
Deep Learning Models of Learning in
the Brain

Roman Pogodin

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Gatsby Computational Neuroscience Unit

University College London

January 25, 2023

2

I, Roman Pogodin, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

This thesis considers deep learning theories of brain function, and in particular

biologically plausible deep learning. The idea is to treat a standard deep network

as a high-level model of a neural circuit (e.g., the visual stream), adding biological

constraints to some clearly artificial features. Two big questions are possible. First,

how to train deep networks in a biologically realistic manner? The standard approach,

supervised training via backpropagation, needs overly complicated machinery for

backpropagation and precise labels (that are somewhat scarce in the real world). The

first result in this thesis approaches the first problem, backpropagation, by avoiding

it completely. A layer-wise objective is proposed, which results in local, Hebbian

weight updates that use a global error signal. The second result approaches the need

for precise labels. It is focused on a principled approach to self-supervised learning,

framing the problem as dependence maximisation using kernel methods. Although

this is a deep learning study, it is relevant to neuroscience: self-supervised learning

appears to be a suitable learning paradigm for the brain as it only requires binary

(same source or not) teaching signals for pairs of inputs. Second, how realistic is

the architecture itself? For instance, most well-performing networks have some

form of weight sharing – having the same weights for different neurons at all times.

Convolutional networks share filter weights among neurons, and transformers do so

for matrix-matrix products. While the operation is biologically implausible, the third

result of this thesis shows that it can be successfully approximated with a separate

phase of weight-sharing-inducing Hebbian learning.

Acknowledgements

I would like to thank my supervisor Peter for the guidance and support, but most

importantly for being a great example of how to stay positive yet critical about

science. I also want to thank my partner Valeriya for the much needed emotional

support and life advice throughout my PhD. I am also grateful to my family and

friends from back home who felt as close to me as ever despite the long distance

and different life. Concluding the list of people, I want to thank everyone at Gatsby

and SWC who has been around – you have made our building a very friendly and

welcoming community. Finally, I want to thank the Gatsby Charitable Foundation

and the Wellcome Trust for supporting my work and for the wonderful research

environment at the Gatsby Unit.

Impact

The results presented in this thesis strengthen the connection between deep learning

and theoretical neuroscience by developing deep learning-inspired learning theories

for the brain. Understanding what learning rules guide the brain is one of the

fundamental goals in neuroscience. In the short term, advances in this area can

facilitate development of brain-computer interfaces and machine learning methods

and theory. In the long term, theoretical and experimental evidence for learning

mechanisms in the brain can greatly impact treatment for any condition associated

with brain’s development and general function, such as learning disabilities. The

presented results also expand our understanding of purely deep learning methods

from the perspective of statistical dependence, which can lead to more interpretable

deep learning methods.

UCL Research Paper Declaration Form: referencing the
doctoral candidate’s own published work(s)

Please use this form to declare if parts of your thesis are already available in another format,
e.g. if data, text, or figures:

• have been uploaded to a preprint server;
• are in submission to a peer-reviewed publication;
• have been published in a peer-reviewed publication, e.g. journal, textbook.

This form should be completed as many times as necessary. For instance, if you have seven
thesis chapters, two of which containing material that has already been published, you would
complete this form twice.

1. For a research manuscript that has already been published (if not yet
published, please skip to section 2):

a) Where was the work published?
(e.g. journal name)

Advances in Neural Information
Processing Systems 33 (NeurIPS 2020)

b) Who published the work? (e.g.
Elsevier/Oxford University Press):

Advances in Neural Information
Processing Systems 33 (NeurIPS 2020)

c) When was the work published? 2020

d) Was the work subject to
academic peer review? Yes

e) Have you retained the copyright
for the work? Yes

[If no, please seek permission from the relevant publisher and check the box next
to the below statement]:

☐ I acknowledge permission of the publisher named under 1b to include in this
thesis portions of the publication named as included in 1a.

2. For a research manuscript prepared for publication but that has not yet
been published (if already published, please skip to section 3):

a) Has the manuscript been
uploaded to a preprint server?
(e.g. medRxiv):

If yes, which server?

b) Where is the work intended to
be published? (e.g. names of
journals that you are planning to
submit to)

c) List the manuscript’s authors in
the intended authorship order:

d) Stage of publication

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):

R. P. obtained the results. R.P. and P.E.L. wrote the paper.

4. In which chapter(s) of your thesis can this material be found?

Chapter 2

5. e-Signatures confirming that the information above is accurate (this form
should be co-signed by the supervisor/ senior author unless this is not
appropriate, e.g. if the paper was a single-author work):

Candidate: Roman Pogodin Date: 26.08.22

Supervisor/
Senior Author
(where
appropriate):

Peter E. Latham Date: 26.08.22

UCL Research Paper Declaration Form: referencing the
doctoral candidate’s own published work(s)

Please use this form to declare if parts of your thesis are already available in another format,
e.g. if data, text, or figures:

• have been uploaded to a preprint server;
• are in submission to a peer-reviewed publication;
• have been published in a peer-reviewed publication, e.g. journal, textbook.

This form should be completed as many times as necessary. For instance, if you have seven
thesis chapters, two of which containing material that has already been published, you would
complete this form twice.

1. For a research manuscript that has already been published (if not yet
published, please skip to section 2):

a) Where was the work published?
(e.g. journal name)

Advances in Neural Information
Processing Systems 34 (NeurIPS 2021)

b) Who published the work? (e.g.
Elsevier/Oxford University Press):

Advances in Neural Information
Processing Systems 34 (NeurIPS 2021)

c) When was the work published? 2021

d) Was the work subject to
academic peer review? Yes

e) Have you retained the copyright
for the work? Yes

[If no, please seek permission from the relevant publisher and check the box next
to the below statement]:

☐ I acknowledge permission of the publisher named under 1b to include in this
thesis portions of the publication named as included in 1a.

2. For a research manuscript prepared for publication but that has not yet
been published (if already published, please skip to section 3):

a) Has the manuscript been
uploaded to a preprint server?
(e.g. medRxiv):

If yes, which server?

b) Where is the work intended to
be published? (e.g. names of
journals that you are planning to
submit to)

c) List the manuscript’s authors in
the intended authorship order:

d) Stage of publication

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):

Y.L. obtained the experimental results. Y.L. and R. P. obtained the theoretical
results. Y.L., R.P., D.J.S. and A.G. wrote the paper.

4. In which chapter(s) of your thesis can this material be found?

Chapter 3

5. e-Signatures confirming that the information above is accurate (this form
should be co-signed by the supervisor/ senior author unless this is not
appropriate, e.g. if the paper was a single-author work):

Candidate: Roman Pogodin Date: 26.08.22

Supervisor/
Senior Author
(where
appropriate):

Arthur Gretton Date: 26.08.22

UCL Research Paper Declaration Form: referencing the
doctoral candidate’s own published work(s)

Please use this form to declare if parts of your thesis are already available in another format,
e.g. if data, text, or figures:

• have been uploaded to a preprint server;
• are in submission to a peer-reviewed publication;
• have been published in a peer-reviewed publication, e.g. journal, textbook.

This form should be completed as many times as necessary. For instance, if you have seven
thesis chapters, two of which containing material that has already been published, you would
complete this form twice.

1. For a research manuscript that has already been published (if not yet
published, please skip to section 2):

a) Where was the work published?
(e.g. journal name)

Advances in Neural Information
Processing Systems 34 (NeurIPS 2021)

b) Who published the work? (e.g.
Elsevier/Oxford University Press):

Advances in Neural Information
Processing Systems 34 (NeurIPS 2021)

c) When was the work published? 2021

d) Was the work subject to
academic peer review? Yes

e) Have you retained the copyright
for the work? Yes

[If no, please seek permission from the relevant publisher and check the box next
to the below statement]:

☐ I acknowledge permission of the publisher named under 1b to include in this
thesis portions of the publication named as included in 1a.

2. For a research manuscript prepared for publication but that has not yet
been published (if already published, please skip to section 3):

a) Has the manuscript been
uploaded to a preprint server?
(e.g. medRxiv):

If yes, which server?

b) Where is the work intended to
be published? (e.g. names of
journals that you are planning to
submit to)

c) List the manuscript’s authors in
the intended authorship order:

d) Stage of publication

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):

R. P. obtained the results. R.P., Y.M., T.P.L. and P.E.L. wrote the paper.

4. In which chapter(s) of your thesis can this material be found?

Chapter 4

5. e-Signatures confirming that the information above is accurate (this form
should be co-signed by the supervisor/ senior author unless this is not
appropriate, e.g. if the paper was a single-author work):

Candidate: Roman Pogodin Date: 26.08.22

Supervisor/
Senior Author
(where
appropriate):

Peter E. Latham Date: 26.08.22

UCL Research Paper Declaration Form: referencing the
doctoral candidate’s own published work(s)

Please use this form to declare if parts of your thesis are already available in another format,
e.g. if data, text, or figures:

• have been uploaded to a preprint server;
• are in submission to a peer-reviewed publication;
• have been published in a peer-reviewed publication, e.g. journal, textbook.

This form should be completed as many times as necessary. For instance, if you have seven
thesis chapters, two of which containing material that has already been published, you would
complete this form twice.

1. For a research manuscript that has already been published (if not yet
published, please skip to section 2):

a) Where was the work published?
(e.g. journal name) 1st Brain-Score Workshop (BSW 2022)

b) Who published the work? (e.g.
Elsevier/Oxford University Press): openreview.net

c) When was the work published? 2022

d) Was the work subject to
academic peer review? Yes

e) Have you retained the copyright
for the work? Yes

[If no, please seek permission from the relevant publisher and check the box next
to the below statement]:

☐ I acknowledge permission of the publisher named under 1b to include in this
thesis portions of the publication named as included in 1a.

2. For a research manuscript prepared for publication but that has not yet
been published (if already published, please skip to section 3):

a) Has the manuscript been
uploaded to a preprint server?
(e.g. medRxiv):

If yes, which server?

b) Where is the work intended to
be published? (e.g. names of
journals that you are planning to
submit to)

c) List the manuscript’s authors in
the intended authorship order:

d) Stage of publication

3. For multi-authored work, please give a statement of contribution
covering all authors (if single-author, please skip to section 4):

R. P. obtained the results. R.P. and P.E.L. wrote the paper.

4. In which chapter(s) of your thesis can this material be found?

Chapter 5

5. e-Signatures confirming that the information above is accurate (this form
should be co-signed by the supervisor/ senior author unless this is not
appropriate, e.g. if the paper was a single-author work):

Candidate: Roman Pogodin Date: 26.08.22

Supervisor/
Senior Author
(where
appropriate):

Peter E. Latham Date: 26.08.22

Contents

1 Introductory Material 24

1.1 Notation . 24

1.2 Activity-dependent plasticity in the brain 24

1.2.1 Overview . 24

1.2.2 Neuron models . 25

1.2.3 Hebbian learning . 26

1.3 Deep networks . 27

1.3.1 Overview . 27

1.3.2 Connection between artificial and real neurons 28

1.4 Dependency measures in machine learning 29

1.4.1 Mutual information (MI) 30

1.4.2 Hilbert-Schmidt Independence Criterion (HSIC) 31

2 Three-factor Hebbian learning rules for deep networks 35

2.1 Introduction . 36

2.2 Related work . 37

2.3 A kernel methods-based layer-wise objective 38

2.4 Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 42

2.4.1 General update rule . 42

2.4.2 Gaussian kernel: two-point update 43

2.4.3 Gaussian kernel with grouping and divisive normalisation . 44

2.4.4 Online update rules for the Gaussian kernel are standard

Hebbian updates . 46

Contents 15

2.5 Circuitry to implement the update rules 47

2.5.1 Hebbian terms . 48

2.5.2 3rd factor for the Gaussian kernel 49

2.5.3 3rd factor for the Gaussian kernel with grouping and divisive

normalisation . 50

2.6 Experiments . 51

2.6.1 Experimental setup . 51

2.6.2 Small fully connected network 52

2.6.3 Large convolutional networks and CIFAR10 53

2.7 Discussion . 55

3 A kernel methods approach to self-supervised learning 58

3.1 Introduction . 59

3.2 Background . 61

3.2.1 Self-supervised learning 61

3.3 Self-supervised learning with Kernel Dependence Maximisation . . 63

3.3.1 Connection to InfoNCE 65

3.3.2 Estimator of SSL-HSIC 66

3.3.3 Connection with biology 68

3.4 Experiments . 68

3.4.1 Implementation . 68

3.4.2 Evaluation Results . 70

3.5 Ablation Studies . 72

3.6 Discussion . 74

4 Biological implementation of weight sharing 75

4.1 Introduction . 76

4.2 Related work . 77

4.3 Regularisation in locally connected networks 78

4.3.1 Convolutional versus locally connected networks 78

Contents 16

4.3.2 Developing convolutional weights: data augmentation ver-

sus dynamic weight sharing 79

4.4 A Hebbian solution to dynamic weight sharing 80

4.4.1 Dynamic weight sharing in multiple locally connected layers 83

4.4.2 A realistic model that implements the update rule 83

4.5 Experiments . 85

4.5.1 Data augmentations. 86

4.5.2 CIFAR10/100 and TinyImageNet 86

4.5.3 ImageNet . 88

4.5.4 Brain-Score of ImageNet-trained networks 88

4.6 Sharing weights with noise-cancelling anti-Hebbian plasticity 90

4.6.1 Introduction . 90

4.6.2 Proposed update rule . 91

4.6.3 Proposed update rule with mean weight constraints 92

4.6.4 Choice of network architectures. 93

4.6.5 ImageNet performance. 93

4.7 Discussion . 94

4.7.1 Weight sharing with a sleep phase 94

4.7.2 Weight sharing with noise-cancelling plasticity 95

4.7.3 Limitations of the approach 95

4.7.4 Conclusions . 96

5 Locally connected networks as ventral stream models 98

5.1 Introduction . 99

5.1.1 Training details . 101

5.1.2 Results (all brain areas) . 101

5.1.3 Results (V1) . 102

5.2 Discussion . 102

6 Conclusions and Future Work 104

Appendices 107

Contents 17

A Chapter 2 Appendix 107

A.1 Kernel methods, HSIC and pHSIC 107

A.1.1 pHSIC . 107

A.1.2 How much information about the label do we need? 108

A.2 Derivations of the update rules for plausible kernelized information

bottleneck . 109

A.2.1 General update rule . 109

A.2.2 Gaussian kernel . 111

A.2.3 Gaussian kernel with grouping and divisive normalisation . 111

A.2.4 Cosine similarity kernel 112

A.2.5 Linear kernel . 116

A.3 Experimental details . 116

A.3.1 Network architecture . 116

A.3.2 Choice of kernels for pHSIC 116

A.3.3 Objective choice for layer-wise classification 117

A.3.4 Pre-processing of datasets 117

A.3.5 Shared hyperparameters for all experiments 117

A.3.6 Small network . 118

A.3.7 Large network . 118

A.3.8 Difference between pHSIC and HSIC in the large network . 119

B Chapter 3 Appendix 125

B.1 HSIC estimation in the self-supervised setting 125

B.1.1 Exact form of HSIC(Z, Y) 125

B.1.2 Estimator of HSIC(Z, Y) 127

B.1.3 Estimator of HSIC(Z, Z) 129

B.2 Theoretical properties of SSL-HSIC 131

B.2.1 InfoNCE connection . 131

B.2.2 MMD interpretation of HSIC(X,Y) 134

B.3 Random Fourier Features (RFF) 135

B.3.1 Basics of RFF . 135

Contents 18

B.3.2 RFF for the IMQ kernel 135

B.3.3 RFF for SSL-HSIC . 137

B.4 Experiment Details . 139

B.4.1 ImageNet Pretraining . 139

B.4.2 Evaluations . 140

C Chapter 4 and 5 Appendix 143

C.1 Dynamic weight sharing . 143

C.1.1 Noiseless case . 143

C.1.2 Biased noiseless case, and its correspondence to the realistic

implementation . 145

C.1.3 Noisy case . 146

C.1.4 Applicability to vision transformers 150

C.1.5 Details for convergence plots 150

C.2 Experimental details . 151

C.2.1 CIFAR10/100, TinyImageNet 151

C.2.2 ImageNet . 152

C.3 Brain-Score details . 156

Bibliography 157

List of Figures

1.1 Mutual information example . 30

2.1 Top-down vs. layer-wise rules. 36

2.2 Schematics for three-factor Hebbian updates 43

2.3 Potential plasticity mechanism for two-point Hebbian updates . . . 48

2.4 Performance of backprop, cosine similarity kernel (cossim) and

Gaussian kernel on CIFAR10 . 54

3.1 Statistical dependence view of contrastive learning 60

3.2 Architecture and SSL-HSIC objective 63

3.3 Top-1 accuracies with linear evaluation for different ResNet archi-

tecture and methods . 69

4.1 Comparison between layer architectures 79

4.2 Two regularisation strategies for locally connected networks 79

4.3 Weight sharing with a sleep phase and lateral connections 80

4.4 Alternative visual explanation of weight sharing with a sleep phase . 81

4.5 Negative logarithm of signal-to-noise ratio for weight sharing objec-

tives in a layer with 100 neurons 82

4.6 Examples of a convolutional layer and a locally connected layer . . 90

4.7 Weight dynamics for different layer types 91

5.1 Convolutional vs. locally connected layers 100

5.2 ImageNet top-1 accuracy vs. Brain-Score for several ResNet-18

networks . 101

List of Figures 20

A.1 Training of 1x networks with pHSIC, SGD and divisive normalisation121

A.2 Training of 1x networks with pHSIC, AdamW and batchnorm . . . 124

A.3 Training of 1x networks with HSIC, SGD and divisive normalisation 124

A.4 Training of 1x networks with HSIC, AdamW and batchnorm 124

C.1 Logarithm of inverse signal-to-noise ratio for weight sharing objec-

tives in a layer with 100 neurons 145

C.2 Logarithm of inverse signal-to-noise ratio for weight sharing every

10 iterations for CIFAR10 . 152

List of Tables

2.1 Mean test accuracy over 5 runs for a 3-layer fully connected net . . 53

2.2 Mean test accuracy on CIFAR10 over 5 runs for the 7-layer conv nets 54

3.1 Linear evaluation on the ImageNet validation set. 70

3.2 Fine-tuning on 1%, 10% and 100% of the ImageNet training set and

evaluating on the validation set. 70

3.3 Comparison of transfer learning performance on 12 image datasets.

Supervised-IN is trained on ImageNet with supervised pretrainining.

Random init trains on individual dataset with randomly initialized

weights. MPCA refers to mean per-class accuracy; AP50 is average

precision at IoU=0.5. 71

3.4 Fine-tuning performance on semantic segmentation and depth es-

timation. Mean Intersection over Union (mIoU) is reported for

semantic segmentation. Relative error (rel), root mean squared error

(rms), and the percent of pixels (pct) where the error is below 1.25n

thresholds are reported for depth estimation. 72

3.5 Fine-tuning performance on COCO object detection tasks. Preci-

sion, averaged over 10 IoU (Intersection over Union) thresholds, is

reported for both bounding box and object segmentation. 72

3.6 Top-1 and top-5 accuracies for different ResNet architectures using

linear evaluation protocol. 73

3.7 Top-1 and top-5 accuracies for different ResNet architectures using

semi-supervised fine-tuning. 73

3.8 Linear evaluation results when varying different hyperparameters. . 73

List of Tables 22

4.1 Performance of convolutional and locally connected (padding: 4) . . 87

4.2 Performance of convolutional and locally connected networks on

ImageNet for 0.5x width ResNet18 88

4.3 Brain-Score of ImageNet-trained convolutional and locally con-

nected networks on ImageNet for 0.5x width ResNet18 89

4.4 Performance of locally connected and convolutional networks . . . 94

A.1 Parameters for the 3-layer fully connected net 120

A.2 Mean test accuracy over 5 random seeds for a 3-layer fully connected

net . 120

A.3 Max minus min test accuracy over 5 random seeds for a 3-layer fully

connected net . 120

A.4 Parameters for the 7-layer conv nets 121

A.5 Parameters for the 7-layer conv nets 122

A.6 Mean test accuracy on CIFAR10 over 5 runs for 7-layer conv nets . 122

A.7 Mean test accuracy on CIFAR10 over 5 runs for 7-layer conv nets . 123

A.8 Max minus min test accuracy on CIFAR10 over 5 runs for a 7-layer

conv nets . 123

A.9 Max minus min test accuracy on CIFAR10 over 5 runs for a 7-layer

conv nets . 123

C.1 Performance of convolutional and locally connected networks

(padding: 0) . 153

C.2 Performance of convolutional and locally connected networks

(padding: 4) . 153

C.3 Performance of convolutional and locally connected networks

(padding: 8) . 154

C.4 Max minus min performance of convolutional and locally connected

networks (padding: 0) . 154

C.5 Max minus min performance of convolutional and locally connected

networks (padding: 4) . 154

List of Tables 23

C.6 Max minus min performance of convolutional and locally connected

networks (padding: 8) . 154

C.7 Hyperparameters for padding of 0 155

C.8 Hyperparameters for padding of 4 155

C.9 Hyperparameters for padding of 8 155

C.10 Performance of convolutional and locally connected networks on

ImageNet . 156

C.11 ImageNet top-1 accuracy and Brain-Score for several ResNet-18

networks . 156

Chapter 1

Introductory Material

1.1 Notation
d-dimensional (always column) vectors in Rd: bold lowercase Latin characters (x);

n×d matrices: bold uppercase characters (X); random variables of any dimension:

uppercase Latin characters (X); elements of vectors and matrices: not in bold and

indexed (xi, Xi j); vectors in an arbitrary Hilbert space: lowercase Greek characters

(φ); an estimate of a variable y: ŷ.

The standard dot product in Rd: x⊤y = ∑
d
i=1 xiyi

1; a dot product in an arbitrary

Hilbert space H: ⟨φ , ψ⟩H; the outer product between two vectors: φ ψ⊤ (φ ∈

Rd, ψ ∈ Rn) or φ ⊗ψ (any two Hilbert spaces).

1.2 Activity-dependent plasticity in the brain

1.2.1 Overview

Activity-dependent plasticity, meaning synaptic changes induced by neural activity,

is considered the basic mechanism behind learning and memory ([1], Chapter 8).

There is no single mechanism for synaptic plasticity [2]: it depends on the synapse

type (excitatory or inhibitory) and direction of change (LTP: long term potentiation,

or LTD: depression); it can also happen at presynaptic or postsynaptic sites.

Theoretical models often simplify a synapse to a single scalar value, called

weight, that connects two neurons and changes its value during a task according to a

1A random equation uses the “dot” notation x · y to reflect five years of disagreeing with my
supervisor on what notation is better (it is not the dot notation).

1.2. Activity-dependent plasticity in the brain 25

learning rule ([1], Chapter 8).

1.2.2 Neuron models

Most neurons communicate through electrical pulses called action potentials or

spikes. A (firing) rate model simplifies spiking communication to changes in the

neuron’s firing rate, or a number of spikes in a time interval [1]. While there’s

an ongoing debate on the implications of spike-based vs. rate-based models [3],

rate-based models are a valuable theoretical tool as they’re easier to analyse and

simulate. In the remainder of this thesis, we will only use rate-based models, referred

simply as “neurons”.

A standard neuron model receives inputs from d neurons with firing rates x

through weights w, and changes its own firing rate r as:

τ ṙ =−r+ f (w⊤x) , (1.1)

where f (·) is a non-linearity that reflects neuron’s response to the input; it can simply

ensure the firing rate stays non-negative via f (x) = max(0,x), or additionally reflect

activity saturation for large inputs via a sigmoid activation function [1].

Apart from spikes, rate-based models such as in Eq. (1.1) simplify other details

of neural processing that can affect computation [1], such as dendritic trees and Dale’s

law. While these features can be added to rate-based models, they increase model

complexity and make both theoretical analysis and simulations of such models harder.

As the problems considered in this thesis do not directly involve these features, they

will be omitted.

When it comes to plasticity, we can assume that the input is present for long

enough, and that plasticity happens on a slower time scale than neural activity ([1],

Chapter 8), such that the firing rate arrives at its steady state

r = f (w⊤x) . (1.2)

This thesis will be primarily concerned with simplified activity models like Eq. (1.2),

and in particular on Hebbian-like models.

1.2. Activity-dependent plasticity in the brain 26

1.2.3 Hebbian learning

The origin of Hebbian learning dates back to a 1949 book by D. O. Hebb [4] (p. 62)
2, which contains the following:

Let us assume then that the persistence or repetition of a reverberatory

activity (or “trace”) tends to induce lasting cellular changes that add to

its stability. The assumption can be precisely stated as follows: When

an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes a part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased.

Using the model in Eq. (1.2) and assuming excitatory neurons with positive

firing rates , Hebb’s rule translates into a simple LTP model [1]:

∆w ∝ r x . (1.3)

Modifications of Eq. (1.3) can introduce LTD (e.g., in the BCM rule [9]),

synaptic normalisation (e.g., Oja’s rule [10]), and other nonlinear dependencies [11].

The main principle behind Hebb’s rule and other instances of Hebbian learning

stays constant, even if somewhat distant from Hebb’s formulation: learning depends

on pre- and post-synaptic activity of two neurons, and on the weight between them.

This means that all information required to change the weight between these two

neurons is readily available, or local. Hebb’s rule is strictly unsupervised, and will

be used in Chapter 4. It can be adapted to supervised tasks via neuromodulation, as

discussed in Chapter 2.

2As R. E. Brown found out [5, 6], D. O. Hebb formulated a very similar idea in his MA thesis [7]
in 1932 as a neural mechanism for Pavlovian conditioning. See an essay by P. Milner [8] for a longer
version of this story.

1.3. Deep networks 27

1.3 Deep networks

1.3.1 Overview

Deep networks, or more precisely, deep artificial networks, have been around since

the mid-20th century [12]. The first models, like the McCulloch-Pitts neuron from

1943 [13], were inspired by the brain, although the connection has been relatively

loose throughout the history of deep learning. Here we introduce basic concepts

used in deep learning, and discuss the connections with real neurons.

The simplest network with L hidden layers maps an input x ∈ Rd to an output

ŷ ∈ Rp layer by layer with weights Wk and point-wise nonlinearities f :

z1 = f
(
W1x

)
, . . . , zL = f

(
WLzL−1) ; ŷ = g

(
WL+1zL) . (1.4)

Examples of f (·) include

tanh(x) (1.5)

Linear units ReLU(x) = max(0,x) (1.6)

LeakyReLU for a ≥ 0 LReLU(x) =

x x ≥ 0 ,

ax x < 0 ,
(1.7)

Scaled exponential LU SELU(x) = β (max(0,x)+min(0,α(ex −1))) . (1.8)

For SELU [14], α ≈ 1.67, β ≈ 1.05 in PyTorch https://pytorch.org/

docs/stable/generated/torch.nn.SELU.html; g(·) depends on the

desired form of network’s predictions.

Such network can be interpreted as the steady state of a rate model, in which

each layer evolves according to

τ żk =−zk + f (Wkzk−1) . (1.9)

To use a network for a certain task, we first need to train in. Training is done by

optimising a performance metric for the task, called a loss function. For instance, if

https://pytorch.org/docs/stable/generated/torch.nn.SELU.html
https://pytorch.org/docs/stable/generated/torch.nn.SELU.html

1.3. Deep networks 28

we have a dataset with images x and corresponding labels y that indicate what’s on

the image, the loss function can be the distance between the network’s output ŷ and

the desired output y.

1.3.2 Connection between artificial and real neurons

Biologically plausible deep learning Despite having connections with real neurons

throughout their history, deep networks in their current, most successful state have

several features that are not realistic.

The first set of features is about how deep networks function. They communicate

in analogue signals, rather than spikes (discussed above), their neurons are not

purely excitatory or inhibitory (violating Dale’s law [15, 16]), they lack recurrent

connections present in the visual stream [17], and so on. Many of these issues are

not fundamental: deep networks can be made spiking at the cost of performance

[18], Dale’s law [19] and recurrent connections [20] can be added with little cost.

The second set is about how deep networks are trained. They typically use

gradient descent with precisely calculated updates for each synapse, large amounts

of labelled data, and weight sharing among disconnected neurons. This thesis

concentrates on this set of problems.

Studies that introduce realistic features into deep networks are referred to as

biologically plausible deep learning.

Using deep networks to study the brain Deep networks show the importance of

complex learning mechanisms – poorly chosen ones simply fail on hard tasks such

as visual recognition, even when they’re more biologically plausible [21].

On the other hand, well-performing deep networks can have neural represen-

tations similar to that of the brain, as extensively shown by studies on the primate

visual stream [20, 22, 23] as well as (although less extensively) the mouse visual

stream [24, 25].

Biologically plausible deep learning is concentrated on finding deep networks

and algorithms for them that are both realistic and effective. It has the potential to

discover principles of learning in the brain, and is the common theme of all chapters

in this thesis.

1.4. Dependency measures in machine learning 29

Limitations of biologically plausible deep learning The search for more brain-like

deep networks and algorithms is based on taking an algorithm/network that performs

well on a task relevant to animals (e.g., object recognition) and trying to approximate

it with a set of local computations available to neurons. While the brain does not

have to rely on the same algorithm (e.g., backpropagation for credit assignment), we

already know that such an algorithm works well for the task, and is obtained through

trial and error by deep learning researchers. Thus, knowing if real neurons could

implement/approximate it allows us to hypothesise that they do.

The limitation of biologically plausible deep learning models, including the

ones presented in this thesis, is that they do not perfectly match what we know about

the brain. In other words, they suggest what they brain could implement if it really

wanted to, but don’t necessarily say what it does implement. As a result, making

concrete experimental predictions from this line of research is tricky.

However, knowing how to implement or approximate a certain algorithm with

local computations can still be useful as a first iteration of search for truly biologically

plausible learning rules, even if they have to be further refined to match the available

data.

The last idea also motives the use of standard computer vision tasks in theoretical

neuroscience research. Even if the task structure and amount of available data do

not match what the animals have access to, computer vision tasks allow us to test

how capable a certain learning scheme is and also compare it to other models in a

controlled environment. It also allows us to discard algorithms that might appear

reasonable but in fact are incapable of learning beyond the most simple tasks.

1.4 Dependency measures in machine learning

This section contains some machine learning concepts used in Chapter 2 and Chap-

ter 3. While they are not directly related to neuroscience, we will make this connec-

tion in the following chapters. The text uses parts from the related papers: Pogodin

and Latham (2020) and Li∗, Pogodin∗ et al. (2021).

1.4. Dependency measures in machine learning 30

1.4.1 Mutual information (MI)

Definition 1. For a pair of random variables (X , Y) over X×Y, their mutual infor-

mation is

MI(X , Y) =
∫
X

∫
Y

log
(

pxy(x,y)
px(x) py(y)

)
pxy(x,y)dxdy , (1.10)

where pxy is the joint probability density function and px, py are the marginal ones.

Mutual information measures how dependent two random variables are: if

they’re completely independent, pxy(x,y) = px(x) py(y) and hence MI is zero. Other-

wise, it’s non-negative.

In practice, mutual information is hard to use as a dependence measure: it is hard

to estimate directly from a limited number of samples [28]; variational estimators

are more practical, but only provide a bound on mutual information [29–31].

Finally, mutual information is poorly fit for feature learning in neural networks.

To see this, consider a problem with two inputs, A and B (Fig. 1.1, green and purple),

Figure 1.1: Three distributions of positive examples for two classes (green and purple)
that have the same mutual information, but drastically different quality for
downstream learners.

and a one-dimensional featuriser, parameterised by the integer M, which maps A to

Uniform({0,2, . . . ,2M}) and B to Uniform({1,3, . . . ,2M +1}). When M = 0, the

inputs are encoded into linearly separable features A= 0 and B= 1 (Fig. 1.1, bottom).

Otherwise when M > 0, they are interspersed like ABABABAB – a representation

which is much harder to work with for downstream learners. Nevertheless, the

mutual information between the features of any two augmentations of the same

input (a positive pair) is independent of M, that is H[Z1]−H[Z1|Z2] = log2 for any

M. Therefore, even using accurate estimators of mutual information would not

1.4. Dependency measures in machine learning 31

guarantee successful learning, which calls for alternative measures of dependence.

(This example is taken from [27], which is the basis of Chapter 3.)

1.4.2 Hilbert-Schmidt Independence Criterion (HSIC)

Another way to measure dependence between random variables is the Hilbert-

Schmidt Independence Criterion (HSIC) [32]. Similarly to mutual information,

HSIC between X and Y is non-negative, and HSIC(X ,Y) = 0 if and only if X and

Y are independent (at least for a certain class of kernels [33]), and large values of

the measure correspond to “more dependence.” The benefit of HSIC is that it has a

notion of geometry, and is both statistically and computationally easy to estimate.

It has been used in a variety of applications, particularly for independence testing

[34], but it has also been maximised in applications such as feature selection [35],

clustering [36, 37], active learning [38], and as a classification loss called HSIC

Bottleneck [26, 39] (similar ideas were expressed in [40, 41]).

Before defining HSIC, we need to introduce kernel methods. This brief intro-

duction will rely on Chapter 4 of [42]. We start by defining a kernel:

Definition 2. (4.1 in [42]) Let X be a non-empty set. Then a function k : X×X→R

is called a kernel on X if there exists a Hilbert space H and a map φ : X→H such

that for all x, x′ ∈ X we have

k(x,x′) =
〈
φ(x), φ(x′)

〉
H . (1.11)

We call φ a feature map and H a feature space of k. The Hilbert spaces with

associated kernels are called reproducing kernel Hilbert spaces (RKHS) [43].

An equivalent definition of RKHS is through the evaluation functional:

Definition 3. Consider a non-empty set X, a Hilbert space H and an evaluation

functional Lx defined for all x ∈ X as Lx : f → f (x) ∀ f ∈H. The Hilbert space H is

a reproducing kernel Hilbert space if Lx is a bounded operator:

|Lx(f)|= | f (x)| ≤C∥ f∥H . (1.12)

1.4. Dependency measures in machine learning 32

The above definition of RKHS gives us a way to define φ(x) through Lx: by the

Riesz representation theorem [44], the bounded function Lx has a unique correspond-

ing vector φ(x) ∈H such that Lx(f) = ⟨ f , φ(x)⟩H.

The definition of a kernel implies that a kernel is a symmetric function k(x,x′)

that maps Rn ×Rn → R and is positive-definite,

∀xi ∈ Rn, ∀ci ∈ R, ∑
i j

ci c j k(xi,x j)≥ 0 . (1.13)

Consequently, the matrix Ki j = k(xi,x j) is positive-semidefinite.

We will use the following kernels,

linear: k(x,x′) = x⊤x′ ; (1.14)

cosine similarity: k(x,x′) = x⊤x′/(∥x∥2

∥∥x′
∥∥

2) ; (1.15)

Gaussian: k(x,x′) = exp(−
∥∥x−x′

∥∥2
2 /(2σ

2)) . (1.16)

For the linear kernel, H = Rd , φ(x) = x. For the cosine similarity kernel,

H = Rd , φ(x) = x/∥x∥2. For the Gaussian kernel, the feature map is infinite-

dimensional.

HSIC measures the dependence between two random variables by first taking a

nonlinear feature transformation of each, say φ : X→ F and ψ : Y→G (with F and

G reproducing kernel Hilbert spaces, RKHSes), and then evaluating the norm of the

cross-covariance between those features:

HSIC(X ,Y) = ∥E[φ(X)⊗ψ(Y)]−E[φ(X)]⊗E[ψ(Y)]∥2
HS . (1.17)

Here ∥·∥HS is the Hilbert-Schmidt norm, which for an operator A : G→ F is defined

as

∥A∥2
HS = ∑

j∈J
∥Ag j∥2

G , (1.18)

where {g j} j∈J is an orthonormal basis of G. In finite dimensions, A is an m× n

1.4. Dependency measures in machine learning 33

matrix, and Hilbert-Schmidt norm is the usual Frobenius norm:

∥A∥2
F = ∑

i j
a2

i j . (1.19)

HSIC measures the scale of the correlation in these nonlinear features, which

allows it to identify nonlinear dependencies between X and Y with appropriate

features φ and ψ .

Dot products in an RKHS are by definition kernel functions: k(x,x′) =

⟨φ(x),φ(x′)⟩F and l(y,y′) = ⟨ψ(y),ψ(y′)⟩G. Let (X ′,Y ′), (X ′′,Y ′′) be independent

copies of (X ,Y); this gives

HSIC(X ,Y) = E
[
k(X ,X ′)l(Y,Y ′)

]
−2E

[
k(X ,X ′)l(Y,Y ′′)

]
(1.20)

+E
[
k(X ,X ′)

]
E
[
l(Y,Y ′)

]
. (1.21)

When X ≡ Y , meaning that pxy(x,y) = px(x)δ (y−x), HSIC becomes

HSIC(X , X) = ExEx′
(
k(x,x′)

)2 −2Ex
(
Ex′k(x,x′)

)2
+
(
ExEx′k(x,x′)

)2
. (1.22)

If both kernels are linear, it is easy to show that HSIC becomes the squared

Frobenius norm of the cross-covariance,

HSIC(X , Y) =
∥∥Cxy

∥∥2
F , Cxy = Exy xy⊤−Ex xEy y⊤ . (1.23)

In general, HSIC follows the same intuition – it is the squared Hilbert-Schmidt

norm (generalisation of the Frobenius norm) of the cross-covariance operator.

HSIC is also straightforward to estimate: given i.i.d. samples {(x1,y1), . . . ,(xN ,yN)}

drawn i.i.d. from the joint distribution of (X ,Y), [32] propose an estimator

ĤSIC(X ,Y) =
1

(N −1)2 Tr(KHLH) , (1.24)

where Ki j = k(xi,x j) and Li j = l(yi,y j) are the kernel matrices, and H = I − 1
N 11⊤

is called the centring matrix. This estimator has an O(1/N) bias and O(1/
√

N)

1.4. Dependency measures in machine learning 34

variance for N points; an unbiased estimator with the same computational cost is

available [35].

Chapter 2

Three-factor Hebbian learning rules

for deep networks

This chapter is based on Pogodin and Latham (2020); the results are my own.

Summary The state-of-the art machine learning approach to training deep neural

networks, backpropagation, is implausible for real neural networks: neurons need to

know their outgoing weights; training alternates between a bottom-up forward pass

(computation) and a top-down backward pass (learning); and the algorithm often

needs precise labels of many data points. Biologically plausible approximations to

backpropagation, such as feedback alignment, solve the weight transport problem,

but not the other two. Thus, fully biologically plausible learning rules have so

far remained elusive. We present a family of learning rules that does not suffer

from any of these problems. It is motivated by the information bottleneck principle

(extended with kernel methods), in which networks learn to compress the input as

much as possible without sacrificing prediction of the output. The resulting rules

have a 3-factor Hebbian structure: they require pre- and post-synaptic firing rates

and an error signal – the third factor – consisting of a global teaching signal and

a layer-specific term, both available without a top-down pass. They rely on the

similarity between pairs of desired outputs instead of precise labels. Moreover, to

obtain good performance on hard problems and retain biological plausibility, our

rules need divisive normalisation – a known feature of biological networks. Finally,

simulations show that our rules perform nearly as well as backpropagation on image

classification tasks.

2.1. Introduction 36

global
teaching

signalW

layer k-1 layer k layer k

k

A B Layer-wise error signalsTop-down error signals (e.g. backprop)

errorinput

global
teaching

signalW

layer k-1 layer k layer k

k
input

sequential
error propagation

simultaneous
error propagation

local
error

W

local
error

local
error

Figure 2.1: A. The global error signal is propagated to each layer from the layer above, and
used to update the weights. B. The global error signal is sent directly to each
layer.

2.1 Introduction
Supervised learning in deep networks is typically done using the backpropagation

algorithm (or backprop), but in its present form it cannot explain learning in the brain

[45]. There are three reasons for this: weight updates require neurons to know their

outgoing weights, which they do not (the weight transport problem); the forward pass

for computation and the backward pass for weight updates need separate pathways

and have to happen sequentially (preventing updates of earlier layers before the error

is propagated back from the top ones, see Fig. 2.1A); and a large amount of precisely

labelled data is needed.

While approximations to backprop such as feedback alignment [46, 47] can

solve the weight transport problem, they do not eliminate the requirement for a

backward pass or the need for labels. There have been suggestions that a backward

pass could be implemented with apical dendrites [48], but it’s not clear how well

the approach scales to large networks, and the backward pass still has to follow the

forward pass in time.

Backprop is not, however, the only way to train deep feedforward networks. An

alternative is to use so-called layer-wise update rules, which require only activity in

adjacent (and thus connected) layers, along with a global error signal (Fig. 2.1B).

Layer-wise training removes the need for both weight transport and a backward pass,

and there is growing evidence that such an approach can work as well as backprop

[41, 49, 50]. However, while such learning rules are local in the sense that they

mainly require activity only in adjacent layers, that does not automatically imply

biological plausibility.

Our work focuses on finding a layer-wise learning rule that is biologically

2.2. Related work 37

plausible. For that we take inspiration from the information bottleneck principle [51,

52], in which every layer minimises the mutual information between its own activity

and the input to the network, while maximising the mutual information between the

activity and the correct output (e.g., a label). Estimating the mutual information is

hard [28], so [39] proposed the HSIC bottleneck: instead of mutual information they

used “kernelized cross-covariance” called Hilbert-Schmidt independence criterion

(HSIC). HSIC was originally proposed as a way to measure independence between

distributions [32]. Unlike mutual information, HSIC is easy to estimate from data

[32], and the information bottleneck objective keeps its intuitive interpretation.

Moreover, as we will see, for classification with roughly balanced classes it needs

only pairwise similarities between labels, which results in a binary teaching signal.

Here we use HSIC, but to achieve biologically plausible learning rules we

modify it in two ways: we replace the HSIC between the input and activity with

the kernelized covariance, and we approximate HSIC with “plausible HSIC”, or

pHSIC, the latter so that neurons don’t need to remember their activity over many

data points. (However, the objective function becomes an upper bound to the HSIC

objective.) The resulting learning rules have a 3-factor Hebbian structure: the updates

are proportional to the pre- and post-synaptic activity, and are modulated by a third

factor (which could be a neuromodulator [53]) specific to each layer. In addition,

to work on hard problems and remain biologically plausible, our update rules need

divisive normalisation, a computation done by the primary visual cortex and beyond

[54, 55].

In experiments we show that plausible rules generated by pHSIC work nearly

as well as backprop on MNIST [56], fashion-MNIST [57], Kuzushiji-MNIST [58]

and CIFAR10 [59] datasets. This significantly improves the results from the original

HSIC bottleneck paper [39].

2.2 Related work

Biologically plausible approximations to backprop solve the weight transport prob-

lem in multiple ways. Feedback alignment (FA) [47] and direct feedback alignment

2.3. A kernel methods-based layer-wise objective 38

(DFA) [60] use random fixed weights for the backward pass but scale poorly to

hard tasks such as CIFAR10 and ImageNet [21, 61], However, training the feedback

pathway to match the forward weights can achieve backprop-level performance

[46]. The sign symmetry method [62] uses the signs of the feedforward weights for

feedback and therefore doesn’t completely eliminate the weight transport problem,

but it scales much better than FA and DFA [46, 63]. Other methods include target

prop [64, 65] (scales worse than FA [21]) and equilibrium prop [66] (only works

on simple tasks, but can work on CIFAR10 at the expense of a more complicated

learning scheme [67]). However, these approaches still need to alternate between

forward and backward passes.

To avoid alternating forward and backward passes, layer-wise objectives can

be used. A common approach is layer-wise classification: [68] used fixed readout

weights in each layer (leading to slightly worse performance than backprop); [41]

achieved backprop-like performance with trainable readout weights on CIFAR10

and CIFAR100; and [49] achieved backprop-like performance on ImageNet with

multiple readout layers. However, layer-wise classification needs precise labels and

local backprop (or its approximations) for training. Methods such as contrastive

learning [50] and information [52] or HSIC [39] bottleneck and gated linear networks

[69, 70] provide alternatives to layer-wise classification, but don’t focus on biological

plausibility. Biologically plausible alternatives with weaker supervision include

similarity matching [41, 71], with [41] reporting a backprop-comparable performance

using cosine similarity, and fully unsupervised rules such as [72, 73]. Our method is

related to similarity matching; see below for additional discussion.

2.3 A kernel methods-based layer-wise objective

Consider an L-layer feedforward network with input x, layer activity zk (for now

without divisive normalisation) and output ŷ,

z1 = f
(
W1x

)
, . . . , zL = f

(
WLzL−1) ; ŷ = f

(
WL+1zL) . (2.1)

2.3. A kernel methods-based layer-wise objective 39

The standard training approach is to minimise a loss, l(y, ŷ), with respect to the

weights, where y is the desired output and ŷ is the prediction of the network. Here,

though, we take an alternative approach: we use layer-wise objective functions,

lk(x,zk,y) in layer k, and minimise each lk(x,zk,y) with respect to the weight in

that layer, Wk (simultaneously for every k). The performance of the network is still

measured with respect to l(y, ŷ), but that quantity is explicitly minimised only with

respect to the output weights, WL+1.

To choose the layer-wise objective function, we turn to the information bot-

tleneck [51], which minimises the mutual information between the input and the

activity in layer k, while maximising the mutual information between the activity

in layer k and the desired output [52]. Mutual information, however, is notoriously

hard to compute [28] and poorly suits representation learning as it doesn’t encode

geometry of neural representations (see the discussion above in Section 1.4.1) . [39]

proposed an alternative based on the Hilbert-Schmidt Independence Criterion (HSIC)

– the HSIC bottleneck. HSIC is a kernel-based method for measuring independence

between probability distribution [32]. Similarly to the information bottleneck, this

method tries to balance compression of the input with prediction of the correct output,

with a (positive) balance parameter γ ,

min
Wk

(
HSIC(X , Zk)− γ HSIC(Y, Zk)

)
, k = 1, . . . ,L , (2.2)

where X ,Zk and Y are random variables, with a distribution induced by the input (the

x) and output (the y). HSIC is a measure of dependence: it is zero if its arguments

are independent, and increases as dependence increases,

HSIC(A, B) =
∫

∆Pab(a1,b1)k(a1,a2)k(b1,b2)∆Pab(a2,b2) , (2.3)

where

∆Pab(a,b) ≡ (pab(a,b)− pa(a)pb(b))dadb . (2.4)

The kernels, k(·, ·) (which might be different for a and b), are symmetric and positive

2.3. A kernel methods-based layer-wise objective 40

definite functions, the latter to insure that HSIC is non-negative. More details on

kernels and HSIC are given in Section 1.4.2 and Appendix A.1 (the notation here is

slightly different to make the chapter-specific explanations more clear).

HSIC gives us a layer-wise cost function, which eliminates the need for back-

prop. However, there is a downside: estimating it from data requires memory.

This becomes clear when we consider the empirical estimator of Eq. (2.3) given m

observations [32],

ĤSIC(A,B)=
1

m2 ∑
i j

k(ai,a j)k(bi,b j)+
1

m2 ∑
i j

k(ai,a j)
1

m2 ∑
kl

k(bk,bl)

− 2
m3 ∑

i jk
k(ai,ak)k(b j,bk) .

(2.5)

In a realistic network, data points are seen one at a time, so to compute the right hand

side from m samples, m−1 data point would have to be remembered. We solve this

in the usual way, by stochastic gradient descent. For the first term we use two data

points that are adjacent in time; for the second, we accumulate and store the average

over the kernels (see Eq. (2.16) below). The third term, however, is problematic; to

compute it, we would have to use three data points. Because this is implausible, we

make the approximation

1
m∑

k
k(ai,ak)k(b j,bk)≈

1
m2 ∑

kl
k(ai,ak)k(b j,bl) . (2.6)

Essentially, we replace the third term in Eq. (2.5) with the second. This leads to

“plausible” HSIC, which we call pHSIC,

pHSIC(A, B) = (Ea1b1Ea2b2 −Ea1Eb1Ea2Eb2)(k(a1,a2)k(b1,b2)) . (2.7)

We can also write it down in terms of feature maps for A and B:

pHSIC(A, B) = ∥E[φ(A)⊗ψ(B)]∥2
HS −∥E[φ(A)]⊗E[ψ(B)]∥2

HS . (2.8)

A theoretical downside of pHSIC is that it doesn’t guarantee independence: if

2.3. A kernel methods-based layer-wise objective 41

A and B are independent, pHSIC is trivially zero. The converse is not true: consider

a linear kernel over both A and B, and A ∼ N (1,1), B ∼ 3−2A. Then, we have

HSIC(A,B) = (EAB−EAEB)2 = (E(3A−2A2)−1)2 = 4 , (2.9)

pHSIC(A,B) = (EAB)2 − (EAEB)2 = 1−1 = 0 . (2.10)

However, it will not be an issue in our case: the final objective will have a

pHSIC(A, A) penalty. This quantity upper-bounds HSIC(A, A) (see Appendix A.1.1,

Eq. (A.3) for a proof) and reaches zero for a constant A (i.e., when A is independent

of A), therefore it can correctly enforce independence.

While pHSIC is easier to compute than HSIC, there is still a potential problem:

computing HSIC(X , Zk) requires k(xi,x j), as can be seen in the above equation. But

if we knew how to build a kernel that gives a reasonable distance between inputs,

we wouldn’t have to train the network for classification. So we make one more

change: rather than minimising the dependence between X and Zk (by minimising

the first term in Eq. (2.2)), we minimise the (kernelized) covariance of Zk. To do this,

we replace X with Zk in Eq. (2.2), and define pHSIC(A, A) via Eq. (2.7) but with

pab(a,b) set to pa(a)δ (a−b),

pHSIC(A, A) = Ea1Ea2 (k(a1,a2))
2 − (Ea1Ea2k(a1,a2))

2 . (2.11)

This gives us the new objective,

min
Wk

p
(

HSIC(Zk, Zk)− γ pHSIC(Y, Zk)
)
, k = 1, . . . ,L . (2.12)

The new objective preserves the intuition behind the information bottleneck, which

is to throw away as much information as possible about the input. It’s also an upper

bound on the “true” HSIC objective as long as the kernel over the desired outputs

is centred (Ey1k(y1,y2) = 0; see Appendix A.1.1), and doesn’t significantly change

the performance compared to the “true” HSIC objective (see Figs. A.1 to A.4 in

Appendix A.3.8).

2.4. Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 42

Centring the output kernel is straightforward in classification with balanced

classes: take y to be centred one-hot encoded labels (for n classes, yi = 1−1/n for

label i and −1/n otherwise), and use the cosine similarity kernel:

k(y1,y2) =
y⊤1 y2

∥y1∥∥y2∥
. (2.13)

In addition, the teaching signal is binary in this case:

k(yi,y j) =

1 if yi = y j ,

−1/(n−1) otherwise .
(2.14)

We will use exactly this signal in our experiments, as the datasets we used are bal-

anced. For slightly unbalanced classes, the signal can still be binary (see Eq. (A.7)).

When γ = 2, our objective is related to similarity matching. For the cosine

similarity kernel over activity, it is close to [41], and for the linear kernel, it is close

to [71, 72]. However, the update rule for the cosine similarity kernel is implausible,

and for the linear kernel the rule performs poorly (see below and in Appendices A.2.4

and A.2.5). We thus turn to the Gaussian kernel.

2.4 Circuit-level details of the gradient: a hidden 3-

factor Hebbian structure

2.4.1 General update rule

To derive the update rule for gradient descent, we need to estimate the gradient

of Eq. (2.12). This is relatively straightforward, so we leave the derivation to

Appendix A.2, and just report the update rule,

∆Wk
∝ ∑

i j

(
γ
◦◦◦
k(yi,y j)−2

◦◦◦
k(zk

i ,z
k
j)
) d

d Wk k(zk
i ,z

k
j) , (2.15)

2.4. Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 43

where the circle above k means empirical centring,

◦◦◦
k(ai,a j)≡ k(ai,a j)−

1
m2 ∑

i′ j′
k(ai′,a j′) . (2.16)

This rule has a 3-factor form with a global and a local part (Fig. 2.2A): for every

pair of points i and j, every synapse needs the same multiplier, and this multiplier

needs the similarities between labels (the global signal) and layer activities (the local

signal) on two data points. As mentioned in the previous section, on our problems

the teaching signal k(yi,y j) is binary, but we will keep the more general notation

here.

However, the derivative in Eq. (2.15) is not obviously Hebbian. In fact, it gives

rise to a simple Hebbian update only for some kernels. Below we consider the

Gaussian kernel, and in Appendix A.2.4 we show that the cosine similarity kernel

(used in [41]) produces an unrealistic rule.

C

k(yi,yj)

yi: target final output on point i
i, j: two data points

yi: target final output on point i
i, j: two data points

k(z i,z j)k k

z i: layer k activity on point ikA B Grouping with divisive normalization3rd factor circuitry Grouping for error computation

global signal

local signal

v i: grouped activity on point ik

vαk

vck
k

v1
k

layer k

zα1
k zα2

k

group α (out of ck)

v : grouped activityv : grouped activityk
z : unnormalized activityk

r : normalized activityk

to layer k+1
to 3rd factor

k

f(v k
zα1

k
rα1=k

)

(same size as z)

3rd
factor

layer k-1 layer k
Wnmm n

k

k(yi,yj)

k(v i,v j)k k

global signal

local signal
vαk

layer k

zα1
k zα2

k

group α (out of ck)

to 3rd factor

Figure 2.2: A. The weight update uses a 3rd factor consisting of a global teaching signal
and a local (to the layer) signal, both capturing similarities between two data
points. B. Grouping: neurons in layer k form ck groups, each represented by a
single number; those numbers are used to compute the local signal. C. Grouping
with divisive normalisation: the activity of every neuron is normalised using the
grouped signal before passing to the next layer (the error is computed as in B).

2.4.2 Gaussian kernel: two-point update

The Gaussian kernel is given by k(zk
i ,z

k
j) = exp(−∥zk

i − zk
j∥2/2σ2). To compute

updates from a stream of data (rather than batches), we approximate the sum in

Eq. (2.15) with only two points, for which we’ll again use i and j. If we take a

linear fully connected layer (see Eq. (A.17) for the general case), the update over

2.4. Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 44

two points is

∆Wk
∝ Mk

i j(z
k
i − zk

j)(z
k−1
i − zk−1

j)⊤ (2.17a)

Mk
i j =− 1

σ2

(
γ

◦◦◦
k(yi,y j)−2

◦◦◦
k(zk

i ,z
k
j)
)

k(zk
i ,z

k
j) . (2.17b)

Here Mk
i j is the layer-specific third factor.

The role of the third factor is to ensure that if labels, yi and y j, are similar, then

the activity, zk
i and zk

j, is also similar, and vice-versa. To see why it has that effect,

assume yi and y j are similar and zk
i and zk

j are not. That makes Mk
i j negative, so the

update rule is anti-Hebbian, which tends to move activity closer together. Similarly,

if yi and y j are not similar and zk
i and zk

j are, Mk
i j is positive, and the update rule is

Hebbian, which tends to move activity farther apart.

In the current implementation, M is a continuous signal, which might be prob-

lematic for a realistic implementation. However, it might be possible to binarize

or, at least, approximate M based on the intuition behind the third factor (i.e., it’s

either positive or negative, based on the similarity between activities and labels).

Binarizing a continuous modulatory signal has been successfully used in three-factor

Hebbian learning before [74]; a similar implementation could be used here.

The biological implementation of the third factor M is usually attributed to

neuromodulators (e.g. through dopaminergic neurons [53]). However, in our case

the third factor also contains a term that requires averaging of activity within the

layer. This could potentially be done by glia as it can influence plasticity [75, 76]

and in some cases do so across synapses [77, 78].

2.4.3 Gaussian kernel with grouping and divisive normalisation

The Gaussian kernel described above works well on small problems (as we’ll see

below), but in wide networks it needs to compare very high-dimensional vectors,

for which there is no easy metric. To circumvent this problem, [41] computed the

variance of the response over each channel in each convolutional layer, and then

used it for cosine similarity.

We will use the same approach, which starts by arranging neurons into ck

2.4. Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 45

groups, labelled by α , so that zk
αn is the response of neuron n in group α of layer k

(Fig. 2.2B). We’ll characterise each group by its “smoothed” variance (meaning we

add a positive offset δ), denoted uk
α ,

uk
α ≡ δ

ck
α

+
1

ck
α

∑
n′

(
◦◦◦zk
αn′

)2
; ◦◦◦zk

αn ≡ zk
αn −

1
ck

α

∑
n′

zk
αn′ , (2.18)

where ck
α is the number of neurons in the group α of layer k. One possible kernel

would compare the standard deviation (so the square root of uk
α) across different

data points. However, we can get better performance by exponentiation and centring

across channels. We thus define a new variable vk
α ,

vk
α = (uk

α)
1−p − 1

ck ∑
α ′
(uk

α ′)1−p , (2.19)

and use this grouped activity in the Gaussian kernel,

k(zk
i ,z

k
j) = exp

(
− 1

2σ2

∥∥∥vk
i −vk

j

∥∥∥2
)
, (2.20)

where, recall, i and j refer to different data points, and (vk)α = vk
α .

To illustrate the approach, we consider a linear network; see Eq. (A.24) in

Appendix A.2 for the general case. Taking the derivative of k(zk
i ,z

k
j) with respect to

the weight in layer k, we arrive at

d k(zk
i ,z

k
j)

dW k
αnm

∝ − 1
σ2 k(zk

i ,z
k
j)(v

k
α, i − vk

α, j)

(◦◦◦zk
αn, j

(uk
α, i)

p
zk−1

m, i −
◦◦◦zk
αn, j

(uk
α, j)

p
zk−1

m, j

)
. (2.21)

Because of the term uk
α in this expression, the learning rule is no longer strictly

Hebbian. We can, though, make it Hebbian by assuming that the activity of the

presynaptic neurons is ◦◦◦zk
αn, j/(u

k
α, j)

p,

zk
αn = f

(
∑
m

W k
αnmrk−1

m

)
; rk

αn =
◦◦◦zk
αn

(uk
α)p

. (2.22)

This automatically introduces divisive normalisation into the network (Fig. 2.2C),

2.4. Circuit-level details of the gradient: a hidden 3-factor Hebbian structure 46

a common “canonical computation” in the brain [54], and in our case makes the

update 3-factor Hebbian. It also changes the network from Eq. (2.1) to Eq. (2.22),

but that turns out to improve performance. The resulting update rule (again for a

linear network; see Eq. (A.24) for the general case) is

∆W k
αnm ∝ Mk

α, i j

(
rk

αn, ir
k−1
m, i − rk

αn, jr
k−1
m, j

)
Mk

α, i j =− 1
σ2

(
γ

◦◦◦
k(yi,y j)−2

◦◦◦
k(zk

i ,z
k
j)
)

k(zk
i ,z

k
j)(v

k
α, i − vk

α, j) .
(2.23)

The circuitry to implement divisive normalisation would be recurrent, but is out of

scope of this work (see, however, [79] for network models of divisive normalisation).

For a convolutional layer, α would denote channels (or groups of channels), and

the weights would be summed within each channel for weight sharing. When p, the

exponent in Eq. (2.19), is equal to 0.5, our normalisation scheme is equivalent to

divisive normalisation in [80] and to group normalisation [81].

Note that the rule is slightly different from the one for the basic Gaussian kernel

(Eq. (2.17)): the weight change is no longer proportional to differences of pre- and

post-synaptic activities; instead, it is proportional to the difference in their product

times the global factor for the channel. This form bears a superficial resemblance to

Contrastive Hebbian learning [82, 83]; however, that method doesn’t have a third

factor, and it generates points i and j using backprop-like feedback connections.

2.4.4 Online update rules for the Gaussian kernel are standard

Hebbian updates

Our objective and update rules so far have used batches of data. However, we

introduced pHSIC in Section 3.3 because a realistic network has to process data

point by point. To show how this can work with our update rules, we first switch

indices of points i, j to time points t, t −∆t.

Gaussian kernel

The update in Eq. (2.17) becomes

∆Wk(t) ∝ Mk
t, t−∆t(z

k
t − zk

t−∆t)(z
k−1
t − zk−1

t−∆t)
⊤ . (2.24)

2.5. Circuitry to implement the update rules 47

As an aside, if the point t −∆t was presented for some period of time, its activity can

be replaced by the mean activity: zk
t−∆t ≈ µµµk

t and zk−1
t−∆t ≈ µµµ

k−1
t . The update becomes

a standard Hebbian one,

∆Wk(t) ∝ Mk
t, t−∆t(z

k
t −µµµ

k
t)(z

k−1
t −µµµ

k−1
t)⊤ . (2.25)

Gaussian kernel with divisive normalisation

The update in Eq. (2.23) allows two interpretations. The first one works just like

before: we first introduce time, and then assume that the previous point rk
αn, t−∆t is

close to the short-term average of activity µk
αn, t . This results in

∆W k
αnm(t) ∝ Mk

α, t , t−∆t

(
rk

αn, tr
k−1
m, t −µ

k
αn, t µ

k−1
m, t

)
. (2.26)

The second one uses the fact that for points at times t − ∆t, t, t + ∆t the

Hebbian term of point t appears twice: first as Mk
α, t , t−∆t rk

αn, tr
k−1
m, t , and then as

−Mk
α, t+∆t , t rk

αn, tr
k−1
m, t . Therefore we can separate the Hebbian term at time t and

write the update as

∆W k
αnm(t) ∝

(
Mk

α, t , t−∆t −Mk
α, t+∆t , t

)
rk

αn, tr
k−1
m, t . (2.27)

While the Hebbian part of Eq. (2.27) is easier than in Eq. (2.26), it requires the

third factor to span a longer time period. In both cases (and also for the plain Gaussian

kernel), computing the third factor with local circuitry is relatively straightforward;

for details see Eq. (2.41) in Section 2.5.

2.5 Circuitry to implement the update rules

In this section we outline the circuitry needed to compute the Hebbian terms and the

third factor for the Gaussian kernel (plain and with grouping and divisive normalisa-

tion).

2.5. Circuitry to implement the update rules 48

time

z

0 0
µ

zt
Δzt

00 time

z
zt

A B

t-Δt t t+Δt t-Δt t t+Δt

Two-point update:
 distant points

Two-point update:
 close pointsactivity activity

zt-Δt
Δzt

Figure 2.3: A. First scenario of the Hebbian updates for two points: plasticity (proportional
to ∆zt , orange line) happens when the activity (blue line) switches from one data
point to another. B. Second scenario: plasticity happens when the second point
comes in some time after the first one, which uses memorised activity from the
first point (dashed green line).

2.5.1 Hebbian terms

In Section 2.4.4 we proposed online versions for our update rules. For the plain

Gaussian kernel (the discussion below also applies to the version with grouping and

divisive normalisation), the update is

∆Wk(t) ∝ Mk
t, t−∆t(z

k
t − zk

t−∆t)(z
k−1
t − zk−1

t−∆t)
⊤ , (2.28)

where t −∆t represents the data point before the one at time t. In the main text we

suggested that zk
t−∆t can be approximated by short-term average of activity in layer k.

When ∆t is small, the change zk
n, t − zk

n, t−∆t for a neuron n can be computed by

a smoothed temporal derivative, implemented by convolution with a kernel κ (see

Fig. 2.3A),

zk
n, t − zk

n, t−∆t ≈ ∆zk
n, t ≡ (κ ∗ zk

n)(t); κ(t) ∝ −(t − c1)e−c2|t−c1|Θ(t) , (2.29)

with c1 and c2 are positive.

If ∆t is large and potentially variable, the short-term average won’t accurately

represent the previous point. However, if between trials zk
n returns to some back-

ground activity µk
n (see Fig. 2.3B), we can still apply these difference-based updates.

In this case the neuron needs to memorise the last significant deviation from the

background (i.e., it needs to remember zk
n, t−∆t −µk

n, t−∆t). This can be done with a

2.5. Circuitry to implement the update rules 49

one-dimensional nonlinear differential equation with “memory”, such as

ω̇n, t =
(

zk
n, t −µ

k
n, t

)3
− tanh

(∣∣∣zk
n, t −µ

k
n, t

∣∣∣3) ωn, t − cωn, t (2.30)

with c small. The intuition is as follows: if the neuron is in the background state,

the right hand side of Eq. (2.30) is nearly zero (expect for the leak term cωn, t).

Otherwise, the deviation from the mean is large and the right hand side approaches

(zk
n, t −µk

n, t)
3 − (1+ c)ωn, t , as long as |zk −µk

n, t | ≫ 1 (due to tanh saturation). This

quickly erases the previous zk
n, t−∆t and memorises the new one (see Fig. 2.3B with

no leak term). We can therefore compute the difference between the last and the

current large deviations by convolving the (real) cube root (ωk
n, t)

1/3 with the same

kernel as above, leading to

zk
n, t − zk

n, t−∆t ≈ ∆zk
n, t ≡

(
κ ∗ (ωk

n)
1/3)(t) . (2.31)

2.5.2 3rd factor for the Gaussian kernel

The update equation for the Gaussian kernel (repeating Eq. (2.17) but in time rather

that indices i j, and assuming a linear network as it doesn’t affect the third factor) is

∆W k
nm, t ∝ Mk

t (z
k
n, t − zk

n, t−∆t)(z
k−1
m, t − zk−1

m, t−∆t) , (2.32)

Mk
t =− 1

σ2

(
γ

◦◦◦
k(yt ,yt−∆t)−2

◦◦◦
k(zk

t ,z
k
t−∆t)

)
k(zk

t ,z
k
t−∆t) . (2.33)

We’ll assume that information about the labels, k(yt ,yt−∆t), comes from outside

the circuit, so to compute the third factor we just need to compute k(zk
t ,zk

t−∆t) (and

then centre everything). For the Gaussian kernel, we thus need
∥∥∆zk

t
∥∥2, which is

given by

bk
1, t = ∑

n
(∆zk

n, t)
2 , (2.34)

so that k(zk
t ,zk

t−∆t) = exp(−bk
1, t/(2σ2)). That gives us the uncentred component of

2.5. Circuitry to implement the update rules 50

the third factor, denoted bk
2, t ,

bk
2, t = γ k(yt ,yt−∆t)−2k(zk

t ,z
k
t−∆t) = γ k(yt ,yt−∆t)−2 exp

(
− 1

2σ2 bk
1, t

)
. (2.35)

To compute the mean, so that we may centre the third factor, we take an exponentially

decaying running average,

bk
3, t = β bk

2, t +(1−β)bk
3, t (2.36)

with β ∈ (0,1) (so that past points are erased as the weights change). Thus, the third

factor becomes

Mk
t =− 1

σ2

(
bk

2, t −bk
3, t

)
exp
(
− 1

2σ2 bk
1, t

)
. (2.37)

If we think of bk
1, t , bk

2, t and bk
3, t as neurons, the first two need nonlinear dendrites

to compute this signal. In addition, bk
1, t should compute ∆zk

n, t from zk
n, t at the

dendritic level.

2.5.3 3rd factor for the Gaussian kernel with grouping and divi-

sive normalisation

The update for the Gaussian kernel with grouping (repeating Eq. (2.23) but in time,

and assuming a linear network as it doesn’t affect the third factor) is

∆W k
αnm, t ∝ Mk

α, t

(
rk

αn, tr
k−1
m, t − rk

αn, t−∆tr
k−1
m, t−∆t

)
, (2.38a)

Mk
α, t = Mk

t (v
k
α, t − vk

α, t−∆t) , (2.38b)

Mk
t =− 1

σ2

(
γ

◦◦◦
k(yt ,yt−∆t)−2

◦◦◦
k(zk

t ,z
k
t−∆t)

)
k(zk

t ,z
k
t−∆t) . (2.38c)

The Hebbian term – the term in parentheses in Eq. (2.38a) – corresponds to the

difference of pre- and post-synaptic products, rather than a product of differences:

rk
αn, tr

k−1
m, t −rk

αn, t−∆tr
k−1
m, t−∆t ≈∆(rk

αn, tr
k−1
m, t). We can compute this difference as before

(Eq. (2.29) or Eq. (2.31)), although this update rule requires a different interaction

2.6. Experiments 51

of the pre- and post-synaptic activity compared to the plain Gaussian kernel in

Eq. (2.32).

The third factor is almost the same as for the plain Gaussian kernel, but there

are two differences. First, we need to compute the centred normalisation vk
α, t (as in

Eq. (2.19)) and its change over time for each group α ,

b̃k
α, t = ∆vk

α, t . (2.39)

Second, Mk
t is computed for ∆vk

α, t rather than ∆zk
n, t , such that (cf. Eq. (2.34))

b̃k
1, t = ∑

α

(b̃k
α, t)

2 , (2.40)

and b̃k
2, t (Eq. (2.35) but with b̃k

1, t) and b̃k
3, t (Eq. (2.36) but with b̃k

1, t and b̃k
2, t) stay the

same.

The third factor becomes

Mk
α, t =− 1

σ2

(
b̃k

2, t − b̃k
3, t

)
exp
(
− 1

2σ2 b̃k
1, t

)
b̃k

α, t . (2.41)

Essentially, it is the same third factor computation as for the Gaussian kernel, but

with an additional group-specific signal bk
α, t .

2.6 Experiments

2.6.1 Experimental setup

We compared our learning rule against stochastic gradient descent (SGD), and

with an adaptive optimiser and batch normalisation. While networks with adaptive

optimisers (e.g. Adam [84]) and batch normalisation (or batchnorm, [85]) perform

better on deep learning tasks and are often used for biologically plausible algorithms

(e.g. [41, 46]), these features imply non-trivial circuitry (e.g. the need for gradient

steps in batchnorm). As our method focuses on what circuitry implements learning,

the results on SGD match this focus better.

We used the batch version of the update rule (Eq. (2.15)) only to make large-

2.6. Experiments 52

scale simulations computationally feasible. We considered the Gaussian kernel,

and also the cosine similarity kernel, the latter to compare with previous work [41].

(Note, however, that the cosine similarity kernel gives implausible update rules, see

Appendix A.2.4.) For both kernels we tested 2 variants of the rules: plain (without

grouping), and with grouping and divisive normalisation (as in Eq. (2.23)). (Grouping

without divisive normalisation performed as well or worse, and we don’t report it here

as the resulting update rules are less plausible; see Table A.6 in Appendix A.3.) We

also tested backprop, and learning of only the output layer in small-scale experiments

to have a baseline result (also with divisive normalisation in the network). In large-

scale experiments, we also compared our approach to feedback alignment [47], sign

symmetry [62] and layer-wise classification [41, 68].

The nonlinearity was leaky ReLU (LReLU [86]; with a slope of 0.1 for the neg-

ative input), but for convolutional networks trained with SGD we changed it to SELU

[14] as it performed better. All parameters (learning rates, learning rate schedules,

grouping and kernel parameters) were tuned on a validation set (10% of the training

set). Optimising HSIC instead of our approximation, pHSIC, didn’t improve perfor-

mance, and the original formulation of the HSIC bottleneck (Eq. (2.2)) performed

much worse (not shown). The datasets were MNIST [56], fashion-MNIST [57],

Kuzushiji-MNIST [58] and CIFAR10 [59]. We used standard data augmentation for

CIFAR10 [59], but no augmentation for the other datasets. All simulation param-

eters are provided in Appendix A.3. The implementation is available on GitHub:

https://github.com/romanpogodin/plausible-kernelized-bottleneck.

2.6.2 Small fully connected network

We start with a 3-layer fully connected network (1024 neurons in each layer). To

determine candidates for large-scale experiments, we compare the proposed rules

to each other and to backprop. We thus delay comparison with other plausible

learning methods to the next section; for performance of plausible methods in shallow

networks see e.g. [87]. The models were trained with SGD for 100 epochs with

dropout [88] of 0.05, batch size of 256, and the bottleneck balance parameter γ = 2

(other values of γ performed worse); other parameters are provided in Appendix A.3.

https://github.com/romanpogodin/plausible-kernelized-bottleneck

2.6. Experiments 53

Our results (summarised in Table 2.1 for mean test accuracy; see Table A.3 for

deviations between max and min) show a few clear trends across all four datasets:

the kernel-based approaches with grouping and divisive normalisation perform

similarly to backprop on easy datasets (MNIST and its slightly harder analogues),

but not on CIFAR10; grouping and divisive normalisation had little effect on the

cosine similarity performance; the Gaussian kernel required grouping and divisive

normalisation for decent accuracy. However, we’ll see that the poor performance on

CIFAR10 is not fundamental to the method; it’s because the network is too small.

2.6.3 Large convolutional networks and CIFAR10

Because all learning rules perform reasonably well on MNIST and its related exten-

sions, in what follows we consider only CIFAR10, with the architecture used in [41]:

conv128-256-maxpool-256-512-maxpool-512-maxpool-512-maxpool-fc1024 and

its version with double the convolutional channels (denoted 2x; the size of the fully

connected layer remained the same). All networks were trained for 500 epochs with

γ = 2, dropout of 0.05 and batch size of 128 (accuracy jumps in Fig. 2.4 indicate

learning rate decreases); the rest of the parameters are provided in Appendix A.3.

Table 2.1: Mean test accuracy over 5 runs for a 3-layer (1024 neurons each) fully connected
net. Last layer: training of the last layer; cossim: cosine similarity; grp: grouping;
div: divisive normalisation.

backprop last layer pHSIC: cossim pHSIC: Gaussian

div div grp+div grp+div

MNIST 98.6 98.4 92.0 95.4 94.9 96.3 94.6 98.1
fashion-MNIST 90.2 90.8 83.3 85.7 86.3 88.1 86.5 88.8
Kuzushiji-MNIST 93.4 93.5 71.2 78.2 80.4 87.2 80.2 91.1
CIFAR10 60.0 60.3 39.2 38.0 51.1 47.6 41.4 46.4

For SGD with divisive normalisation (and also grouping for pHSIC-based

methods; first two rows in Table 2.2), layer-wise classification, sign symmetry

and the cosine similarity kernel performed as well as backprop (consistent with

previous findings [41, 63]); feedback alignment (and layer-wise classification with

FA) performed significantly worse. In those cases, increasing the width of the

network had a marginal effect on performance. The Gaussian kernel performed worse

2.6. Experiments 54

Table 2.2: Mean test accuracy on CIFAR10 over 5 runs for the 7-layer conv nets (1x and 2x
wide). FA: feedback alignment; sign sym.: sign symmetry; layer class.: layer-
wise classification; cossim: cosine similarity; divnorm: divisive normalisation;
bn: batchnorm.

backprop FA sign sym. layer class. pHSIC + grouping

+FA cossim Gaussian

1x + SGD + divnorm 91.0 80.4 89.5 90.5 81.0 89.8 86.2
2x + SGD + divnorm 90.9 80.6 91.3 91.3 81.2 91.3 90.4
1x + AdamW + bn 94.1 82.4 93.6 92.1 90.3 91.3 89.9
2x + AdamW + bn 94.3 81.6 93.9 92.1 91.1 91.9 91.0

100 200 300 400 500

70

80

90

100

100 200 300 400 500

70

80

90

100

A BCIFAR10 accuracy: 1x wide network
with grouping and divisive normalization

CIFAR10 accuracy: 2x wide network
with grouping and divisive normalizationaccuracy, % accuracy, %

epoch epoch

backprop (train)
backprop (test), final: 91.0%
backprop w/o div (train)
backprop w/o div (test), final: 91.0%
cossim (train)
cossim (test), final: 89.8%
Gaussian (train)
Gaussian (test), final: 86.2%

backprop (train)
backprop (test), final: 90.9%
backprop w/o div (train)
backprop w/o div (test), final: 91.9%
cossim (train)
cossim (test), final: 91.3%
Gaussian (train)
Gaussian (test), final: 90.4%

Figure 2.4: Performance of backprop, cosine similarity kernel (cossim) and Gaussian kernel
on CIFAR10 with SGD, grouping and divisive normalisation (and without for
backprop; in pink). Solid lines: mean test accuracy over 5 random seeds; shaded
areas: min/max test accuracy over 5 seeds; dashed lines: mean training accuracy
over 5 seeds. A. 1x wide network: cosine similarity nearly matches backprop but
doesn’t achieve perfect training accuracy; Gaussian kernel lags behind cosine
similarity. B. 2x wide network: backprop performance slightly improves; both
kernels nearly match backprop performance, but Gaussian kernel still doesn’t
achieve perfect training accuracy.

than backprop on the 1x network, but increasing the width closed the performance

gap. A closer look at the learning dynamics of pHSIC-based methods and backprop

(Fig. 2.4) reveals low training accuracy with the Gaussian kernel on the 1x wide net,

vs. almost 100% for 2x, explaining low test accuracy.

For AdamW [89] with batchnorm [85] (last two rows in Table 2.2), performance

improved for all objectives, but it improved more for backprop (and sign symmetry)

than for the pHSIC-based objectives. However, batch normalisation (and in part

adaptive learning rates of AdamW) introduces yet another implausible feature to the

training method due to the batch-wide activity renormalisation.

Only backprop, layer-wise classification (without feedback alignment) and the

2.7. Discussion 55

cosine similarity kernels performed well without any normalisation (see Tables A.6

and A.7); for the other methods some kind of normalisation was crucial for conver-

gence. Backprop without divisive normalisation (solid pink line in Fig. 2.4) had

non-monotonic performance, which can be fixed with a smaller learning rate at the

cost of slightly worse performance.

The small difference between backpropagation and layer-wise methods, and in

particular the pHSIC objective with the Gaussian kernel and divisive normalisation,

is likely due to early overfitting of layer-wise methods. Essentially, each layer learns

features specific to its own objective [90], which can impair downstream performance

as some information could be lost early on. While the difference is small in our

case, it can potentially increase on harder tasks; this can be fixed by grouping several

layers into a block for a single block-wise objective (see [90]) at the expense of the

need of backpropagation within the block.

2.7 Discussion

We proposed a layer-wise objective for training deep feedforward networks based on

the kernelized information bottleneck, and showed that it can lead to biologically

plausible 3-factor Hebbian learning. Our rules work nearly as well as backpropaga-

tion on a variety of image classification tasks. Unlike in classic Hebbian learning,

where the pre- and post-synaptic activity triggers weight changes, our rules suggest

large fluctuations in this activity should trigger plasticity (e.g. when a new object

appears). Our main update rule (Eq. (2.38a)) can be implemented as a difference

between standard Hebbian terms, effectively offloading the computations of fluctua-

tions to the third factor. However, plasticity under this rule would still happen when

either the input or the teaching signal change significantly. Such difference-based

rules are reminiscent of Differential Hebbian learning [91] that is used to account

for STDP data. However, it is not clear how Differential Hebbian learning coincides

with neuromodulation, and if it can work for temporally distant data points (like in

Fig. 2.3B).

Our learning rules do not need precise labels; instead they need only a binary

2.7. Discussion 56

signal: whether or not the previous and the current point have the same label. This

allows networks to build representations with weaker supervision. We did train the

last layer with precise labels, but that was only to compute accuracy; the network

would learn just as well without it. To completely avoid supervision in hidden layers,

it is possible to adapt our learning scheme to the contrastive (or self-supervised)

setting as in Contrastive Predictive Coding [29, 50] and SimCLR [92] (which stands

for “ simple framework for contrastive learning of visual representations”).

Our rules do, though, need a global signal, which makes up part of the third

factor. Where could it come from? In the case of the visual system, we can think of

it as a “teaching” signal coming from other sensory areas. For instance, the more

genetically pre-defined olfactory system might tell the brain that two successively

presented objects smell differently, and therefore should belong to different classes.

The third factor also contains a term that is local to the layer, but requires averaging

of activity within the layer. This could be done by cells that influence plasticity,

such as dopaminergic neurons [53] or glia [75–78]. The rules we discussed predict a

specific form of the third factor and a corresponding circuitry that computes it locally

(Section 2.5).

Although our approach is a step towards fully biologically plausible learning

rules, it still suffers from some unrealistic features. The recurrence in our networks

is limited to that necessary for divisive normalisation, and has no excitatory within-

layer recurrence or top-down signals. Those might be necessary to go from image

classification to more realistic tasks (e.g., video). Our networks also allow negative

firing rates due to the use of leaky ReLU and SELU nonlinearities. The latter (which

we used to compensate for the lack of batchnorm) saturates for large negative inputs,

and therefore the activity of each neuron can be viewed as a value relative to the

background firing. Our main experiments also use convolutional networks, which

are implausible due to weight sharing among neurons. Achieving good performance

without weight sharing is an open question, although there are some results for

backprop [21]. Finally, a sequential implementation of our objective relies on a

random order of input examples. If a network sees similar inputs with the same

2.7. Discussion 57

label for a long time, its representations can collapse to a constant value (a similar

phenomenon occurs in self-supervised learning [93]). The frequency of “label

switches” required for successful learning can be an interesting future direction.

We showed that our rules can compete with backprop and its plausible approxi-

mations on CIFAR10, even though they rely on less supervision and simpler error

signals. It should be possible to scale our learning rules to larger datasets, such as

CIFAR100 [59] and ImageNet [94], as suggested by results from other layer-wise

rules [41, 49, 50]. The layer-wise objectives can also make the theoretical analysis

of deep learning easier. In fact, recent work analysed a similar type of kernel-based

objectives, showing its optimality with one hidden layer and backprop-comparable

performance in deeper networks [95].

The human brain contains about 1011 neurons, of which only about 106 – less

than one per 100,000 – are directly connected to the outside world; the rest make

up hidden layers. Understanding how such a system updates its synaptic strengths

is one of the most challenging problems in neuroscience. We proposed a family of

biologically plausible learning rules for feedforward networks that have the potential

to solve this problem. For a complete understanding of learning they need, of course,

to be adapted to unsupervised and recurrent settings, and verified experimentally.

In addition, our learning rules are much more suitable for neuromorphic chips than

standard backprop, due to the distributed nature of weight updates, and so could

massively improve their scalability.

Chapter 3

A kernel methods approach to

self-supervised learning

This chapter is based on Li∗, Pogodin∗ et al. (2021); the results are obtained in close

collaboration with other authors, and in particular Yazhe Li (we are the two joint

first authors). The theoretical results presented in this chapter are mostly my results,

while the experimental ones are due to Yazhe Li; the latter are mostly omitted. Yazhe

Li’s code is available at https://github.com/deepmind/ssl_hsic; my

own code was not publicly shared.

Summary We approach self-supervised learning of image representations from a

statistical dependence perspective, proposing Self-Supervised Learning with the

Hilbert-Schmidt Independence Criterion (SSL-HSIC). SSL-HSIC maximises depen-

dence between representations of transformations of an image and the image identity,

while minimising the kernelized variance of those representations. This framework

yields a new understanding of InfoNCE (variation of the Noise-Contrastive Esti-

mation loss), a variational lower bound on the mutual information (MI) between

different transformations. While the MI itself is known to have pathologies which

can result in learning meaningless representations, its bound is much better behaved:

we show that it implicitly approximates SSL-HSIC (with a slightly different regular-

izer). Our approach also gives us insight into Bootstrap Your Own Label (BYOL), a

negative-free SSL method, since SSL-HSIC similarly learns local neighbourhoods

of samples. SSL-HSIC allows us to directly optimise statistical dependence in

https://github.com/deepmind/ssl_hsic

3.1. Introduction 59

time linear in the batch size, without restrictive data assumptions or indirect mu-

tual information estimators. Trained with or without a target network, SSL-HSIC

matches the current state-of-the-art for standard linear evaluation on ImageNet [96],

semi-supervised learning and transfer to other classification and vision tasks such as

semantic segmentation, depth estimation and object recognition.

3.1 Introduction

Learning general-purpose visual representations without human supervision is a

long-standing goal of machine learning. Specifically, we wish to find a feature

extractor that captures the image semantics of a large unlabelled collection of images,

so that e.g. various image understanding tasks can be achieved with simple linear

models. One approach takes the latent representation of a likelihood-based generative

model [97–103]; such models, though, solve a harder problem than necessary since

semantic features need not capture low-level details of the input. Another option is

to train a self-supervised model for a “pretext task,” such as predicting the position

of image patches, identifying rotations, or image inpainting [104–109]. Designing

good pretext tasks, however, is a subtle art, with little theoretical guidance available.

Recently, a class of models based on contrastive learning [29, 92, 110–115] has

seen substantial success: dataset images are cropped, rotated, colour shifted, etc.

into several views, and features are then trained to pull together representations

of the “positive” pairs of views of the same source image, and push apart those

of “negative” pairs (from different images). These methods are either understood

from an information theoretic perspective as estimating the mutual information

between the “positives” [29], or explained as aligning features subject to a uniformity

constraint [116]. Another line of research [93, 117] attempts to learn representation

without the “negative” pairs, but requires either a target network or stop-gradient

operation to avoid collapsing.

We examine the contrastive framework from a statistical dependence point

of view: feature representations for a given transformed image should be highly

dependent on the image identity (Fig. 3.1). To measure dependence, we turn to the

3.1. Introduction 60

Figure 3.1: Statistical dependence view of contrastive learning: representations of trans-
formed images should highly depend on image identity. Measuring dependence
with HSIC, this pushes different images’ representation distributions apart (black
arrows) and pulls representations of the same image together (coloured shapes).

Hilbert-Schmidt Independence Criterion (HSIC) [32], and propose a new loss for

self-supervised learning which we call SSL-HSIC. Our loss is inspired by HSIC

Bottleneck [26, 39], an alternative to Information Bottleneck [118], where we use

the image identity as the label, but change the regularisation term.

Through the dependence maximisation perspective, we present a unified view

of various self-supervised losses. Previous work [119] has shown that the success of

InfoNCE cannot be solely attributed to properties of mutual information, in particular

because mutual information (unlike kernel measures of dependence) has no notion

of geometry in feature space: for instance, all invertible encoders achieve maximal

mutual information, but they can output dramatically different representations with

very different downstream performance [119]. Variational bounds on mutual infor-

mation do impart notions of locality that allow them to succeed in practice, departing

from the mutual information quantity that they try to estimate. We prove that In-

foNCE, a popular such bound, in fact approximates SSL-HSIC with a variance-based

regularisation. Thus, InfoNCE can be thought of as working because it implicitly

estimates a kernel-based notion of dependence. We additionally show SSL-HSIC is

related to metric learning, where the features learn to align to the structure induced

by the self-supervised labels. This perspective is closely related to the objective

of Bootstrap Your Own Label (BYOL) [93], and can explain properties such as

3.2. Background 61

alignment and uniformity [116] observed in contrastive learning.

Our perspective brings additional advantages, in computation and in simplicity

of the algorithm, compared with existing approaches. Unlike the indirect variational

bounds on mutual information [29–31], SSL-HSIC can be directly estimated from

mini-batches of data. Unlike “negative-free” methods, the SSL-HSIC loss itself

penalises trivial solutions, so techniques such as target networks are not needed

for reasonable outcomes. Using a target network does improve the performance

of our method, however, suggesting target networks have other advantages that are

not yet well understood. Finally, we employ random Fourier features [120] in our

implementation, resulting in cost linear in batch size.

Our main contributions are as follows:

• We introduce SSL-HSIC, a principled self-supervised loss using kernel depen-

dence maximisation.

• We present a unified view of contrastive learning through dependence maximi-

sation, by establishing relationships between SSL-HSIC, InfoNCE, and metric

learning.

• On ImageNet, our method achieves top-1 accuracy of 74.8% and top-5 ac-

curacy of 92.2% with linear evaluations (see Fig. 3.3 for a comparison with

other methods), top-1 accuracy of 80.2% and Top-5 accuracy of 94.7% with

fine-tuning, and competitive performance on a diverse set of downstream tasks.

3.2 Background

3.2.1 Self-supervised learning

Recent developments in self-supervised learning, such as contrastive learning, try

to ensure that features of two random views of an image are more associated with

each other than with random views of other images. Typically, this is done through

some variant of a classification loss, with one “positive” pair and many “negatives.”

Other methods can learn solely from “positive” pairs, however. There have been

many variations of this general framework in the past few years.

3.2. Background 62

[29] first formulated the InfoNCE loss (as a variation of the Noise-Contrastive

Estimation loss), which estimates a lower bound of the mutual information between

the feature and the context. SimCLR [92, 121] (which stands for “ simple frame-

work for contrastive learning of visual representations”) carefully investigates the

contribution of different data augmentations, and scales up the training batch size

to include more negative examples. Momentum Contrast (MoCo) [112] increases

the number of negative examples by using a memory bank. Bootstrap Your Own

Label (BYOL) [93] learns solely on positive image pairs, training so that representa-

tions of one view match that of the other under a moving average of the featuriser.

Instead of the moving average, SimSiam [117] suggests a stop-gradient on one of

the encoders is enough to prevent BYOL from finding trivial solutions. SwAV [114]

(which stands for “Swapping Assignments between multiple Views of the same

image”) clusters the representation online, and uses distance from the cluster centres

rather than computing pairwise distances of the data. Barlow Twins [115] uses

an objective related to the cross-correlation matrix of the two views, motivated by

redundancy reduction. It is perhaps the most related to our work in the literature (and

their covariance matrix can be connected to HSIC [122]), but our method measures

dependency more directly. While Barlow Twins decorrelates components of final

representations, we maximise the dependence between the image’s abstract identity

and its transformations.

On the theory side, InfoNCE is proposed as a variational bound on Mutual In-

formation between the representation of two views of the same image [29, 31]. [119]

observes that InfoNCE performance cannot be explained solely by the properties of

the mutual information, however, but is influenced more by other factors, such as the

formulation of the estimator and the architecture of the feature extractor. Essentially,

representations with the same MI can have drastically different representational

qualities, as explained earlier in Section 1.4.1.

Later theories suggest that contrastive losses balance alignment of individual

features and uniformity of the feature distribution [116], or in general alignment and

some loss-defined distribution [123]. We propose to interpret the contrastive loss

3.3. Self-supervised learning with Kernel Dependence Maximisation 63

through the lens of statistical dependence, and relate it to metric learning, which

naturally leads to alignment and uniformity.

f𝜃 g𝜃 q𝜃

fξ gξ

x, y

2(x), yt

1(x), yt

1z

y

2z

y
Target

K

L

SSL-HSIC

1k(z 2,z)

l(y, y)

Figure 3.2: Architecture and SSL-HSIC objective. A self-supervised label y – an indicator
of the image identity – is associated with an image x. Image transformation
functions t are sampled and applied to the original image, resulting in views
t1(x) and t2(x). Features z1 and z2 are obtained after passing the augmented
views through encoder (f), projector (g), and possibly predictor (q) networks,
while label y is retained. Kernel matrices, K for the latents and L for the labels,
are computed on the mini-batch of data; SSL-HSIC is estimated with K and L
as in (3.9). The blue boxes reflect two potential options: when using a target
network, ξ is a moving average of θ , and a predictor network q is added; without
the target network, q is removed and ξ is simply equal to θ .

3.3 Self-supervised learning with Kernel Dependence

Maximisation

Our method builds on the self-supervised learning framework used by most of the

recent self-supervised learning approaches [92, 93, 110, 112, 114, 115, 117]. For

a dataset with N points xi, each point goes through a random transformation t p(xi)

(e.g. random crop), and then forms a feature representation zp
i = fθ (t p(xi)) with an

encoder network fθ . We associate each image xi with its identity yi, which works as a

one-hot encoded label: yi ∈RN and (yi)d = 1 iff d = i (and zero otherwise). To match

the transformations and image identities, we maximise the dependence between zi

and yi such that zi is predictive of its original image. To build representations suitable

for downstream tasks, we also need to penalise high-variance representations. These

ideas come together in our HSIC-based objective (an overview of HSIC is provided

3.3. Self-supervised learning with Kernel Dependence Maximisation 64

in Section 1.4.2) for self-supervised learning, which we term SSL-HSIC:

LSSL−HSIC(θ) =−HSIC(Z,Y)+ γ
√

HSIC(Z,Z) . (3.1)

Unlike contrastive losses, which make the zp
i from the same xi closer and those

from different x j more distant, we propose an alternative way to match different

transformations of the same image with its abstract identity (e.g. position in the

dataset).

Our objective also resembles the HSIC bottleneck for supervised learning [39]

(in particular, the version of [26]), but ours uses a square root for HSIC(Z,Z). The

square root makes the two terms on the same scale: HSIC(Z,Y) is effectively a

dot product, and
√

HSIC(Z,Z) a norm, so that e.g. scaling the kernel by a con-

stant does not change the relative amount of regularisation; this also gives better

performance in practice. Other prior work on maximising HSIC [37, 124] used

HSIC(Z,Y)/
√

HSIC(Z,Z)HSIC(Y,Y), or equivalently [125] the distance correla-

tion [126]; the kernel-target alignment [127, 128] is also closely related. Here, the

overall scale of either kernel does not change the objective. Our HSIC(Y,Y) is

constant (hence absorbed in γ), and we found an additive penalty to be more stable

in optimisation than dividing the estimators.

Due to the one-hot encoded labels, we can rewrite HSIC(Z,Y) as (see Theo-

rem 1 in Appendix B.1)

HSIC(Z,Y) ∝ Ez1,z2∼pos [k(z1,z2)]−Ez1Ez2 [k(z1,z2)] , (3.2)

where the first expectation is over the distribution of “positive” pairs (those from

the same source image), and the second one is a sum over all image pairs, including

their transformations. The first term in (3.2) pushes representations belonging to the

same image identity together, while the second term keeps mean representations for

each identity apart (as in Fig. 3.1). The scaling of HSIC(Z,Y) depends on the choice

of the kernel over Y , and is irrelevant to the optimisation.

This form also reveals two key theoretical results. Section 3.3.1 shows that

3.3. Self-supervised learning with Kernel Dependence Maximisation 65

InfoNCE is better understood as an HSIC-based loss than a mutual information

between views. Then, HSIC(Z,Y) is proportional to the average kernel-based dis-

tance between the distribution of views for each source image (the maximum mean

discrepancy, MMD; see Appendix B.2.2).

3.3.1 Connection to InfoNCE

In this section we show the connection between InfoNCE and our loss; see Ap-

pendix B.2.1 for the full derivation. The standard definition of InfoNCE takes 2N

points, such that each point i is paired with another positive example i′,

L̂InfoNCE(θ) =− 1
2N

2N

∑
i=1

log
exp(k(zi,zi′))

∑ j ̸=i k(zi,zk)
. (3.3)

We first write InfoNCE in its infinite sample size limit (see [116] for a derivation)

as

LInfoNCE(θ) =−Ez1,z2∼pos [k(z1,z2)]+Ez1 logEz2 [exp(k(z1,z2))] , (3.4)

where the last two expectations are taken over all points, and the first is over the

distribution of positive pairs. The kernel k(z1,z2) was originally formulated as a

scoring function in the form of a dot product [29], and then a scaled cosine similarity

[92]. Both functions are valid kernels.

Now assume that k(z1,z2) doesn’t deviate much from Ez2 [k(z1,z2)], Taylor-

expand the exponent in (3.4) around Ez2 [k(z1,z2)], then expand log(1+Ez2(. . .))≈

Ez2(. . .). We obtain an HSIC(Z,Y)-based objective:

LInfoNCE(θ)≈−Ez1,z2∼pos [k(z1,z2)]+Ez1Ez2 [k(z1,z2)]︸ ︷︷ ︸
∝−HSIC(Z,Y)

+
1
2
Ez1 [Varz2 [k(z1,z2)]]︸ ︷︷ ︸

variance penalty

.

(3.5)

Since the scaling of HSIC(Z,Y) is irrelevant to the optimization, we assume

scaling to replace ∝ with =. In the small variance regime, we can show that for the

3.3. Self-supervised learning with Kernel Dependence Maximisation 66

right γ ,

−HSIC(Z,Y)+ γ HSIC(Z,Z)≤ LInfoNCE(θ)+o(variance) . (3.6)

For HSIC(Z,Z)≤ 1, we also have that

−HSIC(Z,Y)+ γ HSIC(Z,Z)≤ LSSL−HSIC(θ) (3.7)

due to the square root. InfoNCE and SSL-HSIC in general don’t quite bound

each other due to discrepancy in the variance terms. Although we did not test the

discrepancy in our experiments, both loss functions performed similarly (Table 3.8a).

Why should we prefer the HSIC interpretation of InfoNCE? Initially, InfoNCE

was suggested as a variational approximation to the mutual information between two

views [29]. It has been observed, however, that using tighter estimators of mutual

information leads to worse performance [119]. It is also simple to construct examples

where InfoNCE finds different representations while the underlying MI remains

constant [119]. Alternative theories suggest that InfoNCE balances alignment of

“positive” examples and uniformity of the overall feature representation [116], or

that (under strong assumptions) it can identify the latent structure in a hypothesized

data-generating process, akin to nonlinear ICA [129]. Our view is consistent with

these theories, but doesn’t put restrictive assumptions on the input data or learned

representations. In ablation studies we show that our interpretation gives rise to a

better objective in practice.

3.3.2 Estimator of SSL-HSIC

To use SSL-HSIC, we need to correctly and efficiently estimate (3.1). Both points

are non-trivial: the self-supervised framework implies non-i.i.d. batches (due to

positive examples), while the estimator in (1.24) assumes i.i.d. data; moreover, the

time to compute (1.24) is quadratic in the batch size.

First, for HSIC(Z,Z) we use the biased estimator in (1.24). Although the i.i.d.

estimator (1.24) results in an O(1/B) bias for B original images in the batch size (see

Corollary 1), the batch size B is large in our case and therefore the bias is negligible.

3.3. Self-supervised learning with Kernel Dependence Maximisation 67

For HSIC(Z,Y) the situation is more delicate: the i.i.d. estimator needs re-scaling,

and its bias depends on the number of positive examples M, which is typically very

small (usually 2). We propose the following estimator:

ĤSIC(Z,Y) =
∆l
N

(
1

BM(M−1)∑
ipl

k(zp
i ,z

l
i)−

1
B2M2 ∑

i jpl
k(zp

i ,z
l
j)−

1
M−1

)
,

(3.8)

where i and j index original images, and p and l their random transformations; k is

the kernel used for latent Z, l is the kernel used for the labels, and ∆l = l(i, i)− l(i, j)

(l for same labels minus l for different labels). Note that due to the one-hot structure

of self-supervised labels Y , the standard (i.i.d.-based) estimator would miss the 1/N

scaling and the M−1 correction (the latter is important in practice, as we usually

have M = 2). See Theorem 2 for the derivations.

For convenience, we assume ∆l = N (any scaling of l can be subsumed by γ),

and optimise

L̂SSL−HSIC(θ) =−ĤSIC(Z,Y)+ γ

√
ĤSIC(Z,Z) . (3.9)

The computational complexity of the proposed estimators is O(B2M2) for

each mini-batch of size B with M augmentations. We can reduce the complexity to

O(BM) by using random Fourier features (RFF) [120], which approximate the kernel

k(z1,z2) with a carefully chosen random D-dimensional approximation R(z1)
⊤R(z2)

for R(z) : RDz →RD, such that k(z1,z2) = E
[
R(z1)

⊤R(z2)
]
. Fourier frequencies are

sampled independently for the two kernels on Z in HSIC(Z,Z) at each training step.

We leave the details on how to construct R(z) for the kernels we use to Appendix

B.3.

Random Fourier features are not the only way to approximate kernel matrices.

Data subsampling can reduce the effective batch size, but for αB subsampled points

computational complexity would still scale quadratically with batch size B. The

Nyström method [130] is another approach that can reduce computational complexity,

but it performed poorly in our preliminary experiments (not shown).

3.4. Experiments 68

3.3.3 Connection with biology

The loss discussed here can be approximated by the pHSIC loss proposed in Chap-

ter 2. Therefore, in a single layer, SSL-HSIC could be computed in the same manner.

It also has the same intuition for the nature of the supervision signal: the positive

examples discussed in this chapter function identically to same class examples in

Chapter 2.

The difference, however, comes from the layer-wise nature of the approach in

Chapter 2 and the top-down approach here, as the latter requires backpropagation. A

number of works successfully applied self-supervised losses in a layer-wise setting

[131, 132], therefore SSL-HSIC can also be applied layer-wise.

3.4 Experiments
Note: the experimental results are due to Yazhe Li. They are included here for

completeness. I have conducted similar experiments on a smaller scale during this

project, but I didn’t have access to the computational resources needed for the final

experiments.

In this section, we present our experimental setup, where we assess the per-

formance of the representation learned with SSL-HSIC both with and without a

target network. First, we train a model with a standard ResNet-50 backbone using

SSL-HSIC as objective on the training set of ImageNet ILSVRC-2012 [96]. The

main result is summarised in Fig. 3.3. For evaluation, we retain the backbone as a

feature extractor for downstream tasks. We evaluate the representation on various

downstream tasks including classification, object segmentation, object detection and

depth estimation.

3.4.1 Implementation

Architecture Fig. 3.2 illustrates the architecture we used for SSL-HSIC in this

section. To facilitate comparison between different methods, our encoder fθ uses the

standard ResNet-50 backbone without the final classification layer. The output of the

encoder is a 2048-dimension embedding vector, which is the representation used for

downstream tasks. As in BYOL [93], our projector g and predictor q networks are

3.4. Experiments 69

24M 94M 250M 375M

Number of parameters

Im
ag

eN
et

 t
op

-1
 a

cc
ur

ac
y

(%
)

70

72

74

76

78

80

SimCLR

SimCLR (2x)

SimCLR (4x)

(ResNet-200-2x)

MoCo v2

Barlow Twins

Supervised

BYOL SwAV

SSL-HSIC (ours)

(ResNet-50)(ResNet-50-2x) (ResNet-50-4x)

Figure 3.3: Top-1 accuracies with linear evaluation for different ResNet architecture and
methods: supervised (as in [93]), SSL-HSIC (with a target network; ours),
BYOL [93], SwAV [114], SimCLR [92], MoCo v2 [113] and Barlow Twins
[115]. SimCLR is a variational approximation of mutual information; other
methods are conceptually similar, but do not directly approximate mutual infor-
mation.

2-layer MLPs with 4096 hidden dimensions and 256 output dimensions. The outputs

of the networks are batch-normalized and rescaled to unit norm before computing

the loss. We use an inverse multiquadric kernel (IMQ) for the latent representation

(approximated with 512 random Fourier features that are resampled at each step; see

Sec. B.3.2.1 for details) and a linear kernel for labels. γ in (3.1) is set to 3. When

training without a target network, unlike SimSiam [117], we do not stop gradients

for either branch. If the target network is used, its weights are an exponential moving

average of the online network weights. We employ the same schedule as BYOL

[93], τ = 1−0.01 · (cos(πt/T)+1)/2 with t the current step and T the total training

steps.

Image augmentation Our method uses the same data augmentation scheme as

BYOL (see Appendix B.4.1). Briefly, we first draw a random patch from the original

image and resize it to 224×224. Then, we apply a random horizontal flip, followed

by color jittering, consisting of a random sequence of brightness, contrast, saturation,

hue adjustments, and an optional grayscale conversion. Finally Gaussian blur and

solarization are applied, and the view is normalized with ImageNet statistics.

Optimization We train the model with a batch size of 4096 on 128 Cloud

3.4. Experiments 70

TPU v4 cores. Again, following [92, 93], we use the LARS optimizer [133] with

a cosine decay learning rate schedule over 1000 epochs. The base learning rate

to all of our experiments is 0.4 and it is scaled linearly [134] with the batch size

lr = 0.4×batch size/256. All experiments use weight decay of 10−6.

Learning kernel parameters We use a linear kernel for labels, since the

type of kernel only scales (3.9). Our inverse multiquadric kernel for the latent Z

has an additional kernel scale parameter. We optimize this along with all other

parameters, but regularize it to maximize the entropy of the distribution kσ (s), where

si j = ∥zi − z j∥2; this amounts to maximizing log∥k′σ (s)∥2 (Sec. B.4.1.2).

3.4.2 Evaluation Results

Linear evaluation on ImageNet Learned features are evaluated with the standard

linear evaluation protocol commonly used in evaluating self-supervised learning

methods [29, 92, 93, 110–115]. Table 3.1 reports the top-1 and top-5 accuracies

obtained with SSL-HSIC on ImageNet validation set, and compares to previous

self-supervised learning methods. Without a target network, our method reaches

72.2% top-1 and 90.7% top-5 accuracies. Adding the target network, our method

outperforms most previous methods, achieving top-1 accuracy of 74.8% and top-5

accuracy of 92.2%. The fact that we see performance gains from adopting a target

network suggests that its effect is not yet well understood, although note discussion

in [93] which points to its stabilizing effect.

Table 3.1: Linear evaluation on
the ImageNet valida-
tion set.

Top-1(%) Top-5(%)

Supervised [135] 75.9 92.8

SimCLR [92] 69.3 89.0
MoCo v2 [113] 71.1 90.1
BYOL [93] 74.3 91.6
SwAV [114] 75.3 -
Barlow Twins [115] 73.2 91.0
SSL-HSIC (w/o target) 72.2 90.7
SSL-HSIC (w/ target) 74.8 92.2

Table 3.2: Fine-tuning on 1%, 10% and 100% of the
ImageNet training set and evaluating on
the validation set.

Top-1(%) Top-5(%)

1% 10% 100% 1% 10% 100%

Supervised [135] 25.4 56.4 75.9 48.4 80.4 92.8

SimCLR [92] 48.3 65.6 76.0 75.5 87.8 93.1
BYOL [93] 53.2 68.8 77.7 78.4 89.0 93.9
SwAV [114] 53.9 70.2 - 78.5 89.9 -
Barlow Twins [115] 55.0 69.7 - 79.2 89.3 -
SSL-HSIC (w/o target) 45.3 65.5 76.4 72.7 87.5 93.2
SSL-HSIC (w/ target) 52.1 67.9 77.2 77.7 88.6 93.6

Semi-supervised learning on ImageNet We fine-tune the network pretrained

with SSL-HSIC on 1%, 10% and 100% of ImageNet, using the same ImageNet splits

3.4. Experiments 71

as SimCLR [92]. Table 3.2 summarizes the semi-supervised learning performance.

Our method, with or without a target network, has competitive performance in both

data regimes. The target network has the most impact on the small-data regime, with

1% labels.

Table 3.3: Comparison of transfer learning performance on 12 image datasets. Supervised-
IN is trained on ImageNet with supervised pretrainining. Random init trains
on individual dataset with randomly initialized weights. MPCA refers to mean
per-class accuracy; AP50 is average precision at IoU=0.5.

Dataset Birdsnap Caltech101 Cifar10 Cifar100 DTD Aircraft Food Flowers Pets Cars SUN397 VOC2007
Metric Top-1 MPCA Top-1 Top-1 Top-1 MPCA Top-1 MPCA MPCA Top-1 Top-1 AP50

Linear:

Supervised-IN [92] 53.7 94.5 93.6 78.3 74.9 61.0 72.3 94.7 91.5 67.8 61.9 82.8
SimCLR [92] 37.4 90.3 90.6 71.6 74.5 50.3 68.4 90.3 83.6 50.3 58.8 80.5
BYOL [93] 57.2 94.2 91.3 78.4 75.5 60.6 75.3 96.1 90.4 66.7 62.2 82.5
SSL-HSIC (w/o target) 50.6 92.3 91.5 75.9 75.3 57.9 73.6 95.0 88.2 59.3 61.0 81.4
SSL-HSIC (w/ target) 57.8 93.5 92.3 77.0 76.2 58.5 75.6 95.4 91.2 62.6 61.8 83.3

Fine-tuned:

Supervised-IN [92] 75.8 93.3 97.5 86.4 74.6 86.0 88.3 97.6 92.1 92.1 94.3 85.0
Random init [92] 76.1 72.6 95.9 80.2 64.8 85.9 86.9 92.0 81.5 91.4 53.6 67.3
SimCLR [92] 75.9 92.1 97.7 85.9 73.2 88.1 88.2 97.0 89.2 91.3 63.5 84.1
BYOL [93] 76.3 93.8 97.8 86.1 76.2 88.1 88.5 97.0 91.7 91.6 63.7 85.4
SSL-HSIC (w/o target) 73.1 91.5 97.4 85.3 75.3 87.1 87.5 96.4 90.6 91.6 62.2 84.1
SSL-HSIC (w/ target) 74.9 93.8 97.8 84.7 75.4 88.9 87.7 97.3 91.7 91.8 61.7 84.1

Transfer to other classification tasks To investigate the generality of the

representation learned with SSL-HSIC, we evaluate the transfer performance for

classification on 12 natural image datasets [136–145] using the same procedure

as [92, 93, 146]. Table 3.3 shows the top-1 accuracy of the linear evaluation and

fine-tuning performance on the test set. SSL-HSIC gets state-of-the-art performance

on 3 of the classification tasks and reaches strong performance on others for this

benchmark, indicating the learned representations are robust for transfer learning.

Transfer to other vision tasks To test the ability of transferring to tasks other

than classification, we fine-tune the network on semantic segmentation, depth estima-

tion and object detection tasks. We use Pascal VOC2012 dataset [145] for semantic

segmentation, NYU v2 dataset [147] for depth estimation and COCO [148] for

object detection. Object detection outputs either bounding box or object segmenta-

tion (instance segmentation). Details of the evaluations setup is in Appendix B.4.2.

Table 3.4 and Table 3.5 shows that SSL-HSIC achieves competitive performance on

all three vision tasks.

3.5. Ablation Studies 72

Table 3.4: Fine-tuning performance on semantic segmen-
tation and depth estimation. Mean Intersec-
tion over Union (mIoU) is reported for semantic
segmentation. Relative error (rel), root mean
squared error (rms), and the percent of pixels
(pct) where the error is below 1.25n thresholds
are reported for depth estimation.

VOC2012 NYU v2

Method mIoU pct.< 1.25 pct.< 1.252 pct.< 1.253 rms rel

Supervised-IN 74.4 81.1 95.3 98.8 0.573 0.127
SimCLR 75.2 83.3 96.5 99.1 0.557 0.134
BYOL 76.3 84.6 96.7 99.1 0.541 0.129
SSL-HSIC(w/o target) 74.9 84.1 96.7 99.2 0.539 0.130
SSL-HSIC(w/ target) 76.0 83.8 96.8 99.1 0.548 0.130

Table 3.5: Fine-tuning perfor-
mance on COCO
object detection
tasks. Precision,
averaged over 10
IoU (Intersection
over Union) thresh-
olds, is reported
for both bounding
box and object
segmentation.

Method APbb APmk

Supervised 39.6 35.6
SimCLR 39.7 35.8
MoCo v2 40.1 36.3
BYOL 41.6 37.2
SwAV 41.6 37.8
SSL-HSIC(w/o target) 40.5 36.3
SSL-HSIC(w/ target) 41.3 36.8

3.5 Ablation Studies
We present ablation studies to gain more intuition on SSL-HSIC. Here, we use a

ResNet-50 backbone trained for 100 epochs on ImageNet, and evaluate with the

linear protocol unless specified.

ResNet architectures In this ablation, we investigate the performance of SSL-

HSIC with wider and deeper ResNet architecture. Figure 3.3 and Table 3.6 show

our main results. The performance of SSL-HSIC gets better with larger networks.

We used the supervised baseline from [93] which our training framework is based

on ([92] reports lower performance). The performance gap between SSL-HSIC and

the supervised baseline diminishes with larger architectures. In addition, Table 3.7

presents the semi-supervise learning results with subsets 1%, 10% and 100% of the

ImageNet data.

Regularization term We compare performance of InfoNCE with SSL-HSIC in

Table 3.8a since they can be seen as approximating the same HSIC(Z,Y) objective

but with different forms of regularization. We reproduce the InfoNCE result in our

codebase, using the same architecture and data augmentiation as for SSL-HSIC.

Trained for 100 epochs (without a target network), InfoNCE achieves 66.0% top-1

and 86.9% top-5 accuracies, which is better than the result reported in [92]. For

3.5. Ablation Studies 73

Table 3.6: Top-1 and top-5 accuracies for dif-
ferent ResNet architectures using
linear evaluation protocol.

SSL-HSIC BYOL[93] Sup.[93]

ResNet Top1 Top5 Top1 Top5 Top1 Top5

50 (1x) 74.8 92.2 74.3 91.6 76.4 92.9
50 (2x) 77.9 94.0 77.4 93.6 79.9 95.0
50 (4x) 79.1 94.5 78.6 94.2 80.7 95.3
200 (2x) 79.6 94.8 79.6 94.9 80.1 95.2

Table 3.7: Top-1 and top-5 accuracies
for different ResNet architec-
tures using semi-supervised
fine-tuning.

Top1 Top5

ResNet 1% 10% 100% 1% 10% 100%

50 (1x) 52.1 67.9 77.2 77.7 88.6 93.6
50 (2x) 61.2 72.6 79.3 83.8 91.2 94.7
50 (4x) 67.0 75.4 79.7 87.4 92.5 94.8
200(2x) 69.0 76.3 80.5 88.3 92.9 95.2

comparison, SSL-HSIC reaches 66.7% top-1 and 87.6% top-5 accuracies. This

suggests that the regularization employed by SSL-HSIC is more effective.

Kernel type We investigate the effect of using different a kernel on latents

Z. Training without a target network or random Fourier feature approximation, the

top-1 accuracies for linear, Gaussian, and inverse multiquadric (IMQ) kernels are

65.27%, 66.67% and 66.72% respectively. Non-linear kernels indeed improve the

performance; Gaussian and IMQ kernels reach very similar performance for 100

epochs. We choose IMQ kernel for longer runs, because its heavy-tail property can

capture more signal when points are far apart.

Table 3.8: Linear evaluation results when varying different hyperparameters.

(a) Regularization

Top-1 Top-5

SSL-HSIC 66.7 87.6
InfoNCE 66.0 86.9

(b) # Fourier fea-
tures

RFFs Top-1(%)

64 66.0
128 66.2
256 66.2
512 66.4
1024 66.5
2048 66.5
No Approx. 66.7

(c) Batch size

Top-1(%)

Batch Size SSL-HSIC SimCLR

256 63.7 57.5
512 65.6 60.7
1024 66.7 62.8
2048 67.1 64.0
4096 66.7 64.6

(d) Projec-
tor/predictor
size

Output Dim Top-1(%)

64 65.4
128 66.0
256 66.4
512 66.6
1024 66.6

Number of RFF Features Table 3.8b shows the performance of SSL-HSIC

with different numbers of Fourier features. The RFF approximation has a minor

impact on the overall performance, as long as we resample them; fixed sets of

features performed poorly. Our main result picked 512 features, for substantial

computational savings with minor loss in accuracy.

Batch size Similar to most of the self-supervised learning methods [92, 93],

SSL-HSIC benefits from using a larger batch size during training. However, the

3.6. Discussion 74

drop of performance from using smaller batch size is not as pronounced as it is in

SimCLR[92] as shown in Table 3.8c.

Projector and predictor output size Table 3.8d shows the performance when

using different output dimension for the projector/predictor networks. The perfor-

mance saturates at 512 dimensions.

3.6 Discussion
We introduced SSL-HSIC, a loss function for self-supervised representation learning

based on kernel dependence maximisation. We provided a unified view on various

self-supervised learning losses: we proved that InfoNCE, a lower bound of mutual

information, actually approximates SSL-HSIC with a variance-based regularisation,

and we can also interpret SSL-HSIC as metric learning where the cluster structure

is imposed by the self-supervised label, of which the BYOL objective is a special

case. We showed that training with SSL-HSIC achieves performance on par with the

state-of-the-art on the standard self-supervised benchmarks.

Although using the image identity as a self-supervised label provides a good

inductive bias, it might not be wholly satisfactory; we expect that some image pairs

are in fact more similar than others, based e.g. on their ImageNet class label. It

will be interesting to explore methods that combine label structure discovery with

representation learning (as in SwAV [114]). In this paper, we only explored learning

image representations, but in future work SSL-HSIC can be extended to learning

structure for Y as well, building on existing work [37, 124].

Chapter 4

Biological implementation of weight

sharing

This chapter is based on Pogodin et al. (2021); the theoretical and experimental

results are my own, but obtained in collaboration with other authors.

Summary Convolutional networks are ubiquitous in deep learning. They are partic-

ularly useful for images, as they reduce the number of parameters, reduce training

time, and increase accuracy. However, as a model of the brain they are seriously

problematic, since they require weight sharing – something real neurons simply

cannot do. Consequently, while neurons in the brain can be locally connected (one

of the features of convolutional networks), they cannot be convolutional. Locally

connected but non-convolutional networks, however, significantly underperform

convolutional ones. This is troublesome for studies that use convolutional networks

to explain activity in the visual system. Here we study alternatives to weight sharing

that aim at the same regularisation principle, which is to make each neuron within

a pool react similarly to identical inputs. The most natural way to do that is by

showing the network multiple translations of the same image, akin to saccades

or object manipulation in animal vision. However, this approach requires many

translations, and doesn’t remove the performance gap. We propose instead to add

lateral connectivity to a locally connected network, and allow learning via Hebbian

plasticity. This requires the network to pause occasionally for a sleep-like phase

of “weight sharing”. We also show that weight sharing based on lateral connection

4.1. Introduction 76

and anti-Hebbian plasticity can be done simultaneously with training. This method

enables locally connected networks to achieve nearly convolutional performance on

ImageNet and improves their fit to the ventral stream data.

4.1 Introduction

Convolutional networks are a cornerstone of modern deep learning: they’re widely

used in the visual domain [150–152], speech recognition [153], text classification

[154], and time series classification [155]. They have also played an important role in

enhancing our understanding of the visual stream [156]. Indeed, simple and complex

cells in the visual cortex [157] inspired convolutional and pooling layers in deep

networks [158] (with simple cells implemented with convolution and complex ones

with pooling). Moreover, the representations found in convolutional networks are

similar to those in the visual stream [22, 159–161] (see [156] for an in-depth review).

Despite the success of convolutional networks at reproducing activity in the

visual system, as a model of the visual system they are somewhat problematic. That’s

because convolutional networks share weights, something biological networks, for

which weight updates must be local, can’t do [162]. Locally connected networks

avoid this problem by using the same receptive fields as convolutional networks (thus

locally connected), but without weight sharing [21]. However, they pay a price for

biological plausibility: locally connected networks are known to perform worse than

their convolutional counterparts on hard image classification tasks [21, 163].

Here, we consider two mechanisms to bridge the gap between biologically

plausible locally connected networks and implausible convolutional ones. One is

to use extensive data augmentation (primarily image translations); the other is to

introduce an auxiliary objective that allows some form of weight sharing, which is

implemented by lateral connections; we call this approach dynamic weight sharing.

The first approach, data augmentation, is simple, but we show that it suffers

from two problems: it requires far more training data than is normally used, and

even then it fails to close the performance gap between convolutional and locally

connected networks. The second approach, dynamic weight sharing, implements a

4.2. Related work 77

sleep-like phase in which neural dynamics facilitate weight sharing. This is done

through lateral connections in each layer, which allows subgroups of neurons to share

their activity. Through this lateral connectivity, each subgroup can first equalise its

weights via anti-Hebbian learning, and then generate an input pattern for the next

layer that helps it to do the same thing. Dynamic weight sharing doesn’t achieve

perfectly convolutional connectivity, because in each channel only subgroups of

neurons share weights. However, it implements a similar inductive bias, and, as

we show in experiments, it performs almost as well as convolutional networks, and

also achieves better fit to the ventral stream data, as measured by the Brain-Score

[22, 164].

Our study suggests that weight sharing can be implemented with Hebbian

learning. While our solution does not fully resolve biological implausibility of

convolutional networks as a model of the visual stream, it shows that neurons can

exchange weight information with simple connectivity and plasticity rules.

4.2 Related work

Studying systems neuroscience through the lens of deep learning is an active area of

research, especially when it comes to the visual system [45]. As mentioned above,

convolutional networks in particular have been extensively studied as a model of the

visual stream (and also inspired by it) [156], and also as mentioned above, because

they require weight sharing they lack biological plausibility. They have also been

widely used to evaluate the performance of different biologically plausible learning

rules [21, 26, 41, 46, 60, 61, 67, 68].

Several studies have tried to relax weight sharing in convolutions by introducing

locally connected networks [21, 163, 165] ([165] also shows that local connectivity

itself can be learned from a fully connected network with proper weight regularisa-

tion). Locally connected networks perform as well as convolutional ones in shallow

architectures [21, 165]. However, they perform worse for large networks and hard

tasks, unless they’re initialised from an already well-performing convolutional so-

lution [163] or have some degree of weight sharing [166]. In this study, we seek

4.3. Regularisation in locally connected networks 78

regularizations of locally connected networks through either data or local plasticity

to improve their performance.

Convolutional networks are not the only deep learning architecture for vision:

visual transformers (e.g., [167–170]), and more recently, the transformer-like archi-

tectures without self-attention [171–173], have shown competitive results. However,

they still need weight sharing: at each block the input image is reshaped into patches,

and then the same weight is used for all patches. Our Hebbian-based approach to

weight sharing fits this computation as well (see Appendix C.1.4).

4.3 Regularisation in locally connected networks

4.3.1 Convolutional versus locally connected networks

Convolutional networks are implemented by letting the weights depend on the

difference in indices. Consider, for simplicity, one dimensional convolutions and a

linear network. Letting the input and output of a one layer in a network be x j and zi,

respectively, the activity in a convolutional network is

zi =
N

∑
j=1

wi− jx j , (4.1)

where N is the number of neurons; for definiteness, we’ll assume N is the same

in each layer (right panel in Fig. 4.1). Although the index j ranges over all N

neurons, many, if not most, of the weights are zero: wi− j is nonzero only when

|i− j| ≤ k/2 < N for kernel size k.

For networks that aren’t convolutional, the weight matrix wi− j is replaced by

wi j,

zi =
N

∑
j=1

wi jx j . (4.2)

Again, the index j ranges over all N neurons. If all the weights are nonzero, the

network is fully connected (left panel in Fig. 4.1). But, as in convolutional networks,

we can restrict the connectivity range by letting wi j be nonzero only when |i− j| ≤

k/2 < N, resulting in a locally connected, but non-convolutional, network (centre

panel in Fig. 4.1).

4.3. Regularisation in locally connected networks 79

w1 w4≠ w1 w4≠

z1

z4

z1

z4

z1

z4
w1 w4=

Fully connected Locally connected Convolutional

Figure 4.1: Comparison between layer architectures: fully connected (left), locally con-
nected (middle) and convolutional (right). Locally connected layers have differ-
ent weights for each neuron z1 to z4 (indicated by different colours), but have
the same connectivity as convolutional layers.

4.3.2 Developing convolutional weights: data augmentation ver-

sus dynamic weight sharing

Here we explore the question: is it possible for a locally connected network to

develop approximately convolutional weights? That is, after training, is it possible

to have wi j ≈ wi− j? There is one straightforward way to do this: augment the data

to provide multiple translations of the same image, so that each neuron within a

channel learns to react similarly (Fig. 4.2A). A potential problem is that a large

number of translations will be needed. This makes training costly (see Section 4.5),

and is unlikely to be consistent with animal learning, as animals see only a handful

of translations of any one image.

z1
z2
z3
z4

z1

z4
w1 w2≈
ww3 w4≈

w1 w4≈

BA

Figure 4.2: Two regularisation strategies for locally connected networks. A. Data augmenta-
tion, where multiple translations of the same image are presented simultaneously.
B. Dynamic weight sharing, where a subset of neurons equalises their weights
through lateral connections and learning.

A less obvious solution is to modify the network so that during learning the

4.4. A Hebbian solution to dynamic weight sharing 80

weights become approximately convolutional. As we show in the next section, this

can be done by adding lateral connections, and introducing a sleep phase during

training (Fig. 4.2B). This solution doesn’t need more data, but it does need an

additional training step.

4.4 A Hebbian solution to dynamic weight sharing
If we were to train a locally connected network without any weight sharing or

data augmentation, the weights of different neurons would diverge (region marked

“training” in Fig. 4.3A). Our strategy to make them convolutional is to introduce an

occasional sleep phase, during which the weights relax to their mean over output

neurons (region marked “sleep” in Fig. 4.3A). This will compensate for weight

divergence during learning by convergence during the sleep phase. If the latter is

sufficiently strong, the weights will remain approximately convolutional.

w1
w4 z()

z()

z()

x1

x

x

x1x2
x2

x3 x3
training

B

sleep sleep time

w w1
2
w4+=

A 1
0
0

0
1
0

0
0
1

Figure 4.3: A. Dynamical weight sharing interrupts the main training loop, and equalises
the weights through internal dynamics. After that, the weights diverge again
until the next weight sharing phase. B. A locally connected network, where
both the input and the output neurons have lateral connections. The input layer
uses lateral connections to generate repeated patterns for weight sharing in the
output layer. For instance, the output neurons connected by the dark blue lateral
connections (middle) can receive three different patterns: x1 (generated by the
red input grid), x2 (dark blue) and x3 (green).

To implement this, we introduce fixed (non-plastic) lateral connectivity, chosen

to equalise activity in both the input and output layer. That’s shown in Fig. 4.3B,

where every third neuron in both the input (x) and output (z) layers are connected

(and also shown in Fig. 4.4A). Once the connected neurons in the input layer have

equal activity, all output neurons receive identical input. Since the lateral output

connections also equalise activity, all connections that correspond to a translation by

4.4. A Hebbian solution to dynamic weight sharing 81

wi

wi

xi

wj

wk i
k

j

After

𝜉=

zj

zi

- Σizi—1N
inhibitory lateral connections

=wj

During sleep phase

Figure 4.4: Alternative visual explanation of weight sharing with a sleep phase.

three neurons see exactly the same pre and postsynaptic activity. A naive Hebbian

learning rule (with weight decay) would, therefore, make the network convolutional

(Fig. 4.4B). However, we have to take care that the initial weights are not overwritten

during Hebbian learning. We now describe how that is done.

To ease notation, we’ll let wi be a vector containing the incoming weights to the

neuron i: (wi) j ≡ wi j. Moreover, we’ll let j run from 1 to k, independent of i. With

this convention, the response of neuron i, zi, to a k-dimensional input, x, is given by

zi = w⊤
i x =

k

∑
j=1

wi jx j . (4.3)

Assume that every neuron sees the same x, and consider the following update

rule for the weights,

∆wi ∝ −

(
zi −

1
N

N

∑
j=1

z j

)
x− γ

(
wi −winit

i

)
, (4.4)

where winit
i are the weights at the beginning of the sleep phase (not the overall

training).

This Hebbian update effectively implements SGD over the sum of (zi − z j)
2,

plus a regularizer (the second term) to keep the weights near winit
i . If we present

the network with M different input vectors, xm, and denote the covariance matrix

4.4. A Hebbian solution to dynamic weight sharing 82

C ≡ 1
M ∑m xmx⊤m , then, asymptotically, the weight dynamics in Eq. (4.4) converges to

w∗
i = (C+ γ I)−1

(
C

1
N

N

∑
j=1

winit
j + γ winit

i

)
(4.5)

where I is the identity matrix (see Appendix C.1 for a derivation).

0 0
-2
-4
-6
-8

-10
-12
-14

-2

-4

-6

-8

-10

BA

𝛾=1e-1

𝛾=1e-2

𝛾=1e-3

𝛾=1e-1

𝛾=1e-2

𝛾=1e-3

k=3
k=9

k=18
min SNR

-log SNRw -log SNRw

0 iter1k 1.5k0.5k 2k 0 2k 4k 6k 8k iter

Figure 4.5: Negative logarithm of signal-to-noise ratio (mean weight squared over weight
variance, see Eq. (4.6)) for weight sharing objectives in a layer with 100 neu-
rons. Different curves have different kernel size, k (meaning k2 inputs), and
regularisation parameter, γ . A. Weight updates given by Eq. (4.4). Black dashed
lines show the theoretical minimum. B. Weight updates given by Eq. (4.8), with
α = 10. In each iteration, the input is presented for 150 ms.

As long as C is full rank and γ is small, we arrive at shared weights: w∗
i ≈

1
N ∑

N
i=1 winit

i . It might seem advantageous to set γ = 0, as non-zero γ only biases the

equilibrium value of the weight. However, non-zero γ ensures that for noisy input,

xi = x+ξi (such that the inputs to different neurons are the same only on average,

which is much more realistic), the weights still converge (at least approximately) to

the mean of the initial weights (see Theorem 6 in Appendix C.1).

In practice, the dynamics in Eq. (4.4) converges quickly. We illustrate it in

Fig. 4.5A by plotting − logSNRw over time, where SNRw, the signal to noise ratio

of the weights, is defined as

SNRw =
1
k2 ∑

j

(1
N ∑i(wi) j

)2

1
N ∑i

(
(wi) j − 1

N ∑i′(wi′) j
)2 . (4.6)

For all kernel sizes (we used 2d inputs, meaning k2 inputs per neuron), the weights

converge to a nearly convolutional solution within a few hundred iterations (note

4.4. A Hebbian solution to dynamic weight sharing 83

the logarithmic scale of the y axis in Fig. 4.5A). See Appendix C.1.5 for simulation

details. Thus, to run our experiments with deep networks in a realistic time frame,

we perform weight sharing instantly (i.e., directly setting them to the mean value)

during the sleep phase.

4.4.1 Dynamic weight sharing in multiple locally connected lay-

ers

As shown in Fig. 4.3B, the k-dimensional input, x, repeats every k neurons. Conse-

quently, during the sleep phase, the weights are not set to the mean of their initial

value averaged across all neurons; instead, they’re set to the mean averaged across

a set of neurons spaced by k. Thus, in one dimension, the sleep phase equilibrates

the weights in k different modules. In two dimensions (the realistic case), the sleep

phase equilibrates the weights in k2 different modules.

We need this spacing to span the whole k-dimensional (or k2 for 2d) space of

inputs. For instance, activating the red grid on the left in Fig. 4.3B generates x1,

covering one input direction for all output neurons (and within each module, every

neuron receives the same input). Next, activating the blue grid generates x2 (a new

direction), and so on.

In multiple layers, the sleep phase is implemented layer by layer. In layer l,

lateral connectivity creates repeated input patterns and feeds them to layer l + 1.

After weight sharing in layer l +1, the new pattern from l +1 is fed to l +2, and so

on. Notably, there’s no layer by layer plasticity schedule (i.e., deeper layers don’t

have to wait for the earlier ones to finish), as the weight decay term in Eq. (4.4)

ensures the final solution is the same regardless of intermediate weight updates. As

long as a deeper layer starts receiving repeated patterns, it will eventually arrive at

the correct solution.

4.4.2 A realistic model that implements the update rule

Our update rule, Eq. (4.4), implies that there is a linear neuron, denoted ri, whose

activity depends on the upstream input, zi = w⊤
i x, via a direct excitatory connection

4.4. A Hebbian solution to dynamic weight sharing 84

combined with lateral inhibition,

ri = zi −
1
N

N

∑
j=1

z j ≡ w⊤
i x− 1

N

N

∑
j=1

w⊤
j x . (4.7)

The resulting update rule is anti-Hebbian, −ri x (see Eq. (4.4)). In a realistic circuit,

this can be implemented with excitatory neurons ri and an inhibitory neuron rinh,

which obey the dynamics

τ ṙi =−ri +w⊤
i x−α rinh +b , (4.8a)

τ ṙinh =−rinh +
1
N ∑

j
r j −b , (4.8b)

where b is the shared bias term that ensures non-negativity of firing rates (assuming

∑i w⊤
i x is positive, which would be the case for excitatory input neurons). The only

fixed point of these equations is1

r∗i = b+wi ·x−
1
N ∑

j
w j ·x+

1
1+α

1
N ∑

j
w j ·x ≈

α≫1
b+wi ·x−

1
N ∑

j
w j ·x , (4.9)

which is stable. As a result, for strong inhibition (α ≫ 1), Eq. (4.4) can be imple-

mented with an anti-Hebbian term −(ri −b)x. Note that if w⊤
i x is zero on average,

then b is the mean firing rate over time. To show that Eq. (4.9) provides enough

signal, we simulated training in a network of 100 neurons that receives a new x each

150 ms. For a range of k and γ , it converged to a nearly convolutions solution within

minutes (Fig. 4.5B; each iteration is 150 ms). Having finite inhibition did lead to

a worse final signal-to-noise ratio (α = 10 in Fig. 4.5B), but the variance of the

weights was still very small. Moreover, the nature of the α-induced bias suggests

that stopping training before convergence leads to better results (around 2k iterations

in Fig. 4.5B). See Fig. C.1 in Appendix C.1 for a discussion.

1As promised in the introduction, one equation uses · to denote ⊤. I still disagree with the dot
notation.

4.5. Experiments 85

4.5 Experiments

We split our experiments into two parts: small-scale ones with CIFAR10, CIFAR100

[59] and TinyImageNet [174], and large-scale ones with ImageNet [94]. The former

illustrates the effects of data augmentation and dynamic weight sharing on the per-

formance of locally connected networks; the latter concentrates on dynamic weight

sharing, as extensive data augmentations are too computationally expensive for large

networks and datasets. We used the AdamW [89] optimizer in all runs. As our dy-

namic weight sharing procedure always converges to a nearly convolutional solution

(see Section 4.4), we set the weights to the mean directly (within each grid) to speed

up experiments. Our code is available at https://github.com/romanpogodin/towards-

bio-plausible-conv (PyTorch [175] implementation).

Datasets. CIFAR10 consists of 50k training and 10k test images of size 32×32,

divided into 10 classes. CIFAR100 has the same structure, but with 100 classes. For

both, we tune hyperparameters with a 45k/5k train/validation split, and train final

networks on the full 50k training set. TinyImageNet consists of 100k training and

10k validation images of size 64×64, divided into 200 classes. As the test labels

are not publicly available, we divided the training set into 90k/10k train/validation

split, and used the 10k official validation set as test data. ImageNet consists of 1.281

million training images and 50k test images of different sizes, reshaped to 256 pixels

in the smallest dimension. As in the case for TinyImageNet, we used the train set for

a 1.271 million/10k train/validation split, and 50k official validation set as test data.

Networks. For CIFAR10/100 and TinyImageNet, we used CIFAR10-adapted

ResNet20 from the original ResNet paper [152]. The network has three blocks, each

consisting of 6 layers, with 16/32/64 channels within the block. We chose this net-

work due to good performance on CIFAR10, and the ability to fit the corresponding

locally connected network into the 8G VRAM of the GPU for large batch sizes

on all three datasets. For ImageNet, we took the half-width ResNet18 (meaning

32/64/128/256 block widths) to be able to fit a common architecture (albeit halved in

width) in the locally connected regime into 16G of GPU VRAM. For both networks,

all layers had a 3×3 receptive field (apart from a few 1×1 residual downsampling

https://github.com/romanpogodin/towards-bio-plausible-conv
https://github.com/romanpogodin/towards-bio-plausible-conv

4.5. Experiments 86

layers), meaning that weight sharing worked over 9 individual grids in each layer.

Training details. We ran the experiments on our local laboratory cluster,

which consists mostly of NVIDIA GTX1080 and RTX5000 GPUs. The small-scale

experiments took from 1-2 hours per run up to 40 hours (for TinyImageNet with 16

repetitions). The large-scale experiments took from 3 to 6 days on RTX5000 (the

longest run was the locally connected network with weight sharing happening after

every minibatch update).

4.5.1 Data augmentations.

For CIFAR10/100, we padded the images (padding size depended on the experiment)

with mean values over the training set (such that after normalisation the padded

values were zero) and cropped to size 32×32. We did not use other augmentations

to separate the influence of padding/random crops. For TinyImageNet, we first

centre-cropped the original images to size (48+2pad)× (48+2pad) for the chosen

padding size pad. The final images were then randomly cropped to 48×48. This was

done to simulate the effect of padding on the number of available translations, and

to compare performance across different padding values on the images of the same

size (and therefore locally connected networks of the same size). After cropping,

the images were normalised using ImageNet normalisation values. For all three

datasets, test data was sampled without padding. For ImageNet, we used the standard

augmentations. Training data was resized to 256 (smallest dimension), randomly

cropped to 224×224, flipped horizontally with 0.5 probability, and then normalised.

Test data was resized to 256, centre cropped to 224 and then normalised. In all cases,

data repetitions included multiple samples of the same image within a batch, keeping

the total number of images in a batch fixed (e.g. for batch size 256 and 16 repetitions,

that would mean 16 original images)

4.5.2 CIFAR10/100 and TinyImageNet

To study the effect of both data augmentation and weight sharing on performance, we

ran experiments with non-augmented images (padding 0) and with different amounts

of augmentations. This included padding of 4 and 8, and repetitions of 4, 8, and 16.

4.5. Experiments 87

Table 4.1: Performance of convolutional (conv) and locally connected (LC) networks for
padding of 4 in the input images (mean accuracy over 5 runs). For LC, two
regularisation strategies were applied: repeating the same image n times with
different translations (n reps) or using dynamic weight sharing every n batches
(ws(n)). LC nets additionally show performance difference w.r.t. conv nets.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff

-
conv 88.3 - 59.2 - 84.9 - 38.6 - 65.1 -
LC 80.9 -7.4 49.8 -9.4 75.5 -9.4 29.6 -9.0 52.7 -12.4

Data Translation
LC - 4 reps 82.9 -5.4 52.1 -7.1 76.4 -8.5 31.9 -6.7 54.9 -10.2
LC - 8 reps 83.8 -4.5 54.3 -5.0 77.9 -7.0 33.0 -5.6 55.6 -9.5
LC - 16 reps 85.0 -3.3 55.9 -3.3 78.8 -6.1 34.0 -4.6 56.2 -8.8

Weight Sharing
LC - ws(1) 87.4 -0.8 58.7 -0.5 83.4 -1.6 41.6 3.0 66.1 1.1

LC - ws(10) 85.1 -3.2 55.7 -3.6 80.9 -4.0 37.4 -1.2 61.8 -3.2
LC - ws(100) 82.0 -6.3 52.8 -6.4 80.1 -4.8 37.1 -1.5 62.8 -2.3

Without augmentations, locally connected networks performed much worse than

convolutional, although weight sharing improved the result a little bit (see Table C.1).

For padding of 4 (mean accuracy over 5 runs Table 4.1, see Table C.5 for max-min

accuracy), increasing the number of repetitions increased the performance of locally

connected networks. However, even for 16 repetitions, the improvements were small

compared to weight sharing (especially for top-5 accuracy on TinyImageNet). For

CIFAR10, our results are consistent with an earlier study of data augmentations in

locally connected networks [176]. For dynamic weight sharing, doing it moderately

often – every 10 iterations, meaning every 5120 images – did as well as 16 repetitions

on CIFAR10/100. For TinyImageNet, sharing weights every 100 iterations (about

every 50k images) performed much better than data augmentation.

Sharing weights after every batch performed almost as well as convolutions

(and even a bit better on TinyImageNet, although the difference is small if we look at

top-5 accuracy, which is a less volatile metric for 200 classes), but it is too frequent

to be a plausible sleep phase. We include it to show that best possible performance

of partial weight sharing is comparable to actual convolutions.

For a padding of 8, the performance did improve for all methods (including

convolutions), but the relative differences had a similar trend as for a padding of

4 (see Table C.3). We also trained locally connected networks with one repetition,

but for longer and with a much smaller learning rate to simulate the effect of data

repetitions. Even for 4x-8x longer runs, the networks barely matched the performance

4.5. Experiments 88

Table 4.2: Performance of convolutional (conv) and locally connected (LC) networks on
ImageNet for 0.5x width ResNet18 (1 run). For LC, we also used dynamic weight
sharing every n batches. LC nets additionally show performance difference w.r.t.
the conv net.

Connectivity Weight sharing
frequency

ImageNet

Top-1
accuracy (%)

Diff
Top-5

accuracy (%)
Diff

conv - 63.5 - 84.7 -
LC - 46.7 -16.8 70.0 -14.7
LC 1 61.7 -1.8 83.1 -1.6
LC 10 59.3 -4.2 81.1 -3.6
LC 100 54.5 -9.0 77.7 -7.0

of a 1-repetition network on standard speed (not shown).

4.5.3 ImageNet

On ImageNet, we did not test image repetitions due to the computational require-

ments (e.g., running 16 repetitions with our resources would take almost 3 months).

We used the standard data augmentation, meaning that all networks see different

crops of the same image throughout training.

Our results are shown in Table 4.4. Weight sharing every 1 and 10 iterations

(256/2560 images, respectively, for the batch size of 256) achieves nearly con-

volutional performance, although less frequent weight sharing results in a more

significant performance drop. In contrast, the purely locally connected network has

a large performance gap with respect to the convolutional one. It is worth noting

that the trade-off between weight sharing frequency and performance depends on the

learning rate, as weights diverge less for smaller learning rates. It should be possible

to decrease the learning rate and increase the number of training epochs, and achieve

comparable results with less frequent weight sharing.

4.5.4 Brain-Score of ImageNet-trained networks

In addition to ImageNet performance, we evaluated how well representations built

by our networks correspond to ventral stream data in primates. For that we used the

Brain-Score [22, 164], a set of metrics that evaluate deep networks’ correspondence

to neural recordings of cortical areas V1 [177, 178], V2 [177], V4 [179], and inferior

temporal (IT) cortex [179] in primates, as well as behavioural data [180]. The

4.5. Experiments 89

Table 4.3: Brain-Score of ImageNet-trained convolutional (conv) and locally connected (LC)
networks on ImageNet for 0.5x width ResNet18 (higher is better). For LC, we
also used dynamic weight sharing every n batches. ∗The models were evaluated
on Brain-Score benchmarks available during submission. If new benchmarks are
added and the models are re-evaluated on them, the final scores might change;
the provided links contain the latest results.

Connectivity Weight sharing
frequency

Brain-Score

average score V1 V2 V4 IT behaviour link∗

conv - .357 .493 .313 .459 .370 .148 brain-score.org/model/876
LC - .349 .542 .291 .448 .354 .108 brain-score.org/model/877
LC 1 .396 .512 .339 .468 .406 .255 brain-score.org/model/880
LC 10 .385 .508 .322 .478 .399 .216 brain-score.org/model/878
LC 100 .351 .523 .293 .467 .370 .101 brain-score.org/model/879

advantage of Brain-Score is that it provides a standardised benchmark that looks

at the whole ventral stream, and not only its isolated properties like translation

invariance (which many early models focused on [181–184]). We do not directly

check for translation invariance in our models (only through V1/V2 data). However,

as our approach achieves convolutional solutions (see above), we trivially have

translation equivariance after training: translating the input will translate the layer’s

response (in our case, each k-th translation will produce the same translated response

for a kernel of size k). (In fact, it’s pooling layers, not convolutions, that achieve

some degree of invariance in convolutional networks – this is an architectural choice

and is somewhat tangential to our problem.)

Our results are shown in Table C.11 (higher is better; see http://www.brain-

score.org/ for the scores of other models). The well-performing locally connected

networks (with weight sharing/sleep phase every 1 or 10 iterations) show overall

better fit compared to their fully convolutional counterpart. Interestingly, the worst-

performing purely locally connected network had the second best V1 fit, despite

overall poor performance.

In general, Brain-Score correlates with ImageNet performance (Fig. 2 in

[22]). This means that the worse Brain-Score performance of the standard locally

connected network and the one with weight sharing every 100 iterations can be

related to their poor ImageNet performance (Table 4.4). (It also means that our

method can potentially increase Brain-Score performance of larger models.)

http://www.brain-score.org/model/876
http://www.brain-score.org/model/877
http://www.brain-score.org/model/880
http://www.brain-score.org/model/878
http://www.brain-score.org/model/879
http://www.brain-score.org/
http://www.brain-score.org/

4.6. Sharing weights with noise-cancelling anti-Hebbian plasticity 90

wi

xi

wj

wki
k

j

w
i

k
j

Full weight sharing
(convolution)

No weight sharing
(locally connected)

Figure 4.6: Examples of a convolutional layer (A) and a locally connected layer (B).

4.6 Sharing weights with noise-cancelling anti-

Hebbian plasticity

4.6.1 Introduction

In a convolutional layer, all neurons within one channel have the same weight w, but

different location-specific inputs xi (Fig. 4.6A), so the output is zi =w⊤xi, and during

training the weights remain convolutional (Fig. 4.7A). In a locally connected layer

(Fig. 4.6B), the weights are also neuron-specific: zi = w⊤
i xi. Even if the weights

start at the same value, they diverge during training, which can be compensated with

a sleep phase (Fig. 4.7B).

Previously, we discussed solution B (Fig. 4.7B), or the sleep phase from

Pogodin et al. (2021): optimise the given loss L(x,y,w1, . . . ,w j) for several it-

erations, then stop and share weights with anti-Hebbian plasticity (“sleep phase”).

This approach has several limitations: it can only share weights for neurons

with non-overlapping inputs, it needs precise grid-like connectivity, it depends on

the frequency of sleep phases, and local connections have to have the same size for

all neurons in a layer.

Here we develop an algorithm that keeps the weights close to convolutional

throughout training (Fig. 4.7C). This removes the dependence of network’s perfor-

mance on the frequency of the sleep phase, and may improve generalisation (w.r.t. the

sleep phase solution), as individual weights never overfit when not “sleeping”.

4.6. Sharing weights with noise-cancelling anti-Hebbian plasticity 91

w1=…=wN=w
sleep phase

convolutional net
weight dynamics

locally connected
with a sleep phase

locally connected
with online sharing

A B C

“weight sharing” subspace:

Figure 4.7: Weight dynamics for different layer types. The grey zone indicates a subspace
with shared weights. A. Convolutional weights are always shared. B. Locally
connected weights diverge from the shared solution, but converge back during
the sleep phase. C. Locally connected weights stay near the shared solution with
online weight sharing.

4.6.2 Proposed update rule

To derive the new update rule, we start by adding a weight sharing penalty to an

arbitrary loss function L:

L̃ ≡ L(x,y,w1, . . . ,wN)+
γ

2N ∑
i j
∥wi −w j∥2 . (4.10)

The gradient of this new loss function is straightforward to compute:

∂ L̃(. . .)
∂ wi

=
∂ L(. . .)

∂ wi
+

γ

N ∑
j
(wi −w j) . (4.11)

This is not yet implementable in real neurons, as each weight wi needs informa-

tion about other weights. However, we can approximate it with a noise injection ξξξ

into the input neurons, such that the output ones receive a random projection of the

input weight, ξξξ⊤wi .

For a zero-mean vector ξξξ with Eξξξ ξξξ⊤ = I, we can approximate the gradient as

̂∂ L̃(. . .)
∂ wi

≡ ∂ L(. . .)
∂ wi

+ γ ξξξ ξξξ
⊤

(
wi −

1
N ∑

j
w j

)
. (4.12)

This gradient equals ∂ L̃(...)
∂ wi

in expectation.

To finally implement this update rule in a network, we again use lateral connec-

4.6. Sharing weights with noise-cancelling anti-Hebbian plasticity 92

tivity to share noise ξξξ among neurons, but not input xi. We can do it by assuming

that data-dependent activity xi is transient and therefore filtered out by the lateral

connectivity, while the slowly changing noise is not. Therefore, the firing rate at

neuron zi becomes

zi = w⊤
i (xi +ξξξ)− 1

N ∑
j

w⊤
j ξξξ . (4.13)

The new estimate of the gradient now contains a Hebbian term,

̂∂ L̃(. . .)
∂ wi

≡ ∂ L(. . .)
∂ wi

+ γ ziξξξ , (4.14)

which is still equal to the correct gradient in expectation. It is worth noting that the

presynaptic part of the Hebbian component is temporally averaged to contain only

the slow noise ξξξ , while the post-synaptic component contains the standard firing

rate.

The overall rule can be interpreted as noise cancellation, as weight sharing

dynamics learns to remove the ξξξ component from zi (zi = w⊤
i xi for shared weights).

However, this rule has the same connectivity restrictions as the sleep phase method.

4.6.3 Proposed update rule with mean weight constraints

We can further simplify lateral connectivity used in this model by relaxing the weight

sharing constraint to the mean sharing constraint:

L̃mean ≡ L(x,y,w1, . . . ,wN)+
γ

2N ∑
i j
(1⊤wi −1⊤w j)

2 . (4.15)

The gradient of this objective is the following:

∂ L̃mean(. . .)

∂ wi
=

∂ L(. . .)
∂ wi

+
γ

N ∑
j

1(1⊤wi −1⊤w j) . (4.16)

Now it can be approximated with a single zero-mean number ξ , rather than a

4.6. Sharing weights with noise-cancelling anti-Hebbian plasticity 93

vector, as

zi = w⊤
i (xi +ξ 1)−ξ

1
N ∑

j
w⊤

j 1 , (4.17)

̂∂ L̃mean(. . .)

∂ wi
=

∂ L(. . .)
∂ wi

+ γ ξ zi 1 . (4.18)

We still need a slow noise process to distinguish the weight sharing signal from

regular inputs, but the lateral connections do not need to form a greed. Instead, they

need to connect all neurons in a channel. This model is much simpler, although

provides less regularisation.

4.6.4 Choice of network architectures.

In [149], partial weight sharing was done in every layer, requiring precise grids of

lateral connectivity to work. The grids were needed to provide non-overlapping

inputs to neurons for correct weight sharing. In 1x1 convolutions (i.e., with con-

nections to only one neuron in each input channel; Fig. 4.6C), each grid contains

the whole channel, massively simplifying lateral connectivity. Many large popular

architectures, such as ResNet34, ResNet50, MobileNetV3 [185], contain blocks

of [1x1, NxN, 1x1] convolutions. The same pattern is used in a relatively shallow,

but recurrent CORnet-S [20] (which is proposed as a more anatomically realistic

neural network). Those models usually show a better fit to brain data [23]. Here, we

use MobileNetV3-small due to its small size, as removing weight sharing greatly

increases GPU memory requirements. We show that maintaining weight sharing

only in 1x1 layers is enough, as long as the initialisation is convolutional.

The benefit of weight sharing in 1x1 layers only is the simplicity of implemen-

tation: the mean rule Eq. (4.18) is equivalent to Eq. (4.14).

4.6.5 ImageNet performance.

Performance is summarised in Table 4.4. Locally connected networks always perform

better with convolutional initialisation than with random initialisation. Making 1x1

layers convolutional greatly improves performance, and our weight sharing method

(Eq. (4.18)) approximates that behaviour; both approaches also lead to a better fit

4.7. Discussion 94

to the ventral stream data (measured by the Brain-Score [23]). Layers that use

Eq. (4.18) stay nearly convolutional (weight standard deviation ≪ |mean|); for all

other locally connected layers, even with a convolutional start, the weights quickly

diverge to a non-convolutional state.

accuracy, % conv LC LC + conv init
LC

+ conv 1x1
LC + conv init

+ conv 1x1
LC + conv init

+ dyn 1x1 (Eq. (4.18))

Top-1 65.1 42.6 44.8 51.0 62.0 56.0
Top-5 85.8 65.6 67.8 74.6 83.6 78.7

Brain-Score [23] .353 .327 .335 .335 .389 .355

Table 4.4: LC: locally connected; conv init: convolutional initialization; conv 1x1: replacing
LC layers with 1x1 filters by convolutions; dyn 1x1: using Eq. (4.18) in 1x1 LC
layers.

4.7 Discussion

4.7.1 Weight sharing with a sleep phase

We presented two ways to circumvent the biological implausibility of weight sharing,

a crucial component of convolutional networks. The first was through data aug-

mentation via multiple image translations. The second was dynamic weight sharing

via lateral connections, which allows neurons to share weight information during

a sleep-like phase; weight updates are then done using Hebbian plasticity. Data

augmentation requires a large number of repetitions in the data, and, consequently,

longer training times, and yields only small improvements in performance. However,

only a small number of repetitions can be naturally covered by saccades, and active

object manipulation happens for a limited number of visual stimuli. Dynamic weight

sharing needs a separate sleep phase, rather than more data, and yields large perfor-

mance gains. In fact, it achieves near convolutional performance even on hard tasks,

such as ImageNet classification, making it a much more likely candidate than data

augmentation for the brain. In addition, well-performing locally connected networks

trained with dynamic weight sharing achieve a better fit to the ventral stream data

(measured by the Brain-Score [22, 164]). The sleep phase can occur during actual

sleep, when the network (i.e., the visual system) stops receiving visual inputs, but

maintains some internal activity. This is supported by plasticity studies during sleep

4.7. Discussion 95

(e.g. [186, 187]).

4.7.2 Weight sharing with noise-cancelling plasticity

We also proposed an online learning model for weight sharing. It uses lateral

connections and anti-Hebbian plasticity, runs during training, and achieves good

performance on the ImageNet visual recognition task. Our model applies mainly to

1x1 convolutions, but we showed that good performance can be achieved if other

channels are locally connected and initialised to be convolutional. These results

compliment the sleep phase-based model, but a hybrid scheme is possible where

both happen at once. Combining the two can, potentially, increase performance, but

we leave that to future work. Our model can be interpreted as a form of homeostatic

plasticity. However, unlike the standard role of homeostatic plasticity, which is to

compensate for weight divergence during Hebbian learning, in our model its role is

to improve the performance of gradient-based learning (or its approximations).

4.7.3 Limitations of the approach

Our approach has several limitations. First, the pattern generation scheme needs

layers to have filters of the same size. Second, we assume that the very first layer

(e.g., V1) receives inputs from another area (e.g., LGN) that can generate repeated

patterns, but doesn’t need weight sharing.

Then, the structure of convolutional layers as used in deep learning significantly

differs from the brain. A standard convolutional layer typically has from dozens to

hundreds of individual channels. Early visual stream (including V1) also contains

parallel processing streams/channels that correspond to cell-type specific modules

[188], although their number is limited (A 2001 study [189] lists several types with

distinct connectivity). It is not clear if convolutional networks can perform well with

such a limited number of channels.

Precise and non-plastic lateral connectivity also poses a problem. This can be

genetically encoded, or learned early on using correlations in the input data (if layer

l can generate repeated patterns, layer l +1 can modify its lateral connectivity based

on input correlations). In addition, we turned the lateral connections off during the

4.7. Discussion 96

awake phase in the experiments with the sleep phase. This is because they could

potentially interfere with network’s computation, although leaving them on would

work like the centring part of the Layer Norm [190]. We used Batch Norm in our

networks; replacing it with Layer Norm and leaving the lateral connections always

on could be a solution to this problem.

Lateral connections do in fact exist in the visual stream, with neurons that have

similar tuning curves showing strong lateral connections [191]. Moreover, at least

in V1 lateral connections have been found to span 7mm of space with a 0.75mm

periodicity [192]; the same study concluded that neurons with similar orientation

specificity tend to be laterally connected. This is not yet ideal for our model: we

assumed identical lateral connections among individual neurons, rather than random

connections between neural columns. Our model could be adapted to to match

fixed random projections of weights to account for this feature, which could be an

interesting direction for future work.

Next, the sleep phase works iteratively over layers. This can be implemented

with neuromodulation that enables plasticity one layer at a time. Alternatively, weight

sharing could work simultaneously in the whole network due to weight regularisation

(as it ensures that the final solution preserves the initial average weight), although

this would require longer training due to additional noise in deep layers. Third, in

our scheme the lateral connections are used only for dynamic weight sharing, and

not for training or inference. As our realistic model in Section 4.4.2 implements this

connectivity via an inhibitory neuron, we can think of that neuron as being silent

outside of the sleep phase.

Finally, we trained networks using backpropagation, which is not biologically

plausible [45]. However, our weight sharing scheme is independent of the wake-

phase training algorithm, and therefore can be applied along with any biologically

plausible update rule.

4.7.4 Conclusions

Our approach to dynamic weight sharing is not relevant only to convolutions. First,

it is applicable to non-convolutional networks, and in particular visual transformers

4.7. Discussion 97

[167–170] (and more recent MLP-based architectures [171–173]). In such archi-

tectures, input images (and intermediate two-dimensional representations) are split

into non-overlapping patches; each patch is then transformed with the same fully

connected layer – a computation that would require weight sharing in the brain. This

can be done by connecting neurons across patches that have the same relative posi-

tion, and applying our weight dynamics (see Appendix C.1.4). Second, [46] faced a

problem similar to weight sharing – weight transport (i.e., neurons not knowing their

output weights) – when developing a plausible implementation of backprop. Their

weight mirror algorithms used an idea similar to ours: the value of one weight was

sent to another through correlations in activity.

It is possible that other approaches could achieve similar performance in lo-

cally connected network without explicit “convolutional” regularisation like in our

approach. One particular candidate is unsupervised/self-supervised learning, as it

avoids overfitting to the train set (something we observed in purely locally con-

nected networks) due to the chosen objective/data structure; this is a potential future

direction. Extensive data augmentation (or simply larger datasets) and large net-

works could potentially work better too, but our experiments with locally connected

networks indicate that overfitting to the training set is hard to overcome is such

settings.

Our study shows that both performance and the computation of convolutional

networks can be reproduced in more realistic architectures. While the exact weight

sharing scheme proposed here is unlikely to exist in the visual stream, our model

suggests that neurons can exchange weight information and, perhaps more impor-

tantly for learning, gradient information, which facilitates generalisation in neural

networks.

Chapter 5

Locally connected networks as ventral

stream models

This chapter is based on Pogodin and Latham (2022); the results are my own.

Summary Most deep learning models of the ventral stream, and convolutional net-

works in particular, share weights among neurons. Weight sharing during learning

is crucial for good performance on image recognition tasks, but it is not biolog-

ically plausible. In this work, we compare performance and Brain-Score results

of ImageNet-trained networks in multiple configurations: convolutional, locally

connected (i.e., convolutional without weight sharing), and locally connected with

anti-Hebbian plasticity mechanisms that promote weight sharing. We also study

the role of initialisation on performance of those networks. We find that the more

weight sharing networks have, the better they perform on both ImageNet and Brain-

Score, which can sometimes be further improved with a convolutional initialisation.

However, locally connected networks outperform their convolutional counterparts on

purely neural data (areas V1, V2, V4, IT), but not on behavioural responses. More-

over, ImageNet performance negatively correlates with correspondence to V1 data,

suggesting that better models of early visual processing don’t necessarily provide a

good input for models of deeper visual areas.

5.1. Introduction 99

5.1 Introduction

Convolutional networks not only have great performance on image recognition

tasks, but also develop representations similar to the primate visual stream. For

instance, they provide a good fit to multiple areas of the ventral stream [22], and even

explain the separation between the ventral and the dorsal streams [25]. However, the

biological plausibility of convolutional networks is questionable, since they need to

share weights among neurons during training (Fig. 5.1A). If they don’t (even if they

are locally connected, Fig. 5.1B), they perform much worse on image recognition

tasks, and show a worse fit to the visual stream [149]. This issue is not limited to

convolutional networks – any network involving matrix-matrix multiplication (with

one matrix representing neurons, and the other one representing weights) needs

weight sharing (e.g., a recently popular architecture, transformers). Recently it

was shown that locally connected networks (Fig. 5.1B) can share weights through

anti-Hebbian plasticity, but the network must stop training for a “sleep phase” that

uses lateral connectivity in each layer [149] (Fig. 5.1C,D).

In this work, we study how well locally connected and convolutional networks

correspond to the ventral stream data, as measure by the Brain-Score [22, 164],

which combines recordings of behavioural responses (which differ from classification

accuracy, see [22]) and areas V1, V2, V4, and IT to naturalistic stimuli in primates.

Brain-Score provides a unified way to compare visual representations in deep

networks to the ones in the primate visual cortex, which also allows us to compare

different deep networks among each other. As the Brain-Score combines data from

different species and different imaging techniques, it allows us to compare models

“on average”. The downside of this approach is that it is (in its current form) limited

to static images; it also doesn’t involve any learning. Moreover, as the Brain-Score

is based on representation similarity analysis, it doesn’t directly compare individual

neural representation in deep networks to the brain data. While it only allows us to

claim that some networks distinguish image categories in a similar way to the brain,

it also makes the approach more model-agnostic (i.e., it doesn’t require the model to

be anatomically identical to the visual stream, or to have certain realistic features

5.1. Introduction 100

such as spikes).

We evaluate the role of initial conditions, frequency of weight sharing (as in

[149]) and architectural differences. We find that better performing models typically

result in a better Brain-Score, but locally connected networks provide a better match

to non-behavioural data. In addition, poorly performing models match better to V1

data.

wi

wj

wki
k

j

w
i

k
j

wi

wj

wk i
k

j

sleep phase in
a locally connected layer

sleep phase

A B C

C

D

B

Full weight sharing
(convolution)

No weight sharing
(locally connected)

Weight sharing for
non-overlapping inputs

Figure 5.1: A. Convolutional layer: all neurons see a patch of the input and have the same
weight wi = wk = w j = w. B. Locally connected layer: same, but with different
weights. C. Only neurons with non-overlapping inputs share weights (equivalent
to a stack of strided convolutions). D. Training in a locally connected layer leads
to different weights (like in B); a sleep phase ([149]) shares weights among
neurons with non-overlapping inputs (like in C).

Locally connected (LC) networks with a weight sharing sleep phase can achieve

results similar to their convolutional counterpart [149]. The sleep phase uses lateral

connectivity to create shared inputs for different neurons and equalise their activity

with anti-Hebbian learning, which leads to convolution-like weight sharing (see the

corresponding paper for mathematical details). However, [149] only considered a

relatively small model (half-width ResNet-18) and didn’t study the role of initial

conditions and architectural changes.

Here, we conduct experiments on a standard ResNet-18 network in multiple

configurations: convolutional, locally connected with random initialisation (as in

[149]), locally connected with a convolutional initialisation (as in [163]), and locally

connected with a convolutional first layer. As the first layer in a ResNet-18 has the

highest resolution (224 by 224 with stride 2 vs. 56 by 56 with stride 1 for the next

one) and the largest filter size (7 by 7 vs. 3 by 3 for all other layers), it’s potentially

prone to more overfitting than other layers. Making it convolutional is inspired by

pre-V1 processing done in the visual system.

5.1. Introduction 101

5.1.1 Training details

We trained all networks on ImageNet [94] with standard augmentations. We used

AdamW [89] with a batch size of 128. We used Nvidia A100 GPUs (40GB VRAM;

for GPUs with less memory, the model would not fit on a single one as just the LC

weights take up about 11GB). We used the implementation from [149], which is

available at https://github.com/romanpogodin/towards-bio-plausible-conv. Results

and links to Brain-Score models are provided in Table C.11.

As training locally connected network required a significant amount of compu-

tational resources, we were only able to test single instances of networks and thus

unable to provide error bars for the results.

45 50 55 60 65 70
0.37

0.38

0.39

0.40

0.41

0.42

0.43

45 50 55 60 65 70

0.405

0.410

0.415

0.420

0.425

0.430

0.435

0.440

45 50 55

convconv

conv

LC + 1st conv

LC
random init

conv init

w. sh. 1 iter

w. sh. 10 iter

LC + w. sh. 100 iter

w. sh. 10 iter

w. sh. 10 iter

LC + w. sh. 100 iter

LC + w. sh. 100 iter
w. sh. 1 iter

LC LC + 1st conv

top-1 accuracy on ImageNet, %top-1 accuracy on ImageNet, %top-1 accuracy on ImageNet, %

V1, V2, V4, IT, behaviour V1, V2, V4, IT V1 only

LC + 1st conv

60 65 70

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56 LC

w. sh. 1 iter

A B C

B
ra

in
-S

co
re

B
ra

in
-S

co
re

B
ra

in
-S

co
re

Figure 5.2: ImageNet top-1 accuracy vs. Brain-Score for several ResNet-18 networks:
convolutional, locally connected (LC), LC with a convolutional first layer, LC
with a weight sharing sleep phase every 1/10/100 iterations. Orange: randomly
initialised LC net; blue: LC net with a convolutional initialisation. A. Aver-
age Brain-Score (V1, V2, V4, IT, behavioural data). B. Same, but without
behavioural data. C. Only V1 data.

5.1.2 Results (all brain areas)

First, we compared ImageNet top-1 test accuracy and the Brain-Score of all our

models (Fig. 5.2A). Overall, networks with better ImageNet accuracy also have a

higher Brain-Score (Pearson correlation coefficient ≈ 0.84, p ≈ 0.001). However, if

we exclude behavioural data from the analysis and only use neural data (Fig. 5.2B),

a fully convolutional network shows the worst overall fit to neural data despite the

best performance. One possible explanation is that LC networks produce a more

diverse set of activations, as there’s less regularity in the weights.

https://github.com/romanpogodin/towards-bio-plausible-conv

5.2. Discussion 102

5.1.3 Results (V1)

For V1 data specifically, purely LC networks show the best V1 score (Fig. 5.2C)

and ImageNet accuracy negatively correlates with Brain-Score (Pearson correlation

coefficient ≈ −0.65, p ≈ 0.03). These results are consistent with those obtained

for smaller networks in [149]. Here, we attempted to investigate what drives the

discrepancy between V1 data and the rest of the results.

First, we checked if representations in earlier layers (that typically match V1)

are useful for ImageNet, and if readout accuracy for these layers correlates with the

V1 score. We trained a linear readout on top of the second ResNet block (out of four),

and observed very poor performance (2-6%) in purely LC networks, as opposed to

8-20% in networks with more regularisation. Therefore, good V1 representations

alone are not very helpful for ImageNet.

We also trained a shorter ResNet with only two blocks (10 layers total) to see

if the depth of the model affects the phenomenon. It doesn’t: the V1 score of a

short ResNet LC network is 0.544, vs. 0.511 for its convolutional counterpart that

performs better on ImageNet. However, the difference in score is twice as small for

the shorter architecture compared to a full ResNet-18.

Finally, we tested untrained networks to see if different initial conditions can

explain V1 scores. For a randomly initialised locally connected network, the V1

score was predictably low: 0.347 (much smaller than everything in Fig. 5.2C). A

convolutional initialisation, however, resulted in a score of 0.516 – higher than

for a trained convolutional network. This surprising result suggests that the good

V1 fit of convolutional networks comes primarily from the architecture and trans-

lation equivariance of convolutional layers, while training on ImageNet leads to

a more ImageNet-specific representation that don’t necessarily correspond to V1

representations.

5.2 Discussion
We explored how deep networks that substitute implausible weight sharing of convo-

lutions with realistic mechanisms, namely local connections and sleep-phase induced

5.2. Discussion 103

partial weight sharing, perform on ImageNet and Brain-Score. We found that those

two metrics generally correlate (Pearson correlation coefficient ≈ 0.84, p ≈ 0.001),

and that a convolutional initialisation of locally connected networks can improve

both of them. Moreover, we found that V1 performance negatively correlates

with ImageNet accuracy, both for full networks (Pearson correlation coefficient

≈−0.65, p ≈ 0.03) and for representations extracted from V1-like early layers.

The discrepancy between V1 and all other brain areas shows that training (on

ImageNet) is not always beneficial for all architectures: while locally connected

networks with any initialisation end up with a higher match to the V1 data after

training, a fully convolutional one sees a decrease in V1 match. This is in contrast to

deeper areas, where training always increases the match to data. We also found that

improving V1 fit of a model might not imply improvements for deeper areas, which

is somewhat consistent with the idea that the visual cortex is not strictly hierarchical

[194]. However, our findings are specific to the architectural changes we’ve tested

(i.e., amount of weight sharing). Therefore, they don’t contradict previous studies

that don’t show the V1 fit/ImageNet accuracy discrepancy in different convolutional

networks [178].

Overall, our results show that deep learning models of the visual stream can be

improved by adding realistic training constraints, such as the lack of weight sharing

at all times. The improvement, however, is only visible when we compare the models

to real data (in our case, via Brain-Score [22, 164]), and not to machine learning

benchmarks.

Chapter 6

Conclusions and Future Work

Conclusions In Chapter 2, we discuss a biologically plausible mechanism for training

deep networks with three-factor Hebbian plasticity. The method increases depen-

dence between neural activity in each layer of a feedforward network and the desired

outputs. This is done by optimising a kernel methods-based measure of statistical

dependence called the Hilbert-Schmidt Independence Criterion (HSIC; [32]). Our

results provide an effective method to train deep networks. Moreover, the HSIC-

derived three-factor Hebbian updates make predictions about the specific role of

neuromodulators and divisive normalisation in learning.

In Chapter 3, we approach self-supervised learning (SSL) with HSIC-based

objectives. Previously, [119] noted the disconnect between the mutual information

(MI) optimisation view of self-supervised learning and the actual behaviour of

mutual information. In particular, learning with variational estimators of MI, such

as InfoNCE [29], can happen even without MI changes. We show that InfoNCE is

also an HSIC-based objective, which explains learning in self-supervised models

more directly and allows to improve computational performance of SSL using kernel

methods.

In Chapter 4 and Chapter 5, we discussed the role and potential implementations

of weight sharing in the models of the visual stream. Weight sharing has been an

important part of convolutional networks, which are particularly good at image

recognition [151, 152] and also match well to the activity in the private visual stream

[22, 23]. We showed that weight sharing can indeed be implemented through anti-

105

Hebbian learning and specifically wired lateral connections. Providing a plausible

model of weight sharing allows us to treat convolutional networks not only as

functional models of the visual stream (i.e., on the level of neural representations),

but also as a more literal circuit model. We also showed that relaxing convolutional

weights to fully match the proposed weight sharing model makes networks more

visual stream-like at the functional level.

Future work Studies at the intersection of deep learning and theoretical neuroscience

have three major possible directions: making models perform better and on a wider

range of tasks, making models more biological, and deriving concrete experimental

predictions based on the models.

The last task is perhaps the hardest, as an experiment should have a carefully

proposed null hypothesis to rule out a computation we expect to see, as many

algorithms can be implemented in different ways with the same final goal. One

example is translation invariance observed in the primate visual stream (note that it

doesn’t imply exact weight sharing). It’s been observed that human responses are not

exactly translation invariant on newly learned stimuli [195], but the testing phase of

the experiment immediately followed the training phase. Therefore, while this result

rules out strict weight sharing (which we did not expect to occur), it doesn’t rule out

a potential “sleep phase” with some degree of weight equalisation that happens.

The extension of the Chapter 2 layer-wise learning approach to the self-

supervised learning setup in Chapter 3 is straightforward: changing the label similar-

ity used in supervised learning to positive/negative (i.e., same/different source) pair

indicator used in self-supervised learning is the only required change. Moreover, the

approximation of the HSIC objective in Chapter 2 can also be applied to Chapter 3.

The approximation removed computation over triples of points needed for HSIC,

meaning that we can interpret self-supervised learning with this approximation as

comparing pairs of (any) examples, rather than as a pair of positive examples and a

large number of negative examples. Such approximation would make self-supervised

learning easier to implement in a realistic network, and potentially simplify the

theoretical analysis of self-supervised learning.

106

Finally, as discussed in Section 4.7.3, the weight sharing model presented in

Chapter 4 is not yet realistic and could be further developed. In particular, it might

be possible to extend the idea to randomly connected columns of neurons rather than

individual neurons.

Consider the following extension of the model from Chapter 4. At each location

indexed by i, the column of output neurons is zi receives a vector of inputs Hi x for

a repeated input x and a fixed random matrix of local input connections Hi. In the

output layer, zi contributes to the inhibitory neuron through a fixed random matrix

Ri and receives an input from the inhibitory pool through a fixed random matrix Bi

(all matrices are square for simplicity). As a result, for the plastic weights Wi,

zi = Wi Hi x− 1
N

Bi ∑
j

R j W j H j x , (6.1)

∆Wi = zi (Hi x)⊤ . (6.2)

In the original method, we had ∑i ∆Wi = 0 and so the weights converged to the

average weight. Here, the invariant is different. Assume that Bi Ri averages to an

identity, such that 1
N ∑i Bi Ri ≈ EBR = I, and that all Hi are invertible. Then,

Ri ∆Wi (H⊤
i)

−1 = Ri

(
Wi Hi x− 1

N
Bi ∑

j
R j W j H j x

)
x⊤H⊤

i (H
⊤
i)

−1 , (6.3)

and therefore

1
N ∑

i
Ri ∆Wi (H⊤

i)
−1 =

1
N ∑

i
Ri

(
Wi Hi −

1
N

Bi ∑
j

R j W j H j

)
xx⊤ (6.4)

=
1
N ∑

i
Ri Wi Hi xx⊤− 1

N2 ∑
i

Ri Bi ∑
j

R j W j H j xx⊤ ≈ 0 . (6.5)

The Hebbian updates will thus preserve the weighted average of the weights.

The resulting “shared” solution will not exhibit translation equivariance of the

standard convolutions, but it should still regularise the network. Exploring how this

weight sharing (or, rather, weight exchange) mechanism affects performance and

whether it better fits the primate visual system is a potential future direction.

Appendix A

Chapter 2 Appendix

A.1 Kernel methods, HSIC and pHSIC

A.1.1 pHSIC

We define the “plausible” HSIC by substituting ExyEx′Ey′ in the definition of HSIC

by ExEyEx′Ey′ ,

pHSIC(X , Y) =
(
ExyEx′y′ −ExEyEx′Ey′

)(
k(x,x′)k(y,y′)

)
. (A.1)

Therefore, HSIC(X , Y) = pHSIC(X , Y) when a and b are independent (Exy = ExEy,

which is not useful in our case), and when Ex′k(x,x′) = 0 or Ey′k(y,y′) = 0.

In addition, pHSIC(X , X) becomes the variance of k(x,x′) with respect to

px(x)px(x′),

pHSIC(X , X) = ExEx′
(
k(x,x′)

)2 −
(
ExEx′k(x,x′)

)2
= Var

(
k(x,x′)

)
. (A.2)

By combining Eq. (1.22) and Eq. (A.2), we can show that HSIC(X , X) ≤

pHSIC(X , X): denoting µx(x) = Ex′k(x,x′), we have

pHSIC(X , X)−HSIC(X , X) = 2Ex
(
Ex′k(x,x′)

)2 −2
(
ExEx′k(x,x′)

)2

= 2
(
Exµx(x)2 − (Exµx(x))2

)
= 2Var(µx(x))≥ 0.

(A.3)

A.1. Kernel methods, HSIC and pHSIC 108

As a result, our objective,

pHSIC(Zk, Zk)− γ pHSIC(Y, Zk) , (A.4)

is an upper bound on the “true” objective whenever pHSIC(Y, Zk) = HSIC(Y, Zk),

which is the case when Ey2k(y1,y2) = 0.

Finally, the empirical estimate of pHSIC (which can be derived just like for

HSIC in [32]) is

pĤSIC(X ,Y) =
1

m2 ∑
i j

k(xi,x j)k(yi,y j)−
1

m2 ∑
i j

k(xi,x j)
1

m2 ∑
ql

k(yq,yl) . (A.5)

A.1.2 How much information about the label do we need?

In our rules, the information about the label comes only through k(yi,y j), where y

is a one-hot vector – for n classes, an n-dimensional vector of mainly zeros with

only a single one (which corresponds to its label). For k(yi,y j) we use the cosine

similarity kernel, with y centred. If the dataset is balanced (i.e., all classes have the

same probability, 1/n), Ey j k(yi,y j) = 0 and the resulting kernel is

k(yi,y j) =
(yi − 1

n1n)
⊤(y j − 1

n1n)∥∥yi − 1
n1n
∥∥∥∥y j − 1

n1n
∥∥ =

I
[
yi = y j

]
− 1

n

1− 1
n

=

1, yi = y j ,

− 1
n−1 , otherwise .

(A.6)

If there are many classes, this signal approaches I
[
yi = y j

]
, which is the same as the

uncentred linear kernel.

Equation (A.6) is especially convenient, because the kernel takes on only two

values, 1 and −1/(n−1). Consequently, precise labels are not needed. This is not

the case for unbalanced classes, as Eyi ̸= 1n/n and the centring of y doesn’t make

the normalised vector centred. However, taking the linear kernel gives an almost

A.2. Derivations of the update rules for plausible kernelized information bottleneck109

binary signal,

k(yi,y j) = (yi −p)⊤(y j −p) = I
[
yi = y j

]
+∑

k
p2

k − pi − p j

= I
[
yi = y j

]
+O

(
1
n

)
,

(A.7)

as long as the probability of each class k, pk, is O(1/n) (i.e., they are roughly

balanced). As a result, the teaching signal is nearly binary, and we can compute it

without knowing the probability of each class.

A.2 Derivations of the update rules for plausible ker-

nelized information bottleneck

A.2.1 General update rule

Here we derive the gradient of pHSIC in our network, along with its empirical esti-

mate. Our starting point is the observation that because the network is feedforward,

the activity in layer k is a deterministic function of the previous layer and the weights:

Zk = f
(
Wk,Zk−1) (this includes both feedforward layers and layers with divisive

normalisation). Therefore, we can write the expectations of any function g(Y,Zk)

(which need not actually depend on Y) in terms of Zk−1,

Eyzkg(y,zk) = Eyzk−1g
(

y, f
(

Wk,zk−1
))

. (A.8)

As a result, we can write the gradients of pHSIC (assuming we can exchange the

order of differentiation and expectation, and the function is differentiable at Wk) as

d pHSIC(Y)(Zk)

d Wk =
(
Ey1zk−1

1
Ey2zk−1

2
−Ey1Ezk−1

1
Ey2Ezk−1

2

)
(A.9)

k(y1,y2)
d k
(

f
(

Wk,zk−1
1

)
, f
(

Wk,zk−1
2

))
d Wk , (A.10)

A.2. Derivations of the update rules for plausible kernelized information bottleneck110

d pHSIC(Zk)(Zk)

d Wk = (A.11)

2Ezk−1
1

Ezk−1
2

k(zk
1,z

k
2)

d k
(

f
(

Wk,zk−1
1

)
, f
(

Wk,zk−1
2

))
d Wk (A.12)

−2
(
Ezk−1

1
Ezk−1

2
k(zk

1,z
k−1
2)

)
(A.13)

×

Ezk−1
1

Ezk−1
2

d k
(

f
(

Wk,zk−1
1

)
, f
(

Wk,zk−1
2

))
d Wk

 . (A.14)

To compute these derivatives from data, we take empirical averages (see

Eq. (A.5)),

d
(

pĤSIC(Zk,Zk)− γ pĤSIC(Y,Zk)
)

d Wk =

2
1

m2 ∑
i j

k(zk
i ,z

k
j)

d k(zk
i ,z

k
j)

d Wk −2
1

m2 ∑
ql

k(zk
q,z

k
l)

1
m2 ∑

i j

d k(zk
i ,z

k
j)

d Wk

− γ
1

m2 ∑
i j

k(yi,y j)
d k(zk

i ,z
k
j)

d Wk + γ
1

m2 ∑
ql

k(yq,yl)
1

m2 ∑
i j

d k(zk
i ,z

k
j)

d Wk .

(A.15)

Making the definition
◦◦◦
k(ai,a j) = k(ai,a j)−∑ql k(aq,al)/m2, this simplifies to

d
(

pĤSIC(Zk,Zk)− γ pĤSIC(Y,Zk)
)

d Wk

=
1

m2 ∑
i j

(
2

◦◦◦
k(zk

i ,z
k
j)− γ

◦◦◦
k(yi,y j)

) d k(zk
i ,z

k
j)

d Wk .

(A.16)

The key quantity in the above expressions is the derivative of the kernel with

respect to the weights. Below we compute those for the Gaussian and cosine

similarity kernels, and explain why the cosine similarity update is implausible.

A.2. Derivations of the update rules for plausible kernelized information bottleneck111

A.2.2 Gaussian kernel

For the Gaussian kernel, the derivative with respect to a single weight is

d k(zk
i ,z

k
j)

dW k
nm

=
d

dW k
nm

exp
(
− 1

2σ2

∥∥∥zk
i − zk

j

∥∥∥2
)

=−
k(zk

i ,z
k
j)

σ2

(
zk

n, i − zk
n, j

) d
(

zk
n, i − zk

n, j

)
dW k

nm

=−
k(zk

i ,z
k
j)

σ2

(
zk

n, i − zk
n, j

)(
f ′
(

Wkzk−1
i

)
n

zk−1
m, i − f ′

(
Wkzk−1

j

)
n

zk−1
m, j

)
.

(A.17)

For the linear network f ′(x) = 1, and so the gradient w.r.t. Wk becomes an outer

product (Eq. (2.17)).

A.2.3 Gaussian kernel with grouping and divisive normalisation

For the circuit with grouping and divisive normalisation, the kernel is a function of

v, not z (see Eqs. (2.18), (2.19) and (2.20)). This makes the derivative with respect

to z more complicated than the above expression would suggest. Specifically, using

Eq. (2.20) for the kernel with grouping, we have

d k(zk
i ,z

k
j)

dW k
αnm

=
d

dW k
αnm

exp
(
− 1

2σ2

∥∥∥vk
i −vk

j

∥∥∥2
)

=−
k(zk

i ,z
k
j)

σ2 ∑
α ′
(vk

α ′,i − vk
α ′, j)

d (vk
α ′, i − vk

α ′, j)

dW k
αnm

,

(A.18)

where the sum over α ′ appears due to centring (so all α are coupled). Using Eq. (2.19)

to express v in terms of u, the above derivative is

d vk
α ′, i

dW k
αnm

=
d
(
(uk

α ′, i)
1−p − 1

ck
α

∑α ′′(uk
α ′′, i)

1−p
)

dW k
αnm

=

(
δαα ′ − 1

ck
α

) d (uk
α, i)

1−p

dW k
αnm

.

(A.19)

A.2. Derivations of the update rules for plausible kernelized information bottleneck112

Then using Eq. (2.18) to express u in terms of z, we have

d (uk
α, i)

1−p

dW k
αnm

=
1− p
(uk

α, i)
p

d
(

δ

ck
α

+ 1
ck

α

∑n′
(

◦◦◦zk
αn′, i

)2
)

dW k
αnm

=
1− p
(uk

α, i)
p

2
ck

α

∑
n′

◦◦◦zk
αn′, i

d ◦◦◦zk
αn′, i

dW k
αnm

=
1− p
(uk

α, i)
p

2
ck

α

∑
n′

◦◦◦zk
αn′, i

d
(

zk
αn′, i −

1
ck

α

∑n′′ zk
αn′′, i

)
dW k

αnm

=
1− p
(uk

α, i)
p

2
ck

α

∑
n′

◦◦◦zk
αn′, i

(
δn′n −

1
ck

α

) d zk
αn, i

dW k
αnm

=
1− p
(uk

α, i)
p

2
ck

α

◦◦◦zk
αn, i

d zk
αn, i

dW k
αnm

.

(A.20)

Inserting this expression into Eq. (A.19), inserting that into Eq. (A.18), and perform-

ing a small amount of algebra, we arrive at

d k(zk
i ,z

k
j)

dW k
αnm

=−
k(zk

i ,z
k
j)

σ2 ∑
α ′
(vk

α ′, i − vk
α ′, j)

(
δαα ′ − 1

ck
α

)
2(1− p)

ck
α

(A.21)

×

(◦◦◦zk
αn, i

(uk
α, i)

p

d zk
αn, i

dW k
αnm

−
◦◦◦zk
αn, j

(uk
α, j)

p

d zk
αn, j

dW k
αnm

)
. (A.22)

As vk
α, i is centred with respect to α and the last term doesn’t depend on α ′, the final

expression becomes

d k(zk
i ,z

k
j)

dW k
αnm

=−
2(1− p)k(zk

i ,z
k
j)

σ2ck
α

(vk
α, i − vk

α, j) (A.23)

×

(◦◦◦zk
αn, i

(uk
α, i)

p
f ′
(

Wkzk−1
i

)
n

zk−1
m, i −

◦◦◦zk
αn, j

(uk
α, j)

p
f ′
(

Wkzk−1
j

)
n

zk−1
m, j

)
.

(A.24)

A.2.4 Cosine similarity kernel

Assuming that zk is bounded away from zero (because zk/
∥∥zk
∥∥ is not continuous at

0; adding a smoothing term to the norm would help but won’t change the derivation),

A.2. Derivations of the update rules for plausible kernelized information bottleneck113

the derivative of the cosine similarity kernel is

d k(zk
i ,z

k
j)

dW k
nm

=
d

dW k
nm

(zk
i)

⊤zk
j∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥
=

1∥∥zk
i

∥∥∥∥∥zk
j

∥∥∥
d
(

zk
n, iz

k
n, j

)
dW k

nm
−

(zk
i)

⊤zk
j∥∥zk

i

∥∥2
∥∥∥zk

j

∥∥∥2

d
∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥
dW k

nm
.

(A.25)

The first derivative is simple,

d
(

zk
n, iz

k
n, j

)
dW k

nm
= zk

n, i f ′
(

Wkzk−1
j

)
n

zk−1
m, j + zk

n, j f ′
(

Wkzk−1
i

)
n

zk−1
m, i . (A.26)

However, in this form it is hard to interpret, as both terms have the pre-synaptic

activity at one point and the post-synaptic activity at the other. We can, though, can

re-arrange it into differences in activity,

d
(

zk
n, iz

k
n, j

)
dW k

nm
=
(

zk
n, i − zk

n, j

)
f ′
(

Wkzk−1
j

)
n

zk−1
m, j + zk

n, j f ′
(

Wkzk−1
j

)
n

zk−1
m, j

+
(

zk
n, j − zk

n, i

)
f ′
(

Wkzk−1
i

)
n

zk−1
m, i + zk

n, i f ′
(

Wkzk−1
i

)
n

zk−1
m,i

=−
(

zk
n, i − zk

n, j

) (
f ′
(

Wkzk−1
i

)
n

zk−1
m, i − f ′

(
Wkzk−1

j

)
n

zk−1
m, j

)
+ zk

n, i f ′
(

Wkzk−1
i

)
n

zk−1
m, i + zk

n, j f ′
(

Wkzk−1
j

)
n

zk−1
m, j .

(A.27)

A.2. Derivations of the update rules for plausible kernelized information bottleneck114

The second one is slightly harder,

d
∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥
dW k

nm
=
∥∥∥zk

i

∥∥∥ d
√

∑n′(zk
n′, j)

2

dW k
nm

+
∥∥∥zk

j

∥∥∥ d
√

∑n′(zk
n′, i)

2

dW k
nm

=

∥∥zk
i

∥∥∥∥∥zk
j

∥∥∥ zk
n, j

d zk
n, j

dW k
nm

+

∥∥∥zk
j

∥∥∥∥∥zk
i

∥∥zk
n, i

d zk
n, i

dW k
nm

=

∥∥zk
i

∥∥∥∥∥zk
j

∥∥∥ zk
n, j f ′

(
Wkzk−1

j

)
n

zk−1
m, j +

∥∥∥zk
j

∥∥∥∥∥zk
i

∥∥zk
n, i f ′

(
Wkzk−1

i

)
n

zk−1
m, i .

(A.28)

Grouping these results together,

d k(zk
i ,z

k
j)

dW k
nm

=−

(
zk

n, i − zk
n, j

) (
f ′
(

Wkzk−1
i

)
n

zk−1
m, i − f ′

(
Wkzk−1

j

)
n

zk−1
m, j

)
∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥
+

zk
n, i f ′

(
Wkzk−1

i

)
n

zk−1
m, i∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥ +
zk

n, j f ′
(

Wkzk−1
j

)
n

zk−1
m, j∥∥zk

i

∥∥∥∥∥zk
j

∥∥∥
−

(zk
i)

⊤zk
j∥∥zk

i

∥∥2
∥∥∥zk

j

∥∥∥2

∥∥zk
i

∥∥∥∥∥zk
j

∥∥∥ zk
n, j f ′

(
Wkzk−1

j

)
n

zk−1
m, j

−
(zk

i)
⊤zk

j∥∥zk
i

∥∥2
∥∥∥zk

j

∥∥∥2

∥∥∥zk
j

∥∥∥∥∥zk
i

∥∥ zk
n, i f ′

(
Wkzk−1

i

)
n

zk−1
m, i .

(A.29)

As all terms share the same divisor, we can write the last expression more

concisely as

∥∥∥zk
i

∥∥∥∥∥∥zk
j

∥∥∥ d k(zk
i ,z

k
j)

dW k
nm

=

−
(

zk
n, i − zk

n, j

) (
f ′
(

Wkzk−1
i

)
n

zk−1
m, i − f ′

(
Wkzk−1

j

)
n

zk−1
m, j

)
+ ∑

s=i, j

(
1−

(zk
i)

⊤zk
j∥∥zk

s
∥∥2

)
zk

n,s f ′
(

Wkzk−1
s

)
n

zk−1
m,s .

(A.30)

A.2. Derivations of the update rules for plausible kernelized information bottleneck115

Considering a linear network for simplicity, the weight update over two points

i, j (negative of a single term in the sum in Eq. (A.16)) for the cosine similarity

kernel becomes

∆W k
nm = Mk

i j

(
zk

n, i − zk
n, j

) (
zk−1

m, i − zk−1
m, j

)
−Mk

i j ∑
s=i, j

(
1−

(zk
i)

⊤zk
j∥∥zk

s
∥∥2

)
zk

n,sz
k−1
m,s ,

Mk
i j =

1∥∥zk
i

∥∥∥∥∥zk
j

∥∥∥
(

2
◦◦◦
k(zk

i ,z
k
j)− γ

◦◦◦
k(yi,y j)

)
.

(A.31)

This rule is biologically implausible (or very hard to implement) for two

reasons. First, to compute Mk
i j the layer needs to track three signal simultane-

ously: (zk
i)

⊤zk
j,
∥∥zk

i

∥∥ and
∥∥∥zk

j

∥∥∥ (versus only one for the Gaussian kernel,
∥∥∥zk

i − zk
j

∥∥∥).

Second, assuming point i comes after j, the pre-factor of the Hebbian term (the

sum in Eq. (A.31)) for s = j can’t be computed until the network receives point

i. As a result, the update requires three independent plasticity pathways (one

for Mk
i j

(
zk

n, i − zk
n, j

) (
zk−1

m, i − zk−1
m, j

)
and two for the sum in Eq. (A.31)), because

each term in Eq. (A.31) combines the pre- and post-synaptic activity on different

timescales and with different third factors.

Adding grouping and divisive normalisation to this rule is straightforward:

we need to use the grouped response vk
α (Eq. (2.19)) in the kernel as k(zk

i ,z
k
j) =

(vk
i)

⊤vk
j/(
∥∥vk

i

∥∥∥∥∥vk
j

∥∥∥), and repeat the calculation above (divisive normalisation will

appear here too as it results from differentiating vk
α). As it would only make the

circuitry more complicated, we omit the derivation. Note that if we use grouping

with p = 0.5 but don’t introduce divisive normalisation, our objective resembles the

“sim-bpf” loss in [41] (but it doesn’t match it exactly, as we also introduce centring

of the kernel and group convolutional layers over multiple channels rather than one).

A.3. Experimental details 116

A.2.5 Linear kernel

Derivation of the update for the linear kernel only needs the derivative from

Eq. (A.26), therefore by doing the same calculations we obtain

d k(zk
i ,z

k
j)

dW k
nm

=
d (zk

i)
⊤zk

j

dW k
nm

=
d
(

zk
n, iz

k
n, j

)
dW k

nm

=−
(

zk
n, i − zk

n, j

) (
f ′
(

Wkzk−1
i

)
n

zk−1
m, i − f ′

(
Wkzk−1

j

)
n

zk−1
m, j

)
+ ∑

s=i, j
zk

n,s f ′
(

Wkzk−1
s

)
n

zk−1
m,s .

(A.32)

This is much easier to compute than the cosine similarity kernel: it only uses (zk
i)

⊤zk
j

in the third factor, and needs two plasticity channels rather than three (as now both

terms in the sum use the same third factor). However, we couldn’t achieve good

performance with this kernel.

A.3 Experimental details

A.3.1 Network architecture

Each hidden layer of the network had its own optimiser, such that weight updates

happen during the forward pass.

Each layer had the following structure: linear/convolutional operation → batch-

norm (if any) → nonlinearity → pooling (if any) → local loss computation (doesn’t

modify activity) → divisive normalisation (if any) → dropout.

None of the hidden layers had the bias term, but the output layer did. The last

layer (or the whole network for backprop) was trained with the cross-entropy loss.

Non-pHSIC methods with divisive normalisation used the same group arrangement,

but did not have grouping in the objectives.

A.3.2 Choice of kernels for pHSIC

The gradient over each batch was computed as in Eq. (A.16).

We used cosine similarity with centred labels (Eq. (A.6); as all datasets are

balanced, we don’t need to know the probability of a class to centre). The kernels for z

were plain Gaussian (Eq. (1.16)), Gaussian with grouping and divisive normalisation

A.3. Experimental details 117

(“grp+div”; Eq. (2.20) such that the next layer sees rk
αn ≡

◦◦◦zk
αn/(u

k
α)

p) and grouping

without divisive normalisation (“grp”; also Eq. (2.20) but the next layer sees zk
αn),

plain cosine similarity (Eq. (1.15)), and cosine similarity with grouping and with

or without divisive normalisation (k(zk
i ,z

k
j) = (vk

i)
⊤vk

j/(
∥∥vk

i

∥∥∥∥∥vk
j

∥∥∥) with v as in

Eq. (2.19)).

A.3.3 Objective choice for layer-wise classification

As proposed in [41], each convolutional layer is first passed through an average

pooling layer such that the final number of outputs is equal to 2048 (e.g. a layer with

128 channels and 32 by 32 images is pooled with an 8 by 8 kernel with stride= 8); the

resulting 2048-dimensional vector is transformed into a 10-dimensional vector (for

class prediction) by a linear readout layer. Fully connected layers are transformed

directly with the corresponding linear readout layer. In the layer-wise classification

with feedback alignment, feedback alignment is applied to the readout layer.

A.3.4 Pre-processing of datasets

MNIST, fashion-MNIST and Kuzushiji-MNIST images were centred by 0.5 and

normalised by 0.5.

For CIFAR10, each training image was padded by zeros from all sides with

width 4 (resulting in a 40 by 40 image for each channel) and randomly cropped to

the standard size (32 by 32), then flipped horizontally with probability 0.5, and then

centred by (0.4914,0.4822,0.4465) (each number corresponds to a channel) and

normalised by (0.247,0.243,0.261). For validation and test, the images were only

centred and normalised.

A.3.5 Shared hyperparameters for all experiments

We used the default parameters for AdamW, batchnorm, LReLU and SELU; for

grouping without divisive normalisation we used p = 0.5 to be comparable with the

objective in [41]. The rest of the parameters (including the ones below) were tuned

on a validation set (10% of the training set for all datasets).

Weight decay for the local losses was 1e-7, and for the final/backprop it was

1e-6; the learning rates were multiplied by 0.25, with individual schedules described

A.3. Experimental details 118

below. For SGD, the momentum was 0.95; for AdamW, β1 = 0.9, β2 = 0.999,

ε =1e-8. Batchnorm had momentum of 0.1 and ε = 1e−5, with initial scale γ = 1

and shift β = 0. Leaky ReLU had the slope 0.01; SELU(x) = scale(max(0,x)+

min(0,α(exp(x)− 1))) had α ≈ 1.6733 and scale ≈ 1.0507 (precise values were

found numerically in [14]; note that dropout for SELU was changed to alpha dropout,

as proposed in [14]). All convolutions used 3 by 3 kernel with padding= 1 (on

each side), stride= 1 and dilation= 1 and no groups; max pooling layers used 2

by 2 kernels with stride= 2, dilation= 1 and no padding. Grouping with divisive

normalisation used δ = 1 and p = 0.2 (backprop, pHSIC) or p = 0.5 (FA, sign

symmetry, layer-wise classification), and p = 0.5 without divisive normalisation.

Gaussian kernels used σ = 5. The balance parameter was set to γ = 2.

A.3.6 Small network

The dropout for all experiments was 0.01, with LReLU for nonlinearity. The net-

works were trained for 100 epochs, and the learning rates were multiplied by 0.25

at epochs 50, 75 and 90. The individual parameters, η f for final/backprop initial

learning rate, ηl for the local initial learning rate, ck for the number of groups in the

objective, are given in Table A.1; the final results are given in Table A.2 (same as

Table 2.1 but with “grp”) and Table A.3 (max - min accuracy).

A.3.7 Large network

The dropout for all experiments was 0.05, with LReLU for AdamW+batchnorm

and SELU for SGD. The networks were trained for 500 epochs, and the learning

rates were multiplied by 0.25 at epochs 300, 350, 450 and 475 (and at 100, 200,

250, 275 for backprop with SGD). The individual parameters, η f for final/backprop

initial learning rate, ηl for the local initial learning rate, ck for the number of groups

in the objective, are given in Table A.4 and Table A.5. The results are given in

Table A.6 and Table A.7 (mean test accuracy) and Table A.8 and Table A.9 (max -

min accuracy). The batch manhattan method mentioned in Table A.5 was proposed

in [62]; it is used to stabilise feedback alignment and sign symmetry algorithms by

substituting the gradient w.r.t. the loss (i.e. before adding momentum and weight

A.3. Experimental details 119

decay) with its sign for each weight update. However, in our experiments it didn’t

improve performance in most of the cases. Without any normalisation, we didn’t

find a successful set of parameters for the Gaussian kernel with grouping and for the

methods with feedback alignment and sign symmetry. In those cases, the training

either diverged completely or was stuck at low training and even lower test errors

(e.g. around 40% training error for the Gaussian kernel with grouping, and around

80% training error for layer-wise classification with feedback alignment).

A.3.8 Difference between pHSIC and HSIC in the large network

While we reported all results for pHSIC, training with HSIC instead did not lead to a

significant change in the results (not shown). Moreover, the difference between the

two objectives stays small during training, as we illustrate below.

As explained in Appendix A.1.1, our objectives differ from HSIC only in the

first term, pHSIC(Zk,Zk), due to centring of labels. We trained the 1x wide networks

from the previous section (grouping + divisive normalisation with SGD, grouping +

batchnorm with AdamW) and plotted

pHSIC(Zk,Zk)−HSIC(Zk,Zk)

pHSIC(Zk,Zk)
(A.33)

as a function of training epoch. We compute this quantity on the training data, but

the test data gives the same behaviour (not shown).

The results show that for both the cosine similarity and the Gaussian kernel,

the relative distance between pHSIC and HSIC (Eq. (A.33)) stays small in all layers

expect the first one, but even there it remains relatively constant when trained on

the pHSIC objective with SGD + divisive normalisation (Fig. A.1) or AdamW +

batchnorm (Fig. A.2); the same holds when the objective is HSIC (Fig. A.3 for SGD

+ divisive normalisation and Fig. A.4 for AdamW + batchnorm), although earlier

layers have larger values when compared to pHSIC training.

A.3. Experimental details 120

Table A.1: Parameters for the 3-layer fully connected net (1024 neurons per layer). Last
layer: training of the last layer; cossim: cosine similarity; grp: grouping; div:
divisive normalisation.

backprop last layer pHSIC: cossim pHSIC: Gaussian

div div grp grp+div grp grp+div

MNIST
η f 5e-2 5e-3 5e-2 5e-2 5e-3 5e-3 5e-3 5e-4 5e-4 1e-3
ηl 0.5 0.6 0.4 0.6 1.0 1.0
ck 16 16 16 16 32 32

f-MNIST
η f 5e-3 5e-3 5e-2 5e-2 5e-3 1e-3 5e-4 5e-4 5e-4 5e-4
ηl 1.0 0.6 1.0 0.5 1.0 1.0
ck 32 32 32 32 32 32

K-MNIST
η f 5e-2 5e-2 5e-2 5e-2 5e-3 5e-3 5e-4 1e-3 1e-3 1e-3
ηl 0.6 0.4 0.4 0.6 1.0 1.0
ck 32 16 16 16 32 32

CIFAR10
η f 5e-3 5e-3 5e-2 1e-2 1e-3 5e-3 5e-3 5e-3 5e-4 1e-3
ηl 32 32 1.0 0.4 0.1 0.1 0.6 1.0
ck 32 32 32 32

Table A.2: Mean test accuracy over 5 random seeds for a 3-layer fully connected net (1024
neurons per layer). Last layer: training of the last layer; cossim: cosine similarity;
grp: grouping; div: divisive normalisation.

backprop last layer pHSIC: cossim pHSIC: Gaussian

grp+div grp+div grp grp+div grp grp+div

MNIST 98.6 98.4 92.0 95.4 94.9 95.8 96.3 94.6 98.4 98.1
f-MNIST 90.2 90.8 83.3 85.7 86.3 88.7 88.1 86.5 88.6 88.8
K-MNIST 93.4 93.5 71.2 78.2 80.4 86.2 87.2 80.2 92.7 91.1
CIFAR10 60.0 60.3 39.2 38.0 51.1 52.5 47.6 41.4 48.4 46.4

Table A.3: Same as Table A.2, but max minus min test accuracy over 5 random seeds.

backprop last layer pHSIC: cossim pHSIC: Gaussian

grp+div grp+div grp grp+div grp grp+div

MNIST 0.2 0.1 0.3 0.3 1.4 0.5 0.6 0.2 0.3 0.2
f-MNIST 0.2 0.4 0.3 0.2 0.6 1.1 0.3 0.2 0.6 0.2
K-MNIST 0.3 0.3 1.1 0.8 1.0 1.0 0.9 1.0 0.4 1.2
CIFAR10 0.6 0.9 1.2 1.4 1.4 2.0 1.4 0.5 1.0 0.6

A.3. Experimental details 121

Table A.4: Parameters for the 7-layer conv nets (CIFAR10; 1x and 2x wide). Cossim:
cosine similarity; divnorm: divisive normalisation; bn: batchnorm. Empty
entries: experiments for which we didn’t find a satisfying set of parameters due
to instabilities in the methods.

backprop pHSIC: cossim pHSIC: Gaussian

div grp grp+div grp grp+div

1x wide net + SGD
η f 5e-3 6e-3 5e-5 5e-4 1e-4
ηl 3e-2 0.5 0.4
ck 64 32 64 64

2x wide net + SGD
η f 6e-3 6e-3 5e-5 5e-4 1e-4
ηl 3e-2 0.5 0.4
ck 64 32 64 64

1x wide net + AdamW + batchnorm
η f 5e-3 5e-3 5e-4 5e-4 5e-4 5e-4
ηl 5e-4 5e-4 5e-3 1e-2
ck 64 32 64 64 64

2x wide net + AdamW + batchnorm
η f 5e-3 5e-3 5e-4 5e-4 5e-4 5e-4
ηl 5e-4 5e-4 5e-3 5e-3
ck 64 128 64 128 128

A B Training with pHSIC and the Gaussian kernel
(SGD + divisive normalization)

Training with pHSIC and cosine similarity
(SGD + divisive normalization)

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k
pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k

Figure A.1: Training of 1x networks with pHSIC, SGD and divisive normalisation. Y-
axis represents

(
pHSIC(Zk,Zk)−HSIC(Zk,Zk)

)
/pHSIC(Zk,Zk). A. Cosine

similarity kernel B. Gaussian kernel.

A.3. Experimental details 122

Table A.5: Parameters for the 7-layer conv nets (CIFAR10; 1x and 2x wide). FA: feedback
alignment; sign sym.: sign symmetry; layer class.: layer-wise classification;
divnorm: divisive normalisation; bn: batchnorm. Empty entries: experiments
for which we didn’t find a satisfying set of parameters due to instabilities in the
methods.

FA sign sym. layer class.

+FA

1x wide net + SGD
η f 5e-3
ηl 1e-3

2x wide net + SGD
η f 5e-3
ηl 1e-3

1x wide net + SGD + divnorm
η f 1e-3 5e-4 5e-3 5e-3
ηl 5e-3 5e-3
ck 64 64 64 64

batch manhattan +
2x wide net + SGD + divnorm

η f 5e-4 5e-4 5e-3 5e-3
ηl 5e-3 5e-3
ck 128 128 64 128

batch manhattan +
1x wide net + AdamW + bn

η f 5e-4 5e-4 5e-3 5e-3
ηl 5e-4 1e-3

2x wide net + AdamW + bn
η f 5e-4 5e-4 5e-3 5e-3
ηl 5e-4 5e-4

Table A.6: Mean test accuracy on CIFAR10 over 5 runs for 7-layer conv nets (1x and
2x wide). Cossim: cosine similarity; divnorm: divisive normalisation; bn:
batchnorm. Empty entries: experiments for which we didn’t find a satisfying set
of parameters due to instabilities in the methods.

backprop pHSIC: cossim pHSIC: Gaussian

div grp grp+div grp grp+div

1x wide net + SGD 91.0 91.0 88.8 89.8 86.2
2x wide net + SGD 91.9 90.9 89.4 91.3 90.4
1x wide net + AdamW + batchnorm 94.1 94.3 91.3 90.1 89.9 89.4
2x wide net + AdamW + batchnorm 94.3 94.5 91.9 91.0 91.0 91.2

A.3. Experimental details 123

Table A.7: Mean test accuracy on CIFAR10 over 5 runs for 7-layer conv nets (1x and 2x
wide). FA: feedback alignment; sign sym.: sign symmetry; layer class.: layer-
wise classification; divnorm: divisive normalisation; bn: batchnorm. Empty
entries: experiments for which we didn’t find a satisfying set of parameters due
to instabilities in the methods.

FA sign sym. layer class.

+FA

1x wide net + SGD 90.0
2x wide net + SGD 90.3
1x wide net + SGD + divnorm 80.4 89.5 90.5 81.0
2x wide net + SGD + divnorm 80.6 91.3 91.3 81.2
1x wide net + AdamW + bn 82.4 93.6 92.1 90.3
2x wide net + AdamW + bn 81.6 93.9 92.1 91.1

Table A.8: Same as Table A.6, but max minus min test accuracy over 5 random seeds.

backprop pHSIC: cossim pHSIC: Gaussian

div grp grp+div grp grp+div

1x wide net + SGD 0.4 0.4 0.7 0.7 0.9
2x wide net + SGD 0.3 0.3 2.4 0.2 0.5
1x wide net + AdamW + batchnorm 0.3 0.4 0.2 0.5 0.3 0.5
2x wide net + AdamW + batchnorm 0.5 0.3 0.3 0.3 0.4 0.5

Table A.9: Same as Table A.7, but max minus min test accuracy over 5 random seeds. *The
large deviation is due to one experiment with about 85% accuracy.

FA sign sym. layer class.

+FA

1x wide net + SGD 0.4
2x wide net + SGD 0.1
1x wide net + SGD + divnorm 1.3 5.5* 0.4 1.1
2x wide net + SGD + divnorm 0.9 0.4 0.1 0.9
1x wide net + AdamW + bn 0.4 0.3 0.6 0.5
2x wide net + AdamW + bn 0.9 0.4 0.1 0.4

A.3. Experimental details 124

A B Training with pHSIC and the Gaussian kernel
(AdamW + batchnorm)

Training with pHSIC and cosine similarity
(AdamW + batchnorm)

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k
pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k

Figure A.2: Training of 1x networks with pHSIC, AdamW and batchnorm. Y-axis represents(
pHSIC(Zk,Zk)−HSIC(Zk,Zk)

)
/pHSIC(Zk,Zk). A. Cosine similarity kernel

B. Gaussian kernel.

A B Training with HSIC and the Gaussian kernel
(SGD + divisive normalization)

Training with HSIC and cosine similarity
(SGD + divisive normalization)

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

0.8

pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k
pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k

Figure A.3: Training of 1x networks with HSIC, SGD and divisive normalisation. Y-axis
represents

(
pHSIC(Zk,Zk)−HSIC(Zk,Zk)

)
/pHSIC(Zk,Zk). A. Cosine simi-

larity kernel B. Gaussian kernel.

A B Training with HSIC and the Gaussian kernel
(AdamW + batchnorm)

Training with HSIC and cosine similarity
(AdamW + batchnorm)

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

1 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k
pHSIC(Z, Z) — HSIC(Z, Z)k k k k

pHSIC(Z, Z)k k

Figure A.4: Training of 1x networks with HSIC, AdamW and batchnorm. Y-axis represents(
pHSIC(Zk,Zk)−HSIC(Zk,Zk)

)
/pHSIC(Zk,Zk). A. Cosine similarity kernel

B. Gaussian kernel.

Appendix B

Chapter 3 Appendix

B.1 HSIC estimation in the self-supervised setting
Estimators of HSIC typically assume i.i.d. data, which is not the case for self-

supervised learning – the positive examples are not independent. Here we show how

to adapt our estimators to the self-supervision setting.

B.1.1 Exact form of HSIC(Z, Y)

Starting with HSIC(Z,Y), we assume that the “label” y is a one-hot encoding of the

data point, and all N data points are sampled with the same probability 1/N. With

a one-hot encoding, any kernel that is a function of y⊤i y j or ∥yi −y j∥ (e.g. linear,

Gaussian or IMQ) have the form

l(yi,y j) =

l1 yi = y j,

l0 otherwise
≡ ∆l I(yi = y j)+ l0 (B.1)

for some ∆l = l1 − l0.

Theorem 1. For a dataset with N original images sampled with probability 1/N,

and a kernel over image identities defined as in (B.1), HSIC(Z,Y) takes the form

HSIC(Z,Y) =
∆l
N

EZ,Z′∼pos
[
k(Z,Z′)

]
− ∆l

N
E
[
k(Z,Z′)

]
, (B.2)

where Z,Z′ ∼ pos means ppos(Z,Z′) = ∑i p(i)p(Z|i)p(Z′|i) for image probability

p(i) = 1/N.

B.1. HSIC estimation in the self-supervised setting 126

Proof. We compute HSIC (defined in (1.20)) term by term. Starting from the first,

and denoting independent copies of Z,Y with Z′,Y ′,

E
[
k(Z,Z′)l(Y,Y ′)

]
= ∆lE

[
k(Z,Z′)I[Y = Y ′]

]
+ l0E

[
k(Z,Z′)

]
= ∆l

N

∑
i=1

N

∑
j=1

EZ|yi,Z′|y j

[
1

N2 k(Z,Z′)I[yi = y j]

]
+ l0E

[
k(Z,Z′)

]
=

∆l
N

N

∑
i=1

EZ|yi,Z′|yi

[
1
N

k(Z,Z′)

]
+ l0E

[
k(Z,Z′)

]
=

∆l
N

EZ,Z′∼pos
[
k(Z,Z′)

]
+ l0E

[
k(Z,Z′)

]
,

where EZ,Z′∼pos is the expectation over positive examples (with Z and Z′ are sampled

independently conditioned on the “label”).

The second term, due to the independence between Z′ and Y ′′, becomes

E
[
k(Z,Z′)l(Y,Y ′′)

]
= EZYEZ′

[
k(Z,Z′)

(
∆l
N

+ l0

)]
=

(
∆l
N

+ l0

)
E
[
k(Z,Z′)

]
.

And the last term becomes identical to the second one,

E
[
k(Z,Z′)

]
E
[
l(Y,Y ′)

]
=

(
∆l
N

+ l0

)
E
[
k(Z,Z′)

]
.

Therefore, we can write HSIC(Z,Y) as

HSIC(Z,Y) = E
[
k(Z,Z′)l(Y,Y ′)

]
−2E

[
k(Z,Z′)l(Y,Y ′′)

]
+E

[
k(Z,Z′)

]
E
[
l(Y,Y ′)

]
=

∆l
N

EZ,Z′∼pos
[
k(Z,Z′)

]
− ∆l

N
E
[
k(Z,Z′)

]
,

as the terms proportional to l0 cancel each other out.

The final form of HSIC(Z,Y) shows that the Y kernel and dataset size come in

only as pre-factors. To make the term independent of the dataset size (as long as it is

finite), we can assume ∆l = N, such that

HSIC(Z,Y) = EZ,Z′∼pos
[
k(Z,Z′)

]
−E

[
k(Z,Z′)

]
.

B.1. HSIC estimation in the self-supervised setting 127

B.1.2 Estimator of HSIC(Z, Y)

Theorem 2. In the assumptions of Theorem 1, additionally scale the Y kernel to

have ∆l = N, and the Z kernel to be k(z,z) = 1. Assume that the batch is sampled

as follows: B < N original images are sampled without replacement, and for each

image M positive examples are sampled independently (i.e., the standard sampling

scheme in self-supervised learning). Then denoting each data point zp
i for “label” i

and positive example p,

ĤSIC(Z,Y) =
(

M
M−1

+
N −1

N(B−1)
− M

N(M−1)

)
1

BM2 ∑
ipl

k(zp
i ,z

l
i) (B.3)

− B(N −1)
(B−1)N

1
B2M2 ∑

i jpl
k(zp

i ,z
l
j)−

N −1
N(M−1)

. (B.4)

is an unbiased estimator of (B.2).

While we assumed that k(z,z) = 1 for simplicity, any change in the scaling

would only affect the constant term (which is irrelevant for gradient-based learning).

Recalling that |k(z,z′)| ≤ max(k(z,z),k(z′,z′)), we can then obtain a slightly biased

estimator from Theorem 2 by simply discarding small terms:

Corollary 1. If |k(z,z′)| ≤ 1 for any z,z′, then

ĤSIC(Z,Y) =
1

BM(M−1)∑
ipl

k(zp
i ,z

l
i)−

1
B2M2 ∑

i jpl
k(zp

i ,z
l
j)−

1
M−1

(B.5)

has a O(1/B) bias.

Proof of Theorem 2. To derive an unbiased estimator, we first compute expectations

of two sums: one over all positive examples (same i) and one over all data points.

Starting with the first,

E

[
1

BM2 ∑
ipl

k(zp
i ,z

l
i)

]
= E

[
1

BM2 ∑
ip,l ̸=p

k(zp
i ,z

l
i)

]
+E

[
1

BM2 ∑
ip

k(zp
i ,z

p
i)

]
(B.6)

=
M−1

M
EZ,Z′∼pos

[
k(Z,Z′)

]
+

1
M

. (B.7)

B.1. HSIC estimation in the self-supervised setting 128

As for the second sum,

E

[
1

B2M2 ∑
i jpl

k(zp
i ,z

l
j)

]
= E

[
1

B2M2 ∑
i, j ̸=i,pl

k(zp
i ,z

l
j)

]
+E

[
1

B2M2 ∑
ipl

k(zp
i ,z

l
i)

]
.

The first term is tricky: E
[
k(zp

i ,z
l
j)
]
̸= E [k(Z,Z′)] because we sample without

replacement. But we know that p(y,y′) = p(y)p(y′|y) = 1/(N(N −1)), therefore for

i ̸= j

Ek(zp
i ,z

l
j) = ∑

y,y′ ̸=y

1
N(N −1)

EZ|y,Z′|y′ k(Z,Z
′) (B.8)

= ∑
yy′

1
N(N −1)

EZ|y,Z′|y′ k(Z,Z
′)−∑

y

1
N(N −1)

EZ|y,Z′|yk(Z,Z′) (B.9)

=
N

N −1
Ek(Z,Z′)− 1

N −1
EZ,Z′∼posk(Z,Z

′) . (B.10)

Using the expectations for ipl and i jpl,

E
1

B2M2 ∑
i jpl

k(zp
i ,z

l
j) = E

1
B2M2 ∑

i, j ̸=i,pl
k(zp

i ,z
l
j)+E

1
B2M2 ∑

ipl
k(zp

i ,z
l
j) (B.11)

=
B−1

B(N −1)
(
NEk(Z,Z′)−EZ,Z′∼pos k(Z,Z′)

)
+

M−1
BM

EZ,Z′∼pos k(Z,Z′)+
1

BM

(B.12)

=
(B−1)N
B(N −1)

Ek(Z,Z′)− B−1
B(N −1)

EZ,Z′∼pos k(Z,Z′) (B.13)

+
M−1
BM

EZ,Z′∼posk(Z,Z
′)+

1
BM

(B.14)

=
(B−1)N
B(N −1)

Ek(Z,Z′)+
1
B

(
M−1

M
− B−1

N −1

)
EZ,Z′∼pos k(Z,Z′)+

1
BM

. (B.15)

Combining (B.6) and (B.11) shows that (B.3) is indeed an unbiased estimator.

It’s worth noting that the i.i.d. estimator (1.24) is flawed for HSIC(Z,Y) for

two reasons: first, it misses the 1/N scaling of HSIC(Z,Y) (however, it’s easy to fix

by rescaling); second, it misses the 1/(M(M −1)) correction for the ipl sum. As

we typically have M = 2, the latter would result in a large bias for the (scaled) i.i.d.

B.1. HSIC estimation in the self-supervised setting 129

estimator.

B.1.3 Estimator of HSIC(Z, Z)

Before discussing estimators of HSIC(Z,Z), note that it takes the following form:

HSIC(Z,Z) = E
[
k(Z,Z′)2]−2EZ

[
EZ′

[
k(Z,Z′)

]2]
+
(
E
[
k(Z,Z′)

])2
.

This is because X and Y in HSIC(X ,Y) become the same random variable, so

p(X ,Y) = pZ(X)δ (X −Y) (see [26], Appendix A).

Theorem 3. Assuming k(z,z′)≤ 1 for any z,z′, the i.i.d. HSIC estimator by [32],

ĤSIC(Z,Z) =
1

(BM−1)2 Tr(KHKH) ,

where H = I − 1
BM 11⊤, has a O(1/B) bias for the self-supervised sampling scheme.

Proof. First, observe that

Tr(KHKH) = Tr(KK)− 2
BM

1⊤KK1+
1

B2M2

(
1⊤K1

)2
.

Starting with the first term, and using again the result of (B.8) for sampling without

replacement,

E [Tr(KK)] = E

[
∑
i jpl

k(zp
i ,z

l
j)

2

]
= E

[
∑

i, j ̸=i,pl
k(zp

i ,z
l
j)

2

]
+E

[
∑
ipl

k(zp
i ,z

l
j)

2

]

=
B(B−1)M2

N −1
(
NEk(Z,Z′)2 −EZ,Z′∼posk(Z,Z

′)2)+E ∑
ipl

k(zp
i ,z

l
j)

2

= B2M2Ek(Z,Z′)2 +O(BM2) .

Similarly, the expectation of the second term is

E1⊤KK1 = E ∑
i jqpld

k(zp
i ,z

d
q)k(z

l
j,z

d
q)

= E ∑
i, j ̸=i,q̸={i, j},pld

k(zp
i ,z

d
q)k(z

l
j,z

d
q)+O(B2M3) .

B.1. HSIC estimation in the self-supervised setting 130

Here we again need to take sampling without replacement into account, and again it

will produce a very small correction term. For i ̸= j ̸= q, repeating the calculation in

(B.8),

Ek(zp
i ,z

l
j)k(z

p
i ,z

d
q) = ∑

y,y′ ̸=y,y′′ ̸={y,y′}

1
N(N −1)(N −2)

EZ|y,Z′|y′,Z′′|y′′ k(Z,Z
′)k(Z,Z′′)

= Ek(Z,Z′)k(Z,Z′′)+O(1/N) .

As B < N, we obtain that

E1⊤KK1 = B(B−1)(B−2)M3Ek(Z,Z′)k(Z,Z′′)+O(B2M3) .

Finally, repeating the same argument for sampling without replacement,

E
(

1⊤K1
)2

= E ∑
i jqrpld f

k(zp
i ,z

l
j)k(z

d
q,z

f
r)

= E ∑
i, j ̸=i,q̸={i, j},r ̸={i, j,q},pld f

k(zp
i ,z

l
j)k(z

d
q,z

f
r)+O(B3M4)

= B(B−1)(B−2)(B−3)M4Ek(Z,Z′)k(Z′′,Z′′′)+O(B3M4) .

Combining all terms together, and expressing B(B−1) (and similar) terms in

big-O notation,

E
Tr(KHKH)

(BM−1)2 = E
(
k(Z,Z′)2 −2k(Z,Z′)k(Z,Z′′)+ k(Z,Z′)k(Z′′,Z′′′′)

)
+O

(
1
B

)
= Ek(Z,Z′)2 −2EZ

(
EZ′ k(Z,Z′)

)2
+
(
Ek(Z,Z′)

)2
+O

(
1
B

)
= HSIC(Z,Z)+O

(
1
B

)
.

Essentially, having M positive examples for the batch size of BM changes the

bias from O(1/(BM)) (i.i.d. case) to O(1/B). Finally, note that even if ĤSIC(Z,Z)

is unbiased, its square root is not.

B.2. Theoretical properties of SSL-HSIC 131

B.2 Theoretical properties of SSL-HSIC

B.2.1 InfoNCE connection

To establish the connection with InfoNCE, define it in terms of expectations:

LInfoNCE(θ) = EZ
[
logEZ′

[
exp
(
k(Z,Z′)

)]]
−EZ,Z′∼pos

[
k(Z,Z′)

]
. (B.16)

To clarify the reasoning in the main text, we can Taylor expand the exponent in

(B.16) around µ1 ≡ EZ′ [k(Z,Z′)]. For k(Z,Z′)≈ µ1,

EZ
[
logEZ′

[
exp
(
k(Z,Z′)

)]]
≈ EZ [µ1]+EZ

[
logEZ′

[
1+ k(Z,Z′)−µ1 +

(k(Z,Z′)−µ1)
2

2

]]
= EZ [µ1]+EZ

[
logEZ′

[
1+

(k(Z,Z′)−µ1)
2

2

]]
.

Now expanding log(1+ x) around zero,

EZ
[
logEZ′

[
exp
(
k(Z,Z′)

)]]
≈ EZ [µ1]+EZEZ′

[
(k(Z,Z′)−µ1)

2

2

]
= EZEZ′

[
k(Z,Z′)

]
+

1
2
EZ
[
VarZ′

[
k(Z,Z′)

]]
.

The approximate equality relates to expectations over higher order moments,

which are dropped. The expression gives the required intuition behind the loss,

however: when the variance in k(Z,Z′) w.r.t. Z′ is small, InfoNCE combines

−HSIC(Z,Y) and a variance-based penalty. In general, we can always write (assum-

ing ∆l = N in HSIC(Z,Y) as before)

LInfoNCE(θ) =−HSIC(Z,Y)+EZ
[
logEZ′

[
exp
(
k(Z,Z′)−µ1

)]]
. (B.17)

In the small variance regime, InfoNCE also bounds an HSIC-based loss. To

show this, we will need a bound on exp(x):

B.2. Theoretical properties of SSL-HSIC 132

Lemma 1. For 0 < α ≤ 1/4 and x ≥−
(
1+

√
1−4α

)
/(2α),

exp(x)≥ 1+ x+α x2 . (B.18)

Proof. The quadratic equation 1+ x+α x2 has two roots (x1 ≤ x2):

x1,2 =
±
√

1−4α −1
2α

.

Both roots are real, as α ≤ 1/4. Between x1 and x2, (B.18) holds trivially as the rhs

is negative.

For x ≥−2 and α ≤ 1/4,

exp(x)≥ 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
≥ 1+ x+α x2 .

The first bound always holds; the second follows from

x
3!

+
x2

4!
+

x3

5!
≥ α − 1

2
,

as the lhs is monotonically increasing and equals −7/30 at x =−2. The rhs is always

smaller than −1/4 < −7/30. As x2 ≥ −2 (due to α ≤ 1/4), (B.18) holds for all

x ≥ x1.

We can now lower-bound InfoNCE:

Theorem 4. Assuming that the kernel over Z is bounded as |k(z,z′)| ≤ kmax for any

z,z′, and the kernel over Y satisfies ∆l = N (defined in (B.1)). Then for γ satisfying

min{−2,−2kmax}=−(1+
√

1−4γ)/(2γ),

−HSIC(Z,Y)+ γ HSIC(Z,Z)≤ LInfoNCE(θ)−EZ
(γVarZ′ [k(Z,Z′)])2

1+ γVarZ′ [k(Z,Z′)]
.

Proof. As we assumed the kernel is bounded, for k(Z,Z′)−µ1 ≥−2kmax (almost

surely; the factor of 2 comes from centring by µ1). Now if we choose γ that satisfies

min{−2,−2kmax} = −(1+
√

1−4γ)/(2γ) (the minimum is to apply our bound

B.2. Theoretical properties of SSL-HSIC 133

even for kmax < 1), then (almost surely) by Lemma 1,

exp
(
k(Z,Z′)−µ1

)
≥ 1+ k(Z,Z′)−µ1 + γ

(
k(Z,Z′)−µ1

)2
.

Therefore, we can take the expectation w.r.t. Z′, and obtain

EZ logEZ′ exp
(
k(Z,Z′)−µ1

)
≥ EZ log

(
1+ γ VarZ′

[
k(Z,Z′)

])
.

Now we can use that log(1 + x) ≥ x/(1 + x) = x − x2/(1 + x) for x > −1,

resulting in

EZ logEZ′ exp
(
k(Z,Z′)−µ1

)
≥ γ EZVarZ′

[
k(Z,Z′)

]
+EZ

(γ VarZ′ [k(Z,Z′)])2

1+ γ VarZ′ [k(Z,Z′)]
.

Using (B.17), we obtain that

LInfoNCE(θ) =−HSIC(Z,Y)+EZ logEZ′ exp
(
k(Z,Z′)−µ1

)
≥−HSIC(Z,Y)+ γ EZVarZ′

[
k(Z,Z′)

]
+EZ

(γVarZ′ [k(Z,Z′)])2

1+ γVarZ′ [k(Z,Z′)]
.

Finally, noting that by Cauchy-Schwarz

HSIC(Z,Z) = EZ,Z′k(Z,Z′)2 −2EZ
(
EZ′k(Z,Z′)

)2
+
(
EZ,Z′k(Z,Z′)

)2

≤ EZ,Z′k(Z,Z′)2 −EZ
(
EZ′k(Z,Z′)

)2
= EZVarZ′

[
k(Z,Z′)

]
,

we get the desired bound.

Theorem 4 works for any bounded kernel, because −(1+
√

1−4γ)/(2γ) takes

values in (∞,−2] for γ ∈ (0,1/4]. For inverse temperature-scaled cosine simi-

larity kernel k(z,z′) = z⊤z′/(τ∥z∥∥z′∥), we have kmax = 1/τ . For τ = 0.1 (used

in SimCLR [92]), we get γ = 0.0475. For the Gaussian and the IMQ kernels,

k(z,z′)≥−µ1 ≥−1, so we can replace γ with 1
3 due to the following inequality: for

B.2. Theoretical properties of SSL-HSIC 134

x ≥ a,

exp(x)≥ 1+ x+
x2

2
+

x3

6
≥ 1+ x+

a+3
6

x2 ,

where the first inequality is always true.

B.2.2 MMD interpretation of HSIC(X,Y)

The special label structure of the self-supervised setting allows us to understand

HSIC(X ,Y) in terms of the maximum mean discrepancy (MMD). Denoting labels

as i and j and corresponding mean feature vectors (in the RKHS) as µi and µ j,

MMD2(i, j) = ∥µi −µ j∥2 = ⟨µi, µi⟩+
〈
µ j, µ j

〉
−2
〈
µi, µ j

〉
.

Therefore, the average over all labels becomes

1
N2 ∑

i j
MMD2(i, j) =

2
N ∑

i
⟨µi, µi⟩−

2
N2 ∑

i j

〈
µi, µ j

〉
=

2
N ∑

i
⟨µi, µi⟩−

2
N2

〈
∑

i
µi, ∑

j
µ j

〉
= 2EiEZ|i,Z′|i

〈
φ(Z), φ(Z′)

〉
−2
〈
EiEZ|iφ(Z), E jEZ′| jφ(Z

′)
〉

= 2EZ,Z′∼pos
[
k(Z,Z′)

]
−2EZEZ′

[
k(Z,Z′)

]
,

where the second last line uses that all labels have the same probability 1/N,

and the last line takes the expectation out of the dot product and uses k(Z,Z′) =

⟨φ(Z), φ(Z′)⟩.

Therefore,

1
2N2 ∑

i j
MMD2(i, j) =

N
∆l

HSIC(Z,Y) .

B.3. Random Fourier Features (RFF) 135

B.3 Random Fourier Features (RFF)

B.3.1 Basics of RFF

Random Fourier features were introduced by [120] to reduce computational com-

plexity of kernel methods. Briefly, for translation-invariant kernels k(z− z′) that

satisfy k(0) = 1, Bochner’s theorem gives that

k(z− z′) =
∫

p(ω)eiω⊤(z−z′)dn
ω = Eω

[
eiω⊤z

(
eiω⊤z′

)∗]
,

where the probability distribution p(ω) is the n-dimensional Fourier transform of

k(z− z′).

As both the kernel and p(ω) are real-valued, we only need the real parts of the

exponent. Therefore, for b ∼ Uniform[0,2π],

k(z− z′) = Eω,b

[
2cos(ω⊤z+b)cos(ω⊤z′+b)

]
.

For N data points, we can draw D ωd from p(ω), construct RFF for each points

zi, put them into matrix R ∈ RN×D, and approximate the kernel matrix as

K ≈ RR⊤, Rid =

√
2
D

cos(ω⊤
d zi +b) ,

and ERR⊤ = K.

For the Gaussian kernel, k(z − z′) = exp(−∥z − z′∥2/2), we have p(ω) =

(2π)−D/2 exp(−∥ω∥2/2) [120]. We are not aware of literature on RFF representation

for the inverse multiquadratic (IMQ) kernel; we derive it below using standard

methods.

B.3.2 RFF for the IMQ kernel

Theorem 5. For the inverse multiquadratic (IMQ) kernel,

k(z,z′)≡ k(z− z′) =
c√

c2 +∥z− z′∥2
,

B.3. Random Fourier Features (RFF) 136

the distribution of random Fourier features p(ω) is proportional to the following

(for s = ∥w∥),

p(ω)≡ ĥ(s) ∝

Kn−2
2 + 1

2
(cs)

s
n−2

2 + 1
2

=
Kn−1

2
(cs)

s
n−1

2
, (B.19)

where Kν is the modified Bessel function (of the second kind) of order ν .

Proof. To find the random Fourier features, we need to take the Fourier transform of

this kernel,

k̂(ω) =
∫

e−iω⊤zk(z)dnz .

As the IMQ kernel is radially symmetric, meaning that k(z,z′) = h(r) for

r = ∥z− z′∥, its Fourier transform can be written in terms of the Hankel transform

[196, Section B.5] (with ∥ω∥= s)

k̂(ω) = ĥ(s) =
(2π)n/2

s
n−2

2
Hn−2

2

[
r

n−2
2 h(r)

]
(s) .

The Hankel transform of order ν is defined as

Hν [g(t)](s) =
∫

∞

0
Jν(st)g(t)t dt ,

where Jν(s) is the Bessel function (of the first kind) of order ν .

As h(r) = c/
√

c2 + r2,

Hn−2
2

[
r

n−2
2 h(r)

]
(s) = c

√
2c

n−2
2 +1/2

√
sΓ(1

2)
Kn−2

2 + 1
2
(cs) ,

where Kν is a modified Bessel function (of the second kind) of order ν .

Therefore, by using a table of Hankel transforms [197, Chapter 9, Table 9.2],

ĥ(s) ∝

Kn−2
2 + 1

2
(cs)

s
n−2

2 + 1
2

=
Kn−1

2
(cs)

s
n−1

2
.

B.3. Random Fourier Features (RFF) 137

B.3.2.1 How to sample

To sample random vectors from (B.19), we can first sample their directions as

uniformly distributed unit vectors d/∥d∥, and then their amplitudes s from ĥ(s)sn−1

(the multiplier comes from the change to spherical coordinates).

Sampling unit vectors is easy, as for d ∼ N (0, I), d/∥d∥ is a uniformly dis-

tributed unit vector.

To sample the amplitudes, we numerically evaluate

p̃(s) = ĥ(s)sn−1 = Kn−1
2
(cs)s

n−1
2 (B.20)

on a grid, normalise it to get a valid probability distribution, and sample from this

approximation. As for large orders Kν attains very large numbers, we use mpmath

[198], an arbitrary precision floating-point arithmetic library for Python. As we

only need to sample p̃(s) once during training, this adds a negligible computational

overhead.

Finally, note that for any IMQ bias c, we can sample s from (B.20) for c = 1,

and then use s̃ = s/c to rescale the amplitudes. This is because

P(s/c ≤ x) = P(s ≤ cx) =C
∫ cx

0
Kn−1

2
(t)t

n−1
2 dt =Cc

n−1
2

∫ x

0
Kn−1

2
(ct̃)t̃

n−1
2 cdt̃ .

In practice, we evaluate p̃(s) for c = 1 on a uniform grid over [10−12,100] with 104

points, and rescale for other c (for output dimensions of more that D = 128, the grid

endpoint is 120 for D ≥ 1024, 150 for D ≥ 2048 and 200 for D ≥ 4096.).

B.3.3 RFF for SSL-HSIC

To apply RFF to SSL-HSIC, we will discuss the HSIC(Z,Y) and the HSIC(Z,Z)

terms separately. We will use the following notation:

k(zp
i ,z

l
j)≈

D

∑
d=1

rip
d r jl

d

for D-dimensional RFF rip and r jl .

B.3. Random Fourier Features (RFF) 138

Starting with the first term, we can rewrite (B.5) as

ĤSIC(Z,Y)RFF =
1

BM(M−1) ∑
ipld

rip
d ril

d −
1

B2M2 ∑
i jpld

rip
d r jl

d − 1
M−1

=
1

BM(M−1)∑
id

(
∑
p

rip
d

)2

− 1
B2M2 ∑

d

(
∑
ip

rip
d

)2

− 1
M−1

.

The last term in the equation above is why we use RFF: instead of computing ∑i jpl

in O(B2M2) operations, we compute ∑ip in O(BM) and then sum over d, resulting

in O(BMD) operations (as we use large batches, typically BM > D). As HSIC(Z,Y)

is linear in k, Eω,b ĤSIC(Z,Y)RFF = ĤSIC(Z,Y).

To estimate ĤSIC(Z,Z), we need to sample RFF twice. This is because

ĤSIC(Z,Z) =
1

(BM−1)2 Tr (KHKH) ,

therefore we need the first K to be approximated by RR⊤, and the second – by

an independently sampled R̃R̃⊤. This way, we will have E
ω,b,ω̃,b̃ ĤSIC(Z,Z)RFF =

ĤSIC(Z,Z).

Therefore, we have (noting that HH = H)

ĤSIC(Z,Z)RFF =
1

(BM−1)2 Tr
(

RR⊤HR̃R̃⊤H
)
=

1
(BM−1)2∥R⊤HR̃∥2

F

=
1

(BM−1)2∥R⊤HHR̃∥2
F

=
1

(BM−1)2 ∑
d1,d2

(
∑
ip

(
rip

d1
− 1

BM ∑
jl

r jl
d1

)(
rip

d2
− 1

BM ∑
jl

r jl
d2

))2

.

To summarise the computational complexity of this approach, computing D

random Fourier features for a Q-dimensional z takes O(DQ) operations (sampling

D×K Gaussian vector, normalising it, sampling D amplitudes, computing ω⊤
d z

D times), therefore O(BMDQ) for BM points. After that, computing HSIC(Z,Y)

takes O(BMD) operations, and HSIC(Z,Z) – O(BMD2) operations. The resulting

complexity per batch is O(BMD(Q+D)). Note that we sample new features every

batch.

B.4. Experiment Details 139

In contrast, computing SSL-HSIC directly would cost O(Q) operations per

entry of K, resulting in O((BM)2Q) operations. Computing HSIC would then be

quadratic in batch size, and the total complexity would stay O((BM)2Q).

In the majority of experiments, B= 4096, M = 2, Q= 128 and D= 512, and the

RFF approximation performs faster (with little change in accuracy; see Table 3.8b).

B.4 Experiment Details
Note: the experimental results are due to Yazhe Li. They are included here for

completeness. I have conducted similar experiments on a smaller scale during this

project, but I didn’t have access to the computational resources needed for the final

experiments.

B.4.1 ImageNet Pretraining

B.4.1.1 Data augmentation

We follow the same data augmentation scheme as BYOL [93] with exactly the same

parameters. For completeness, we list the augmentations applied and parameters

used:

• random cropping: randomly sample an area of 8% to 100% of the original

image with an aspect ratio logarithmically sampled from 3/4 to 4/3. The

cropped image is resized to 224×224 with bicubic interpolation;

• flip: optionally flip the image with a probability of 0.5;

• color jittering: adjusting brightness, contrast, saturation and hue in a random

order with probabilities 0.8, 0.4, 0.4, 0.2 and 0.1 respectively;

• color dropping: optionally converting to grayscale with a probability of 0.2;

• Gaussian blurring: Gaussian kernel of size 23×23 with a standard deviation

uniformly sampled over [0.1,2.0];

• solarization: optionally apply color transformation x 7→ x · 1x<0.5 +(1− x) ·

1x≥0.5 for pixels with values in [0,1]. Solarization is only applied for the

second view, with a probability of 0.2.

B.4. Experiment Details 140

B.4.1.2 Optimizing kernel parameters

Since we use radial basis function kernels, we can express the kernel k(s) in term

of the distance s = ∥zi − z j∥2. The entropy of the kernel distance kσ (si j) can be

expressed as follows:

H[k] =−
∫

p(k) log p(k)dk

=−
∫

q(s) log
(

q(s)
∣∣∣∣ds
dk

∣∣∣∣)ds

= H[s]+
∫

q(s) log
∣∣∣∣dk
ds

∣∣∣∣ds

= E
[
log|k′σ (s)|

]
+ const

∝ E
[
log|k′σ (s)|2

]
+ const.

We use the kernel distance entropy to automatically tune kernel parameters:

for the kernel parameter σ , we update it to maximize E
[
log|k′σ |2

]
(for IMQ, we

optimize the bias c) at every batch. This procedure makes sure the kernel remains

sensitive to data variations as representations move closer to each other.

B.4.2 Evaluations

B.4.2.1 ImageNet linear evaluation protocol

After pretraining with SSL-HSIC, we retain the encoder weights and train a linear

layer on top of the frozen representation. The original ImageNet training set is split

into a training set and a local validation set with 10000 data points. We train the

linear layer on the training set. Spatial augmentations are applied during training, i.e.,

random crops with resizing to 224×224 pixels, and random flips. For validation,

images are resized to 256 pixels along the shorter side using bicubic resampling, after

which a 224×224 center crop is applied. We use SGD with Nesterov momentum

and train over 90 epochs, with a batch size of 4096 and a momentum of 0.9. We

sweep over learning rate and weight decay and choose the hyperparameter with top-1

accuracy on local validation set. With the best hyperparameter setting, we report the

final performance on the original ImageNet validation set.

B.4. Experiment Details 141

B.4.2.2 ImageNet semi-supervised learning protocol

We use ImageNet 1% and 10% datasets as SimCLR [92]. During training, we

initialize the weights to the pretrained weights, then fine-tune them on the ImageNet

subsets. We use the same training procedure for augmentation and optimization as

the linear evaluation protocol.

B.4.2.3 Linear evaluation protocol for other classification datasets

We use the same dataset splits and follow the same procedure as BYOL [93] to

evaluate classification performance on other datasets, i.e. 12 natural image datasets

and Pascal VOC 2007. The frozen features are extracted from the frozen encoder.

We learn a linear layer using logistic regression in sklearn with l2 penalty and

LBFGS for optimization. We use the same local validation set as BYOL [93] and

tune hyperparameter on this local validation set. Then, we train on the full training

set using the chosen weight of the l2 penalty and report the final result on the test set.

B.4.2.4 Fine-tuning protocol for other classification datasets

Using the same dataset splits described in Sec. B.4.2.3, we initialize the weights

of the network to the pretrained weights and fine-tune on various classification

tasks. The network is trained using SGD with Nestrov momentum for 20000 steps.

The momentum parameter for the batch normalization statistics is set to max(1−

10/s,0.9) where s is the number of steps per epoch. We sweep the weight decay

and learning rate, and choose hyperparameters that give the best score on the local

validation set. Then we use the selected weight decay and learning rate to train on

the whole training set to report the test set performance.

B.4.2.5 Transfer to semantic segmentation

In semantic segmentation, the goal is to classify each pixel. The head architecture is

a fully-convolutional network (FCN)-based [199] architecture as [93, 112]. We train

on the train aug2012 set and report results on val2012. Hyperparameters are

selected on a 2119 images, which is the same held-out validation set as [93]. A

standard per-pixel softmax cross-entropy loss is used to train the FCN. Training uses

random scaling (by a ratio in [0.5,2.0]), cropping (crop size 513), and horizontal

B.4. Experiment Details 142

flipping for data augmentation. Testing is performed on the [513,513] central crop.

We train for 30000 steps with a batch size of 16 and weight decay 10−4. We sweep

the base learning rate with local validation set. We use the best learning rate to train

on the whole training set and report on the test set. During training, the learning rate

is multiplied by 0.1 at the 70th and 90th percentile of training. The final result is

reported with the average of 5 seeds.

B.4.2.6 Transfer to depth estimation

The network is trained to predict the depth map of a given scene. We use the

same setup as BYOL [93] and report it here for completeness. The architecture

is composed of a ResNet-50 backbone and a task head which takes the conv5

features into 4 upsampling blocks with respective filter sizes 512, 256, 128, and

64. Reverse Huber loss function is used for training. The frames are down-sampled

from [640,480] by a factor 0.5 and center-cropped to size [304,228]. Images are

randomly flipped and color transformations are applied: greyscale with a probability

of 0.3; brightness adjustment with a maximum difference of 0.1255; saturation with

a saturation factor randomly picked in the interval [0.5,1.5]; hue adjustment with

a factor randomly picked in the interval [−0.2,0.2]. We train for 7500 steps with

batch size 256, weight decay 0.001, and learning rate 0.05.

B.4.2.7 Transfer to object detection

We follow the same setup for evaluating COCO object detection tasks as in DetCon

[200]. The architecture used is a Mask-RCNN [201] with feature pyramid networks

[202]. During training, the images are randomly flipped and resized to (1024 · s)×

(1024 · s) where s ∈ [0.8,1.25]. Then the resized image is cropped or padded to a

1024×1024. We fine-tune the model for 12 epochs (1× schedule [112]) with SGD

with momentum with a learning rate of 0.3 and momumtem 0.9. The learning rate

increases linearly for the first 500 iterations and drops twice by a factor of 10, after

2/3 and 8/9 of the total training time. We apply a weight decay of 4× 10−5 and

train with a batch size of 64.

Appendix C

Chapter 4 and 5 Appendix

C.1 Dynamic weight sharing

C.1.1 Noiseless case

Each neuron receives the same k-dimensional input x, and its response zi is given by

zi = w⊤
i x =

k

∑
j=1

wi jx j . (C.1)

To equalise the weights wi among all neurons, the network minimises the

following objective,

Lw. sh.(w1, . . . ,wN) =
1

4MN

M

∑
m=1

N

∑
i=1

N

∑
j=1

(
zi − z j

)2
+

γ

2

N

∑
i=1

∥wi −winit
i ∥2 (C.2)

=
1

4MN

M

∑
m=1

N

∑
i=1

N

∑
j=1

(
w⊤

i xm −w⊤
j xm

)2
+

γ

2

N

∑
i=1

∥wi −winit
i ∥2 ,

(C.3)

where winit
i is the weight at the start of dynamic weight sharing. This is a strongly

convex function, and therefore it has a unique minimum.

The SGD update for one xm is

∆wi ∝ −

(
zi −

1
N

N

∑
j=1

z j

)
xm − γ

(
wi −winit

i

)
. (C.4)

C.1. Dynamic weight sharing 144

To find the fixed point of the dynamics, we first set the sum over the gradients

to zero,

∑
i

d Lw. sh.(w1, . . . ,wN)

d wi
=

1
M ∑

i,m

(
zi −

1
N

N

∑
j=1

z j

)
xm + γ ∑

i

(
wi −winit

i

)
(C.5)

= γ ∑
i

(
wi −winit

i

)
= 0 . (C.6)

Therefore, at the fixed point the mean weight µµµ∗ = ∑i w∗
i /N is equal to µµµ init =

∑i winit
i /N, and

1
N

N

∑
i=1

zi =
1
N

N

∑
i=1

w∗⊤
i xm = (µµµ init)⊤ xm . (C.7)

We can now find the individual weights,

d Lw. sh.(w1, . . . ,wN)

d wi
=

1
M ∑

m

(
zi −

1
N

N

∑
j=1

z j

)
xm + γ

(
wi −winit

i

)
(C.8)

=
1
M ∑

m
xmx⊤m

(
wi −µµµ

init
)
+ γ

(
wi −winit

i

)
= 0 . (C.9)

Denoting the covariance matrix C ≡ 1
M ∑m xmx⊤m , we see that

w∗
i = (C+ γ I)−1

(
C µµµ

init + γ winit
i

)
= (C+ γ I)−1

(
C

1
N

N

∑
i=1

winit
i + γ winit

i

)
,

(C.10)

where I is the identity matrix. From Eq. (C.10) it is clear that w∗
i ≈ µµµ init for small γ

and full rank C. For instance, for C = I,

w∗
i =

1
1+ γ

µµµ
init +

γ

1+ γ
winit

i . (C.11)

C.1. Dynamic weight sharing 145

0 0
-2
-4
-6

-8
-10
-12

-2

-4

-6

-8

-10

BA

𝛾=1e-1
𝛾=1e-2

𝛾=1e-3

𝛾=1e-1
𝛾=1e-2

𝛾=1e-3

k=3 k=9 k=18

-log SNRw -log SNRw

iter 0 2k 4k 6k 8k0 2k 4k 6k 8k iter

Figure C.1: Logarithm of inverse signal-to-noise ratio (mean weight squared over weight
variance, see Eq. (4.6)) for weight sharing objectives in a layer with 100 neurons.
A. Dynamics of Eq. (C.12) for different kernel sizes k (meaning k2 inputs) and
γ . B. Dynamics of weight update that uses Eq. (4.8b) for α = 10, different
kernel sizes k and γ . In each iteration, the input is presented for 150 ms.

C.1.2 Biased noiseless case, and its correspondence to the realis-

tic implementation

The realistic implementation of dynamic weight sharing with an inhibitory neuron

(Section 4.4.2) introduces a bias in the update rule: Eq. (C.4) becomes

∆wi ∝ −

(
zi −

α

N(1+α)

N

∑
j=1

z j

)
xm − γ

(
wi −winit

i

)
(C.12)

for inhibition strength α .

Following the same derivation as for the unbiased case, we can show that the

weight dynamics converges to

∑
i

d Lw. sh.(w1, . . . ,wN)

d wi
=

1
M ∑

i,m

(
zi −

α

1+α

1
N

N

∑
j=1

z j

)
xm + γ ∑

i

(
wi −winit

i

)
(C.13)

=
1

1+α
C∑

i
wi + γ ∑

i

(
wi −winit

i

)
= 0 . (C.14)

Therefore µµµ∗ = γ
(1

1+α
C+ γI

)−1
µµµ init, and

w∗
i = (C+ γ I)−1

(
γα

1+α
C
(

1
1+α

C+ γI
)−1

µµµ
init + γ winit

i

)
. (C.15)

C.1. Dynamic weight sharing 146

For C = I, this becomes

w∗
i =

γ

1+ γ

(
α

1+ γ(1+α)
µµµ

init +winit
i

)
. (C.16)

As a result, the final weights are approximately the same among neurons, but have a

small norm due to the γ scaling.

The dynamics in Eq. (C.12) correctly captures the bias influence in Eq. (4.8b),

producing similar SNR plots; compare Fig. C.1A (Eq. (C.12) dynamics) to Fig. C.1B

(Eq. (4.8b) dynamics). The curves are slightly different due to different learning

rates, but both follow the same trend of first finding a very good solution, and then

slowly incorporating the bias term (leading to smaller SNR).

C.1.3 Noisy case

Realistically, all neurons can’t see the same xm. However, due to the properties of

our loss, we can work even with noisy updates. To see this, we write the objective

function as

Lw. sh.(w1, . . . ,wN) =
1
M

M

∑
m=1

f (W,Xm) (C.17)

where matrices W and X satisfy (W)i = wi and (Xm)i = xm, and

f (W,Xm) =
1

4N

N

∑
i=1

N

∑
j=1

(
w⊤

i xm −w⊤
i xm

)2
+

γ

2

N

∑
i=1

∥wi −winit
i ∥2 . (C.18)

We’ll update the weights with SGD according to

∆Wk+1 =−ηk
d

d W
f (W,Xm(k)+Ek)

∣∣∣∣
Wk

, (C.19)

where (Ek)i = εεε i is zero-mean input noise and m(k) is chosen uniformly.

Let’s also bound the input mean and noise as

EE
∥∥xm(k)+ εεε i

∥∥2 ≤
√

cxε , EE
∥∥xm(k)+ εεε i

∥∥4 ≤ cxε . (C.20)

C.1. Dynamic weight sharing 147

With this setup, we can show that SGD with noise can quickly converge to the

correct solution, apart from a constant noise-induced bias. Our analysis is standard

and follows [203], but had to be adapted for our objective and noise model.

Theorem 6. For zero-mean isotropic noise E with variance σ2, uniform SGD

sampling m(k) and inputs xm that satisfy Eq. (C.20), choosing ηk = O(1/k) leads to

E∥Wk+1 −W∗∥2
F = O

(∥∥Winit −W∗∥∥
F

k+1

)
+O

(
σ

2∥W∗∥2
F
)
, (C.21)

where (W∗)i is given by Eq. (C.10).

Proof. Using the SGD update,

∥Wk+1 −W∗∥2
F =

∥∥∥∥Wk −ηk
d

d W
f (W,Xm(k)+Ek)

∣∣∣∣
Wk

−W∗
∥∥∥∥2

F
(C.22)

=
∥∥∥Wk −W∗

∥∥∥2

F
−2ηk

〈
Wk −W∗,

d
d W

f (W,Xm(k)+Ek)

∣∣∣∣
Wk

〉
(C.23)

+η
2
k

∥∥∥∥ d
d W

f (W,Xm(k)+Ek)

∣∣∣∣
Wk

∥∥∥∥2

F
. (C.24)

We need to bound the second and the third terms in the equation above.

Second term. As f is γ-strongly convex in W,

−
〈

Wk −W∗,
d

d W
f (W,Xm(k)+Ek)

∣∣∣∣
Wk

〉
(C.25)

≤ f (W∗,Xm(k)+Ek)− f (Wk,Xm(k)+Ek)− γ

2
∥Wk −W∗∥2

F . (C.26)

As f is convex in X,

f (W∗,Xm(k)+Ek)− f (Wk,Xm(k)+Ek)≤ f (W∗,Xm(k))− f (Wk,Xm(k)) (C.27)

+

〈
d

d X
f (W∗,X)

∣∣∣∣
Xm(k)+Ek

− d
d X

f (Wk,X)

∣∣∣∣
Xm(k)

, Ek

〉
. (C.28)

C.1. Dynamic weight sharing 148

We only need to clarify one term here,(
d

d X
f (W∗,X)

∣∣∣∣
Xm(k)+Ek

)
i

=

(
d

d X
f (W∗,X)

∣∣∣∣
Xm(k)

)
i

+

(
w∗⊤

i εεε i −
1
N ∑

j
w∗⊤

j ε j

)
w∗

i .

(C.29)

Now we can take the expectation over m(k) and E. As m(k) is uniform, and W∗

minimises the global function,

Em(k)

(
f (W∗,Xm(k))− f (Wk,Xm(k))

)
=Lw. sh.(w∗

1, . . . ,w
∗
N)−Lw. sh.(wk

1, . . . ,w
k
N)≤ 0 .

(C.30)

As Ek is zero-mean and isotropic with variance σ2,

Em(k),Ek

〈
d

d X
f (W∗,X)

∣∣∣∣
Xm(k)+Ek

− d
d X

f (Wk,X)

∣∣∣∣
Xm(k)

, Ek

〉
(C.31)

= EEk ∑
i

(
w∗⊤

i εεε i −
1
N ∑

j
w∗⊤

j ε j

)
w∗⊤

i εεε i =

(
1− 1

N

)
EEk ∑

i

(
w∗⊤

i εεε i

)2
(C.32)

=

(
1− 1

N

)
EEk ∑

i
Tr
(

w∗
i w∗⊤

i εεε iεεε
⊤
i

)
≤ σ

2∥W∗∥2
F . (C.33)

So the whole second term becomes

−2ηkEm(k),E

〈
Wk −W∗,

d
d W

f (W,Xm(k)+Ek)

∣∣∣∣
Wk

〉
(C.34)

≤−γηkEm(k),Ek∥Wk −W∗∥2
F +ηkσ

2∥W∗∥2
F . (C.35)

Third term. First, observe that

d
d wi

f (W,X) = xix⊤i wi −xi
1
N ∑

j
x⊤j w j + γwi − γwinit

i (C.36)

=

(
1− 1

N

)
Aiwi −BiW+ γwi − γwinit

i , (C.37)

where Ai = xix⊤i and (Bi) j = I[i ̸= j]xix⊤j /N.

Therefore, using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 twice, properties of the matrix

C.1. Dynamic weight sharing 149

2-norm, and (1−1/N)≤ 1,

∥∥∥∥ d
d wi

f (W,X)

∥∥∥∥2

≤ 4∥Ai∥2
2 ∥wi∥2 +4∥Bi∥2

2 ∥W∥2 +4γ
2 ∥wi∥2 +4γ

2
∥∥∥winit

i

∥∥∥2
.

(C.38)

In our particular case, bounding the 2 norm with the Frobenius norm gives

Em(k),E ∥Ai∥2
2 ≤ Em(k),E

∥∥∥(xm(k)+ εεε i)(xm(k)+ εεε i)
⊤
∥∥∥2

F
(C.39)

= Em(k),E
∥∥xm(k)+ εεε i

∥∥4 ≤ cxε . (C.40)

Similarly,

Em(k),E ∥Bi∥2
2 ≤ Em(k),E ∥Bi∥2

F ≤ 1
N2Em(k),E ∑

j ̸=i

∥∥xm(k)+ εεε i
∥∥2∥∥xm(k)+ ε j

∥∥2 ≤ cxε

N
.

(C.41)

Therefore, we can bound the full gradient by the sum of individual bounds (as

it’s the Frobenius norm) and using ∥a+b∥2 ≤ 2∥a∥2 +2∥b∥2 again,

Em(k),E

∥∥∥∥ d
d W

f (W,Xm(k)+Ek)

∣∣∣∣
Wk

∥∥∥∥2

F
≤ 4(2cxε + γ

2)
∥∥∥Wk

∥∥∥2

F
+4γ

2
∥∥∥Winit

∥∥∥2

F

(C.42)

≤ 8(2cxε + γ
2)
∥∥∥Wk −W∗

∥∥∥2

F
+8(2cxε + γ

2)∥W∗∥2
F +4γ

2
∥∥∥Winit

∥∥∥2

F
.

(C.43)

Combining all of this, and taking the expectation over all steps before k+ 1,

gives us

E∥Wk+1 −W∗∥2
F ≤

(
1− γηk +η

2
k 8(2cxε + γ

2)
)
E
∥∥∥Wk −W∗

∥∥∥2

F
(C.44)

+ηkσ
2∥W∗∥2

F +η
2
k

(
8(2cxε + γ

2)∥W∗∥2
F +4γ

2
∥∥∥Winit

∥∥∥2

F

)
.

(C.45)

C.1. Dynamic weight sharing 150

If we choose ηk such that ηk ·
(

8(2cxε + γ2)∥W∗∥2
F +4γ2

∥∥Winit
∥∥2

F

)
≤ σ2, we can

simplify the result,

E∥Wk+1 −W∗∥2
F ≤

(
1− γηk +η

2
k 8(2cxε + γ

2)
)
E
∥∥∥Wk −W∗

∥∥∥2

F
+2ηkσ

2∥W∗∥2
F

(C.46)

≤

(
k

∏
s=0

(
1− γηs +η

2
s 8(2cxε + γ

2)
))

E
∥∥∥Winit −W∗

∥∥∥2

F

(C.47)

+2σ
2

k

∑
t=0

ηt

(
t

∏
s=1

(
1− γηs +η

2
s 8(2cxε + γ

2)
))

∥W∗∥2
F .

(C.48)

If we choose ηk = O(1/k), the first term will decrease as 1/k. The second one will

stay constant with time, and proportional to σ2.

C.1.4 Applicability to vision transformers

In vision transformers (e.g. [167]), an input image is reshaped into a matrix Z ∈

RN×D for N non-overlapping patches of the input, each of size D. As the first step,

Z is multiplied by a matrix U ∈ RD×3D as Z′ = ZU. Therefore, an output neuron

z′i j = ∑k zikuk j looks at zi with the same weights as z′i′ j = ∑k zi′kuk j uses for zi′ for

any i′.

To share weights with dynamic weight sharing, for each k we need to connect

all zik across i (input layer), and for each j – all z′i j across i (output layer). After

that, weight sharing will proceed just like for locally connected networks: activate

an input grid j1 (one of D possible ones) to create a repeating input pattern, then

activate a grid j2 and so on.

C.1.5 Details for convergence plots

Both plots in Fig. 4.5 show mean negative log SNR over 10 runs, 100 out-

put neurons each. Initial weights were drawn from N (1,1). At every itera-

tion, the new input x was drawn from N (1,1) independently for each compo-

C.2. Experimental details 151

nent. Learning was performed via SGD with momentum of 0.95. The minimum

SNR value was computed from Eq. (4.5). For our data, the SNR expression in

Eq. (4.6) has
(1

N ∑i(wi) j
)2 ≈ 1 and 1

N ∑i
(
(wi) j − 1

N ∑i′(wi′) j
)2 ≈ γ2/(1+γ)2, there-

fore − logSNRmin = 2log(γ/(1+ γ)).

For Fig. 4.5A, we performed 2000 iterations (with a new x each time). Learn-

ing rate at iteration k was ηk = 0.5/(1000+ k). For Fig. C.1A, we did the same

simulation but for 104 iterations.

For Fig. 4.5B, network dynamics (Eq. (4.8b)) was simulated with τ = 30 ms,

b = 1 using Euler method with steps size of 1 ms. We performed 104 iterations

(150 ms per iteration, with a new x each iteration). Learning rate at iteration k was

ηk = 0.0003/
√

1+ k/2 · I[k ≥ 50].

The code for both runs is provided in the supplementary material.

C.2 Experimental details
Both convolutional and LC layers did not have the bias term, and were initialised

according to Kaiming Normal initialisation [204] with ReLU gain, meaning each

weight was drawn from N (0,2/(coutk2)) for kernel size k and cout output channels.

All runs were done with automatic mixed precision, meaning that inputs to

each layer (but not the weights) were stored as float16, and not float32. This greatly

improved performance and memory requirements of the networks.

As an aside, the weight dynamics of sleep/training phases indeed followed

Fig. 4.3A. Fig. C.2 shows − logSNRw (defined in Eq. (4.6)) for weight sharing every

10 iterations on CIFAR10. For small learning rates, the weights do not diverge too

much in-between sleep phases.

C.2.1 CIFAR10/100, TinyImageNet

Mean performance over 5 runs is summarised in Table C.1 (padding of 0), Table C.2

(padding of 4), and Table C.3 (padding of 8). Maximum minus minimum accuracy

is summarised in Table C.4, Table C.5, and Table C.6. Hyperparameters for AdamW

(learning rate and weight decay) are provided in Table C.7, Table C.8, and Table C.9.

Hyperparameters were optimised on a train/validation split (see Section 4.5)

C.2. Experimental details 152

0 20 40 60 80

40
35
30
25
20
15
10
5

0 20 40 60 80

40

30

20

10

0

0 20 40 60 80

40

30

20

10

0
A -log SNRw

iter

B -log SNRw

iter

C -log SNRw

iter

Figure C.2: Logarithm of inverse signal-to-noise ratio (mean weight squared over weight
variance, see Eq. (4.6)) for weight sharing every 10 iterations for CIFAR10. A.
Learning rate = 5e-4. B. Learning rate = 5e-3. C. Learning rate = 5e-2.

over the following grids. CIFAR10/100. Learning rate: [1e-1, 5e-2, 1e-2, 5e-3]

(conv), [1e-3, 5e-4, 1e-4, 5e-5] (LC); weight decay [1e-2, 1e-4] (both). TinyIma-

geNet. Learning rate: [5e-3, 1e-3, 5e-4] (conv), [1e-3, 5e-4] (LC); weight decay

[1e-2, 1e-4] (both). The learning rate range for TinyImageNet was smaller as prelim-

inary experiments showed poor performance for slow learning rates.

For all runs, the batch size was 512. For all final runs, learning rate was divided

by 4 at 100 and then at 150 epochs (out of 200). Grid search for CIFAR10/100 was

done for the same 200 epochs setup. For TinyImageNet, grid search was performed

over 50 epochs with learning rate decreases at 25 and 37 epochs (i.e., the same

schedule but compressed) due to the larger computational cost of full runs.

C.2.2 ImageNet

In addition to the main results, we also tested the variant of the locally connected

network with a convolutional first layer (Table C.10). It improved performance for all

configurations: from about 2% for weight sharing every 1-10 iterations, to about 5%

for 100 iterations and for no weight sharing. This is not surprising, as the first layer

has the largest resolution (224 by 224; initially, we performed these experiments due

to memory constraints). Our result suggests that adding a “good” pre-processing

layer (e.g. the retina) can also improve performance of locally connected networks.

Final hyperparameters. Learning rate: 1e-3 (conv, LC with w.sh. (1)), 5e-4

(all other LC; all LC with 1st layer conv), weight decay: 1e-2 (all). Hyperparameters

were optimised on a train/validation split (see Section 4.5) over the following grids.

C.2. Experimental details 153

Table C.1: Performance of convolutional (conv) and locally connected (LC) networks for
padding of 0 in the input images (mean accuracy over 5 runs). For LC, two
regularisation strategies were applied: repeating the same image n times with
different translations (n reps) or using dynamic weight sharing every n batches
(ws (n)). LC nets additionally show performance difference w.r.t. conv nets.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff

-
conv 84.1 - 49.5 - 78.2 - 26.0 - 51.2 -
LC 67.2 -16.8 34.9 -14.6 62.2 -16.0 12.0 -14.1 30.4 -20.7

Weight Sharing
LC - ws(1) 74.8 -9.3 41.8 -7.7 70.1 -8.1 24.9 -1.2 49.1 -2.1

LC - ws(10) 75.9 -8.1 44.4 -5.1 72.0 -6.2 28.1 2.0 52.5 1.3
LC - ws(100) 75.4 -8.6 43.4 -6.1 71.9 -6.3 27.4 1.3 51.9 0.8

Table C.2: Mean performance over 5 runs. Same as Table C.1, but for padding of 4.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff

-
conv 88.3 - 59.2 - 84.9 - 38.6 - 65.1 -
LC 80.9 -7.4 49.8 -9.4 75.5 -9.4 29.6 -9.0 52.7 -12.4

Data Translation
LC - 4 reps 82.9 -5.4 52.1 -7.1 76.4 -8.5 31.9 -6.7 54.9 -10.2
LC - 8 reps 83.8 -4.5 54.3 -5.0 77.9 -7.0 33.0 -5.6 55.6 -9.5
LC - 16 reps 85.0 -3.3 55.9 -3.3 78.8 -6.1 34.0 -4.6 56.2 -8.8

Weight Sharing
LC - ws(1) 87.4 -0.8 58.7 -0.5 83.4 -1.6 41.6 3.0 66.1 1.1

LC - ws(10) 85.1 -3.2 55.7 -3.6 80.9 -4.0 37.4 -1.2 61.8 -3.2
LC - ws(100) 82.0 -6.3 52.8 -6.4 80.1 -4.8 37.1 -1.5 62.8 -2.3

Conv: learning rate [1e-3, 5e-4], weight decay [1e-2, 1e-4, 1e-6]. LC: learning rate

[1e-3, 5e-4, 1e-4, 5e-5], weight decay [1e-2]. LC (1st layer conv): learning rate

[1e-3, 5e-4], weight decay [1e-2, 1e-4, 1e-6]. For LC, we only tried the large weight

decay based on an earlier experiment (LC (1st layer conv)). For LC (1st layer conv),

we only tuned hyperparameters for LC and LC with weight sharing in each iteration,

as they found the same values (weight sharing every 10/100 iterations interpolates

between LC and LC with weight sharing in each iteration, and therefore is expected

to behave similarly to both). In addition, for LC (1st layer conv) we only tested

learning rate of 5e-4 for weight decay of 1e-2 as higher learning rates performed

significantly worse for other runs (and in preliminary experiments).

For all runs, the batch size was 256. For all final runs, learning rate was divided

by 4 at 100 and then at 150 epochs (out of 200). Grid search was performed over 20

epochs with learning rate decreases at 10 and 15 epochs (i.e., the same schedule but

compressed) due to the large computational cost of full runs.

C.2. Experimental details 154

Table C.3: Mean performance over 5 runs. Same as Table C.1, but for padding of 8.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff
Top-1

accuracy (%)
Diff

Top-5
accuracy (%)

Diff

-
conv 88.7 - 59.6 - 85.4 - 42.6 - 68.7 -
LC 80.7 -8.0 47.7 -11.8 74.8 -10.6 31.9 -10.7 55.4 -13.3

Data Translation
LC - 4 reps 82.8 -6.0 50.6 -9.0 76.2 -9.2 35.5 -7.1 58.6 -10.1
LC - 8 reps 83.6 -5.1 53.0 -6.6 77.4 -8.0 35.8 -6.7 59.0 -9.7
LC - 16 reps 85.0 -3.8 55.6 -4.0 78.4 -7.0 37.9 -4.7 60.3 -8.4

Weight Sharing
LC - ws(1) 87.8 -0.9 59.2 -0.4 84.0 -1.4 43.6 1.0 67.9 -0.9

LC - ws(10) 84.3 -4.5 53.7 -5.8 80.4 -5.0 39.6 -2.9 64.5 -4.3
LC - ws(100) 79.5 -9.3 50.0 -9.6 78.6 -6.8 39.2 -3.4 64.8 -3.9

Table C.4: Max minus min performance over 5 runs; padding of 0.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

-
conv 0.5 1.0 1.7 1.0 0.4
LC 0.4 1.6 1.5 1.0 1.7

Weight Sharing
LC - ws(1) 0.5 1.3 1.3 1.2 2.0

LC - ws(10) 0.8 1.0 0.7 1.8 2.1
LC - ws(100) 0.9 0.7 0.9 1.0 1.3

Table C.5: Max minus min performance over 5 runs; padding of 4.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

-
conv 0.7 1.5 0.2 1.2 1.1
LC 0.8 1.1 0.4 0.7 0.8

Data Translation
LC - 4 reps 0.8 1.3 0.8 0.5 0.8
LC - 8 reps 0.3 1.4 1.3 0.7 1.2
LC - 16 reps 0.7 0.7 0.6 0.9 0.5

Weight Sharing
LC - ws(1) 0.5 1.1 0.9 0.9 0.6

LC - ws(10) 0.6 1.1 0.3 0.6 1.2
LC - ws(100) 0.7 1.0 0.6 0.2 0.9

Table C.6: Max minus min performance over 5 runs; padding of 8.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

-
conv 0.9 1.5 1.2 1.7 1.0
LC 0.5 0.6 0.5 0.5 0.9

Data Translation
LC - 4 reps 0.4 0.9 0.3 0.6 0.8
LC - 8 reps 0.6 0.9 0.5 0.5 0.6
LC - 16 reps 0.9 0.9 0.6 0.5 1.1

Weight Sharing
LC - ws(1) 0.4 1.2 1.5 0.7 0.7

LC - ws(10) 0.2 1.4 0.9 1.4 1.2
LC - ws(100) 0.4 0.5 0.7 0.7 0.9

C.2. Experimental details 155

Table C.7: Hyperparameters for padding of 0.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

-
conv 0.01 0.01 0.01 0.01 0.005 0.01
LC 0.001 0.01 0.001 0.01 0.001 0.0001

Weight Sharing
LC - ws(1) 0.001 0.01 0.001 0.01 0.001 0.0001

LC - ws(10) 0.0005 0.01 0.0005 0.0001 0.0005 0.01
LC - ws(100) 0.0001 0.01 0.0001 0.01 0.001 0.0001

Table C.8: Hyperparameters for padding of 4.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

-
conv 0.01 0.0001 0.01 0.01 0.005 0.0001
LC 0.001 0.0001 0.0005 0.01 0.0005 0.0001

Data Translation
LC - 4 reps 0.001 0.01 0.001 0.01 0.0005 0.01
LC - 8 reps 0.0005 0.01 0.0005 0.0001 0.0005 0.01
LC - 16 reps 0.0005 0.01 0.0005 0.01 0.0005 0.01

Weight Sharing
LC - ws(1) 0.001 0.01 0.001 0.0001 0.001 0.01

LC - ws(10) 0.0005 0.01 0.0005 0.01 0.001 0.0001
LC - ws(100) 0.0005 0.01 0.0005 0.01 0.001 0.01

Table C.9: Hyperparameters for padding of 8.

Regulariser Connectivity CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

-
conv 0.01 0.01 0.01 0.01 0.005 0.01
LC 0.001 0.01 0.0005 0.0001 0.001 0.01

Data Translation
LC - 4 reps 0.0005 0.01 0.001 0.0001 0.0005 0.01
LC - 8 reps 0.001 0.01 0.0005 0.0001 0.0005 0.0001
LC - 16 reps 0.0005 0.0001 0.0005 0.01 0.0005 0.01

Weight Sharing
LC - ws(1) 0.001 0.0001 0.001 0.01 0.001 0.01

LC - ws(10) 0.0005 0.01 0.0005 0.0001 0.001 0.0001
LC - ws(100) 0.0005 0.01 0.0005 0.0001 0.001 0.0001

C.3. Brain-Score details 156

Table C.10: Performance of convolutional (conv), locally connected (LC) and locally con-
nected with convolutional first layer (LC + 1st layer conv) networks on Ima-
geNet (1 run). For LC, we also used dynamic weight sharing every n batches.
LC nets additionally show performance difference w.r.t. the conv net.

Model Connectivity Weight sharing
frequency

ImageNet

Top-1
accuracy (%)

Diff
Top-5

accuracy (%)
Diff

0.5x ResNet18

conv - 63.5 - 84.7 -
LC - 46.7 -16.8 70.0 -14.7
LC 1 61.7 -1.8 83.1 -1.6
LC 10 59.3 -4.2 81.1 -3.6
LC 100 54.5 -9.0 77.7 -7.0

0.5x ResNet18
(1st layer conv)

LC - 52.2 -11.3 75.1 -9.6
LC 1 63.6 0.1 84.5 -0.2
LC 10 61.6 -1.9 83.1 -1.6
LC 100 59.1 -4.4 81.1 -3.6

C.3 Brain-Score details
Hyperparameters: weight decay for all networks was set to 1e-2. Learning rates

were chosen on a validation set, and are provided in Table C.11.

Table C.11: ImageNet top-1 accuracy and Brain-Score for several ResNet-18 networks:
convolutional, locally connected (LC), LC with a convolutional first layer, LC
with a weight sharing sleep phase every 1/10/100 iterations, and with random
and convolutional (conv) initialisation.

Connectivity Weight sharing
frequency Initialisation Top-1 acc., % Brain-Score Learning

rateaverage score link

conv - conv 69.9 0.426 brain-score.org/model/1071 1e-3
LC - random 44.9 0.383 brain-score.org/model/1072 5e-4
LC 1 random 62.0 0.409 brain-score.org/model/1073 1e-4
LC 10 random 60.9 0.418 brain-score.org/model/1074 5e-4
LC 100 random 56.5 0.424 brain-score.org/model/1075 5e-4
LC - conv 46.1 0.374 brain-score.org/model/1076 1e-4
LC 1 conv 64.4 0.433 brain-score.org/model/1077 1e-3
LC 10 conv 63.0 0.429 brain-score.org/model/1078 1e-3
LC 100 conv 58.7 0.416 brain-score.org/model/1079 1e-3

LC + 1st conv - random 52.5 0.370 brain-score.org/model/1157 1e-4
LC + 1st conv - conv 52.5 0.379 brain-score.org/model/1094 1e-4

conv (untrained) - conv - 0.227 brain-score.org/model/1159 -
LC (untrained) - random - 0.137 brain-score.org/model/1158 -

http://www.brain-score.org/model/1071
http://www.brain-score.org/model/1072
http://www.brain-score.org/model/1073
http://www.brain-score.org/model/1074
http://www.brain-score.org/model/1075
http://www.brain-score.org/model/1076
http://www.brain-score.org/model/1077
http://www.brain-score.org/model/1078
http://www.brain-score.org/model/1079
http://www.brain-score.org/model/1157
http://www.brain-score.org/model/1094
http://www.brain-score.org/model/1159
http://www.brain-score.org/model/1158

Bibliography

[1] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational

and mathematical modeling of neural systems. MIT press, 2005.

[2] Pablo E Castillo, Chiayu Q Chiu, and Reed C Carroll. Long-term plasticity at

inhibitory synapses. Current opinion in neurobiology, 21(2):328–338, 2011.

[3] Romain Brette. Philosophy of the spike: rate-based vs. spike-based theories

of the brain. Frontiers in systems neuroscience, page 151, 2015.

[4] Donald Olding Hebb. The organization of behavior: A neuropsychological

theory. 1949.

[5] RE Brown. Do hebb and the origins of the organization of behavior. In Society

of Neuroscience Abstracts, pages 22–23, 2001.

[6] RE Brown. Do hebb’s “lost” ma thesis: The first draft of the hebb synapse.

Society of Neuroscience, Poster, 21, 2002.

[7] Peter Milner. A brief history of the hebbian learning rule. Canadian Psychol-

ogy/Psychologie canadienne, 44(1):5, 2003.

[8] Donald Olding Hebb. Conditioned and unconditioned reflexes and inhibition.

PhD thesis, McGill University Montreal, Quebec, Canada, 1932.

[9] Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the devel-

opment of neuron selectivity: orientation specificity and binocular interaction

in visual cortex. Journal of Neuroscience, 2(1):32–48, 1982.

BIBLIOGRAPHY 158

[10] Erkki Oja. Simplified neuron model as a principal component analyzer.

Journal of mathematical biology, 15(3):267–273, 1982.

[11] Carlos SN Brito and Wulfram Gerstner. Nonlinear hebbian learning as a

unifying principle in receptive field formation. PLoS computational biology,

12(9):e1005070, 2016.

[12] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[13] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133, 1943.

[14] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochre-

iter. Self-normalizing neural networks. In Advances in neural information

processing systems, pages 971–980, 2017.

[15] John Carew Eccles. From electrical to chemical transmission in the central

nervous system: the closing address of the sir henry dale centennial sympo-

sium cambridge, 19 september 1975. Notes and records of the Royal Society

of London, 30(2):219–230, 1976.

[16] Piergiorgio Strata, Robin Harvey, et al. Dale’s principle. Brain research

bulletin, 50(5):349–350, 1999.

[17] Victor AF Lamme and Pieter R Roelfsema. The distinct modes of vision

offered by feedforward and recurrent processing. Trends in neurosciences,

23(11):571–579, 2000.

[18] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons.

arXiv preprint arXiv:1510.08829, 2015.

[19] Jonathan Cornford, Damjan Kalajdzievski, Marco Leite, Amélie Lamarquette,

Dimitri M Kullmann, and Blake Richards. Learning to live with dale’s

BIBLIOGRAPHY 159

principle: Anns with separate excitatory and inhibitory units. bioRxiv, pages

2020–11, 2021.

[20] Jonas Kubilius, Martin Schrimpf, Ha Hong, Najib J. Majaj, Rishi Rajalingham,

Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Kailyn

Schmidt, Aran Nayebi, Daniel Bear, Daniel L. K. Yamins, and James J.

DiCarlo. Brain-Like Object Recognition with High-Performing Shallow

Recurrent ANNs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. D’Alché-

Buc, E. Fox, and R. Garnett, editors, Neural Information Processing Systems

(NeurIPS), pages 12785—-12796. Curran Associates, Inc., 2019.

[21] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E

Hinton, and Timothy Lillicrap. Assessing the scalability of biologically-

motivated deep learning algorithms and architectures. In Advances in Neural

Information Processing Systems, pages 9368–9378, 2018.

[22] Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham,

Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska

Geiger, Kailyn Schmidt, Daniel L. K. Yamins, and James J. DiCarlo. Brain-

score: Which artificial neural network for object recognition is most brain-

like? bioRxiv preprint, 2018.

[23] Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham,

Elias B Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska

Geiger, et al. Brain-score: Which artificial neural network for object recogni-

tion is most brain-like? BioRxiv, page 407007, 2020.

[24] Jianghong Shi, Bryan Tripp, Eric Shea-Brown, Stefan Mihalas, and Michael

Buice. Cnn mousenet: A biologically constrained convolutional neural net-

work model for mouse visual cortex. bioRxiv, 2021.

[25] Shahab Bakhtiari, Patrick J Mineault, Tim Lillicrap, Christopher C Pack, and

Blake Aaron Richards. The functional specialization of visual cortex emerges

BIBLIOGRAPHY 160

from training parallel pathways with self-supervised predictive learning. In

Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

[26] Roman Pogodin and Peter E Latham. Kernelized information bottleneck leads

to biologically plausible 3-factor hebbian learning in deep networks. arXiv

preprint arXiv:2006.07123, 2020.

[27] Yazhe Li∗, Roman Pogodin∗, Danica J Sutherland, and Arthur Gretton. Self-

supervised learning with kernel dependence maximization. Advances in

Neural Information Processing Systems, 34, 2021. ∗Equal contribution.

[28] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep

variational information bottleneck. arXiv preprint arXiv:1612.00410, 2016.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[30] Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and

Aaron C. Courville. MINE: mutual information neural estimation. In ICML.

2018.

[31] Ben Poole, Sherjil Ozair, Aäron van den Oord, Alexander A. Alemi, and

George Tucker. On variational bounds of mutual information. In ICML, 2019.

[32] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf.

Measuring statistical dependence with hilbert-schmidt norms. In International

conference on algorithmic learning theory, pages 63–77. Springer, 2005.

[33] Zoltán Szabó and Bharath K. Sriperumbudur. Characteristic and universal

tensor product kernels. Journal of Machine Learning Research, 18(233):1–29,

2018.

[34] Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard

Schölkopf, and Alexander J Smola. A kernel statistical test of independence.

In NeurIPS, 2007.

BIBLIOGRAPHY 161

[35] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt.

Feature selection via dependence maximization. Journal of Machine Learning

Research, 13(5), 2012.

[36] Le Song, Alex Smola, Arthur Gretton, and Karsten M. Borgwardt. A depen-

dence maximization view of clustering. In ICML, 2007.

[37] Matthew B. Blaschko and Arthur Gretton. Learning taxonomies by depen-

dence maximization. In NeurIPS, 2009.

[38] Siddhartha Jain, Ge Liu, and David Gifford. Information condensing active

learning, 2020.

[39] Kurt Wan-Duo Ma, J. P. Lewis, and W. Bastiaan Kleijn. The HSIC bottleneck:

Deep learning without back-propagation. In The Thirty-Fourth AAAI Con-

ference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative

Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI

Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,

New York, NY, USA, February 7-12, 2020, pages 5085–5092. AAAI Press,

2020.

[40] Denny Wu, Yixiu Zhao, Yao-Hung Hubert Tsai, Makoto Yamada, and Ruslan

Salakhutdinov. ‘dependency bottleneck’ in auto-encoding architectures: an

empirical study, 2018.

[41] Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local

error signals. arXiv preprint arXiv:1901.06656, 2019.

[42] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer

Science & Business Media, 2008.

[43] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert

spaces in probability and statistics. Springer Science & Business Media,

2011.

BIBLIOGRAPHY 162

[44] W. Rudin. Functional Analysis. International series in pure and applied

mathematics. McGraw-Hill, 1991.

[45] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio,

Rafal Bogacz, Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy

de Berker, Surya Ganguli, et al. A deep learning framework for neuroscience.

Nature neuroscience, 22(11):1761–1770, 2019.

[46] Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and

Douglas B Tweed. Deep learning without weight transport. In Advances in

Neural Information Processing Systems, pages 974–982, 2019.

[47] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Aker-

man. Random synaptic feedback weights support error backpropagation for

deep learning. Nature communications, 7(1):1–10, 2016.

[48] João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Den-

dritic cortical microcircuits approximate the backpropagation algorithm. In

Advances in Neural Information Processing Systems, pages 8721–8732, 2018.

[49] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layer-

wise learning can scale to ImageNet. In Proceedings of the 36th International

Conference on Machine Learning, volume 97, pages 583–593. PMLR, 09–15

Jun 2019.

[50] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-

to-end: Gradient-isolated learning of representations. In Advances in Neural

Information Processing Systems, pages 3033–3045, 2019.

[51] Naftali Tishby, Fernando C Pereira, and William Bialek. The information

bottleneck method. arXiv preprint physics/0004057, 2000.

[52] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural

networks via information. arXiv preprint arXiv:1703.00810, 2017.

BIBLIOGRAPHY 163

[53] Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and

Johanni Brea. Eligibility traces and plasticity on behavioral time scales:

experimental support of neohebbian three-factor learning rules. Frontiers in

neural circuits, 12:53, 2018.

[54] Matteo Carandini and David J Heeger. Normalization as a canonical neural

computation. Nature Reviews Neuroscience, 13(1):51, 2012.

[55] Shawn R Olsen, Vikas Bhandawat, and Rachel I Wilson. Divisive normaliza-

tion in olfactory population codes. Neuron, 66(2):287–299, 2010.

[56] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[57] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms, 2017.

[58] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki

Yamamoto, and David Ha. Deep learning for classical japanese literature,

2018.

[59] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[60] Arild Nøkland. Direct feedback alignment provides learning in deep neural

networks. In Advances in neural information processing systems, pages

1037–1045, 2016.

[61] Theodore H Moskovitz, Ashok Litwin-Kumar, and LF Abbott. Feedback

alignment in deep convolutional networks. arXiv preprint arXiv:1812.06488,

2018.

[62] Qianli Liao, Joel Z Leibo, and Tomaso Poggio. How important is weight

symmetry in backpropagation? arXiv preprint arXiv:1510.05067, 2015.

BIBLIOGRAPHY 164

[63] Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-

plausible learning algorithms can scale to large datasets. arXiv preprint

arXiv:1811.03567, 2018.

[64] Yoshua Bengio. How auto-encoders could provide credit assignment in deep

networks via target propagation. arXiv preprint arXiv:1407.7906, 2014.

[65] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Differ-

ence target propagation. In Joint european conference on machine learning

and knowledge discovery in databases, pages 498–515. Springer, 2015.

[66] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging

the gap between energy-based models and backpropagation. Frontiers in

computational neuroscience, 11:24, 2017.

[67] Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie

Grollier, and Damien Querlioz. Scaling equilibrium propagation to deep

convnets by drastically reducing its gradient estimator bias. arXiv preprint

arXiv:2006.03824, 2020.

[68] Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep super-

vised learning using local errors. Frontiers in neuroscience, 12:608, 2018.

[69] Joel Veness, Tor Lattimore, Avishkar Bhoopchand, Agnieszka Grabska-

Barwinska, Christopher Mattern, and Peter Toth. Online learning with gated

linear networks. arXiv preprint arXiv:1712.01897, 2017.

[70] Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christo-

pher Mattern, Agnieszka Grabska-Barwinska, Eren Sezener, Jianan Wang,

Peter Toth, Simon Schmitt, et al. Gated linear networks. arXiv preprint

arXiv:1910.01526, 2019.

[71] Shanshan Qin, Nayantara Mudur, and Cengiz Pehlevan. Supervised deep

similarity matching. arXiv preprint arXiv:2002.10378, 2020.

BIBLIOGRAPHY 165

[72] Cengiz Pehlevan, Anirvan M Sengupta, and Dmitri B Chklovskii. Why do

similarity matching objectives lead to hebbian/anti-hebbian networks? Neural

computation, 30(1):84–124, 2018.

[73] Dmitry Krotov and John J Hopfield. Unsupervised learning by competing

hidden units. Proceedings of the National Academy of Sciences, 116(16):7723–

7731, 2019.

[74] Gregor M Hoerzer, Robert Legenstein, and Wolfgang Maass. Emergence

of complex computational structures from chaotic neural networks through

reward-modulated hebbian learning. Cerebral cortex, 24(3):677–690, 2014.

[75] Keith J Todd, Houssam Darabid, and Richard Robitaille. Perisynaptic glia

discriminate patterns of motor nerve activity and influence plasticity at the

neuromuscular junction. Journal of Neuroscience, 30(35):11870–11882,

2010.

[76] Alfonso Araque, Giorgio Carmignoto, Philip G Haydon, Stéphane HR Oliet,

Richard Robitaille, and Andrea Volterra. Gliotransmitters travel in time and

space. Neuron, 81(4):728–739, 2014.

[77] Marta Navarrete and Alfonso Araque. Endocannabinoids potentiate synaptic

transmission through stimulation of astrocytes. Neuron, 68(1):113–126, 2010.

[78] Olivier Pascual, Kristen B Casper, Cathryn Kubera, Jing Zhang, Raquel

Revilla-Sanchez, Jai-Yoon Sul, Hajime Takano, Stephen J Moss, Ken Mc-

Carthy, and Philip G Haydon. Astrocytic purinergic signaling coordinates

synaptic networks. Science, 310(5745):113–116, 2005.

[79] Agnieszka Grabska-Barwińska, Simon Barthelmé, Jeff Beck, Zachary F

Mainen, Alexandre Pouget, and Peter E Latham. A probabilistic approach to

demixing odors. Nature neuroscience, 20(1):98, 2017.

[80] Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H Sinz, and Richard S

BIBLIOGRAPHY 166

Zemel. Normalizing the normalizers: Comparing and extending network

normalization schemes. arXiv preprint arXiv:1611.04520, 2016.

[81] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the

European conference on computer vision (ECCV), pages 3–19, 2018.

[82] Javier R Movellan. Contrastive hebbian learning in the continuous hopfield

model. In Connectionist models, pages 10–17. Elsevier, 1991.

[83] Xiaohui Xie and H Sebastian Seung. Equivalence of backpropagation and con-

trastive hebbian learning in a layered network. Neural computation, 15(2):441–

454, 2003.

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[85] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[86] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3,

2013.

[87] Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically plausible deep

learning—but how far can we go with shallow networks? Neural Networks,

118:90–101, 2019.

[88] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–1958,

2014.

[89] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.

arXiv preprint arXiv:1711.05101, 2017.

BIBLIOGRAPHY 167

[90] Michael Laskin, Luke Metz, Seth Nabarro, Mark Saroufim, Badreddine

Noune, Carlo Luschi, Jascha Sohl-Dickstein, and Pieter Abbeel. Parallel train-

ing of deep networks with local updates. arXiv preprint arXiv:2012.03837,

2020.

[91] Stefano Zappacosta, Francesco Mannella, Marco Mirolli, and Gianluca Bal-

dassarre. General differential hebbian learning: Capturing temporal relations

between events in neural networks and the brain. PLoS computational biology,

14(8):e1006227, 2018.

[92] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A

simple framework for contrastive learning of visual representations. arXiv

preprint arXiv:2002.05709, 2020.

[93] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires,

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray

Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A

new approach to self-supervised learning. In NeurIPS, 2020.

[94] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[95] Shiyu Duan, Shujian Yu, and Jose Principe. Modularizing deep learning via

pairwise learning with kernels. arXiv preprint arXiv:2005.05541, 2020.

[96] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recogni-

tion challenge. International Journal of Computer Vision, 115(3):211–252,

2015.

[97] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality

of data with neural networks. Science, 313(5786):504–507, 2006.

BIBLIOGRAPHY 168

[98] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-

Antoine Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learn-

ing useful representations in a deep network with a local denoising criterion.

Journal of Machine Learning Research, 11(12), 2010.

[99] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,

Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE:

Learning basic visual concepts with a constrained variational framework. In

ICLR, 2016.

[100] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey

Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language

models are few-shot learners. In NeurIPS. 2020.

[101] Adam Coates and Andrew Y Ng. Learning feature representations with k-

means. In Neural networks: Tricks of the trade, pages 561–580. Springer,

2012.

[102] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning. In NeurIPS. 2017.

[103] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud.

Scalable reversible generative models with free-form continuous dynamics.

In ICLR, 2019.

[104] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual

representation learning by context prediction. In ICCV. 2015.

[105] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representa-

tions by solving jigsaw puzzles. In ECCV, pages 69–84. Springer, 2016.

BIBLIOGRAPHY 169

[106] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised repre-

sentation learning by predicting image rotations. In ICLR, 2018.

[107] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization.

In ECCV, pages 649–666. Springer, 2016.

[108] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning

representations for automatic colorization. In ECCV, pages 577–593. Springer,

2016.

[109] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and

Alexei A Efros. Context encoders: Feature learning by inpainting. In CVPR,

pages 2536–2544, 2016.

[110] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning rep-

resentations by maximizing mutual information across views. In NeurIPS,

2019.

[111] Olivier Henaff. Data-efficient image recognition with contrastive predictive

coding. In ICML, 2020.

[112] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick.

Momentum contrast for unsupervised visual representation learning. In CVPR,

2019.

[113] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved

baselines with momentum contrastive learning, 2020.

[114] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski,

and Armand Joulin. Unsupervised learning of visual features by contrasting

cluster assignments. In NeurIPS. 2020.

[115] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow

twins: Self-supervised learning via redundancy reduction, 2021.

BIBLIOGRAPHY 170

[116] Tongzhou Wang and Phillip Isola. Understanding contrastive representation

learning through alignment and uniformity on the hypersphere, 2020.

[117] Xinlei Chen and Kaiming He. Exploring simple siamese representation

learning, 2020.

[118] Naftali Tishby and Noga Zaslavsky. Deep learning and the information

bottleneck principle. In IEEE Information Theory Workshop. 2015.

[119] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and

Mario Lucic. On mutual information maximization for representation learning.

In ICLR, 2020.

[120] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel

machines. In NeurIPS, 2007.

[121] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and

Geoffrey Hinton. Big self-supervised models are strong semi-supervised

learners. In NeurIPS, 2020.

[122] Yao-Hung Hubert Tsai, Shaojie Bai, Louis-Philippe Morency, and Ruslan

Salakhutdinov. A note on connecting barlow twins with negative-sample-free

contrastive learning. arXiv preprint arXiv:2104.13712, 2021.

[123] Ting Chen and Lala Li. Intriguing properties of contrastive losses, 2020.

[124] Matthew B. Blaschko, Wojciech Zaremba, and Arthur Gretton. Taxonomic

prediction with tree-structured covariances. In Machine Learning and Knowl-

edge Discovery in Databases, pages 304–319. Springer Berlin Heidelberg,

2013.

[125] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fuku-

mizu. Equivalence of distance-based and RKHS-based statistics in hypothesis

testing. The Annals of Statistics, 41(5):2263 – 2291, 2013.

BIBLIOGRAPHY 171

[126] Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. Measuring and testing

dependence by correlation of distances. The Annals of Statistics, 35(6):2769 –

2794, 2007.

[127] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz Kandola. On

kernel-target alignment. In NeurIPS, volume 14, 2002.

[128] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms

for learning kernels based on centered alignment. The Journal of Machine

Learning Research, 13(1):795–828, 2012.

[129] Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge,

and Wieland Brendel. Contrastive learning inverts the data generating process,

2021.

[130] Kai Zhang, Ivor W Tsang, and James T Kwok. Improved nyström low-rank

approximation and error analysis. In Proceedings of the 25th international

conference on Machine learning, pages 1232–1239, 2008.

[131] Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local contrastive

representation learning. Advances in neural information processing systems,

33:11142–11153, 2020.

[132] Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local

plasticity rules can learn deep representations using self-supervised contrastive

predictions. Advances in Neural Information Processing Systems, 34:30365–

30379, 2021.

[133] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k

for ImageNet training, 2017.

[134] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

He. Accurate, large minibatch SGD: training imagenet in 1 hour, 2017.

BIBLIOGRAPHY 172

[135] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l:

Self-supervised semi-supervised learning. In ICCV, 2019.

[136] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models

from few training examples: An incremental Bayesian approach tested on 101

object categories. In CVPR Workshop, 2004.

[137] Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

[138] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and

Andrea Vedaldi. Describing textures in the wild. In CVPR, 2013.

[139] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea

Vedaldi. Fine-grained visual classification of aircraft.

[140] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining

discriminative components with random forests. In ECCV, pages 446–461.

Springer, 2014.

[141] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classifi-

cation over a large number of classes. In 2008 Sixth Indian Conference on

Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008.

[142] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar.

Cats and dogs. In CVPR, 2012.

[143] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-fei. Collecting a large-

scale dataset of fine-grained cars. the second workshop on fine-grained visual

categorization, 2013.

[144] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio

Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In

CVPR, 2010.

[145] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (VOC) challenge. IJCV,

88(2):303–338, 2010.

BIBLIOGRAPHY 173

[146] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better ImageNet

models transfer better? In CVPR, 2019.

[147] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor

segmentation and support inference from rgbd images. In ECCV, 2012.

[148] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.

Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in context. In

ECCV, 2014.

[149] Roman Pogodin, Yash Mehta, Timothy Lillicrap, and Peter Latham. To-

wards biologically plausible convolutional networks. Advances in Neural

Information Processing Systems, 34, 2021.

[150] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[151] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[152] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[153] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald

Penn, and Dong Yu. Convolutional neural networks for speech recogni-

tion. IEEE/ACM Transactions on audio, speech, and language processing,

22(10):1533–1545, 2014.

[154] Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very

deep convolutional networks for text classification. arXiv preprint

arXiv:1606.01781, 2016.

BIBLIOGRAPHY 174

[155] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. Lstm

fully convolutional networks for time series classification. IEEE access,

6:1662–1669, 2017.

[156] Grace W. Lindsay. Convolutional Neural Networks as a Model of the Visual

System: Past, Present, and Future. Journal of Cognitive Neuroscience, pages

1–15, 02 2020.

[157] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. The Journal of physiology,

160(1):106–154, 1962.

[158] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition

and cooperation in neural nets, pages 267–285. Springer, 1982.

[159] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren

Seibert, and James J DiCarlo. Performance-optimized hierarchical models

predict neural responses in higher visual cortex. Proceedings of the national

academy of sciences, 111(23):8619–8624, 2014.

[160] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised,

but not unsupervised, models may explain it cortical representation. PLoS

computational biology, 10(11):e1003915, 2014.

[161] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, An-

dreas S Tolias, Matthias Bethge, and Alexander S Ecker. Deep convolutional

models improve predictions of macaque v1 responses to natural images. PLoS

computational biology, 15(4):e1006897, 2019.

[162] Stephen Grossberg. Competitive learning: From interactive activation to

adaptive resonance. Cognitive science, 11(1):23–63, 1987.

[163] Stéphane d’Ascoli, Levent Sagun, Joan Bruna, and Giulio Biroli. Finding the

BIBLIOGRAPHY 175

needle in the haystack with convolutions: on the benefits of architectural bias.

arXiv preprint arXiv:1906.06766, 2019.

[164] Martin Schrimpf, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty,

Robert Ajemian, and James J DiCarlo. Integrative benchmarking to advance

neurally mechanistic models of human intelligence. Neuron, 2020.

[165] Behnam Neyshabur. Towards learning convolutions from scratch. arXiv

preprint arXiv:2007.13657, 2020.

[166] Gamaleldin Elsayed, Prajit Ramachandran, Jonathon Shlens, and Simon Ko-

rnblith. Revisiting spatial invariance with low-rank local connectivity. In

Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International

Conference on Machine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 2868–2879. PMLR, 13–18 Jul 2020.

[167] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint arXiv:2010.11929,

2020.

[168] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-

der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-

formers. In European Conference on Computer Vision, pages 213–229.

Springer, 2020.

[169] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre

Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &

distillation through attention. arXiv preprint arXiv:2012.12877, 2020.

[170] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai.

Deformable detr: Deformable transformers for end-to-end object detection.

arXiv preprint arXiv:2010.04159, 2020.

BIBLIOGRAPHY 176

[171] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua

Zhai, Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit,

Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture

for vision, 2021.

[172] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin

El-Nouby, Edouard Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek,

and Hervé Jégou. Resmlp: Feedforward networks for image classification

with data-efficient training. arXiv preprint arXiv:2105.03404, 2021.

[173] Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay attention to mlps.

arXiv preprint arXiv:2105.08050, 2021.

[174] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N,

7:7, 2015.

[175] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-

tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

[176] Jordan Ott, Erik J. Linstead, Nicholas LaHaye, and Pierre Baldi. Learning in

the machine: To share or not to share? Neural networks : the official journal

of the International Neural Network Society, 126:235–249, 2020.

[177] Jeremy Freeman, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and

J. Anthony Movshon. A functional and perceptual signature of the second

visual area in primates. Nature Neuroscience, 16(7):974–981, Jul 2013.

BIBLIOGRAPHY 177

[178] Tiago Marques, Martin Schrimpf, and James J DiCarlo. Multi-scale hierar-

chical neural network models that bridge from single neurons in the primate

primary visual cortex to object recognition behavior. bioRxiv, 2021.

[179] Najib J. Majaj, Ha Hong, Ethan A. Solomon, and James J. DiCarlo. Simple

learned weighted sums of inferior temporal neuronal firing rates accurately

predict human core object recognition performance. Journal of Neuroscience,

35(39):13402–13418, 2015.

[180] Rishi Rajalingham, Elias B. Issa, Pouya Bashivan, Kohitij Kar, Kailyn

Schmidt, and James J. DiCarlo. Large-scale, high-resolution comparison

of the core visual object recognition behavior of humans, monkeys, and

state-of-the-art deep artificial neural networks. bioRxiv, 2018.

[181] Maximilian Riesenhuber and Tomaso A. Poggio. Hierarchical models of

object recognition in cortex. Nature Neuroscience, 2:1019–1025, 1999.

[182] Peter Földiák. Learning invariance from transformation sequences. Neural

computation, 3(2):194–200, 1991.

[183] Guy Wallis, Edmund Rolls, and Peter Foldiak. Learning invariant responses to

the natural transformations of objects. In Proceedings of 1993 International

Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pages

1087–1090. IEEE, 1993.

[184] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsuper-

vised learning of invariances. Neural computation, 14(4):715–770, 2002.

[185] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,

Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-

van, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 1314–1324, 2019.

[186] Sushil K Jha, Brian E. Jones, Tammi Coleman, Nick Steinmetz, Chi-Tat Law,

Gerald D. Griffin, Joshua D. Hawk, Nooreen Dabbish, Valery A. Kalatsky,

BIBLIOGRAPHY 178

and Marcos G. Frank. Sleep-dependent plasticity requires cortical activity.

The Journal of Neuroscience, 25:9266 – 9274, 2005.

[187] Carlos Puentes-Mestril and Sara J Aton. Linking network activity to synaptic

plasticity during sleep: hypotheses and recent data. Frontiers in neural circuits,

11:61, 2017.

[188] Jonathan J. Nassi and Edward M. Callaway. Parallel processing strategies of

the primate visual system. Nature Reviews Neuroscience, 10:360–372, 2009.

[189] Farran Briggs and Edward M. Callaway. Layer-specific input to distinct cell

types in layer 6 of monkey primary visual cortex. The Journal of Neuroscience,

21:3600 – 3608, 2001.

[190] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[191] William H. Bosking, Ying Zhang, Brett Schofield, and David Fitzpatrick.

Orientation selectivity and the arrangement of horizontal connections in tree

shrew striate cortex. J. Neurosci., 15, 1997.

[192] Dan D. Stettler, Aniruddha Das, Jean Bennett, and Charles Gilbert. Lateral

connectivity and contextual interactions in macaque primary visual cortex.

Neuron, 36:739–750, 2002.

[193] Roman Pogodin and Peter E Latham. Locally connected networks as ventral

stream models. In Brain-Score Workshop, 2022.

[194] Ghislain St-Yves, Emily J Allen, Yihan Wu, Kendrick Kay, and Thomas

Naselaris. Brain-optimized neural networks learn non-hierarchical models of

representation in human visual cortex. bioRxiv, 2022.

[195] J KEVIN O’REGAN and Tatjana A Nazir. Some results on translation

invariance in the human visual system. Spatial vision, 5(2):81–100, 1990.

[196] Loukas Grafakos. Classical Fourier Analysis, volume 2. Springer, 2008.

BIBLIOGRAPHY 179

[197] Robert Piessens. The Hankel transform. The Transforms and Applications

Handbook, 2(9), 2000.

[198] Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision

floating-point arithmetic (version 0.18), 2013. http://mpmath.org/.

[199] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[200] Olivier J. Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aäron van den

Oord, Oriol Vinyals, and João Carreira. Efficient visual pretraining with

contrastive detection, 2021.

[201] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask

R-CNN. In ICCV, 2017.

[202] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,

and Serge J. Belongie. Feature pyramid networks for object detection. In

CVPR, 2017.

[203] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor

Shulgin, and Peter Richtárik. Sgd: General analysis and improved rates. In

International Conference on Machine Learning, pages 5200–5209. PMLR,

2019.

[204] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

	Introductory Material
	Notation
	Activity-dependent plasticity in the brain
	Overview
	Neuron models
	Hebbian learning

	Deep networks
	Overview
	Connection between artificial and real neurons

	Dependency measures in machine learning
	Mutual information (MI)
	Hilbert-Schmidt Independence Criterion (HSIC)

	Three-factor Hebbian learning rules for deep networks
	Introduction
	Related work
	A kernel methods-based layer-wise objective
	Circuit-level details of the gradient: a hidden 3-factor Hebbian structure
	General update rule
	Gaussian kernel: two-point update
	Gaussian kernel with grouping and divisive normalisation
	Online update rules for the Gaussian kernel are standard Hebbian updates

	Circuitry to implement the update rules
	Hebbian terms
	3rd factor for the Gaussian kernel
	3rd factor for the Gaussian kernel with grouping and divisive normalisation

	Experiments
	Experimental setup
	Small fully connected network
	Large convolutional networks and CIFAR10

	Discussion

	A kernel methods approach to self-supervised learning
	Introduction
	Background
	Self-supervised learning

	Self-supervised learning with Kernel Dependence Maximisation
	Connection to InfoNCE
	Estimator of SSL-HSIC
	Connection with biology

	Experiments
	Implementation
	Evaluation Results

	Ablation Studies
	Discussion

	Biological implementation of weight sharing
	Introduction
	Related work
	Regularisation in locally connected networks
	Convolutional versus locally connected networks
	Developing convolutional weights: data augmentation versus dynamic weight sharing

	A Hebbian solution to dynamic weight sharing
	Dynamic weight sharing in multiple locally connected layers
	A realistic model that implements the update rule

	Experiments
	Data augmentations.
	CIFAR10/100 and TinyImageNet
	ImageNet
	Brain-Score of ImageNet-trained networks

	Sharing weights with noise-cancelling anti-Hebbian plasticity
	Introduction
	Proposed update rule
	Proposed update rule with mean weight constraints
	Choice of network architectures.
	ImageNet performance.

	Discussion
	Weight sharing with a sleep phase
	Weight sharing with noise-cancelling plasticity
	Limitations of the approach
	Conclusions

	Locally connected networks as ventral stream models
	Introduction
	Training details
	Results (all brain areas)
	Results (V1)

	Discussion

	Conclusions and Future Work
	Appendices
	Chapter 2 Appendix
	Kernel methods, HSIC and pHSIC
	pHSIC
	How much information about the label do we need?

	Derivations of the update rules for plausible kernelized information bottleneck
	General update rule
	Gaussian kernel
	Gaussian kernel with grouping and divisive normalisation
	Cosine similarity kernel
	Linear kernel

	Experimental details
	Network architecture
	Choice of kernels for pHSIC
	Objective choice for layer-wise classification
	Pre-processing of datasets
	Shared hyperparameters for all experiments
	Small network
	Large network
	Difference between pHSIC and HSIC in the large network

	Chapter 3 Appendix
	HSIC estimation in the self-supervised setting
	Exact form of HSIC(Z, Y)
	Estimator of HSIC(Z, Y)
	Estimator of HSIC(Z, Z)

	Theoretical properties of SSL-HSIC
	InfoNCE connection
	MMD interpretation of HSIC(X,Y)

	Random Fourier Features (RFF)
	Basics of RFF
	RFF for the IMQ kernel
	RFF for SSL-HSIC

	Experiment Details
	ImageNet Pretraining
	Evaluations

	Chapter 4 and 5 Appendix
	Dynamic weight sharing
	Noiseless case
	Biased noiseless case, and its correspondence to the realistic implementation
	Noisy case
	Applicability to vision transformers
	Details for convergence plots

	Experimental details
	CIFAR10/100, TinyImageNet
	ImageNet

	Brain-Score details

	Bibliography

