.23 m3/day compared to 1.25-2.25 m3/day for the 261 

other techniques. As a result, the Kriging technique was selected and used to obtain the missing 262 

biogas values with complete feed values thereby giving rise to more accurate predictions of the 263 

biogas produced from the AD plant. This further confirms the effectiveness of the Kriging 264 

technique in infilling missing data where other previous studies have not highlighted dealing 265 

with missing data and usually have used simple techniques, especially linear regression (Pei et 266 

al., 2022). This is specifically important because similar to many industrial and real practices, 267 

there was no daily measurement for the generated biogas and only 123 non-sequential data out 268 

of the 310 operation days were recorded. Hence, this infilling technique could provide 269 

acceptable results used to develop the model for accurate estimation and optimisation of the 270 

generated biogas volume.  271 

3.2.Fine-tuning of lag times of input variables 272 

Figure 4 shows the optimal number of lag times for each input variable is obtained after 8 trials. 273 

This figure also shows the obtained lag times in each iteration and their corresponding model 274 

performance metrics (i.e., RMSE and NNSE). As can be seen in Figure 4, the RMSE and NNSE 275 

were observed to decrease and increase gradually over the trial number, respectively. The 276 

results show that the optimal daily lag time data is 5 days for the added water (F5), followed by 277 
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3 days for the feed added to the main digester (F1), and then 1 day for other variables (i.e., 278 

catering, oat, soaked-liner, and biogas generation). This shows that adding water to the pre-279 

feed tank can influence the content of the generated biogas in the main digester from the past 280 

5 days whereas waste compositions can immediately impact on biogas generation from only 281 

one previous day. This also shows the yielded biogas can be dependent on the daily distribution 282 

of feeds and water. Furthermore, one day lag time in the waste composition indicates that the 283 

process of biogas generation is highly influenced by specific rate of waste compositions added 284 

to pre-digester, even if this rate is different from that of material added the digester.  285 

Furthermore, the cross-correlation analysis, provided in Figure A1 in the appendix, shows the 286 

highest correlation coefficient between biogas generation and the feed adding to the main 287 

digester occurs in previous 5 days (used as initial for F1 in Figure 4) whereas optimised lag 288 

time for feed is reduced to 3 days (trial 7 in Figure 4). Similarly, daily lag times for catering, 289 

oat and liners are reduced from 3 days in initial trial based on the cross-correlation analysis to 290 

only 1 day. However, the high correlation of 5th to 3rd days ago for the added water were initially 291 

ignored (number 2 in the initial row for F5 in Figure 4 vs number 5 in the last row). This can 292 

be due to the impact of the combination of input variables on optimal lag times that is shown 293 

in the significant improvement of metrics, i.e., RMSE (decrease from 1.4 to 0.4) and NNSE 294 

(increase from 0.6 to around 0.9). Although most of the previously developed NARX models 295 

recommended using cross-correlation results for developing NARX model (Abdel daiem et al., 296 

2022), the difference between initial lag times and final lag times obtained from the SFLA 297 

method shows the added value of using optimisation models to fine tune these time-series 298 

models.  299 
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3.3. Performance assessment of biogas predictions 300 

Figure 5a compares the biogas measurements with the corresponding estimations over the test 301 

period. From this figure, the disparity between the predicted biogas and the generated biogas 302 

was observed to be quite insignificant. Figure 5b also shows the performance assessment of 303 

the developed model where the scatter plot of predicted biogas versus corresponding 304 

measurements for one day lead time (i.e., one day ahead) for the three types of the feed. The 305 

RMSE values are observed to be 0.33 m3/day for heavy weight feed (greater than 20 kg), 0.46 306 

m3/day for medium feed (within 10-20 kg) and 0.39 m3/day for light weight feed (less than 307 

10kg). While it can be deduced that the feed with weight greater than 20 kg had the least range 308 

of errors compared to other two feeds, the coefficient of variance (CV), indicates that the biogas 309 

estimation model is highly sensitive to the feed with lower weights compared to the feed with 310 

higher weights. However, the three RMSE values obtained which are relatively low indicating 311 

that the efficiency of the model developed is relatively high and hence reliable to be used as a 312 

surrogate model for estimation of biogas generation in the micro-AD plant. Furthermore, the 313 

coefficient of variance (CV) of 13% in this study (Figure 5b) can be compared to previously 314 

reported studies which are in a range between 31% by Wang et al., (2020) and 23% by Long 315 

et al. (2021). This confirms the effectiveness of the developed model in predicting the biogas 316 

generated from the micro-AD plant. It also indicates that the developed NARX-ANN model is 317 

robust enough to be used for relatively high fluctuated biogas generation. Although the overall 318 

NNSE can be quite acceptable in this model but high variability of the measured biogas 319 

(3.26±1.21 reported in Table A1 in the appendix) may be considered as a drawback for the 320 

model in tracking biogas, particularly when there is a sudden change (e.g., droop at end days 321 

as shown in Figure 5a). 322 

Figures 5c and 5d present further sensitivity analysis for the impact of the percentage of the 323 

data used and each of the feed type, respectively, on the accuracy of the developed model. 324 
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Figure 5c shows the prediction accuracy of the model development in both metrics (NNSE and 325 

RMSE) is changed with a relatively similar and linear trend for the percentage of the data used. 326 

As the limited dataset (only 310 days) was used for all steps of training, validation and testing, 327 

the developed model would still be highly dependent on the volume of dataset. This would also 328 

confirm a relatively low coefficient of cross-correlation analysis between the input variables 329 

and the generated biogas, as illustrated in Figure A1 in the appendix. The sensitivity analysis 330 

presented in Figure 5d is also conducted by removing one decision variable and running model 331 

for one step ahead. From the sensitivity analysis presented, the catering and oats compositions 332 

demonstrate the highest impact on the prediction accuracy compared to other input variables. 333 

This also indicates that both the oat and catering compositions have the most significant impact 334 

on the biogas generation in the micro-AD plant compared to the other input variables. On the 335 

other hand, the liner-soaked composition has the least impact on the prediction accuracy and 336 

hence minimum impact on the biogas generation in the waste composition.  337 

3.4.Optimal feeding pattern and maximum potential biogas generation  338 

The SFLA optimisation method is used to specify the optimal feeding pattern to obtain 339 

maximum biogas generation. Based on the optimal number of lag times (days) for each variable 340 

obtained in Figure 4, the optimisation method is arranged for 18 decision variables as follows: 341 

four variables for feed added to the main digester at days t-3, t-2, t-1 and t; six variables for the 342 

water added to pre-feed tank at days t-5, t-4, t-3, t-2, t-1 and t; eight variables for each of the 343 

three waste composition types (i.e., catering, oat, and liner) and biogas generation at days t-1 344 

and t. The objective value is to maximise the biogas generation at day t+1. The SFLA is run 345 

and the results of the optimal feeding pattern within the these setting days for each variable 346 

along with optimal biogas generation are shown in Table 1. Note that as the values for the 347 

added water are zero for all days except day t-1, the optimisation model was run for smaller 348 

number of days for the added water and the results showed that maximum biogas is generated 349 
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when a four-day cycle is considered for feeding pattern. Hence, the optimal decision variables 350 

in Table 1 are shown for 4 days between t-3 and t. The estimation of maximum biogas 351 

generation at day t+1 is 4.52 m3/day based on the optimal decision variables at the preceding 352 

days between days t and t-3. This is the maximum possible biogas generation from this micro-353 

AD plant based on the optimal values of decision variables. The analysis of the optimal decision 354 

variables shows that the entire feed for a four-day cycle only needs to be added on the last day 355 

(i.e., 80kg on day t). Out of this 80kg feed, catering added to the pre-feed tank needs to be 60kg 356 

with a distribution of 55kg at day t-1 and 5kg at day t; the remaining waste added to the pre-357 

feed tank is 20kg oat added only at day t-1; there is no need for adding any liner; and finally, 358 

15kg water added to the pre-feed tank is needed only at day t-1. Accordingly, the biogas 359 

generation of the following day (i.e., day t+2) is estimated 4.23 m3/day based on the input 360 

(decision) variables of the preceding four days (i.e., between days t-2 and t+1). Table 1 shows 361 

the summary of the estimated biogas generation but more details of biogas generation for these 362 

four days (i.e., between days t+1 and t+4) are given in Table A2 in the appendix. This decrease 363 

in biogas generation is because the daily distribution of input especially feed, catering and 364 

water is different from the optimal values obtained above. Similarly, estimation of biogas 365 

generation in the following days (i.e., day t+3 and t+4) was observed to decrease further. On 366 

the other hand, if the same amounts of feed, catering and water are added every 4 days, the 367 

estimated biogas generation is repeated every 4 days. In other words, the estimation of biogas 368 

generation after day 4 is observed to be repeated as the same for the input variables with the 369 

same feeding pattern. This indicates the volume of biogas generation and feeding pattern can 370 

be repeated every four days. As there is no feeding in the first two days, this can also be 371 

economically beneficial for the operation of the micro-AD plant which can be mainly operated 372 

by local communities with minimum labour (i.e., most of the feeding is arranged for one day 373 

every four days) to achieve the maximum efficiency of biogas generation. 374 
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Figure 6 shows the sensitivity analysis for biogas generation at day t+1 based on percentage of 375 

variables over the past three days i.e., days t-2, t-1, and t for all decision variables. Figure 6a 376 

shows the impact of the "feed to the main digester" on the biogas generated where different 377 

percentages of the feed data for days t and t-1 are shown in horizontal axes and feed data for 378 

day t-2 are shown as graphs with an interval of 10%. As can be seen, the maximum biogas 379 

generation (4.52 m3/day) can only occur when AD is fed only on the last day (day t). In 380 

addition, any redistribution of feeding shows a decrease in the biogas generation which can be 381 

translated as relative sensitivity of the model to the daily distribution of feed. For example, 382 

when feeding the AD plant at day t-1 instead of day t, the biogas generation dropped from 4.5 383 

to around 2.5 m3/day (see blue circle in left-top and right-bottom). The results also show that 384 

model is highly sensitive to the amount of feed in last two days (i.e., day t and t-1) and feed 385 

ratio for day t-2 is less important (See blue circles are varied more than other lines indicating 386 

the model is sensitive to day t and day t-1).  387 

Figure 6b shows the impact of the water added on the volume of biogas generation with 20% 388 

intervals. Compared to feed distribution in Figure 6a, the daily distribution of added water has 389 

a relatively low impact on the biogas generation, that slightly changes between 4.3 to 4.5 390 

m3/day. Figure 6c presents the impact of the three different composition variables on the 391 

volume of biogas generation. It shows the catering composition added to the pre-feed tank 392 

results in the maximum biogas generation compared to other variables. This implies that the 393 

catering composition has a higher influence on biogas generation than the other composition 394 

variables. Following this, the oat composition also generates a high volume of biogas as shown 395 

in Figure 6c. This also indicates that the oat composition has a strong influence on the volume 396 

of biogas generation. This is also in line with the sensitivity analysis presented in Figure 6d 397 

that shows the model is more sensitive to adding liner rather than daily distribution of 398 
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composition. For example, while daily distribution of oats and catering has no significant 399 

impact on the generated biogas, it is highly sensitive to the amount of added liner in Figure 6e.  400 

When applying optimal operation strategy, it is crucial to understand the significance of the 401 

distribution of composition variables added to the pre-feed tank over the cyclic period. Hence, 402 

the impact of distribution of the optimal amount of the pre-feed composition variables on 403 

biogas generation is further analysed in Figure 6d-e for three individual variables i.e., catering, 404 

oats, and liner separately. More specifically, Figure 6d considers distribution of optimal value 405 

of the catering variable at day t where other variables are fixed here as 20kg for oat, zero for 406 

liner and optimum condition of accumulative rate of catering is 60kg (i.e., 55kg for day t-1 and 407 

5kg for day t). As can be seen in Figure 6d, the biogas generation slightly decreases for other 408 

distribution rates down to 4.515 m3. This indicates that while the AD plant is highly dependent 409 

on catering (as shown in the sensitivity figures), its distribution between the day t and t-1 has 410 

no significant impact on biogas generation. Although there is a drop in the volume of biogas 411 

generation as the share of oat on day t increases compared to the optimum value, the drop in 412 

biogas volume has no significant impact on biogas generation. In Figure 6e, the share of liner 413 

in day t (%) is observed where each line corresponds to a percentage of liner in total waste. The 414 

horizontal axis shows how this percentage is distributed between day t and day t-1. Hence, for 415 

20% of the liner, the available data is for 0-5-10-15 and 20%. From Figure 6e, it can be 416 

observed that the increasing the liner results in a decrease in the biogas volume as the liner has 417 

low impact on biogas generation compared to other waste types. 418 

Finally, the strategy for generating optimised biogas generation is compared with best feeding 419 

events and entire test period (47 days). As it can be seen, the biogas generation in all three best 420 

identified feeding events (as shown in Figure 7a) is relatively similar and a uniform increase 421 

with a maximum weekly volume of 26.14 m3. However, the maximum volume of biogas 422 
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generation for the optimised operation is 29.97 m3 i.e., an improvement rate of 15%. In Figure 423 

7b, the average daily biogas generated over the first 40 days is observed to 3.26 m3/day. The 424 

generated biogas decreases from days 40-46 as the average volume of biogas generation 425 

between days 41-46 is observed to be 1.48 m3 /day. Similarly, the generated biogas for the 426 

entire test period for the measured event shows an increase up until day 40 when it experienced 427 

a slight decrease in the generated biogas volume. It then increases the next day with a maximum 428 

volume of 139.51 m3. On the other hand, the generated biogas in the optimised operation can 429 

uniformly increase with a steeper slope and achieve up to a maximum of 199.46 m3 i.e., a 430 

significant improvement of 43% for biogas generation compared to the business-as-usual 431 

operation. The proposed model has better performance in both short- and long-term operation, 432 

i.e., 7 days and 47 days which longer period results in more biogas enhancement. This indicates 433 

the potential benefit of developing an optimised strategy for the operation of the micro-AD 434 

plant that results in maximum biogas generation and hence the improvement of overall 435 

performance and productivity of the micro-AD plant.  436 

4. Conclusions  437 

This paper developed a three-step AI-based framework for estimating and optimising biogas 438 

generation from the real-world micro-AD plant. The first step entailed data collection and 439 

imputation for infilling the missing data by using several methods, in which the Kriging 440 

technique outperformed conventional techniques, particularly KNN, SVM, LR and FFNN. 441 

A NARX model was developed in the second step for estimation of biogas generation of the 442 

following day based on variables of feed and waste composition added to the main digester and 443 

the pre-feed tank for the preceding days which were initially determined based on cross-444 

correlation of time-series of biogas generation and the above variables. The SFLA optimisation 445 

model was then used to fine tune the number of lag times of the input layer variables. The result 446 
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of fine-tuning the lag times showed the yielded biogas is highly sensitive to waste composition 447 

(catering, oat and liner-soaked) up to only one previous day, whereas this is up to three previous 448 

days for the feed and five previous days for the added water.  449 

The SFLA optimisation model was used again to determine the optimal daily feeding pattern 450 

that generate maximum biogas in the micro-AD plant. The results show that the optimal feeding 451 

pattern can increase the biogas generation up to 15% and 43% for a 7-day and 45-day period, 452 

respectively with an average RMSE of 0.39 m3/day. The optimal daily feeding pattern is 453 

obtained for a four-day cycle in which water, catering and oat are added to the pre-feed tank 454 

within the last two days (mainly on day 3) and the feed is added to the main digester in day 4 455 

and hence the no feeding is needed within the first two days. This can also reduce the 456 

operational costs related to the labour for feeding the plant. 457 

The sensitivity analysis of the developed model shows that biogas generation is strongly 458 

influenced by the oats and catering content compared to other feed types. In addition, any 459 

change to the optimal daily distribution of the feed added to the main digester is much more 460 

sensitive to biogas generation compared to other three feed types (i.e., added water, oat, and 461 

catering). Hence, to obtain high biogas generation, it is recommended that the micro-AD plant 462 

is fed in one day and allowed to rest for three days compared with gradual feeding every day. 463 

Furthermore, adding liner to the plant can significantly reduce the volume of biogas generation. 464 

Although the results in this study show significant performance improvement of the micro-AD 465 

plant in generating biogas, the developed framework needs to be further tested and verified in 466 

other AD plants with longer analysis periods to show the efficacy of the developed approach. 467 

In addition, further studies need to be carried out for improving the model ability in tracking 468 

sudden change of feed as a common challenge for the AD operation in practice. Further analysis 469 
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and data modelling can be performed to alleviate other challenges in the AD technology such 470 

as long residence time.  471 
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 571 
Figure 1. AI-based framework for the operation of the micro anaerobic digestion plant 572 

 573 
Figure 2. Schematic diagram of the micro-AD plant used in this study 574 

 575 
Figure 3. Performance of data mining techniques applied for infilling the missing data 576 
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Figure 4. The trend of the SFLA method to specify optimal number of lag times for input variables 577 
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Figure 5. (a) scatter plot of predicted biogas vs corresponding measurements for 1 day ahead, (b) 578 

comparison of observations with estimations, (c) relative accuracy based on the percentage of dataset 579 

used for model development, (d) Impact of feed compositions in the pre-feed tank on the biogas 580 

generation 581 

Table 1. Optimum condition for the operation of the micro-AD plant for maximum biogas generation 582 

Parameter 
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(e) 

Figure 6. Sensitivity analysis of biogas generation for different decision variables: (a) feed, (b) water, (c) 583 

waste composition; and the impact of the distribution of the optimal values of the pre-feed composition 584 

variables on biogas generation for (d) catering and oat, and (e) liner 585 
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(a)  (b) 

Figure 7. Comparison between the best feeding events and the proposed (optimised) operation for 586 

operation in (a) 7 days and (b) 47 days 587 
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