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Abstract We obtain new quantitative estimates on Weyl Law remainders
under dynamical assumptions on the geodesic flow. On a smooth compact
Riemannian manifold (M, g) of dimension n, let �λ denote the kernel of the
spectral projector for the Laplacian, 1[0,λ2](−�g). Assuming only that the set
of near periodic geodesics over W ⊂ M has small measure, we prove that as
λ→∞∫

W
�λ(x, x)dx = (2π)−n vol

Rn(B) volg(W ) λn + O
(λn−1
log λ

)
,

where B is the unit ball. One consequence of this result is that the improved
remainder holds on all product manifolds, in particular giving improved esti-
mates for the eigenvalue counting function in the product setup. Our results
also include logarithmic gains on asymptotics for the off-diagonal spectral pro-
jector �λ(x, y) under the assumption that the set of geodesics that pass near
both x and y has small measure, and quantitative improvements for Kuznecov
sums under non-looping type assumptions. The key technique used in our
study of the spectral projector is that of geodesic beams.
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1196 Y. Canzani, J. Galkowski

1 Introduction

Let (M, g)be a smooth compact connectedRiemannianmanifold of dimension
n,�g be the negative definite Laplace-Beltrami operator acting on L2(M), and
{λ2j }∞j=0 be the eigenvalues of−�g, repeatedwithmultiplicity, 0 = λ20 < λ21 ≤
λ22 ≤ . . . . In this article we obtain improved asymptotics for both pointwise
and integrated Weyl Laws. That is, we study asymptotics for the Schwartz
kernel of the spectral projector

�λ : L2(M, g)→
⊕
λ j≤λ

ker(−�g − λ2j ),

i.e. �λ is the orthogonal projection operator onto functions with frequency
at most λ. If {φλ j }∞j=1 is an orthonormal basis of eigenfunctions, −�gφλ j =
λ2jφλ j , the Schwartz kernel of �λ is

�λ(x, y) =
∑
λ j≤λ

φλ j (x)φλ j (y), (x, y) ∈ M × M.

Asymptotics for the spectral projector play a crucial role in the study of eigen-
values and eigenfunctions for the Laplacian, with applications to the study of
physical phenomena such as wave propagation and quantum evolution. One
of the oldest problems in spectral theory is to understand how eigenvalues
distribute on the real line. Let N (λ) := #{ j : λ j ≤ λ} be the eigenvalue count-
ing function. Motivated by black body radiation, Hilbert conjectured that, as
λ→∞,

N (λ) = (2π)−n volRn (B) volg(M)λn + E(λ), E(λ) = o(λn).

Here, volRn (B) is the volume of the unit ball B ⊂ R
n , volg(M) is the Rieman-

nian volume of M , and dvg is the volume measure induced by the Riemannian
metric. The conjecturewas proved byWeyl [46] and is known as theWeyl Law.
We refer to E(λ) as a Weyl remainder. In 1968, Hörmander [25], provided a
framework for the study of E(λ) and generalized the works of Avakumović [1]
and Levitan [35], who proved E(λ) = O(λn−1); a result that is sharp on the
round sphere and is thought of as the standard remainder.

The article [25] provided a framework for the study of Weyl remain-
ders which led to many advances, including the work of Duistermaat–
Guillemin [17] who showed E(λ) = o(λn−1) when the set of periodic
geodesics has measure 0. Recently, [27] verified this dynamical condition
on all product manifolds. A striking application of our main theorem on Weyl
remainders is:
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Weyl remainders: an application 1197

Theorem 1 Let (Mi , gi )be smooth compact connectedRiemannianmanifolds
of dimension ni ≥ 1 for i = 1, 2. Then, with M = M1 × M2, g = g1 ⊕ g2,
and n := n1 + n2,

N (λ) = (2π)−n volRn (B) volg(M)λn + O
(
λn−1/ log λ

)
, λ→∞.

For future reference, we note that N (λ) = ∫
M �λ(x, x) dvg(x) and thus

N (λ) can be studied by understanding the kernel of �λ restricted to the diag-
onal. We study both on and off diagonal Weyl remainders in this article. The
main idea is to adapt the geodesic beam techniques developed by authors
[9,11,22] to study Weyl remainders. These techniques were originally used to
study averages of quasimodes over submanifolds by decomposing the quasi-
modes into geodesic beams and controlling the averages in terms of the L2

norms of these beams. In this work the key point is to study the eigenvalue
counting function by viewing it as a sum of quasimodes averaged over the
diagonal in M × M . We start our exposition in the setting of the on diagonal
estimates.

1.1 On diagonal Weyl remainders

The connection between the spectrum of the Laplacian and the properties of
periodic geodesics on M has been known since at least the works [15,16,45],
with their relation to Weyl remainders first explored in the seminal work [17].
To control E(λ)we impose dynamical conditions on the periodicity properties
of the geodesic flow ϕt : T ∗M \ {0} → T ∗M\{0}, i.e., the Hamiltonian flow
of (x, ξ) 
→ |ξ |g(x). For t0 > 0, T > 0, and R > 0, define the set of near
periodic directions in U ⊂ S∗M by

P R
U
(t0, T ) :=

{
ρ ∈ U :

⋃
t0≤|t |≤T

ϕt (BS∗M (ρ, R)) ∩ BS∗M(ρ, R) �= ∅
}
. (1.1)

Given two sets U ⊂ V ⊂ T ∗M , and R > 0, we write BV (U, R) := {ρ ∈ V :
d(U, ρ) < R}, where d is the distance induced by some fixed metric on T ∗M ,
B(U, R) = BT∗M (U, R), and BV (ρ, R) = BV ({ρ}, R). The set P R

U
(t0, T )

represents those points which come R close to being periodic with period
between t0 and T and will be used to give a quantitative measure of how many
near periodic geodesics there are.

We phrase our dynamical conditions in terms of a resolution function T =
T(R). This is a function of the scale, R, at which the manifold is resolved,
which increases as R → 0+. We use T to measure the time for which balls of
radius R can be propagated under the geodesic flow while satisfying a given
dynamical assumption, e.g. being non periodic.
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1198 Y. Canzani, J. Galkowski

Definition 1.1 We say a decreasing, continuous function T : (0,∞) →
(0,∞) is a resolution function. In addition, we say a resolution function T
is sub-logarithmic, if it is differentiable and

(log log R−1)′ = −1/R log R−1 ≤ [logT(R)]′ ≤ 0, 0 < R < 1.

We measure how close T is to being logarithmic through


(T) := lim sup
R→0+

T(R)
/
log R−1. (1.2)

Simple examples of sub-logarithmic resolution functions are T(R) =
α(log R−1)β for any α > 0 and 0 < β ≤ 1. For an explanation for our
use of resolution functions, see Remark 1.6.

For improved integrated Weyl remainders, we need a condition on the
geodesic flow. We will use the notation that forU ⊂ T ∗M we write μU for the
Liouville measure induced on U .

Definition 1.2 Let T be a resolution function. ThenU ⊂ S∗M is said to be T
non-periodic with constant Cnp provided there exists t0 > 0 such that

lim sup
R→0+

μS∗M

(
BS∗M

(
P R

U
(t0,T(R)), R

))
T(R) ≤ Cnp . (1.3)

We sayU is T non-periodic if there is suchCnp , andW ⊂ M is T non-periodic
if S∗WM is.

Below, forU ⊂ T ∗M , we write dimboxU for theMinkowski box dimension
of U (see e.g. [42, Page 333]). Note that if W ⊂ M is open with smooth
boundary then dimbox ∂W = n − 1.

Theorem 2 Let (M, g) be a smooth compact connected Riemannian manifold
of dimension n, W ⊂ M be an open subset with dimbox ∂W < n, and
0 > 0.
There exists C0 > 0 such that if T is a sub-logarithmic rate function with

(T) < 
0 and W is T non-periodic, then there is λ0 such that for all
λ > λ0

∣∣∣
∫
W

�λ(x, x) dvg(x)− (2π)−n volRn (B) volg(W )λn
∣∣∣ ≤ C0 λ

n−1/T
(
λ−1

)
.

In particular, if M is T non-periodic, then there is λ0 such that for all λ > λ0

∣∣∣N (λ)− (2π)−n volRn (B) volg(M)λn
∣∣∣ ≤ C0 λ

n−1/T
(
λ−1

)
.
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Fig. 1 An example of a perturbation of the sphere with both a non-periodic (green) and a
periodic (orange) physical space set. The perturbed metric coincides with the round metric
outside the strip (a, b). Trajectories which remain in the spherical strip are 2π periodic, while
those which enter the non-periodic set are mostly non-periodic. See Sect. B.2.1 for a precise
description of this example (color figure online)

We illustrate an application of Theorem 2 in Fig. 1. In this example we
construct a surface of revolutionwith both a periodic and a non-periodic set (see
Definition 1.2). In particular, Theorem 2 applies withW contained in the non-
periodic (green) set. One can obtain little oh improvements for the statement
in Theorem 2, but this requires the more general version given in Theorem 6
instead (seeRemark 1.8). SeeTable 1 inSect. 1.3 for some additional examples.

The assumptions of Theorem 2 apply to a wide variety of Riemannianmani-
folds. Indeed, in addition to the concrete examples in Sect. 1.3, the authors [12]
useTheorem2 to give a logarithmic improvement in the remainder for theWeyl
law that works for ‘typical’ metrics on any smooth manifold. This result is the
first quantitative estimate for the remainder in Weyl laws that holds for most
metrics.

We next discuss Eλ(x), the remainder in the on diagonal pointwise Weyl
law

�λ(x, x) = (2π)−n volRn (B)λn + Eλ(x), x ∈ M. (1.4)

The Weyl remainder in [25] comes from the estimate Eλ(x) = O(λn−1)
for x ∈ M (again, sharp on the round sphere). The connection between
Eλ(x) and geodesic loops through x is studied in the works of Safarov,
Sogge–Zelditch [38,41] and often appears in estimates for sup-norms of eigen-
functions. To control the pointwise remainder Eλ(x) we impose dynamical
conditions on the looping properties of geodesics joining x with itself. For
t0 > 0, T > 0, R > 0, and x, y ∈ M , define
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1200 Y. Canzani, J. Galkowski

LR
x,y(t0, T ) :=

{
ρ ∈ S∗x M :

⋃
t0≤|t |≤T

ϕt (B(ρ, R)) ∩ B(S∗y M, R) �=∅
}
. (1.5)

Similar to P R
U
(t0, T ), the set LR

x,y(t0, T ) represents those points, ρ, that are
R close to x and such that the geodesic through ρ comes R close to passing
through to y in some time between t0 and T . The set will be used to give a
quantitative measure of how many near looping geodesics there are.

Definition 1.3 Let T be a resolution function, t0 > 0, Cnl > 0, and x, y ∈ M .
Then, (x, y) is said to be a (t0,T) non-looping pair with constant Cnl when

lim sup
R→0+

(
μ

S∗x M

(
B

S∗x M
(
LR
x,y(t0,T(R)), R

))
μ

S∗y M

(
B

S∗y M
(
LR
y,x (t0,T(R)), R

))
T(R)2

)
≤ Cnl .

We say x is (t0,T) non-looping with constant Cnl if (x, x) is a (t0,T) non-
looping pair with constant Cnl .

Note that if t0 < inj(M), where inj(M) is the injectivity radius of M , then
for x to be (t0,T) non-looping is the same as being (ε,T) non-looping for any
0 < ε ≤ t0. In this case, we write x is (0,T) non-looping.

To state our estimates on the pointwise Weyl remainder, we let λ > 0, and,
for points x, y ∈ M with d(x, y) < injM , define

E0
λ(x, y) := �λ(x, y)− 1

(2π)n

∫
|ξ |gy<λ

ei〈exp
−1
y (x),ξ〉 dξ√|gy| . (1.6)

Here, the integral is over T ∗y M , expx : T ∗x M → M is the the exponential map,
and |gy| denotes the determinant of the metric g at y, when g is thought of as
matrix in local coordinates.

Theorem 3 Let α, β ∈ N
n, 0 < δ < 1

2 , Cnl > 0, and 
0 > 0. There exists
C0 > 0 such that the following holds. If T is a sub-logarithmic resolution
function with 
(T) < 
0, there is λ0 > 0 such that if x0 ∈ M is (0,T)
non-looping with constant Cnl , then for all λ > λ0

sup
x,y∈B(x0,λ−δ)

∣∣∂α
x ∂

β
y E

0
λ(x, y)

∣∣ ≤ C0 λ
n−1+|α|+|β|/T

(
λ−1

)
.

See Table 2 in Sect. 1.3 for some examples to which Theorem 3 applies.

Remark 1.4 At first it may not be obvious that (1.6) is the correct remainder to
estimate for off-diagonal Weyl asymptotics. However, one can check that the
term we subtract comes from the singularities corresponding to the shortest
geodesic from x to y and, when there are few additional loops from x to y,
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Weyl remainders: an application 1201

one expects these to give the main contribution. See also the discussion after
Theorem 4.

Theorems 2 and 3 fit in a long history of work on asymptotics of the kernel
of the spectral projector and the eigenvalue counting function. Many authors
considered pointwise Weyl sums [1,21,25,35,36,39], eventually proving the
sharp remainder estimates. The article [25] provided a method which was
used in many later works: [17] showed E(λ) = o(λn−1) under the assumption
that the set of periodic trajectories has measure 0, [38,41] improved estimates
on Eλ(x) to o(λn−1) under the assumption that the set of looping directions
through x hasmeasure 0 (see also the book of Safarov–Vassiliev [37]). See [13,
14] for corresponding estimates that are uniform in a small neighborhood of
the diagonal and Ivrii [28] for the case of manifolds with boundaries.

While o(1) improvements were available under dynamical assumptions,
until now, quantitative improvements in remainders were available in geome-
tries where one has an effective parametrix to log λ times e.g. manifolds
without conjugate points [2,4,31] or non-Zoll convex analytic rotation sur-
faces [43,44]. We point out that the closest results to ours are those of
Volovoy [43]. There, quantitative estimates on E(λ) are obtained under
stronger assumptions than those of Theorem 2. In particular, W is required
to be equal to M and the volume in (1.3) is required to be bounded by a
positive power of R, rather than T(R)−1.

The estimates in this article are available without additional geometric
assumptions. This comes from our use of the ’geodesic beam techniques’
developed in the authors’work [9,11,22] andwhich in turn drawupon the semi-
classical approach of Koch–Tataru–Zworski [33]. Theorems 2 and 3 can be
thought of as the quantitative analogs of themain results in [17] andof [38], [41]
respectively. In fact, these results can be recovered from Theorems 2 and 3 by
allowing T(R) to grow arbitrarily slowly as R → 0+ (see [11, Appendix B]).
We also note that our estimates include both C∞ asymptotics for �λ(x, y)
and uniformity in certain shrinking neighborhoods of the diagonal without
any additional effort and hence include the results from [13,14].

Remark 1.5 To recover the results of [13,14,38,41] one needs uniformity in
o(1) neighborhoods of points of interest. As stated, Theorem 3 does not quite
include this since it works in a λ−δ neighborhood of x . However, the full
version of our estimates, Theorem 9, allows for the neighborhood of x to
shrink arbitrarily slowly and thus recovers these earlier results.

Remark 1.6 (Resolution functions) There are several reasons why we state
our theorems in terms of a general resolution function. First, it is necessary to
allow T(R) to grow arbitrarily slowly as R → 0 to recover the o(1) results
of [17,38,41] (see Remark 1.8). Second, while it may appear from Tables 1
and 2, that T(R) is always either c log R−1 or the trivial case of inj(M), this is
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1202 Y. Canzani, J. Galkowski

not always true. In fact, one can check that many integrable examples are non-
looping or non-periodic for T(R)� log R−1. At the moment, the authors are
not aware of concrete examples with T(R)� log R. However, it is likely that
for any sub-logarithmic resolution function T, with T(R)→∞ as R → 0+,
a modification of the construction from [6] yields a metric on the sphere for
which there is a point x such that x is not (t0,T) non-looping for any t0 > 0,
but there is a resolution function T1 with T1(R)−→∞ as R → 0+ and t0 > 0
such that x is (t0,T1) non-looping. Also, note that our non-periodic, non-
looping, and non-recurrent conditions are all monotonic in T in the sense
that if T1(R) ≤ T2(R), and one of these conditions hold with the resolution
function T2, then it also holds with T1.

1.2 Off diagonal Weyl remainders

The off diagonal behavior of �λ(x, y) plays a crucial role in understanding
monochromatic random waves (see e.g. [7]) as well as in estimates for L p

norms of Laplace eigenfunctions (see e.g. [40, Section 5.1]). This problem is
more complicated than the on diagonal situation since understanding the far off
diagonal (i.e., d(x, y) > inj(M)) regime typically involves parametrices for

eit
√−�g for t > inj(M), which are difficult to control. Notably, our geodesic

beam techniques allow us to overcome this difficulty when estimating errors.
To control �λ(x, y) off-diagonal, we introduce a dynamical condition on

the non-recurrence properties of the geodesics joining a point x with itself. To
our knowledge, this is the first time non-recurrence is used in understanding
off-diagonal Weyl remainders. For x ∈ M , U ⊂ S∗x M , t0 > 0, T > 0, and
R > 0, let

RR
U,±(t0, T ) :=

⋃
t0≤±t≤T

ϕt
(
B(U, R)

) ∩ B
S∗x M(U, R).

Definition 1.7 Let t andT be resolution functions and R0 > 0.We say x ∈ M
is (t,T) non-recurrent at scale R0 if for all ρ ∈ S∗x M there exists a choice of
± such that for all A ⊂ B

S∗x M (ρ, R0), ε > 0, r > 0 with T(r) > t(ε), and
0 < R < R0,

μ
S∗x M

(
B

S∗x M

(
Rr R

A,±(t(ε),T(r)) , r R
))

< ε μ
S∗x M

(
B

S∗x M(A, R)
)
.

Heuristically, the way to think about Definition 1.7 is as follows. Recall
that the standard definition of recurrence of a set A ⊂ S∗x M is that that for
all B ⊂ A and μ

S∗x M -almost every ρ ∈ B, the geodesic through ρ returns
to B infinitely often. Definition 1.7 is a strengthening of the statement that
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Weyl remainders: an application 1203

no recurrent set exists. Indeed, the set RR
U,±(t0, T ) consists of those points

in U which return R close to U in times between t0 and T . Thus, a set is
non-recurrent according to Definition 1.7 if every subset A of S∗x M has the
property that the collection of points which are close to A and almost return
to A in time t(ε) has volume smaller than ε times that of the ball of radius R
around A. Thus, in particular, most points eventually do not come close to A
and hence A is also non-recurrent in the traditional sense.

If (x, y) is a (t0,T) non looping pair for some t0 > 0 we measure the
differencebetween�λ(x, y) and its smoothedversionwhich takes into account
propagation up to time t0. Let ρ ∈ S(R) with ρ̂(0) ≡ 1 on [−1, 1] and
supp ρ̂ ⊂ [−2, 2]. For σ > 0 we define

ρσ (s) := σ ρ
(
σ s

)
. (1.7)

For x, y ∈ M , t0 > 0, and λ > 0, let

Et0
λ := �λ − ρt0

∗�λ, (1.8)

where the convolution is taken in the λ variable. The quantity Et0
λ is the appro-

priate one to estimate since, under non-looping type assumptions, one expects
the main contribution to the kernel of the spectral projector to come from short
(fixed) time wave propagation.

Below is our first off diagonal result.

Theorem 4 Let α, β ∈ N
n, 0 < δ < 1

2 , Cnl > 0, R0 > 0, 
0 > 0, ε > 0, and
t be a resolution function, there is C0 > 0 such that if T j is a sub-logarithmic
resolution function with
(T j ) < 
0 for j = 1, 2 and Tmax = max(T1,T2),
then there is λ0 > 0 such the following holds. If x0, y0 ∈ M and t0 > 0 are
such that x0 and y0 are respectively (t,T1) and (t,T2) non-recurrent at scale
R0, and (x0, y0) is a (t0,Tmax) non-looping pair with constant Cnl , then for
λ > λ0

sup
x∈B(x0,λ−δ)

sup
y∈B(y0,λ−δ)

∣∣∂αx ∂βy Et0+ε
λ (x, y)

∣∣ ≤ C0 λ
n−1+|α|+|β|

/√
T1

(
λ−1

)
T2(λ

−1).

See Table 2 in Sect. 1.3 for some examples to which Theorem 4 applies.
To compare Theorems 3 and 4, note that for x, y ∈ M with d(x, y) < ε <

inj(M),

∣∣∣∣∂α
x ∂

β
y

(
ρελ ∗�λ(x, y)− 1

(2π)n

∫
|ξ |gy<λ

ei〈exp
−1
y (x),ξ〉qλ(x, y, ξ)

dξ√|gy|
)∣∣∣∣

≤ C0λ
n−2+|α|+|β|
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1204 Y. Canzani, J. Galkowski

where qλ(x, y, ξ)=1+ λ−1q−1(x, y, ξ) and q−1(x, y, ξ) = O(d(x, y)) (see
e.g. [13, Proof of Proposition 10]). Then, for points x, y with d(x, y) < λ−δ ,
modulo terms smaller than our remainder, E0

λ(x, y) as defined in (1.6) is the
same as Eε

λ(x, y).
For any t0 < ∞, it is possible to write an oscillatory integral expression

for ρt0 ∗�λ(x, y). However, its precise behavior in λ depends heavily on the
geometry of (M, g); in particular, on the structure of the set of geodesics from
x to y. This explains why we state our estimates in terms of Et0

λ .
More generally, our results apply to averages of �λ(x, y) with x ∈ H1 and

y ∈ H2, where H1, H2 are any two smooth submanifolds of M . This type of
integral is known as a Kuznecov sum [47] and appears in the analytic theory of
automorphic forms [5,23,24,29,34]. All our dynamical assumptions for points
x, y ∈ M above may be defined for the submanifolds H1, H2 ⊂ M instead. In
doing so, the only change needed is to use the sets of unit co-normal directions
SN∗H1 and SN∗H2, instead of S∗x M and S∗y M . See Definitions 1.12 and 1.13
for a detailed explanation. In what follows dσH1 and dσH2 denote the volume
measures induced by the Riemannian metric on H1 and H2 respectively.

Theorem 5 Let α, β ∈ N
n, 1 ≤ k1 ≤ n, 1 ≤ k2 ≤ n, Cnl > 0,


0 > 0, ε > 0, R0 > 0, and t be a resolution function. There is
C0= C0(α, β, k1, k2, n,Cnl, 
0, ε, R0, t) > 0 such that if T j is a sub-
logarithmic resolution function with 
(T j ) < 
0 for j = 1, 2 and Tmax =
max(T1,T2) the following holds. If t0 > 0, and Hj ⊂ M are submanifolds
of codimension k j such that (H1, H2) is a (t0,Tmax) non-looping pair with
constant Cnl , and Hj is (t,T j ) non-recurrent at scale R0 for j = 1, 2, then
there is λ0 > 0 such that for λ > λ0

∣∣∣∣
∫
H1

∫
H2

∂α
x ∂

β
y E

t0+ε
λ (x, y) dσH1 (x)dσH2 (y)

∣∣∣∣
≤ C0 λ

k1+k2
2 −1+|α|+|β|

/√
T1

(
λ−1

)
T2(λ−1).

See Table 2 in Sect. 1.3 for some examples to which Theorem 5 applies.
To our knowledge, Theorem 5 is the first theorem to give improved remain-

ders forKuznecov sum remainders under dynamical assumptions. Theorems 3,
4, and 5 are consequences of our results for general semiclassical pseudodif-
ferential operators (see Theorems 8 and 9).

1.3 Applications

In this section we present some examples to which our theorems apply. For
each of them we give a reference for the detailed proofs that the relevant
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Table 1 This table lists examples with T non-periodic subsets with T(R) = c log R−1

M W |Eλ| � §

Product manifolds Any λn−1
log λ B.1.1

Perturbed spheres In the non-periodic set λn−1
log λ B.2.1

Manifolds without conjugate points Any λn−1
log λ B.1

Non-Zoll convex analytic surfaces of revolution Any λn−1
log λ [44]

Compact Lie group rank > 1 with bi-invariant metric Any λn−1
log λ [44]

Theorem 2 holds for all these examples. Here, Eλ =
∫
W Eλ(x) dvg with Eλ(x) as in (1.4)

assumptions are satisfied. Note that Appendix B contains many examples not
listed in Tables 1 and 2, and that the results from [8] can be used to find
additional examples. With the exception of the final three rows of Table 1 with
W = M , all the estimates in Tables 1 and 2 are new.

In Table 1, we list examples where the assumptions of Theorem 2 hold. The
final two examples are due to Volovoy [44].

In Table 2 we list some examples for which Theorems 4 and 5 hold. In each
case there exists t0 > 0 such that (H1, H2) is a (t0,max(T1,T2)) non-looping
pair. Note that we omit labeling points for which T2 = inj(M) since being
inj(M) non-recurrent is an empty statement. In these cases the gain in the
pointwise Weyl law is

√
log λ instead of log λ.

1.4 Further improvements

Many experts believe that, for a Baire generic Riemannian metric on a smooth
compact manifold, there is δ > 0 such that E(λ) = O(λn−1−δ). Presently,
this type of improved remainder is only available when the geodesic flow
has special structure e.g. the flat torus, non-Zoll convex analytic surfaces
of revolution, or compact Lie groups of rank > 1 with bi-invariant met-
ric [44]. Specifically, the geodesic flow must expand only polynomially in
time, ‖dϕt‖L∞(T S∗M) ≤ C〈t〉N for some N > 0. Typically, geodesics will
instead expand exponentially in some places and, because of this, Egorov’s
theorem generally only holds to logarithmic times. In fact, the only ingredient
in our proof which restricts us to logarithmic improvements is Egorov’s theo-
rem. Under the assumption of polynomial expansion one can prove an Egorov
theorem to polynomial times and hence obtain polynomially improved remain-
ders using our methods. We do not pursue this here since the present article
is intended to apply on a general manifold and the polynomial times involved
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in such an Egorov theorem are not explicit. We instead plan to address the
integrable case specifically in a future article.

1.5 Weyl laws for general operators

Let �m(M) denote the class of semiclassical pseudodifferential operators of
order m > 0 and P(h) ∈ �m(M) be self-adjoint, with principal symbol p,
that is positive and classically elliptic in the sense that there is C > 0 such
that

p(x, ξ) ≥ 1
C |ξ |m, |ξ | ≥ C. (1.9)

Let {E j (h)} j be the eigenvalues of P repeated with multiplicity. For s ∈ R

we work with �h(s) := 1(−∞,s](P(h)), which is the orthogonal projection
operator

�h(s) : L2(M, g)→
⊕

E j (h)≤s
ker(P(h)− E j (h)).

For x, y ∈ M we write �h(s; x, y) for its kernel

�h(s; x, y) :=
∑

E j (h)≤s
φE j (h)

(x)φE j (h)
(y), (1.10)

where {φE j (h)
} j is an orthonormal basis for L2(M) with P(h)φE j (h)

=
E j (h)φE j (h)

. Note that one integrates (1.10) against the Riemannian volume
density dvg(y).

Let ϕt : T ∗M → T ∗M denote the Hamiltonian flow for p at time t .
We recall the maximal expansion rate for the flow and the Ehrenfest time at
frequency h−1 respectively:

�max := lim sup
|t |→∞

1

|t | log sup
{p∈[a−ε,b+ε]}

‖dϕt (x, ξ)‖,

Te(h) := log h−1

2�max
. (1.11)

Note that�max ∈ [0,∞) and if�max = 0, we may replace it by an arbitrarily
small constant.

Remark 1.8 (Little oh improvements) When the expansion rate �max = 0
(see (1.11)) and our dynamical assumptions hold for T(R) � log R−1,
our theorems can be used to obtain o(1/ log λ) improvements over standard
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1208 Y. Canzani, J. Galkowski

remainders. In special situations where the geodesic flow has sub-exponential
expansion, we expect similar results with improvements beyond o(1/ log λ).

Definition 1.9 Let a, b ∈ R with a ≤ b. Let t0 > 0 and T be a resolution
function. A set U ⊂ T ∗M is said to be T non-periodic for p in the window
[a, b] provided that for all E ∈ [a, b] Definition 1.2 holds with ϕt being the
Hamiltonian flow for p, and with S∗M replaced by p−1(E).

The following is our most general version of the Weyl Law. We write πM :
T ∗M → M for the natural projection and Hp for the Hamiltonian vector field
for p.

Theorem 6 Let 0 < δ < 1
2 , � ∈ R, and V ⊂ ��(M) a bounded subset,

U ⊂ T ∗M open, t0 > 0, CU > 0, and a, b ∈ R with a ≤ b. Suppose
dπMHp �= 0 on p−1([a, b])∩U. Then, there is C0 > 0 such that the following
holds. Let K > 0, A ∈ V with WFh(A) ⊂ U, � > �max, T be a sub-
logarithmic resolution function with �
(T) < 1 − 2δ, and suppose U is T
non-periodic in the window [a, b] with

lim sup
R→0

sup
t∈[a,b]

T(R)μ
p−1(t) (B(∂U, R)) ≤ CU . (1.12)

Then, there is h0 > 0 such that for all 0 < h < h0, and E ∈ [a, b + Kh]
∣∣∣∣

∑
−∞<E j (h)≤E

〈AφE j (h)
, φE j (h)

〉 − tr
(
A ρt0/h

∗�h(E)
)∣∣∣∣ ≤ C0 h

1−n/T(h). (1.13)

Since the second term in (1.13) involves only short time propagation for the
Schrödinger group eit P/h , its asymptotic expansion in powers of h can in prin-
ciple be obtained. This calculation is routine, but long, so we do not include it
here. For the details when P = −h2�g, we refer the reader to [17, Proposition
2.1]. In addition, ifU ⊂ T ∗M has smooth boundary which intersects p−1(E)

transversally for E ∈ [a, b], then (1.12) holds. Although the statement of The-
orem 6 is cumbersome whenU with rough boundary is allowed, it is natural to
consider dynamical assumptions on this type of set. Indeed, many dynamical
systems exhibit the so-called ‘chaotic sea’ with ‘integrable islands’ behavior
where the dynamics are aperiodic in the sea; a set which typically has very
rough boundary.

Next, we consider generalized Kuznecov [34] type sums of the form

�
A1,A2

H1,H2
(s) :=

∫
H1

∫
H2

A1�h(s)A
∗
2 (x, y) dσH1 (x)dσH2 (y),

where A1, A2 ∈ �∞(M) and H1, H2 ⊂ M are two submanifolds of M .
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Let H ⊂ M be a smooth submanifold. For a, b ∈ R, a ≤ b, define

�H
[a,b] := p−1([a, b]) ∩ N∗H. (1.14)

Definition 1.10 We say a submanifold H ⊂ M of codimension k is
conormally transverse for p in the window [a, b] if given f1, . . . , fk ∈
C∞c (M;R) locally defining H , i.e. with H = ⋂k

i=1{ fi = 0} and
{d fi } linearly independent on H, we have

�H
[a,b] ⊂

k⋃
i=1
{Hp fi �= 0}, (1.15)

Here, we interpret fi as a function on the cotangent bundle by pulling it back
through the canonical projection map.

Remark 1.11 If P(h) = −h2�g, then p(x, ξ) = |ξ |2g(x). Working with a =
b = 1, we have �H

[a,b] = SN∗H . In this setup every submanifold H ⊂ M is
conormally transverse for p.

Definition 1.12 Let H1, H2 ⊂ M be two smooth submanifolds. Let a, b ∈ R

with a ≤ b. Let t0 > 0, T a resolution function, and Cnl > 0. We say (H1, H2)

is a (t0,T) non-looping pair in the window [a, b] with constant Cnl provided
that Definition 1.3 holds for all E ∈ [a, b]with ϕt being the Hamiltonian flow
for p and with LR

x,y changed to

LR,E
H1,H2

(t0, T ) :=
{
ρ ∈ �H1

E
:

⋃
t0≤|t |≤T

ϕt (B(ρ, R)) ∩ B
(
�H2

E
, R

) �= ∅
}
,

and with S∗x M and S∗y M replaced with �H1
E

and �H2
E

respectively. We say H
is (t0,T) non-looping if (H, H) is a (t0,T) non-looping pair.

Definition 1.13 Let H ⊂ M be a smooth submanifold. Let a, b ∈ R with
a ≤ b. Let t0 > 0, R0 > 0, 0 < Cnr < 1, and let T be a resolution function.
H is said to be T non-recurrent in the window [a, b] with constants (R0,Cnr)

provided Definition 1.7 holds for any E ∈ [a, b] with S∗x M replaced by �H
E

and where ϕt is the Hamiltonian flow for p.

To state our main estimate for Kuznecov sums, let ρ ∈ S(R)with ρ̂(0) ≡ 1
on [−1, 1] and supp ρ̂ ⊂ [−2, 2]. For T > 0 we define

ρh,T (t) := T
h ρ

(
T
h t

)
. (1.16)
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1210 Y. Canzani, J. Galkowski

We then introduce the remainder

E
A1,A2

H1,H2
(T, h; s) = �

A1,A2

H1,H2
(s)− ρh,T ∗�

A1,A2

H1,H2
(s). (1.17)

Theorem 7 Let P(h) ∈ �m(M) be a self-adjoint semiclassical pseudodiffer-
ential operator with classically elliptic symbol p. Let t be a resolution function
and ε > 0. For j = 1, 2, let Hj ⊂ M be submanifolds with co-dimension k j .
Let a, b ∈ R such that Hj is conormally transverse for p in the window
[a, b] for j = 1, 2. Let R0 > 0, t0 > 0, and for j = 1, 2, let T j be sub-
logarithmic resolution functionsand Tmax = max(T1,T2). Suppose Hj is
(t,T j ) non-recurrent in the window [a, b] with constant R0 for each j = 1, 2,
and (H1, H2) is a (t0,Tmax) non-looping pair in the window [a, b] with con-
stant Cnl . Then, for all A1, A2 ∈ �∞(M), there exist h0 > 0 and C0 > 0 such
that for all 0 < h ≤ h0, K > 0, and s ∈ [a − Kh, b + Kh]

∣∣∣E A1,A2

H1,H2
(t0+ε, h; s)

∣∣∣ ≤ C0 h
1− k1+k2

2

/√
T1(h)T2(h).

Remark 1.14 We omit the precise dependence of the constant C0 on various
parameters in Theorem 7. Instead, we refer the reader to our main theorem on
averages, Theorem 8, where we have introduced notation to handle uniformity
in families of submanifolds H1 and H2.

1.6 Outline of the paper and ideas from the proof

In Sect. 2 we introduce the notion of good coverings by tubes and various
assumptions on these coverings which allow us to adapt the results of [11] to
our setup. We also state our main averages theorem in its full generality (The-
orem 8). Section 3 studies how the dynamical assumptions in the introduction
relate to the assumptions on coverings by tubes from Sect. 2. In Sect. 4 we
adapt the crucial estimates coming from the geodesic beam techniques [11] so
that they can be applied to the study of Weyl remainders. Next, in Sect. 5, we
estimate the scale (in the energy) at which averages of the spectral projector
behave like Lipschitz functions in the spectral parameter. With this in hand,
we are able to approximate�h using ρh,T (h) ∗�h with T (h) = √T1(h)T2(h).
Finally, Sect. 6 shows that the ρh,T (h) ∗�h approximation is close to ρh,t0 ∗�h ,
finishing the proof of our main theorem on averages. Section 7 contains the
proof of our theorems on the Weyl remainder. This section follows the same
strategy as that for averages: an estimate for the Lipschitz scale of the trace
of the spectral projector, followed by relating ρh,T (h) ∗ �h to ρh,t0

∗ �h . In
Appendix A we present an index of notation and in Appendix B we give
examples including those from Table 2 to which our theorems can be applied.
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The main idea of this article is to view the kernel of the spectral projector
1[t−s,t](P) as a quasimode for P . This allows us to use the geodesic beam
techniques from [11] to control the energy scale at which the projector behaves
like a Lipschitz function and hence to estimate the error when the projector is
smoothed at very small scales. This idea is used a second timewhen controlling
(ρh,T (h) − ρh,t0) ∗�h to estimate the contribution from small volumes of the
possibly looping tubes. A simple argument using Egorov’s theorem controls
the remaining non-looping tubes. The crucial insight used to handle the Weyl
law is to view the kernel of the spectral projector as a distribution on M × M ,
where it is a quasimode for P := P ⊗ 1, and to study the Weyl Law via
integration of the kernel over the diagonal. By doing this, we are able to reduce
the problem to bounding an average of a quasimode over a submanifold, a
setting in which geodesic beam techniques apply.

Note that Theorems 2 and 6 are proved in Sects. 7.1.4 and 7.1.3 respectively.
Theorem 1 is a corollary of Theorem 2; the necessary dynamical properties are
proved in Appendix B.1.1. Theorems 3, 4, 5, and 7 follow from an application
of Theorem 9 (See Sect. 2.4 for Theorems 3, 4, and 5. Theorem 7 is a direct
corollary of Theorem 9.). The fact that Theorem 9 follows from Theorem 8 is
proved in Sect. 9 and Theorem 8 is proved in Sect. 6.2.
Acknowledgements. The authors would like to thank Dmitry Jakobson,
Iosif Polterovich, John Toth, Dmitri Vassiliev and Steve Zelditch for helpful
comments on the existing literature and Maciej Zworski for suggestions on
how to improve the exposition and presentation, and Leonid Parnovski for
comments on a previous draft. Thanks also to the anonymous referee who’s
comments improved the exposition. The authors are grateful to the National
Science Foundation for partial support under grants DMS-1900434 and DMS-
1502661 (JG) and DMS-1900519 (YC). Y.C. is grateful to the Alfred P. Sloan
Foundation.

2 Results with dynamical assumptions via coverings by tubes

We divide this section in four parts. In Sect. 2.1 we introduce the analogues
of Definitions 1.12 and 1.13 via the use of coverings by bicharacteristic tubes.
Microlocalization to these tubes will eventually be used to generate bichar-
acteristic beams. In Sect. 2.2 we introduce the uniformity assumptions that
allow us to obtain uniform control of the constants in all our results. In Sect.
2.3 we state the most general version of our results, using the definitions via
coverings by tubes, and the uniformity assumptions.
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1212 Y. Canzani, J. Galkowski

2.1 Dynamical assumptions via coverings by tubes

Let H ⊂ M be a smooth submanifold that is conormally transverse for p in
the window [a, b]. Let Z ⊂ T ∗M with

�H
[a,b] ⊂ Z (2.1)

be a hypersurface that is transverse to the flow, and ϕt continue to denote the
Hamiltonian flow for p at time t . Given A ⊂ �H

[a,b] , τ > 0, and r > 0, we
define

�τ
A
(r) :=

⋃
|t |≤τ+r

ϕt
(
BZ (A, r)

)
. (2.2)

Let τinjH > 0 be small enough so that the map

(−τinjH
, τinjH

)× Z → T ∗M, (t, q) 
→ ϕt (q), (2.3)

is injective. Given r > 0, 0 < τ < τinjH
, and a collection of points {ρ j } j∈J (r),

we will work with the tubes

T j = T j (r) := �τ
ρ j
(r).

A (τ, r)-cover for A ⊂ T ∗M is a collection of tubes {T j (r)} j∈J (r) where
J (r) ⊂ N for which

�τ
A(

1
2r) ⊂

⋃
j∈J (r)

T j (r), and T j (r) ∩�τ
A(

1
2r) �= ∅, for all j ∈ J (r).

LetD > 0.We say a (τ, r)-cover is a (D, τ, r)-good cover, if there is a splitting
J (r) = �Di=1Ji (r) such that for all 1 ≤ i ≤ D and k �=� ∈ Ji (r),

Tk(3r) ∩ T�(3r) = ∅. (2.4)

For E ∈ R and r > 0, we adopt the notation

JE (r) :=
{
j ∈ J (r) : T j (r) ∩ Z ∩ B(�H

E
, r) �= ∅

}
. (2.5)

We are now ready to introduce the definitions via coverings of our dynamical
assumptions. First, for 0 < t0 < T0, we say A ⊂ T ∗M is [t0, T0] non-self
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Weyl remainders: an application 1213

looping if

T0⋃
t=t0

ϕt (A) ∩ A = ∅ or
−t0⋃

t=−T0
ϕt (A) ∩ A = ∅. (2.6)

Definition 2.1 (non looping pairs via coverings) Let t0 > 0, τ0 > 0, D > 0,
and T be a resolution function. Let H1, H2 be two submanifolds and U1 ⊂
N∗H1, U2 ⊂ N∗H2. We say (U1,U2) is a (t0,T) non-looping pair in the
window [a, b] via τ0-coverings with constant Cnl provided for all 0 < τ < τ0
there exists r0 > 0 such that for 0 < r < r0, any two (D, τ, r)-good covers of
U1 ∩ �H1

[a,b] and U2 ∩ �H2
[a,b] , {T 1

j (r)} j∈J 1(r) and {T 2
j (r)} j∈J 2(r) respectively,

and every E ∈ [a, b], there is splittings of indices
J 1

E
(r) = B1

E
(r) ∪ G1

E
(r), J 2

E
(r) = B2

E
(r) ∪ G2

E
(r),

satisfying

(1) for each i, k ∈ {1, 2}, i �= k every � ∈ Gi
E
(r),

( ⋃
t0+τ≤|t |≤T(r)−τ

ϕt

(
T i
� (r)

))⋂( ⋃
j∈J k

E
(r)

T k
j (r)

)
= ∅,

(2) r2(n−1)|B1
E
(r)||B2

E
(r)|T(r)2 ≤ D2Cnl .

We will say (H1, H2) is a (t0,T) non-looping pair in the window [a, b] via
τ -coverings if (N∗H1, N∗H2) is. We will also say H is (t0,T) non-looping in
the window [a, b] via τ coverings whenever (H, H) is a non-looping pair.

In Definition 2.1, the sets BE and GE should be thought of as respectively
‘bad’ and ‘good’ tubes. The tubes BE are ‘bad’ in the sense that they may
connect �H1

[a,b] and �H2
[a,b] under the Hamiltonian flow for p in a relatively short

time, while the tubes GE are ‘good’ in the sense that they do not connect these
two sets for some controlled amount of time (see part (1) of the definition).
Part (2) of the definition guarantees that there are not too many bad tubes
connecting �H1

[a,b] and �H2
[a,b] .

In Sect. 3, we prove that non looping in the sense of Definition 1.12 is
equivalent to non looping by coverings in the sense of Definition 2.1.

Definition 2.2 (non-recurrence via coverings) Let τ0 > 0, D > 0, and T be
a resolution function. We say H is T non-recurrent in the window [a, b] via
τ0-coverings with constant Cnr provided for all 0 < τ < τ0 there exists r0 > 0
such that for 0 < r < r0, every (D, τ, r)-good cover of �H

[a,b] , {T j (r)} j∈J (r),
and E ∈ [a, b], there exists a finite collection of sets of indices {GE,�

(r)}�∈LE (r)
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1214 Y. Canzani, J. Galkowski

with JE (r) =
⋃

�∈LE (r) GE,�
(r), and so that for every � ∈ LE (r) there exist

functions t�(r) > 0 and T�(r) > 0, with 0 ≤ t�(r) ≤ T�(r) ≤ T(r), so that

(1)
⋃

j∈GE,�
(r) T j (r) is [t�(r), T�(r)] non-self looping,

(2) r
n−1
2

∑
�∈LE (r)

(|GE,�
(r)|t�(r)T�(r)−1

) 1
2 ≤ D

1
2Cnr T(r)

− 1
2 .

In Definition 2.2, the sets BE and GE should again be thought of as respec-
tively ‘bad’ and ‘good’ tubes. The tubesBE are ‘bad’ in the sense that theymay
self intersect under the Hamiltonian flow for p in a relatively short time, while
the tubes GE are ‘good’ in the sense that they do not self intersect these two
sets for some controlled amount of time (see part (1) of the definition). Part
(2) of the definition again guarantees that there are not too many bad tubes.

In Lemma 3.5 belowwe prove that non recurrence in the sense of Definition
1.13 implies non recurrence by coverings in the sense of Definition 2.2. At
the moment, we are unable to determine whether these two definitions are
equivalent.

2.2 Uniformity assumptions

Let H ⊂ M be a smooth submanifold. In practice, we prove estimates on
{H̃h}h , where {H̃h}h is a family of submanifolds such that

sup
{
d
(
ρ,� H̃h

[a,b]
) ∣∣ ρ ∈ �H

[a,b]

}
≤ R(h) h > 0, (2.7)

where R(h) > 0 and for every multi-index α there is Kα > 0 such that for all
h > 0

|∂α
x RH̃h

| + |∂α
x �H̃h

| ≤ Kα . (2.8)

HereR
H̃h

and�
H̃h

denote the sectional curvature and the second fundamental

form of H̃h . Without loss of generality, we will assume Z is chosen so that
there exist N > 0, C = C(p, a, b, {Kα}|α|≤N ) > 0, and r0 > 0 such that for
all E ∈ [a, b], A ⊂ �H

E
and 0 < r < r0,

vol
(
BZ (A, r)

)
≤ Crnμ�H

E

(
B

�H
E

(
A, r

))
.

We may do this since dimZ = 2n − 1, dim�H
E
= n − 1, and �H

E
⊂ Z .

Note that when H = {x0} is a point, the curvature bounds become trivial,
and so in place of (2.7) we work with d(x0, x̃h) < R(h) and may take Kα

to be arbitrarily close to 0. In what follows, let rH : T ∗M → R be the
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geodesic distance to H , i.e., rH (x, ξ) = d(x, H) for (x, ξ) ∈ T ∗M , and write
πM : T ∗M → M for the natural projection.

Definition 2.3 (regular families) We will say a family of submanifolds {Hh}h
is regular in the window [a, b] if it satisfies (2.8) and there is ε > 0 so that
for all h > 0, the map (−ε, ε)×�H

[a,b] → M ,

(t, ρ) 
→ πM (ϕt (ρ)) is a diffeomorphism. (2.9)

Then, define |HprH | : �H
[a,b] → R by

|HprH |(ρ) := lim
t→0

|HprH (ϕt (ρ))|. (2.10)

Definition 2.4 (uniformly conormally transverse submanifolds) A family of
submanifolds {H̃h}h is said to be uniformly conormally transverse for p in the
window [a, b] provided
(1) H̃h is conormally transverse for p in the window [a, b] for all h > 0,
(2) there exists I0 > 0 so that for all h > 0

inf
{
|HprH̃h

|(ρ) ∣∣ ρ ∈ �H
[a,b]

}
≥ I0 . (2.11)

When the constants involved in our estimates depend on {H̃h}h , they will do
so only through finitely many of the Kα constants and the constant I0 .

Remark 2.5 We note that for p(x, ξ) = |ξ |2g(x), a = b = 1, and �H
[a,b] =

SN∗H , we have |HprH |(ρ) = 2 for all ρ ∈ SN∗H . It follows that every family
of submanifolds is uniformly conormally transverse and we may take I0 = 2.

2.3 Main results

Wenow state themain results fromwhich all of ourKuznecov type asymptotics
follow. Throughout the text, the notation C = C(a1, . . . , ak) means that the
constant C depends only on a1, . . . , ak .

Theorem 8 For j = 1, 2, let k j ∈ {1, . . . , n}, I j
0

> 0, A j ∈ �∞(M). Let
C1
nr
> 0, C2

nr
> 0 and Cnl > 0. There is

C0 = C0(n, k1, k2, A1, A2, I
1
0
, I2

0
,C1

nr
,C2

nr
,Cnl) > 0

such that the following holds.
Let P(h) ∈ �m(M) be a self-adjoint semiclassical pseudodifferential oper-

ator, with classically elliptic symbol p. Let 0 < δ < 1
2 , K > 0, a, b ∈ R with
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1216 Y. Canzani, J. Galkowski

a ≤ b, and for j = 1, 2 let Hj⊂ M be a submanifold with co-dimension
k j that is regular and uniformly conormally transverse for p in the window
[a, b] (with constant I j

0
as in (2.11)). Then, there exists τ0 > 0 with the

following property. Let � > �max, and t0 > 0. For j = 1, 2 let T j be a
sub-logarithmic resolution function with �
(T j ) < 1 − 2δ and such that
the submanifold Hj is T j non-recurrent in the window [a, b] via τ0-coverings
with constant C j

nr
. Suppose (H1, H2) is a (t0,Tmax) non-looping pair in the

window [a, b] via τ0-coverings with constant Cnl where Tmax = max(T1,T2).
Let hδ ≤ R(h) = o(1) and for j = 1, 2 let {H̃ j,h}h be a family of submanifolds
of codimension k j that is regular, uniformly conormally transverse for p in
the window [a, b], and satisfies

sup
{
d
(
ρ,�

H̃ j,h
[a,b]

) ∣∣ ρ ∈ �
Hj
[a,b]

}
≤ R(h).

Then, there is h0 > 0 such that for all0 < h ≤ h0 and s ∈ [a−Kh, b+Kh],
∣∣∣E A1,A2

H̃1,h ,H̃2,h
(t0, h; s)

∣∣∣ ≤ C0 h
1− k1+k2

2

/√
T1(R(h))T2(R(h)).

We also have the following corollary involving the definitions of non-
looping (Definition 1.12) and non-recurrence (Definition 1.13).

Theorem 9 Let t be a resolution function, � > �max, K > 0, ε > 0, R0 >

0, 0 < δ < 1
2 , and for j = 1, 2 let T j be a sub-logarithmic resolution

function with �
(T j ) < 1 − 2δ and let Tmax = max(T1,T2). Suppose the
same assumptions as Theorem 8, but assume instead that for j = 1, 2 the
submanifold Hj is (t,T j ) non-recurrent in the window [a, b] at scale R0, and
(H1, H2) is a (t0,Tmax) non-looping pair in the window [a, b] with constant
Cnl . Then, there exist C0 = C0(n, k1, k2, A1, A2, I

1
0
, I2

0
, t,Cnl) and h0 > 0

such that for all 0 < h ≤ h0 and s ∈ [a − Kh, b + Kh]
∣∣∣E A1,A2

H̃1,h ,H̃2,h
(t0 + ε, h; s)

∣∣∣ ≤ C0 h
1− k1+k2

2

/√
T1(R(h))T2(R(h)).

For the proof of Theorem 8, see Sect. 6.2 and for the proof of Theorem 9
see Sect. 9.

2.4 Application to the Laplacian

In this section we show how to obtain Theorems 3, 4, and 5 from Theorem 9. It
will be convenient here and below to use semiclassical Sobolev spaces defined
for s ∈ R by the norms

‖u‖2Hs
scl(M) := 〈(−h2�g + 1)su, u〉L2(M). (2.12)
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To pass from Theorem 9 to theorems about the Laplacian, we work with
an operator Q such that σ(Q)(x, ξ) = |ξ |g(x) near {(x, ξ) : |ξ |g(x) = 1},
Theorem 9 applies with P = Q, and for λ = h−1 and all N > 0

1(−∞,1](Q) = �λ, (ρh,t0
∗ 1(−∞,s](Q))(1)

= ρt0
∗�λ + O(h∞)H−N

scl →HN
scl
. (2.13)

Recall that ρh,t0
is defined as in (1.16). To build Q, letψ1, ψ2 ∈ C∞c (R; [0, 1])

with suppψ1 ⊂ (−1/4, 1/4), suppψ2 ⊂ [−16, 16], ψ1 ≡ 1 on
[−1/16, 1/16] and ψ2 ≡ 1 on [−4, 4]. We claim

Q = (1− ψ1(−h2�g))ψ2(−h2�g)

√
−h2�g

−h2�g(1− ψ2(−h2�g)) (2.14)

satisfies the desired properties. Observe that the second term in (2.14) is added

to make Q classically elliptic, and that we use −h2�g rather than
√
−h2�g

in order to apply [48, Theorem 14.9] to obtain Q ∈ �2(M). Note also that Q
is self-adjoint and σ(Q) = |ξ |g on {12 ≤ |ξ |g ≤ 2},

ρt0
∗�λ =

(
ρt0,h

∗ 1(−∞,s]
(√
−h2�g

))
(1),

�λ = 1(−∞,1]
(√
−h2�g

)
(2.15)

1(−∞,s](Q) = 1(−∞,s]
(√
−h2�g

)
, s ∈ [12 , 2] (2.16)

and 1(−∞,s](Q) = 1(−∞,s](
√
−h2�g) = 0 for s < 0. Finally, we use the

ellipticity of both Q and −h2�g to obtain that for N ≥ 0

1(−∞,s](Q) = ON (〈s〉N )H−N
scl →HN

scl
, 1(−∞,s]

(√
−h2�g

)

= ON (〈s〉2N )H−N
scl →HN

scl
.

Now, for all N > 0 and L > 1 there is CN ,L > 0 so that |ρ
(
t0
h (1 − s)

)
| ≤

CN ,L h
2N+L〈s〉−2N−L on |s − 1| > 1

2 . Therefore
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1218 Y. Canzani, J. Galkowski

[
ρt0,h ∗

(
1(−∞,s](Q)− 1(−∞,s](

√
−h2�g)

)]
(1)

=
∫
s /∈[1/2,2]

s≥0

t0
h
ρ
( t0
h
(1− s)

)(
1(−∞,s](Q)− 1(−∞,s]

(√
−h2�g

))
ds

= ON (h
2N+L−1)H−N

scl →HN
scl
. (2.17)

Combining (2.15) with (2.16) and (2.17), we obtain (2.13).
Now, every submanifold is conormally transverse for p(x, ξ) = |ξ |g(x)

at p−1(1) with constant I0 = 1. Therefore, Theorems 3, 4, and 5 follow
from Theorem 9. To see this, we set P = Q, a = b = 1, and observe that
the Hamiltonian flow for σ(Q) near S∗x M is equal to the geodesic flow. In
particular, the dynamical definitions 1.12 and 1.13 applied to Q at E = 1
are exactly Definitions 1.3 and 1.7 with S∗x M replaced by SN∗H . This is true
because Definitions 1.3 and 1.7 are stated with ϕt being the homogeneous
geodesic flow, i.e., the flow generated by |ξ |g(x). Next, we apply Theorem 5
with � = 2�max+1, h = λ−1, and work with the resolution functions T̃ j =
(�
0)

−1(1− 2δ)T j for j = 1, 2.

3 Dynamical assumptions and coverings

In this section we relate the non-looping and non-recurrence concepts intro-
duced in Definitions 1.12 , 1.13, to their analogues via coverings given in
Definitions 2.1, 2.2.

Proposition 3.1 Let H1, H2 ⊂ M be smooth submanifolds. Let a, b ∈ R

be such that H1, H2 are conormally transverse for p in the window [a, b],
and τ0 > 0. Let t0 > 0, T a resolution function, and suppose (H1, H2) is a
(t0,T) non-looping pair in the window [a, b] with constant Cnl . Then, there
is C̃nl = C̃nl(p, a, b, n,Cnl, H1, H2) > 0 such that (H1, H2) is a (t0+3τ0, T̃)
non-looping pair in the window [a, b] via τ0-coverings with constant C̃nl and
with T̃(R) = T(4R)−3τ0.

Before proving the proposition, we record some facts about sub-logarithmic
resolution functions.

Lemma 3.2 Suppose T is a sub-logarithmic resolution function.

(1) For 0 < a < b < 1,

T(b) ≤ T(a) ≤ log a

log b
T(b).

In particular, T(R) ≤ log R
logμ+log RT(μR) for 0 < μ < R−1.
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(2) Let f (s) := − log(T−1(s)). Then, f extends to a differentiable function
on [0,∞), f (0) = 0, and f (a) ≤ a

b f (b) for 0 < a < b.
(3) Let 0 < δ < 1

2 , and R(h) ≥ hδ with R(h) = o(1). Then for all� > �max,
ε > 0, there is h0 > 0 such that for 0 < h < h0

T(R(h)) ≤ (
(T)�+ ε)Te(h).

Proof Note that

0 ≤ log
T(a)
T(b)

= −
∫ b

a

T′(s)
T(s)

ds ≤
∫ b

a

1

s log s−1
ds = log

( log a−1
log b−1

)
,

and hence the first claim holds. For the second claim, observe that since T is
sub-logarithmic, f ′(s) ≥ − log(T−1(s))

s = f (s)
s .

To prove the last claim, observe that since R(h) = o(1), for all � > �max
and ε > 0, there is h0 > 0 such that for 0 < h < h0,

T(R(h)) ≤ (
(T)+ ε�−1) log R(h)−1 ≤ (
(T)�+ ε)Te(h).

The second inequality follows from definitions (1.2), (1.11), and R(h) ≥ hδ

with 0 < δ < 1
2 . ��

In the following lemma we explain how to partition a (D, τ, r)-good cover
for �H1

E
into tubes that do not loop through �H2

E
for times in (t0, T ), and

tubes that are ‘bad’ in the sense that they do loop through �H2
E
. We do this

while controlling the number of ‘bad‘ tubes in terms of the size of the set
LS,E

H1,H2
(t0, T ) for S > 4r .

Lemma 3.3 Let a, b ∈ R, H1, H2 ⊂ M be smooth submanifolds such that
H1, H2 are conormally transverse for p in the window [a, b]. Then there is
C0 = C0(p, a, b, n, H1, H2) such that the following holds. Let τ0 > 0, r > 0,
and 0 < τ < τ0. For i = 1, 2 let {T i

j (r)} j∈J i (r) be a (D, τ, r)-good cover

of �Hi[a,b]. Let t0 > 0, T > 0. Then, for all E ∈ [a, b] and S ≥ 4r there is a

splitting J 1
E
(r) = B1

E
(r) ∪ G1

E
(r) such that

(1) for j ∈ G1
E
(r) and k ∈ J 2

E
(r)

⋃
t0+2(τ+r)≤|t |≤T−2(τ+r)

ϕt (T 1
j (r)) ∩ T 2

k (r) = ∅,

(2) |B1
E
(r)| ≤ DC0r

1−n μ
�
H1
E

(
B
�
H1
E

(
LS,E

H1,H2
(t0, T ), S

))
.
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1220 Y. Canzani, J. Galkowski

Proof For j = 1, 2 let Z j ⊂ T ∗M be the hypersurface transverse to the flow,

with �
Hj
[a,b] ⊂ Z j , used to build the tubes of the cover, as explained in (2.1).

Let E ∈ [a, b] and for S > 0 set

B1
E
(r) := {

j ∈ J 1
E
(r) : T 1

j (r) ∩ BZ1
(LS,E

H1,H2
(t0, T ), 2r) �= ∅}.

Then, for j ∈ B1
E
(r),

T 1
j (r) ∩ Z1 ⊂ BZ1

(LS,E
H1,H2

(t0, T ), 4r).

In particular, there exists C0 = C0(p, a, b, n, H1, H2) > 0 such that for all
S ≥ 4r

|B1
E
(r)| ≤ Dr1−2n vol

(
BZ1

(LS,E
H1,H2

(t0, T ), 4r)
)

≤ C0Dr1−nμ
�

H1
E

(
B

�
H1
E

(
LS,E

H1,H2
(t0, T ), S

))
.

This proves the claim in (2).
To see the claim in (1), let j ∈ G1

E
(r) := J 1

E
(r) \ B1

E
(r). Then, T 1

j (r) =
�τ

ρ j
(r) for someρ j ∈ Z1 with d(ρ j , �

H1
E

) < 2r and d(ρ j ,LS,E
H1,H2

(t0, T )) > 3r .

This yields that there is ρ0 ∈ �H1
E
\ LS,E

H1,H2
(t0, T ) such that d(ρ0, ρ j ) <

2r . In particular, since
⋃

t0≤|t |≤T
ϕt (B(ρ0, S)) ∩ B(�H2

E
, S) = ∅ and T 1

j (r) ⊂⋃
|t |≤τ+r

ϕt (B(ρ0, 3r)), this yields

⋃
t0+τ+r≤|t |≤T−(τ+r)

ϕt (T 1
j (r)) ∩ B(�H2

E
, S) = ∅ (3.1)

for S ≥ 4r . On the other hand, since for all k ∈ J 2
E
(r), we have T 2

k (r)∩Z2 ⊂
B(�H2

E
, 3r),

T 2
k (r) ⊂

⋃
|t |≤τ+r

ϕt (B(�
H2
E

, 3r)) (3.2)

In particular, combining (3.1) and (3.2) we have

⋃
t0+2(τ+r)≤|t |≤T−2(τ+r)

ϕt (T 1
j (r)) ∩ B(�H2

E
, S) = ∅.

Thus, the claim (1) holds, provided S ≥ 4r . ��
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With Lemmas 3.2 and 3.3 in place, we are now ready to prove Proposition
3.1.

Proof of Proposition 3.1 Let C0 = C0(p, a, b, n, H1, H2) be as in Lemma
3.3. We apply Lemma 3.3 with r = R, T = T(S), S = 4R, 0 < R < 1

2τ0.
This shows that (H1, H2) is a [t0+3τ0, T̃] non-looping pair in the window
[a, b] via τ -coverings with constant C̃nl = C2

0Cnl . ��
Lemma 3.4 There is a constant Cn > 0, depending only on n, such that the
following holds. Let τ0 > 0, t0 > 0, H1, H2 ⊂ M be smooth submanifolds
such that H1 and H2 are conormally transverse for p in the window [a, b].
Let T be a resolution function. If (H1, H2) is a (t0,T) non-looping pair in the
window [a, b] via τ0-coverings with constant Cnl , then (H1, H2) is a (t0, T̃)
non-looping pair in thewindow [a, b]with constantCnlCn and T̃(R) = T(2R).

Proof Let E ∈ [a, b] and fix i, j ∈ {1, 2}, i �= j . For each R > 0 consider the
non-looping partition J i

E
(R) = Gi

E
(R)�Bi

E
(R) given by Definition (2.1). Let

ρ ∈ LR/2,E
Hi ,Hj

(t0,T(R)). Then, there are ρ1 ∈ B(ρ, R/2) and t0 ≤ |t | ≤ T(R)

such that ϕt (ρ1) ∈ B(�
Hj
E , R/2). Hence, there is � ∈ Bi

E
(R) such that ρ1 ∈

T i
� (R) and hence ρ ∈ T i

� (2R). This implies B
�
Hi
E

(ρ, R/2) ⊂ T i
� (3R). Thus,

B
�
Hi
E

(
LR/2,E
Hi ,Hj

(t0,T(R)), R/2
)⊂ ⋃

�∈Bi
E
(R)

T i
� (3R).

In particular, there exists Cn > 0 such that

μ
�
Hi
E

(
B

�
Hi
E

(
LR/2,E
Hi ,Hj

(t0,T(R)), R/2
)) ≤ CnR

n−1|Bi
E
(R)|.

Therefore,

μ
�
H1
E

(
B

�
H1
E

(
LR/2,E
H1,H2

(t0,T(R)), R/2
))

μ
�
H2
E

(
B

�
H2
E

(
LR/2,E
H2,H1

(t0,T(R)), R/2
))
T(R)2

≤ C2
n R

2n−2|B1
E
(R)||B2

E
(R)|T(R)2 ≤ C2

nD
2Cnl .

The lemma follows from Definition 1.12 after taking the limit R → 0+ and
redefining Cn . ��
Proposition 3.5 Let t, T be resolution functions and H ⊂ M be a smooth
submanifold. Let a, b ∈ R be such that H is conormally transverse for p in
the window [a, b]. Suppose H is (t,T) non-recurrent in the window [a, b] at
scale R0.
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Then, there exists Cnr = Cnr(M, p, t, R0) > 0 such that for all τ0 > 0, there
is a resolution function T̃ such that the submanifold H is T̃ non-recurrent in
the window [a, b] via τ0-coverings with constant Cnr . Moreover, there is c > 0
such that if T is sub-logarithmic, then T̃(R) ≥ cT(R) for all R.

The proof of this result hinges on two lemmas. To state the first one, we
introduce a slight adaptation of [8, Definition 3]. Let ε0 > 0, � > 0,
t0 : [ε0,+∞) → [1,+∞), and f : [0,∞) → [0,∞). We say a set A0
is (ε0, t0,�, f ) controlled up to time T provided it is (ε0, t0,�) controlled up
to time T in the sense of [8, Definition 3] except that we replace the condition
on r by

0 < r < 1
�
e−��T− f (T )r0 (3.3)

and replace point (3) by

inf
k

R1,k ≥ 1
4e
− f (T ) inf

i
R0,i . (3.4)

Next, fix E ∈ [a, b]. Since H is (t,T) non-recurrent in the window [a, b]
at scale R0, for all ρ ∈ �H

E
there exists a choice of ± such that for all A ⊂

B
�H
E
(ρ, R0), 0 < R < R0, ε > 0, and T > t(ε)

μ
�H
E

(
B

�H
E

(
Re− f (T )R

A,± (t(ε), T ) , e− f (T )R
)
≤ ε μ

�H
E
(B

�H
E
(A, R)

)
, (3.5)

with f as in Lemma 3.2. Then, extract a finite cover of �H
E

by balls B̃ρ =
B(ρ, R0/2) and set

ÃE := {B̃ρi }Ki=1, and AE := {Bρi }Ki=1, (3.6)

where Bρ = B(ρ, R0). Note that, again using that H is non-recurrent with
at scale R0, we may assume K ≤ CnR

1−n
0 where Cn is a constant depending

only on n.

Lemma 3.6 Let H, t and T be as in Proposition 3.5 and f (T ) :=
− log(T−1(T )). Then, there exist cn > 0 depending only on n and � > 0
such that for all E ∈ [a, b] and T > 1 every ball in AE is (0, t0,�, f ) con-
trolled up to time T with t0(ε) = t(cnε).

Proof Let E ∈ [a, b]. Let A0 := Bρ0 for some Bρ0 ∈ AE , ε1 > 0, �>�max,
and 0 < τ < 1

2τinjH
. Let T > 1 and 0 ≤ R̃0 ≤ 1

�
e−��T for � > 2R−10 to be

determined later. Let 0 < r0 < R̃0. Suppose A1 ⊂ A0 and {B0,i }Ni=1 are balls
centered in A0 with radii R0,i ∈ [r0, R̃0] such that A1 ⊂ ∪N

i=1B0,i ⊂ A0.
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Let R := 1
2 inf i R0,i . There exist Cn > 0, depending only on n, and a

collection of balls {B̃0,i }N0
i=1 of radius R, such that

A1 ⊂
N0⋃
i=1

B̃0,i , N0R
n−1 ≤ Cn

N∑
i=1

Rn−1
0,i . (3.7)

Fix 0 ≤ r ≤ 1
�
e−��T− f (T )r0. Next, let {B(q j , r)} j∈J ⊂ �H

E
be a cover

of�H
E
by balls of radius r such that there are at mostDn balls over each point

in�H
E
, whereDn > 0 depends only on n. Assume, without loss of generality,

that (3.5) holds for ρ0 with the choice ± = +. Next, set JA1
:= { j ∈ J :

B(q j ,
1
2e
− f (T )R) ∩Re− f (T )R

A1,+
(t(ε1), T ) �= ∅}. Defining the collection

{B1,i }N1
i=1 :=

{
B

�H
E

(
q j ,

1
2e
− f (T )R

) : j ∈ JA1

}
,

we have
⋃N1

i=1 B1,i ⊂ B
�H
E

(
Re− f (T )R

A1,+
(t(ε1), T ) , e− f (T )R

)
. Then, letting

R1,i := 1
2e
− f (T )R, we have R1,i ∈ [0, 1

4 R̃0], and using that R < R0/2
the bound in (3.5) applied to A1 yields

N1∑
i=1

Rn−1
1,i ≤ ε1Dn μ

�H
E
(B

�H
E
(A1, R)

)
. (3.8)

Next, by (3.7) note that B
�H
E
(A1, R) ⊂ ⋃N0

i=1 2B̃0,i , where 2B̃0,i denotes the

ball with the same center as B̃0,i but with radius 2R. Using (3.7) again there
is Cn > 0 such that

μ
�H
E
(B

�H
E
(A1, R)) ≤ μ

�H
E

( N0⋃
i=1

2B̃0,i

)
≤ Cn

N∑
i=1

Rn−1
0,i . (3.9)

Let ε := ε1CnDn . Combining (3.8) and (3.9) yields point (2) of [8, Defi-
nition 3] with t0(ε) = t(ε/(CnDn)). By the definition of R, we also note that
point (3), which was replaced by (3.4), also holds.

It remains to check point (1) i.e. there is � > 0 such that �τ
A1\∪k B1,k (r) is

[t0(ε), T ] non-self looping for 0 < r < 1
�
e−��T− f (T )R. For this, suppose

ρ1, ρ2 ∈ �τ
A1\∪k B1,k (r) and t ∈ [t0(ε), T ] such that ϕt (ρ1) = ρ2. Then, there

are s1, s2 ∈ [−τ − r, τ + r ],q1, q2 ∈ A1\∪k B1,k such that d(ρi , ϕsi (qi )) < r .
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In particular, there is C0 > 0 depending only on (M, p, a, b,�) such that

d(ϕs2−t−s1(q2), A1) < (1+ C0e
�(|t |+2τ+2r))r.

Finally, let � > 0 be large enough so that 1
�
e−��T < min((1 + C0

e�(|T |+2τ+2r))−1, R0/2). Note that the choice of � does not need to depend
on T . Then, since r < (1 + C0e

�(|T |+2τ+2r))−1e− f (T )R, we have q2 ∈
Re− f (T )R

A1,+
(t0(ε), T ), which is a contradiction since Re− f (T )R

A1,+
(t0(ε), T ) ⊂

∪i B1,i . ��
In what follows we fix 1 < β0 < ε−10 and define

F(T ) :=
logβ0 T∑
k=0

f
(
β−k0 T

)
.

Lemma 3.7 Let B ⊂ �H
E

be a ball of radius δ > 0. Let 0 < ε0 < 1, t0 :
[ε0,+∞) → [1,+∞), f : [0,∞) → [0,∞) increasing with f (e−x ) ∈
L1([0,∞)), T0 > 0, and � > 0, such that B can be (ε0, t0,�, f )-controlled
up to time T0. Let 0 < m <

log T0−log t0(ε0)
logβ0

be a positive integer, � > �max,

0 < R̃0 ≤ min
{

1
�
e−��T0, δ

10

}
, 0 < r1 < 1

5�
e−(��T0+F(T0)+ f (T0)) R̃0,

and B0 ⊂ B with d(B0, Bc) > R̃0. Let 0 < τ < τ0 and suppose {�τ
ρ j
(r1)}Nr1

j=1
is a (D, τ, r1) good cover of �H,p and set E := { j ∈ {1, . . . , Nr1} : �τ

ρ j
(r1)∩

�τ
B0
( r15 ) �= ∅}.

Then, there exist CM,p > 0 depending only on (M, p) and sets {GE,�
}m�=0 ⊂{1, . . . Nr1}, BE ⊂ {1, . . . Nr1} so that E ⊂ BE ∪ ∪m�=0GE,�

and

•
⋃

i∈GE,�

�τ
ρi
(r1) is

[
t0(ε0), β

−�
0 T0

]
non-self looping for � ∈ {0, . . . ,m},

(3.10)

• |GE,�
| ≤ CM,pDε�0δ

n−1r1−n1 for every � ∈ {0, . . . ,m}, (3.11)

• |BE | ≤ CM,pDεm+10 δn−1r1−n1 . (3.12)

Proof The proof is the same as that of [8, Lemma 3.2], with a very minor
modification. Namely, we replace R0 by R̃0 and put r0 = e−F(T0) R̃0 instead of
r0 = e2D�T0 R̃0. We then obtain the following instead of the leftmost equation
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in [8, (3.21)]

inf
k

R2,k ≥ 1
4e
− f (T0) inf

i
R1,i .

Which in turn changes the leftmost equation in [8, (3.22)] to

inf
k

R�,k ≥ e−F(T0) R̃0 = r0.

This follows from the argument below [8, Remark 8], that yields, since � ≤ m,

inf
k

R�,k ≥ 1

4�

�∏
j=0

e− f (β− j
0 T0)R0 = 1

4�
e−

∑�
j=0 f (β− j

0 T0) R̃0 ≥ e−F(T0) R̃0.

��
With Lemmas 3.6 and 3.7 in place, we are now ready to prove Proposition

3.5.

Proof of Proposition 3.5 Let {T j (R)} j∈J (h) = {�τ
ρ j
(R)} j∈J (h) be a (D, τ, R)

good covering of �H
[a,b] . Let E ∈ [a, b] and AE := {Bρi }Ki=1 be the covering

of �H
E

as described in (3.6). Let t0 be as in Lemma 3.6 and fix 0 < ε0 < 1
2 .

There exists � > 0 such that each ball in AE can be (ε0, t0,�, f ) controlled
for time T > 1.

We then apply Lemma 3.7 to each ball inAE . Let δ0 := R0/2 be the radius
of the balls in AE , and T0 = T0(R) such that T0 > t0(ε0) and

R ≤ 1

10�2 e
−
(
2��T0(R)+F(T0(R))+ f (T0(R))

)
. (3.13)

Without loss of generality, we may assume � is large enough so that
1
�
e−��t0(ε0) ≤ δ0

10 . Then, putting R̃0 = 1
�
e−��T0 in Lemma 3.7, and using

condition (3.13) allows us to set r1 = R in Lemma 3.7 and apply it to each
ball Bρ0 in AE . Let B̃ρ0 be the ball with the same center as Bρ0 but with a
radius R0/2 so that d(B̃ρ0, B

c
ρ0
)=R0/2 > R̃0. Let τ0 > 0, 0 < τ < τ0, and set

J ρ0
E

(R) = { j ∈ JE (R) : �τ
ρ j
(R) ∩ �τ

B̃ρ0
(15 R) �= ∅}, there is CM,p > 0 and

sets {GE,�
}m�=0 ⊂ JE (R), BE ⊂ JE (R) so that J ρ0

E
(R) ⊂ BE ∪ ∪m�=0GE,�

,
and (3.10), (3.11), (3.12) hold.

Therefore, letting T� = β−�
0 T0 and t� = t0(ε0) for 1 ≤ � ≤ m,

and setting Gm+1 := BE , Tm+1 = tm+1 = 1, yields that there exists
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1226 Y. Canzani, J. Galkowski

Cnr = Cnr(M, p, t) > 0 such that

R
n−1
2

m+1∑
�=0

( |G�|t�
T�

)1/2
≤

(
CM,pDδn−10

T0(R)

m+1∑
�=0

(β0ε0)
�

)1
2 ≤ CnrD

1
2√

T0(R)
.

The existence of Cnr > 0 is justified since β0ε0 < 1. Repeating for each ball
Bρi ∈ AE and using K ≤ CnR

1−n
0 , proves that H is T0 non-recurrent in the

window [a, b] via τ0-coverings with constant CnrCnR
1−n
0 .

By Lemma 3.2, when T is sub-logarithmic and 0 < a < b we have f (b) ≥
b
a f (a). In particular,

F(T0) =
∑
j

f (2− j T0) ≤
∑
j

2− j f (T0) ≤ 2 f (T0).

Therefore, using f (T ) = − log(T−1(T )), there exists c > 0 such that we may
define

T0(R) = c f −1(log R) ≥ cT(R).

��
Remark 3.8 We note that our definition of recurrence (Definition 1.13) is
equivalent to the following. There is � > 0 such that for all ρ ∈ �H

E
there is

R0 > 0 such that B(ρ, R0) is (ε0, t0,�, f ) controlled with an additional small
modification of the definition of (ε0, t0,�, f ) controlled (see (3.3) and (3.4)):
One needs to replace (1) by

⋃
t0≤±t≤T

�τ

A1\∪B̃1,k (r) ∩�τ
A1
(r) = ∅.

To see these are equivalent, we identify B(ρ, R0) with A0 and A with A1.
One can check that all of the proofs of being (ε0, t0,�, f ) controlled in [8]

actually prove this slightly stronger condition with f (T ) = CT for some
C > 0.

4 Basic estimates for averages over submanifolds

Let P(h) ∈ �m(M) be a self-adjoint semiclassical pseudodifferential oper-
ator, with classically elliptic symbol p. Throughout this section we assume
H ⊂ M is a smooth submanifold of co-dimension k, and a, b ∈ R are such
that H is conormally transverse for p in the window [a, b].
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As explained in Sect. 1.6, we crucially view the kernel of the spectral pro-
jector 1[t−s,t](P) as a quasimode for P . We are then able to use estimates
from [11] to estimate the error when the projector is smoothed at very small
scales. This section is dedicated to adapting the estimates from [11] to the
current setup.

All our estimates are made in terms of (D, τ, R(h))-good covers and δ-
partitions associated to them. For the definition of a good cover see (2.4).
Note, in addition, that there is a constantDn depending only on n such that we
may work with a (Dn, τ, R(h)) good cover [10, Lemma 2.2] [11, Proposition
3.3].

We now define the concept of δ-partitions. For 0 ≤ δ < 1
2 , we write

Smδ (T ∗M) :=
{

a ∈ C∞(T ∗M) :
|∂α

x ∂
β
ξ a(x, ξ)| ≤ Cαβh−δ(|α|+|β|)〈ξ 〉m−|β|

}
, (4.1)

andwrite�m
δ (M) for the corresponding semiclassical pseudodifferential oper-

ators. We refer the reader to [11, Appendix A.2], [48, Chapters 4,9], [19,
Appendix E] for more detailed accounts of these operators.

Let τ > 0, 0 < δ < 1
2 , and R(h) ≥ hδ . Let {T j } j∈J (h) be a (τ, R(h))-cover

for�H
[a,b] with T j = �τ

ρ j
(R(h)), and for E ∈ [a, b] let JE (h) := JE (R(h)) as

defined in (2.5). We say

{χT j
} j∈JE (h) ⊂ Sδ(T

∗M; [0, 1]) (4.2)

is a δ-partition for �H
E

associated to {T j } j∈J (h) provided the families
{χ j } j∈JE (h) and {h−1[P, χ j ]} j∈JE (h) are bounded in Sδ(T ∗M; [0, 1]) and

(1) suppχ j ⊂ �τ
ρ j
(R(h)), for all j ∈ JE (h),

(2)
∑

j∈JE (h)

χ j ≥ 1 on �
τ/2
�H

E
(12 R(h)).

For the construction of such a partition we refer the reader to [11, Proposition
3.4].

The next lemma controls the average of Au over a submanifold H in terms
of the L2 masses of the bicharacteristic beams intersecting the microsupport
of A. Here, u is a quasimode for P and A is a pseudodifferential operator.
When we apply this lemma, u will be the kernel of the spectral projector onto
a small window, and A will either represent a localizer to a family of tubes or
differentiation in one of the coordinates.
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1228 Y. Canzani, J. Galkowski

To ease notation, for E ∈ R we write PE = PE (h)

PE := P − E . (4.3)

In addition, given A ∈ �∞δ (M), ψ ∈ C∞0 (R; [0, 1]), E ∈ R, h > 0, C > 0,
CN > 0, and u ∈ D′(M) we set α := k−2m+1

2 and

QA,ψ
E,h (C,CN , u) :=
Ch−

1
2−δ

∥∥(1− ψ
( PE
hδ

))
PE Au

∥∥
Hα
scl

+ CN h
N
(
‖u‖

L2(M)
+ ‖PEu‖Hα

scl

)
.

(4.4)

Wefix ε0 > 0 and a continuous family [a−ε0, b+ε0] � E 
→ BE ∈ �0
δ (M)

such that

MSh(BE ) ⊂ �
τ0+ε0
�H

E
(3R(h)) and

MSh(I − BE ) ∩�
τ0+ε0
�H

E
(2R(h))) = ∅. (4.5)

This will serve as a microlocalizer to the region of interest. We recall the
constants K0, τinj, I0 defined in (2.8), (2.3), and (2.11) respectively.

Lemma 4.1 There exist τ0 = τ0(M, p, τinj, I0) > 0 and R0 = R0(M, p, k,
K0, τinj, I0) > 0, such that the following holds.

Let 0 < τ < τ0, 0 < δ < 1
2 and h

δ ≤ R(h) ≤ R0. For h > 0 let {T j } j∈J (h)

be a (Dn, τ, R(h)) good cover of�H
[a,b] . Let V ⊂ Sδ(T ∗M; [0, 1]) be bounded.

Let ψ ∈ C∞0 (R; [0, 1]) with ψ(t) = 1 for |t | ≤ 1
4 and ψ(t) = 0 for |t | ≥ 1.

Let � ∈ R,W and W̃ be bounded subsets of �δ(M) and ��
δ (M) respectively,

and BE be as in (4.5).
Then, there exist C0 = C0(n, k, I0,V,W, W̃), C > 0, and for all K > 0

there is h0 > 0, such that for all N > 0 there exists CN > 0, with the following
properties. For all u ∈ D′(M), 0 < h < h0, E ∈ [a − Kh, b + Kh], every
δ-partition {χT j

} j∈JE (h) ⊂ V associated to {T j } j∈JE (h), and every A ∈ W̃
such that BE

1
h [P, A] ∈W ,

h
k−1
2

∣∣∣
∫
H
Au dσH

∣∣∣

≤ C0R(h)
n−1
2

∑
j∈IE (h)

(‖Oph(χ̃T j
)u‖

L2(M)

τ
1
2

+ C

h
‖Oph(χ̃T j

)PEu‖L2(M)

)

+ QA,ψ
E,h (C,CN , u). (4.6)
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Here, IE (h) := { j ∈ JE (h) : T j ∩MSh(A) ∩�τ
�H

E
(R(h)/2) �= ∅}, ψ ∈ Sδ ∩

C∞c (T ∗M; [0, 1]) is any symbol with suppψ ⊂ (
�τ

�H
E
(2hδ)

)c
, and for each

j ∈ JE (h) we let χ̃T j
be any symbol in Sδ(T ∗M; [0, 1]) ∩ C∞c (T ∗M; [0, 1])

such that χ̃T j
≡ 1 on suppχT j

and supp χ̃T j
⊂ T j . In addition, if W̃ ⊂

��
0(M), then C0 = C0(n, k, I0,V, W̃).

Proof First, we prove the statement for the case A = I . Note that in this case
the setsW and W̃ play no role. The result for A = I is a direct combination of
the estimate in [11, (3.16)] and [11, Proposition 3.2].We recall the estimate [11,
(3.16)] with w ≡ 1 here:

‖Oph(βδ)u‖L1(H̃)

≤ Cn,kh
1−k
2 R(h)

n−1
2

∑
j∈IE (h)

(‖Oph(χ j )u‖L2(M)

τ
1
2 |HprH (ρ j )| 12

+ Ch−1‖Oph(χ j )PE u‖L2(M)

)

+ Ch−
k
2−δ‖PE u‖

H
k−2m+1

2
scl (M)

+ CN h
N‖u‖

L2(M)
. (4.7)

In (4.7),Cn,k > 0 is a constant depending only on n and k, and βδ : T ∗H → R

is a localizer to near conormal directions defined by βδ(x ′, ξ ′) = χ
(
h−δ|ξ ′|H

)
where χ ∈ C∞0 (R; [0, 1]) is a smooth cut-off with χ(t) = 1 for t ≤ 1

2 and
χ(t) = 0 for t ≥ 1.

Indeed, [11, Proposition 3.2] yields the existence of τ0, R0, h0 > 0 as
claimed, and the estimate [11, (3.16)] yields the same bound as above, but
with three modifications.

Toobtain thedesired estimate, observe that the constant C0 = C0(n, k, I0) >
0 is the constantCn,k divided by I0 , because we absorb the |HprH (ρ j )| factors
in (4.7). Second, in (4.7) the estimate is given for for

∣∣∣ ∫H Oph(βδ)u dσH

∣∣∣. It
turns out that this estimate is all we need since [11, Proposition 3.2] yields that
for every N > 0 there exists cN > 0 such that for all u ∈ D′(M)

∣∣∣
∫
H
(1− Oph(βδ))u dσH

∣∣∣ ≤ cN h
N
(
‖u‖L2(H) + ‖PEu‖

H
k−2m+1

2
scl (M)

)
. (4.8)

The third modification is that in (4.7) the first error term is Ch− 1
2−δ∥∥PEu

∥∥
H
k−2m+1

2
scl (M)

instead of Ch− 1
2−δ

∥∥(1−ψ
( PE
hδ

))
PEu

∥∥
H
k−2m+1

2
scl (M)

. The oper-

ator
(
1 − ψ

( PE
hδ

))
can be added since the error term is a consequence of

the application of an elliptic parametrix applied to an operator supported
away from PE = 0, in particular of the bound in [11, (3.10)], which is for
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Oph(χ)u where χ is supported in {(x, ξ) : |pE (x, ξ)| ≥ 1
3h

δ}. One then uses
suppχ ⊂ supp

(
1− ψ

( pE
hδ

))
.

We note that the desired bound holds for every δ-partition {χT j
} j∈JE (h) ⊂

V associated to {T j } j∈JE (h), since the constants C,CN , h0 provided by [11,
Proposition 3.5] are uniform for χT j

in bounded subsets of Sδ .
Given ε0 > 0 we note that the statement holds for every E ∈ [a−ε0, b+ε0]

since the constants C,CN , h0 provided by [11, Proposition 3.5] depend on PE

only through P . Therefore, given K > 0, the statement for A = I holds for
E ∈ [a − Kh, b + Kh] provided h0 depends on K .
We now treat the case A �= I . Let V,W, W̃ , and {BE }E∈[a−ε0,b+ε0] be

as in the assumptions. Let E ∈ [a − ε0, b + ε0]. Let X ∈ �δ(M) with
MSh(I−X)∩�τ

�H
E
(13 R(h)) = ∅,MSh(X) ⊂ �

τ0+ε0
�H

E
(12 R(h)) and BE [P, X ] ∈

�δ(M). Then, for all N > 0 there is CN > 0 depending on V
∣∣∣
∫
H
(I − X)AudσH

∣∣∣ ≤ CN h
N ,

so we may replace A by X A and assume MSh(A) ⊂ �
τ0+ε0
�E

(R(h)/2) from

now on. Since the estimate holds when A = I , there exist C0 = C0(n, k, I0),
C > 0, and for all K > 0 there is h0 > 0 such that for all N > 0 there
exists CN > 0 with the following properties. For all u ∈ D′(M), 0 < h < h0,
E ∈ [a − Kh, b + Kh], and every δ-partition {χT j

} j∈JE (h) ⊂ V associated
to {T j } j∈JE (h), the bound in (4.6) holds with I in place of A, and with Au in
place of u:

h
k−1
2

∣∣∣
∫
H
Au dσH

∣∣∣

≤ C0R(h)
n−1
2

∑
j∈IE (h)

(‖Oph(χ̃T j
)Au‖

τ
1
2

+ Ch−1‖Oph(χ̃T j
)PE Au‖

)

+ QI,ψ
E,h(C,CN , Au).

Wemaysumover j ∈ IE (h) insteadof j ∈ JE (h) sinceMSh(A)∩�τ
�H

E
(12 R(h))

⊂ ∪ j∈IE (h)T j .
Next, we explain how to write u in place of Au in each of the terms of the

sum over j ∈ IE (h) in (4.6). To replace the term ‖Oph(χT j
)Au‖

L2(M)
with

‖Oph(χ̃T j
)u‖

L2(M)
, we use MSh(Oph(χT j

)A) ⊂ Ell(Oph(χ̃T j
)) and apply

the elliptic parametrix construction to find F1 ∈ �δ(M) with

Oph(χT j
)A = F1Oph(χ̃T j

). (4.9)
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Next, to replace the term ‖Oph(χT j
)PE Au‖L2(M)

with ‖Oph(χ̃T j
)PEu‖L2(M)

,
we decompose

Oph(χT j
)PE A = Oph(χT j

)[PE , A] + Oph(χT j
)APE

for each j ∈ IE (h), and apply the elliptic parametrix construction and find
F2 ∈ �δ(M) with

h−1Oph(χT j
)[PE , A] = F2Oph(χ̃T j

). (4.10)

To do this we used the assumptions: BE is microlocally the identity on
�

τ0+ε0
�H

E
(2R(h)), MSh(A) ⊂ �

τ0+ε0
�H

E
(12 R(h)), and A is such that BE

1
h [P, A] ∈

W ⊂ �δ(M). This allows us to apply the parametrix construction to
Oph(χT j

)BE
1
h [PE , A].

Using (4.9) and (4.10), we may modify C0 , and having it now also depend
on A,V andW , to obtain the claim. Note that if A ∈ �∞0 (M), then 1

h [PE , A] ∈
�∞δ (M) and so we may apply the elliptic parametrix construction to obtain
(4.10) without the need of introducing the operator BE or the set W . In this
case, we have C0 = C0(n, k, I0,V, W̃) as claimed. ��
Definition 4.2 Low density tubes Let {T j } j∈J (h) be a cover by tubes of �H

[a,b]
and 0 < δ < 1

2 . Let G(h) ⊂ J (h) and for each j ∈ G(h) let 1 < t j (E, h) ≤
Tj (E, h), where h > 0 and E ∈ R.

We say {T j } j∈G(h) has {(t j , Tj )} j∈G(h) density on [a, b] if the following
holds. For all V ⊂ Sδ bounded, K > 0 there is h0 > 0 such that for all
0 < h < h0, E ∈ [a − Kh, b + Kh], every δ-partition {χ j } j∈GE (h) ⊂ V
associated to {T j } j∈GE (h), and all u ∈ D′(M),

∑
j∈GE (h)

‖Oph(χ j )u‖2
L2(M)

Tj (E, h)

t j (E, h)
≤ 4‖u‖2

L2(M)
+ 4 max

j∈GE (h)

Tj (E, h)2

h2
‖PE u‖2L2(M)

,

where GE (h) = G(h) ∩ JE (h).

The statement of [11, Lemma 4.1] can be reformulated as: if a collection of
families of tubes is non self-looping for different times, then the tubes have a
low density dictated by those times. More precisely, the following lemma is a
restatement of [11, Lemma 4.1].

Lemma 4.3 Let R0, τ0, δ, R(h), τ , and {T j } j∈J (h) be as in Lemma 4.1. Let

0 < α < 1 − lim suph→0+ 2
log R(h)
log h and K > 0. There exists h0 > 0 such

that the following holds. Let 0 < h < h0, E ∈ [a − Kh, b + Kh], and
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GE (h) ⊂ JE (h) with GE (h) = ��∈LE (h)GE,�
(h). For every � ∈ LE (h) suppose

t�(E, h) > 0, 0 < T�(E, h) ≤ 2α Te(h), and

⋃
j∈GE,�

(h)

T j is [t�, T�] non-self looping for every � ∈ LE (h).

Then, {T j } j∈G(h) has {(t j , Tj )} j∈G(h) density on [a, b], where for 0 < h < h0,
j ∈ J (h), and E ∈ [a − Kh, b + Kh], we set (t j (E, h), Tj (E, h)) :=
(t�(E, h), T�(E, h)) whenever j ∈ GE,�

(h).

We note that the statement of [11, Lemma 4.1] does not provide the requisite
uniformity for E ∈ [a − Kh, b + Kh]; however, this follows from the same
argument.

Our next estimate shows that if a family of tubes has low density, then
averages of a quasimode over H can be controlled in terms of the density
times.

Lemma 4.4 Let R0, τ0, δ, R(h), τ , {T j } j∈J (h),W , W̃ , andψ be as in Lemma
4.1. Then, there exist C0 = C0(n, k, p, I0,W) and C > 0, and for all N > 0,
K > 0 there are h0 > 0 and CN > 0, such that the following holds.
Suppose that for all 0 < h < h0 and E ∈ [a − Kh, b + Kh] there

exists GE (h) ⊂ JE (h) with GE (h) = ��∈LE (h)GE,�
(h), such that for every

� ∈ LE (h) there exist t� = t�(E, h) > 0 and T� = T�(E, h) > 0 so that, with
(t j , Tj ) := (t�, T�) for every j ∈ GE,�

(h), then

(1){T j } j∈G(h) has {(t j , Tj )} j∈G(h) density on [a, b],
(2)MSh(A) ∩�τ

�H
E
(12 R(h)) ⊂

⋃
j∈GE (h)

T j .

Then, for all u ∈ D′(M), 0 < h < h0, E ∈ [a − Kh, b + Kh], and every
A ∈ W̃ with BE

1
h [P, A] ∈W ,

h
k−1
2

∣∣∣
∫
H
Au dσH

∣∣∣

≤ C0R(h)
n−1
2

∑
�∈LE (h)

(
(|GE,�

|t�) 12
τ

1
2 T

1
2
�

‖u‖
L2(M)

+ (|GE,�
|t�T�) 12
h

‖PEu‖L2(M)

)

+ QA,ψ
E,h (C,CN , u).

In addition, if W̃ ⊂�∞0 (M), the estimate holds with C0 = C0(n, k, p, I0, W̃).

Proof Let V a bounded subset of Sδ(T ∗M; [0, 1]). By Lemma 4.1 there exist
C0 = C0(n, k, I0,V,W), C > 0, and h0 > 0, such that for all N > 0 there
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exist CN > 0, with the following properties. For all u ∈ D′(M), K > 0,
0 < h < h0, E ∈ [a − Kh, b+ Kh], and every δ-partition {χT j

} j∈JE (h) ⊂ V
associated to {T j } j∈JE (h),

h
k−1
2

∣∣∣
∫
H
AudsH

∣∣∣

≤ C0R(h)
n−1
2

∑
j∈IE (h)

(‖Oph(χ̃T j
)u‖L2

τ
1
2

+ C

h
‖Oph(χ̃T j

)PEu‖L2

)

+ QA,ψ
E,h (C,CN ,u),

where IE (h) :=
⋃

�∈Lh,E
GE,�

. Note that if A ∈ �∞0 (M), then the estimate

holds with C0 = C0(n, k, p, I0,V, W̃). Next, note that

∑
j∈IE (h)

‖Oph(χ̃T j
)PEu‖ ≤ |JE (h)|

1
2

( ∑
j∈JE (h)

‖Oph(χ̃T j
)PEu‖2

) 1
2
,

and so, since |JE (h)| ≤ Cn vol(�H
E
)R(h)1−n for someCn > 0, we have, after

adjusting C > 0, that for all 0 < h < h0

h
k−1
2

∣∣∣
∫
H
Au dσH

∣∣∣ ≤ C0

R(h)
n−1
2

τ
1
2

∑
j∈IE (h)

‖Oph(χ̃T j
)u‖

L2(M)

+ C

h
‖PEu‖L2(M)

+ QA,ψ
E,h (C,CN ,u). (4.11)

Since we are working with a (Dn, τ, R(h))-good cover, we split each GE,�

intoDn families {GE,�,i }Dn
i=1 of disjoint tubes. Note that

∑
j∈IE (h)

‖Oph(χ̃ j )u‖L2(M)
≤

∑
�∈L

Dn∑
i=1

∑
j∈GE,�,i

‖Oph(χ̃ j )u‖L2(M)
. (4.12)

Next, since {T j } j∈G(h) has {(t j , Tj )} j∈G(h) density on [a, b], after possibly
shrinking h0 (depending on the Sδ bounds for χ̃ j and K > 0), Cauchy-Schwarz
yields that for all 0 < h < h0

∑
j∈GE,�,i

‖Oph(χ̃ j )u‖L2(M)
≤ 2

( t�|GE,� |
T�

) 1
2
(
‖u‖2

L2(M)
+ T 2

�

h2
‖PE u‖2L2(M)

) 1
2
. (4.13)
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The result follows from combining (4.13) and (4.12), and feeding this to
(4.11). Note that C0 needs to be modified, but only in a way that depends on
n viaDn . ��

We also need the following basic estimate for averages over submanifolds
to control averages of u = 1(−∞,s](P) when s is large.

Lemma 4.5 Suppose H ⊂ M is a submanifold of codimension k and P ∈
�m(M), with m > 0, is such that there exists C > 0 for which

|σ(P)(x, ξ)| ≥ |ξ |m/C, (x, ξ) ∈ N∗H, |ξ | ≥ C.

Letψ ∈ S0(T ∗M; [0, 1])withψ ≡ 1 on N∗H, and let � ∈ R. Let A ∈ ��
δ (M)

and r > k+2�
2m . Then, there are C0 > 0 and h0 > 0 such that for all N > 0

there is CN > 0 satisfying

h
k
2

∣∣∣
∫
H
AudσH

∣∣∣ ≤ C0

(
‖Oph(ψ)u‖

L2(M)
+ ‖Oph(ψ)Pr

E
u‖

L2(M)

)

+CN h
N‖u‖H−N

scl (M)
, 0 < h < h0.

Proof Let ψ̃ ∈ S0(T ∗M; [0, 1]) with ψ̃ ≡ 1 on N∗H , supp ψ̃ ⊂ {ψ ≡ 1},
and such that

|σ(PE )(x, ξ)| ≥ 1
C |ξ |m, (x, ξ) ∈ supp ψ̃, |ξ | ≥ C.

Then, since WFh(δH ) = N∗H , for any N > 0 there is CN > 0 such that

∣∣∣
∫
H
AOph(1− ψ̃)udσH

∣∣∣ ≤ CN h
N‖u‖H−N

scl (M)
. (4.14)

Next, by the Sobolev embedding theorem, for any ε > 0 there exists C0 > 0
such that

∣∣∣
∫
H
AOph(ψ̃)udσH

∣∣∣ ≤ C0h
− k

2 ‖Oph(ψ̃)u‖
H

k
2+ε+�

scl (M)
.

Taking r with rm > k
2 + � and using an elliptic parametrix, for any N > 0

there is CN > 0 with

h
k
2

∣∣∣
∫
H
AOph(ψ)udσH

∣∣∣ ≤ C0‖Oph(ψ̃)u‖Hrm
scl (M)

≤ C0

(‖Oph(ψ)u‖
L2(M)

+ ‖Oph(ψ)Pr
E
u‖

L2(M)

)
+ CN h

N‖u‖H−N
scl (M)

. (4.15)
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Indeed, this follows from letting χ ∈ S0(T ∗M; [0, 1]) so that |σ(PE )(x, ξ)| ≥
1
C |ξ |m in the support of ψ̃(1 − χ), and then using the elliptic parametrix
construction to find F1, F2 ∈ �0(M) such that

〈hD〉rmOph(ψ̃)(1− Oph(χ)) = F1Oph(ψ)Pr
E
+ O(h∞)�−∞,

〈hD〉rmOph(ψ̃)Oph(χ) = F2Oph(ψ)+ O(h∞)�−∞ .

Combining with (4.14) and (4.15) completes the proof. ��

5 Lipschitz scale for spectral projectors

In this section we estimate the scale at which averages of the spectral projec-
tor behave like Lipschitz functions of the spectral parameter, and use this to
approximate �h using ρh,T (h) ∗�h .

Throughout this section we assume H1, H2 ⊂ M are two smooth subman-
ifolds of co-dimension k1 and k2 respectively. The goal for this section is to
prove the following proposition.

Proposition 5.1 Suppose a, b ∈ R such that H1, H2 are uniformly conormally
transverse for p in the window [a, b]. Let τ0, R0 be as in Lemma 4.1. Let
0 < τ < τ0 and 0 < δ < 1

2 . For i = 1, 2, let Ti be sub-logarithmic resolution
functions with 
(Ti )� < 1 − 2δ and suppose Hi is Ti non-recurrent in the
window [a, b] via τ -coverings with constant Ci

nr
.

Let A1, A2 ∈ �∞(M), K > 0, R(h) ≥ hδ , and T := √T1T2. Then, there
exist h0 > 0 and

C0 = C0(n, k1, k2, I
1
0
, I2

0
, A1, A2,C

1
nr
,C2

nr
) > 0,

such that for all 0 < h ≤ h0 and E ∈ [a − Kh, b + Kh],
∣∣∣�A1,A2

H1,H2
(E)− ρh,Tmax(h)

∗�A1,A2

H1,H2
(E)

∣∣∣ ≤ C0h
2−k1−k2

2

/
T(R(h)).

Remark 5.2 To ease notation, throughout this section we write Ti (h) :=
Ti (R(h)), T (h) := T(R(h)), and Tmax(h) := max(T1(R(h),T2(R(h)))).

Proof We split the proof into Lemmas 5.3, 5.4, and 5.5 below. Lemmas 5.4
and 5.5 show that there exist C0 = C0(n, k1, k2, I

1
0
, I2

0
, A1, A2,C1

nr
,C2

nr
) > 0,

C1 > 0, and h0 > 0 such thatwh(E) := �
A1,A2

H1,H2
(E) satisfies the hypotheses of

Lemma 5.3 with Ih := [a− Kh, b+ Kh], ρh := ρh,Tmax(h)
, σh := Tmax(h)/h,
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Lh := C0h
2−k1−k2

2

/
T (h) and Bh := C1h

− k1+k2
2 ,

and 0 < h < h0. Next, let {K j }∞j=1 ⊂ R+ be given by the choice of ρ in

(1.16). Since
〈
T1(h)s

h

〉 1
2
〈
T2(h)s

h

〉 1
2 ≤ 〈σh s〉 for all s ∈ R, Lemma 5.3 yields that

there exists Cρ > 0 and for all N > 0 there exists CN > 0 such that

∣∣∣�A1,A2

H1,H2
(E)− ρh,T (h) ∗�

A1,A2

H1,H2
(E)

∣∣∣ ≤ CρC0

h
2−k1−k2

2

T (h)
+ CNC1h

− k1+k2
2

( h

Tmax(h)

)N
,

for all 0 < h < h0. This completes the proof after choosing h0 small enough.
��

We now present the lemmas used in the proof of Proposition 5.1. The first
shows that if a family of functions {wh}h is Lipstchitz at scale σ−1h with (at
most) polynomial growth at infinity, then the family can be well approximated
by its convolution ρh ∗ wh where {ρh}h is a family of Schwartz functions

Lemma 5.3 Let {K j }∞j=0 ⊂ R+. Then, there exists C > 0 and for all N0 ∈ R,
N > 0 there exists CN > 0, such that the following holds. Let {ρh}h>0 ⊂ S(R)

be a family of functions and {σh}h>0 ⊂ R+ such that for all j ≥ 1 and h > 0,

|ρh(s)| ≤ σhK j 〈σhs〉− j for all s ∈ R.

Let {Lh}h>0 ⊂ R+, {Bh}h>0 ⊂ R+, {wh : R → R}h>0, Ih ⊂ [−K0, K0],
h0 > 0 and ε0 > 0, be so that for all 0 < h < h0

• |wh(t − s)− wh(t)| ≤ Lh〈σh s〉 for all t ∈ Ih and |s| ≤ ε0,
• |wh(s)| ≤ Bh〈s〉N0 for all s ∈ R.

Then, for all 0 < h < h0 and t ∈ Ih

∣∣∣(ρh ∗ wh)(t)− wh(t)
∫

R

ρh(s)ds
∣∣∣ ≤ CLh + CN Bhσ

−N
h ε−N

0 .

Proof For all 0 < h < h0 and t ∈ Ih

∣∣∣(ρh ∗ wh)(t)− wh(t)
∫

R

ρh(s)ds
∣∣∣ =

∣∣∣
∫

R

ρh(s)
(
wh(t − s)− wh(t)

)
ds

∣∣∣
≤ Lh

∫
|s|≤ε0

|ρh(s)|〈σhs〉ds + Bh

∫
|s|≥ε0

|ρh(s)|
(
〈t − s〉N0 + 〈t〉N0

)
ds

≤ Lh

∫
|s|≤ε0

σhK3〈σhs〉−2ds + Bh

∫
|s|≥ε0

KN0+2+Nσh〈σhs〉−(N0+2+N )
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(
〈t − s〉N0 +〈t〉N0

)
ds.

The existence of C and CN follows from integrability of each term and the
boundedness of Ih . ��

The next lemma shows that the family of functions wh(t) = �
A1,A2

H1,H2
(t) is

Lipschitz at scales dictated by the non-recurrence times for H1 and H2.

Lemma 5.4 Suppose a, b ∈ R, ε0 > 0 are such that H1, H2 are conormally
transverse for p in the window [a− ε0, b+ ε0]. Let A1, A2, τ0, R0, τ , δ, R(h),
and α be as in Proposition 5.1. Let Cnr > and K > 0. Then, there exist h0 > 0
and

C0 = C0(n, k1, k2, I
1
0
, I2

0
, A1, A2,Cnr) > 0

such that the following holds.
For i = 1, 2, letTi be a sub-logarithmic resolution functionwith
(Ti )� <

1− 2δ. Suppose Hi is Ti non-recurrent in the window [a, b] via τ -coverings
with constant Ci

nr
≤ Cnr . Then for all 0 < h ≤ h0, |s| ≤ ε0, and t ∈ [a −

Kh, b + Kh],
∣∣∣�A1,A2

H1,H2
(t)−�

A1,A2

H1,H2
(t − s)

∣∣∣ ≤ C0

h
2−k1−k2

2√
T1(h)T2(h)

〈T1(h)s
h

〉 1
2
〈T2(h)s

h

〉 1
2
.

Proof We first assume the statement for |s| ≤ 2h. Suppose s ≥ 2h. The
case of s ≤ −2h being similar. Define k0 := � sh � and tk := t − s + kh for
0 ≤ k ≤ k0 − 1, and tk := t for k = k0. Then

�
A1,A2

H1,H2
(t)−�

A1,A2

H1,H2
(t − s) =

k0−1∑
k=0

�
A1,A2

H1,H2
(tk+1)−�

A1,A2

H1,H2
(tk).

Using |tk+1− tk | ≤ 2h, and putting t = tk+1, s = tk+1− tk , we apply the case
|s| ≤ 2h with T1 = T2 = 1 for each term to obtain

∣∣∣�A1,A2

H1,H2
(t)−�

A1,A2

H1,H2
(t − s)

∣∣∣ ≤ C0k0h
2−k1−k2

2 ≤ C0h
2−k1−k2

2 |s/h|,

and this proves the claim provided the statement holds for |s| ≤ 2h.
We proceed to prove the statement for |s| ≤ 2h. First, note that by (1.10)

and Cauchy-Schwarz

∣∣∣�A1,A2

H1,H2
(t)−�

A1,A2

H1,H2
(t − s)

∣∣∣2
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≤
∑

t−s≤Ek≤t

∣∣∣
∫
H1

A1φEk
dσH1

∣∣∣2 · ∑
t−s≤E j≤t

∣∣∣
∫
H2

A2φE j
dσH2

∣∣∣2. (5.1)

Now, for each i = 1, 2,

∑
t−s≤E j≤t

∣∣∣
∫
Hi

AiφE j
dσHi

∣∣∣2 = ‖1[t−s,t](P) A∗i δHi ‖2L2(M)

= sup
‖w‖

L2(M)
=1

∣∣∣
∫
Hi

Ai1[t−s,t](P)w dσHi

∣∣∣2, (5.2)

where δHi is the delta distribution at Hi and the last equality follows by duality.
We now use the non-recurrence assumption on H1 and H2. Since for each

i = 1, 2, the submanifold Hi is Ti non-recurrent in the window [a, b] via
τ0-coverings, there is h0 > 0 small enough depending on R(h), K so that for
all 0 < h < h0 and t ∈ [E − Kh, E + Kh] there is a partition of indices
J i

t
(h) = ∪�∈Li

t (h)
Gi
t,�
(h), and times {T i

� (h)}�∈Li
t (h)

, and {t i�(h)}�∈Li
t (h)

as in
Definition 2.2.

Note that we have chosen h0 small enough so thatJ i
E
(h) is a (τ, R(h)) good

covering of �Hi
t for t ∈ [E − Kh, E + Kh]. In particular, for i = 1, 2 and

t ∈ [E − Kh, E + Kh]

R(h)
n−1
2

∑
�∈Li

E
(h)

(|Gi
t,�
|t i�)

1
2

(T i
� )

1
2

≤ Ci
nr

T
1
2
i

,

R(h)
n−1
2

∑
�∈Li

E
(h)

(|Gi
t,�
|t i�)

1
2 (T i

� )
1
2 ≤ Ci

nr
T

1
2
i . (5.3)

The first bound is condition (2) in Definition 2.2, and the second bound follows
from the first one together with the T i

� ≤ Ti for all � ∈ Li
h,E . Next, for � ∈ Li

E
let

T̃ i
� (h) :=

{
T i
� (h)

〈 Ti (h)s
h

〉−1
t i� ≤ T i

�

〈Ti (h)s
h

〉−1
1 else

,

t̃ i�(h) :=
{
t i�(h) t i� ≤ T i

�

〈Ti (h)s
h

〉−1
1 else

(5.4)
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and note that
∑

t̃ i�=T̃ i
�=1 |G

i
t,�
| 12 ≤ Ci

nr

√
1
Ti

〈
Ti s
h

〉
. In particular,

∑
�∈Li

E
(h)

(|Gi
t,�
|t̃ i�)

1
2

(T̃ i
� )

1
2

≤ 2Ci
nr

√
1

Ti

〈Ti s
h

〉
,

∑
�∈Li

E
(h)

√
|Gi

t,�
|t̃ i� T̃ i

� ≤ 2Ci
nr

( 1

Ti

〈Ti s
h

〉)− 1
2
. (5.5)

Then, since for each � ∈ Li
E
(h) the union of tubes with indices in Gi

E,�

is also [t̃ i�(h), T̃ i
� (h)] non-self looping, we may apply Lemma 4.3 with the

sets {Gi
t,�
(h)}�∈Li

E
(h), {T̃ i

� (h)}�∈Li
E
(h), {t i�(h)}�∈Li

E
(h) to see that {T j } j∈Gi

t,�
(h)

has {(t j , Tj )} density on [a, b] where t j = t̃ ij (h), Tj = T̃ i
j (h). Then, using

Lemma 4.4 with operators Ai ∈ �∞(M), ψ ∈ C∞0 (R; [0, 1]) with ψ(t) = 1
for |t | ≤ 1

4 and ψ(t) = 0 for |t | ≥ 1, and for s ∈ R let u = 1[t−s,t](P)w,
where w is any function in L2(M) with ‖w‖

L2(M)
= 1. Next, by Lemma 4.4,

for i = 1, 2, there exist Ci
0
= C0(n, ki , I

i
0
, Ai ), C > 0, and for all N there is

CN > 0 such that for all 0 < h < h0, s ∈ R, and t ∈ [E − Kh, E + Kh]

h
ki−1
2

∣∣∣
∫
Hi

Ai1[t−s,t](P)w dσHi

∣∣∣

≤ Ci
0
R(h)

n−1
2

∑
�∈Li

E
(h)

(|Gi
t,�
|t̃ i�)

1
2

(τ T̃ i
� )

1
2

‖1[t−s,t](P)w‖
L2 (M)

+ Ci
0
R(h)

n−1
2

∑
�∈Li

E
(h)

(|Gi
t,�
|t̃ i� T̃ i

� )
1
2

h
‖Pt1[t−s,t](P)w‖

L2 (M)

+ QA,ψ
t,h (C,CN ,1[t−s,t](P)w). (5.6)

Note that for all N there is CN > 0 such that for all t ∈ [a−Kh, b+Kh],
|s| ≤ 10 and 0 < h < 1

‖Pt1[t−s,t](P)‖L2→HN
scl
≤ CN |s|, ‖1[t−s,t](P)‖L2→L2 ≤ 1. (5.7)

In addition, we use the elliptic parametrix construction, together with |s| ≤ 2h
to obtain

‖(1− ψ
( Pt
hδ
))
Pt Ai1[t−s,t](P)‖L2→HN

scl
≤ CN h

N . (5.8)
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We combine these estimates with (5.3) and the definition of T̃ i
� into (5.2) to

obtain that for all 0 < h < h0, |s| ≤ 2h, K > 0, and t ∈ [E − Kh, E + Kh],

h
ki−1
2 ‖1[t−s,t](P) A∗i δHi ‖L2(M)

≤ Ci
0
Ci
nr

(
1

τ
1
2

( 1

Ti

〈Ti s
h

〉) 1
2 + |s|

h

( 1

Ti

〈Ti s
h

〉)− 1
2
)
+ CN h

N .

In particular, since τ < 1, using this estimate in (5.2) we conclude that for
all 0 < h < h0, |s| ≤ 2h, K > 0, and t ∈ [E − Kh, E + Kh]

h
ki−1
2

( ∑
t−s≤E j≤t

∣∣∣
∫
Hi

AiφE j
dσHi

∣∣∣2
)1
2 ≤ Ci

0
Ci
nr√

τTi (h)

〈Ti (h)s
h

〉1
2 + CN h

N .

Combining estimates for H1 and H2 using (5.1), and Ci
nr
≤ Cnr completes the

proof. ��
The last lemma shows that wh(s) = �

A1,A2

H1,H2
(s) has at most polynomial

growth at infinity.

Lemma 5.5 Let �1, �2 ∈ R. Then, there is N0 > 0 such that for all A1 ∈
�

�1
δ (M), A2 ∈ �

�2
δ (M), there areC1 > 0, h0 > 0, such that for all0 < h < h0

and s ∈ R,

|�A1,A2

H1,H2
(s)| ≤ C1h

− k1+k2
2 〈s〉N0 .

Proof Arguing as in (5.1), and (5.2), it is enough to prove that there is C1 > 0
such that for each i = 1, 2 there is Ni > 0 for which

sup
‖w‖

L2(M)
=1

∣∣∣
∫
Hi

Ai1(−∞,s](P)w dσHi

∣∣∣ ≤ C1h
− ki

2 〈s〉Ni .

Applying Lemma 4.5 with u = 1(−∞,s](P)w yields that for any ψ ∈
S0(T ∗M; [0, 1]) with ψ ≡ 1 on N∗H and ri >

ki+2�i
2m there exist C1 > 0

and h0 > 0 such that for all N > 0 there is CN > 0 satisfying for 0 < h < h1
and s ∈ R,

h
ki
2

∣∣∣
∫
Hi

Ai1(−∞,s](P)w dσHi

∣∣∣ ≤ CN h
N‖1(−∞,s](P)w‖H−N

scl (M)

+ C1

(‖Oph(ψ)1(−∞,s](P)w‖
L2(M)

+ ‖Oph(ψ)Pri
s 1(−∞,s](P)w‖

L2(M)

)
.

(5.9)

Finally, the last term is bounded by C1(1 + |s|ri ) since ‖ f (P)‖L2→L2 ≤
‖ f ‖L∞ . ��
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6 Smoothed projector with non-looping condition

This section is dedicated to the proof of Theorems 8 and 9. The crucial step,
completed in Sect. 6.1, is to bound (ρ

h,T̃ (h)
− ρh,t0

) ∗ �
A1,A2

H1,H2
when the pair

(H1, H2) is (t0,T) non-looping and T̃ (h) = 1
2T(R(h)). In Sect. 6.2 we prove

Theorem 8 by combining the estimates from §6.1 with Proposition 5.1. In §6.3
we derive Theorem 9 from Theorem 8.

6.1 Comparing against a short fixed time

Throughout this section we continue to assume H1 ⊂ M and H2 ⊂ M are two
submanifolds of co-dimension k1 and k2 respectively. The goal is to show that,
under the assumption (H1, H2) is a (t0,T) non-looping pair in the window
[a, b], we can control ρσh,T̃ (h)

∗�h by comparing it to ρh,t0
∗�h . For the rest

of the section we write

T̃ (h) := 1
2T(R(h)), T (h) := T(R(h)).

Proposition 6.1 Suppose a, b ∈ R are such that H1, H2 are conormally trans-
verse for p in thewindow [a, b]. Let τ0, R0 be as inLemma4.1. Let0 < τ < τ0,
0 < δ < 1

2 , andT a sub-logarithmic resolution functionwith
(T)� < 1−2δ.
Suppose (H1, H2) is a (t0,T) non-looping pair in the window [a, b] via

τ -coverings with constant Cnl . Let A1, A2 ∈ �∞(M), hδ ≤ R(h) ≤ R0, and
K > 0. There exist

C0 = C0(n, k1, k2, I
1
0
, I2

0
, A1, A2,Cnl) > 0

and h0 > 0 such that for all 0 < h < h0 and all E ∈ [a − Kh, b + Kh],
∣∣∣(ρ

h,T̃ (h)
− ρh,t0

) ∗�A1,A2

H1,H2
(E)

∣∣∣ ≤ C0h
2−k1−k2

2

/
T(R(h)). (6.1)

We prove the proposition at the end of the section. The proof hinges on four
lemmas. The first one, Lemma 6.3, rewrites the left hand side in (6.1) in terms
of the function

fS,T,h (λ) := fS,T (h
−1λ),

fS,T (λ) :=
1

i

∫
R

1

τ
ρ̂
(
τ
T

)(
1− ρ̂

(
τ
S

))
e−iτλdτ, (6.2)

where S, T are two positive constants with S < T , and ρ is as in (1.16)
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1242 Y. Canzani, J. Galkowski

Remark 6.2 We note that for all N > 0

| fS,T (λ)| ≤ CN 〈λS〉−N , supp ρ̂
(
τ
T

)(
1− ρ̂

(
τ
S

)) ⊂ {τ ∈ R : |τ | ∈ [S, 2T ]}. (6.3)

Lemma 6.3 Suppose k > 0 and P ∈ �k(M) is self-adjoint with symbol
satisfying (1.9). Then, for all N > 0,

(ρ
h,T̃
− ρh,t0

) ∗�h(E) = f
t0,T̃ ,h

(
PE

)+ O(hN )H−N
scl →HN

scl
.

Proof First, we prove that if P is self-adjoint E1, E2 ∈ R, then

∫ E2

E1

(ρ
h,T̃ (h)

− ρh,t0
) ∗ ∂s�h(s)ds = f

t0,T̃ (h),h

(
PE2

)− f
t0,T̃ (h),h

(
PE1

)
.

(6.4)

To ease notation write T̃ for T̃ (h). To prove (6.4) we write

∫ E2

E1

(ρ
h,T̃
− ρh,t0

) ∗ ∂s�h(s)ds =
∫ E2

E1

∫
R

ρ̂
(

w
σ
h,T̃

)[
1− ρ̂

(
w

σh,t0

)]
e−iw(P−s)dwds,

where we use ρ̂
(

w
σh,t0

) = ρ̂
(

w
σ
h,T̃

)
ρ̂
(

w
σh,t0

)
. Putting τ := hw, (6.4) follows.

Next, let N > 0. By (6.4) it suffices to find E1 ∈ R such that for all
t > c > 0

∥∥ ft0,T̃ ,h

(
PE1

)∥∥
H−N
scl →HN

scl
≤ CN h

2N ,

‖ρh,t ∗�h(E1)‖H−N
scl →HN

scl
= O(hN ). (6.5)

To prove the first claim in (6.5), note that by (6.3) for all N > 0 there isCN > 0
such that

∥∥PN
E1

ft0,T̃ ,h

(
PE1

)
PN
E1

∥∥
L2→L2 ≤ CN h

2N .

Next, since P satisfies (1.9), there is a > 0 such that p(x, ξ) > −a for
all (x, ξ) ∈ T ∗M . In particular, for E1 ≤ −2a, PE1

is elliptic and we have

P−1
E1
: Hs

scl(M)→ Hs+k
scl (M) = Os(1) for all s ∈ R. Then, for E1 ≤ −2a the

first claim in (6.5) follows.
Next, by the sharp Gårding inequality, there is C > 0 such that �h(s) ≡ 0

for s ≤ −a − Ch. Thus, for E1 ≤ −3a and all N ,M ≥ 0 there is CM,N > 0
such that

‖(ρh,t ∗�h)(E1)‖H−N
scl →HN

scl
≤

∫
R

t
hρ

( t
h s

)‖�h(E1 − s)‖H−N
scl →HN

scl
ds
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≤ CM,N

∫
s≤−a

t
h

〈 t
h s

〉−M 〈s〉2N/k .

The claim follows after choosing M large enough. ��
Let H1, H2, t0, T (h), τ, and R(h) be as in Proposition 6.1. Since (H1, H2)

is a (t0,T) non-looping pair in the window [a, b] via τ0-coverings, for i = 1, 2
and h > 0 we let

{T i
j } j∈J i (h) a (Dn, τ, R(h))-good cover of�

Hi
[a,b] satisfying (1) and (2)

in Definition2.1. (6.6)

We study A1 ft0,T̃ ,h

(
PE

)
A∗2 by understanding the behavior of

F
A1,A2
j,� (E, h) := Oph(χT 1

j
)A1 ft0,T̃ ,h

(
PE

)
A∗2Oph(χT 2

�

) (6.7)

for j ∈ J 1(h) and k ∈ J 2(h). Next, we study the case when T 1
j does not loop

through T 2
k .

Lemma 6.4 Assume H1 and H2 are conormally transverse for p in thewindow
[a, b]. For i = 1, 2 let {T i

j } j∈J i (h) as in (6.6) and j ∈ J 1(h), � ∈ J 2(h) be
such that

ϕt (T 1
j ) ∩ T 2

� = ∅, |t | ∈ [t0+τ , T (h)−τ ].

Let K > 0 and V be a bounded subset of Sδ(T ∗M; [0, 1]). Then, there exists
h0 > 0 and for all N > 0 there exists CN > 0 such that for all 0 < h < h0,
E ∈ [a − Kh, b + Kh], and every δ-partition {χ

T i
j
} j∈J i

E
(h) ⊂ V associated

to {T j } j∈J i
E
(h), i = 1, 2,

‖F A1,A2
j,� (E, h)‖H−N

scl (M)→HN
scl(M)

≤ CN h
N .

Proof ByEgorov’s theorem, for all N > 0 there exist h0 > 0 andCN > 0 such
that for all 0 < h < h0, E ∈ [a − Kh, b+ Kh], and |t | ∈ [t0 + τ, T (h)− τ ]

∥∥Oph(χT 1
j
)A1 e

−i t PEh A∗2 Oph(χT 2
�

)
∥∥
H−N
scl (M)→HN

scl(M)
≤ CN h

N ,

(see e.g. [18, Proposition 3.9]). The claim follows from the definition (6.2)
together with the facts that by (6.3) the support of its integrand has τ ∈
[t0, 2T̃ (h)], and T̃ (h) = 1

2T (h). ��
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1244 Y. Canzani, J. Galkowski

The next lemma provides an estimate for F
A1,A2
j,� (E, h) based on volumes

of tubes.

Lemma 6.5 Assume H1 and H2 are conormally transverse for p in the win-
dow [a, b]. Let A1, A2, τ0, R0, τ , δ, and R(h) be as in Proposition 6.1.
For i = 1, 2 let {T i

j } j∈J i (h) be a (Dn, τ, R(h))-good covering of �Hi
[a,b] .

Let K > 0 and V a bounded subset of Sδ(T ∗M; [0, 1]). Then, there are
C0 = C0(n, k1, k2, I

1
0
, I2

0
, A1, A2,V) and h0 > 0, and for all N > 0

there exists CN > 0 such that the following holds. For all 0 < h < h0,
E ∈ [a − Kh, b + Kh], all δ-partitions {χ

T i
j
} j∈J i

E
(h) ⊂ V and Ii ⊂ J i

E
(h)

for i = 1, 2, and all t0, T̃ with 0 < t0 < T̃ ,

∣∣∣∣
∫
H1

∫
H2

∑
�∈I1, j∈I2

F
A1,A2
j,� (E, h)(x, y)dσH2 (y)dσH1 (x)

∣∣∣∣
≤ C0τ

−1h
2−k1−k2

2 R(h)n−1|I1| 12 |I2| 12 + CN h
N .

Proof The first step in our proof is to define for 0 < t0 < T̃ the functions

g2
t0,T̃

(λ)g1
t0,T̃

(λ) := f
t0,T̃

(λ), g2
t0,T̃

(λ) := 〈t0λ〉−N0,

where N0 ≥ 1 will be chosen later. Note that by (6.3) for all L > 0 there is
CL > 0 such that

|g1
t0,T̃

(λ)| ≤ CL〈t0λ〉−L+1. (6.8)

Since f
t0,T̃ ,h

(
PE

) = g1
t0,T̃ ,h

(
PE

)
g2
t0,T̃ ,h

(
PE

)
, we may use Cauchy-Schwarz to

bound

∣∣∣
∫
H1

∫
H2

∑
�∈I1, j∈I2

[
F

A1,A2
j,� (E, h)

]
(x, y)dσH2 (y)dσH1 (x)

∣∣∣

≤
∥∥∥ ∑

�∈I1
g1
t0,T̃

(
PE

)
A∗1 Oph(χT 1

�

)δH1

∥∥∥
L2(M)∥∥∥ ∑

�∈I2
g2
t0,T̃ ,h

(
PE

)
A∗2 Oph(χT 2

�

)δH2

∥∥∥
L2(M)

.

Next, we use that for i = 1, 2,

∥∥∥∑�∈Ii g
i
t0,T̃ ,h

(
PE

)
A∗i Oph(χT i

�

)δHi

∥∥∥
L2(M)
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≤ sup‖w‖=1
∣∣∣ ∫Hi

∑
�∈Ii Oph(χT i

�

)Ai gi
t0,T̃ ,h

(
PE

)
w dσHi

∣∣∣.

Thus, let w ∈ L2(M) and fix i ∈ {1, 2}. We next apply Lemma 4.4 to the
function u = gi

t0,T̃ ,h

(
PE

)
w and operator A =∑

j∈Ii Oph(χT i
j
)Ai ∈ �∞δ (M).

Here, we use that MSh(A) ⊂ ∪ j∈IiT i
j and that 1

h [PE , A] ∈ �∞δ (M) (see the
definition of a δ-partition (4.2)). In particular, we may fixW ⊂ �∞δ (M) such
that 1

h [PE , A] ∈W regardless of the choice of cover and δ-partition contained
in V . Then, the constant Ci

0
provided by the Lemma depends on Ai instead of

W .
Fixψ ∈ C∞0 (R; [0, 1])withψ(t) = 1 for |t | ≤ 1

4 andψ(t) = 0 for |t | ≥ 1.
By Lemma 4.4 with t1 = t0, T1 = t0, and G� = ∅ for all � > 1, we obtain that
there are Ci

0
= Ci

0
(n, ki , Ii0 , Ai ) > 0, C > 0, there exist h0 > 0 and for all

N > 0 there is CN > 0 such that for all 0 < h < h0

h
ki−1
2

∣∣∣
∫
Hi

∑
j∈Ii

Oph(χT i
j
)Ai g

i
t0,T̃ ,h

(
PE

)
w dσHi

∣∣∣ ≤ QA,ψ
E,h (C,CN , g

i
t0,T̃ ,h

(
PE

)
w)

+ Ci
0
R(h)

n−1
2 |Ii | 12

( 1

τ
1
2

∥∥gi
t0,T̃ ,h

(
PE

)
w
∥∥
L2(M)

+ t0
h

∥∥PE g
i
t0,T̃ ,h

(
PE

)
w
∥∥
L2(M)

)
.

By the definitions gi
t0,T̃

, i = 1, 2 and (6.8) there exists C > 0 such that for all

t0, T̃ with t0 < T̃ ,

∥∥gi
t0,T̃ ,h

(
PE

)∥∥
L2→L2 ≤ C,

∥∥PE g
i
t0,T̃ ,h

(
PE

)∥∥
L2→L2 ≤ C

h

t0
, i = 1, 2.

In addition, note that for i = 1, 2 there exists CN0
> 0 such that

∥∥(1− ψ
( PE
hδ

))
PE A gi

t0,T̃ ,h

(
PE

)∥∥
L2→L2 ≤ CN0

hN0(1−δ)+δ.

The claim follows from choosing N0 large enough that N0(1− δ)+ δ ≥ N . ��
Lemma 6.6 Assume the same assumptions as in Proposition 6.1. For i = 1, 2
let {T i

j } j∈J i (h) be as in (6.6), V be a bounded subset of Sδ(T ∗M; [0, 1]) and
K > 0. There exists h0 > 0, and for all N > 0 there exists CN > 0 such
that for all 0 < h < h0, E ∈ [a − Kh, b + Kh], and every δ-partition
{χ

T i
j
} j∈J i

E
(h) ⊂ V associated to {T i

j } j∈J i
E
(h),

∥∥∥γH1
A1 ft0,T̃ ,h

(
PE

)
A∗2δH2 −

∑
j∈J 1

E
(h), �∈J 2

E
(h)

γH1
F

A1,A2
j,� (E, h)δH2

∥∥∥
H−N
scl

(H2)→HN
scl

(H1)

≤ CN h
N .

123



1246 Y. Canzani, J. Galkowski

Proof Let K > 0 and ψ ∈ C∞c ((−1, 1); [0, 1]) with ψ(t) = 1 for |t | ≤ 1
4 .

We claim there exists h0 > 0 such that for all N > 0 there is CN > 0 so that
for 0 < h < h0, E ∈ [a − Kh, b + Kh].

‖(1− ψ
( PE
hδ

))
f
t0,T̃ ,h

(
PE

)‖H−N
scl (M)→HN

scl(M)
≤ CN h

N . (6.9)

To see this, first note that for ψ̃ ∈ C∞c with supp ψ̃ ⊂ {ψ ≡ 1} and L > 0,

(
1− ψ

( PE
hδ

))
f
t0,T̃ ,h

(
PE

)

= P−L
E

(
1− ψ

( PE
hδ

))
PL
E
f
t0,T̃ ,h

(
PE

)
PL
E
P−L
E

(
1− ψ̃

( PE
hδ

))
.

Now, since PE is classically elliptic in �m(M), for all s ∈ R,

P−L
E

(
1− ψ

( PE
hδ

)) = OL ,s(h
−δL)Hs

scl(M)→Hs+mL
scl (M)

. (6.10)

Note that (6.10) also holds with ψ̃ in place of ψ . In addition, by (6.3)

PL
E
f
t0,T̃ ,h

(
PE

)
PL
E
= OL (h

2L)L2(M)→L2(M). (6.11)

Taking L > max(N/m, N/(2(1 − δ))) and combining (6.10) and (6.11) we
obtain (6.9).

Next, for i = 1, 2 we define Gi := Id−∑
j∈J i

E
(h)Oph(χT i

j
), and note that

MSh(Gi ) ∩ �τ

�
Hi
E

(R(h)/2) = ∅. Therefore, combining Lemma 4.1 together

with (6.9), there exists h0 > 0 such that for all N > 0 there is CN > 0 so that
for all 0 < h < h0, E ∈ [a − Kh, b + Kh].

∥∥γH1
A1G1 ft0,T̃ ,h

(
PE

)
A∗2δH2

∥∥
H−N
scl (H2)→HN

scl(H1)
≤ CN h

N , (6.12)

In particular, the lemma follows from applying (6.12) and its analogs since

γH1
A1 ft0,T̃ ,h

(
PE

)
A∗2δH2 −

∑
j∈J 1

E (h),�∈J 2
E (h)

γH1
F

A1,A2
j,� (E, h)δH2

= γH1
A1G1 ft0,T̃ ,h

(
PE

)
A∗2δH2 + γH1

A1 ft0,T̃ ,h

(
PE

)
G2A

∗
2δH2

+ γH1
A1G1 ft0,T̃ ,h

(
PE

)
G2A

∗
2δH2

.

��
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Proof of Proposition 6.1. Since (H1, H2) is a (t0,T) non-looping pair in the
window [a, b] via τ0-coverings, for i = 1, 2 and h > 0 we may work with
{T i

j } j∈J i (h), as in (6.6) and {χT i
j
} j∈J i (h) a δ-partition associated {T i

j } For each
E ∈ [a, b] and i = 1, 2, let J i

E,h
= Bi

E
(h) ∪ Gi

E
(h) be a partition of indices

such that property (1) of Definition 2.1 with r = R(h). Then, by Lemma 6.4,
for K > 0 there exists h0 > 0 such that the following holds: For all N > 0
there is CN > 0 so that for all 0 < h < h0, E ∈ [a − Kh, b + Kh], and
i, k = 1, 2 with i �= k,

∣∣∣
∫
H1

∫
H2

∑
j∈J k

E
(h)

∑
�∈Gi

E
(h)

[F A1,A2
j,� (E, h)](x, y)dσH2 (y)dσH1 (x)

∣∣∣ ≤ CN h
N .

(6.13)

Therefore, considering the remaining term, and applying Lemma 6.5we obtain
the following. There is C0 = C0(n, k1, k2, I

1
0
, I2

0
, A1, A2) > 0 and for K > 0

there exists h0 > 0 such that the following holds: For all N > 0 there is
CN > 0 so that for all 0 < h < h0, E ∈ [a − Kh, b + Kh],

∣∣∣
∫
H1

∫
H2

∑
j∈B1

E
(h)

∑
�∈B2

E
(h)

[F A1,A2
j,� (E, h)](x, y)dσH2 (y)dσH1 (x)

∣∣∣

≤ C0h
2−k1−k2

2 R(h)n−1|B1
E
(h)| 12 |B2

E
(h)| 12 + CN h

N ≤ C0Cnlh
2−k1−k2

2
/
T (h).

(6.14)

To get the last line we used that our covering satisfies property (2) of Definition
2.1. Combining Lemma 6.6with (6.6), (6.13), and (6.14), we obtain the claim.

6.2 Proof of Theorem 8

Since for i = 1, 2 the submanifold Hi is Ti (h) non-recurrent in the window
[a, b] via τ0-coverings with constant Ci

nr
, we may apply Proposition 5.1 to

obtain the existence of C0 = C0(n, k1, k2, I
1
0
, I2

0
, A1, A2,C1

nr
,C2

nr
) and for all

K > 0 obtain h0 > 0 such that for all 0 < h ≤ h0 and s ∈ [a−Kh, b+Kh],
∣∣∣�A1,A2

H1,H2
(s)− ρ

h,T̃max(h)
∗�A1,A2

H1,H2
(s)

∣∣∣ ≤ C0 h
2−k1−k2

2
/
T (h), (6.15)

where T (h) = (T1(h)T2(h))
1
2 and Tmax(h) = max(T1(h), T2(h)). Note that

we are actually applying the proposition only using that Hi is 1
2Ti (h) non-

recurrent.
On the other hand, since (H1, H2) is a (t0,Tmax) non-looping pair in the

window [a, b] via τ0 coverings, we may apply Proposition 6.1 to obtain that
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1248 Y. Canzani, J. Galkowski

there existC1 = C1(n, k1, k2, I
1
0
, I2

0
, A1, A2,Cnl) > 0 and for all K > 0 there

is h0 > 0 such that for all 0 < h < h0 and all s ∈ [a − Kh, b + Kh]
∣∣∣(ρ

h,T̃max(h)
− ρh,t0

) ∗�A1,A2

H1,H2
(s)

∣∣∣ ≤ C1 h
2−k1−k2

2
/
T (h). (6.16)

The result follows from combining (6.15) with (6.16). We note that H1 and
H2 may be replaced by H̃1,h and H̃2,h since Cnl , C

1
nr
, and C2

nr
are uniform for

{H̃1,h}h and {H̃2,h}h .

6.3 Proof of Theorem 9

Let 0 < τ< min(τ0, ε/3). By Proposition 3.5 there exists c0 > 0, Cnr =
Cnr(M, p, t, R0) > 0 such that for j = 1, 2, the submanifold Hj is cTi (R)
non-recurrent in the window [a, b] via τ coverings with constant Cnr .

Now, since (H1, H2) is a (t0,Tmax) non-looping pair in the window [a, b]
with constantCnl . Proposition 3.1 implies there is C̃nl = C̃nl(p, a, b, n,Cnl, H1,

H2) such that (H1, H2) is a (t0+3τ0, T̃) non-looping pair in the window [a, b]
via τ0-coverings with constant C̃nl where T̃(R) = Tmax(4R)− 3τ0. Since T j

are sub-logarithmic, there is c1 > 0 such that T̃(R) ≥ c1Tmax(R). The proof
now follows from a direct application of Theorem 8 with T j replaced by
min(c0, c1)T j and t0 by t0 + ε.

7 The Weyl law

In order to improve remainders in the Weyl law itself, we let � ⊂ M × M be
the diagonal, and for A1, A2 ∈ �∞(M) consider the integral

∫
M [A11(−∞,s](P)A2](x, x) dvg(x)

= ∫
�

(
(A1 ⊗ A∗2)1(−∞,s](P)

)
(x, y)dσ�(x, y),

where dσ� is the Riemannian volume form induced on� by the product metric
on M × M . To ease notation, we write Pt = (P − t)⊗ 1 = P ⊗ 1− t Id.We
will view � as a hypersurface of codimension n in M × M , and the kernel of
1[t−s,t](P) as a quasimode for Pt . In particular, observe that for any operator
B : L2(M)→ L2(M)

‖Pt1[t−s,t](P)B‖
L2(M×M)

≤ |s|‖1[t−s,t](P)B‖
L2(M×M)

. (7.1)

In addition, note that for (x, ξ, y, η) ∈ T ∗M × T ∗M

σ(Pt )(x, ξ, y, η) = p(x, ξ)− t =: p(x, ξ, y, η)− t =: pt (x, ξ, y, η).
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Weyl remainders: an application 1249

Therefore, for all c > 0, there is C > 0 such that if c|η| ≤ |ξ | and |ξ | ≥ C ,
then

|σ(Pt )(x, ξ, y, η)| ≥ 1
C |(ξ, η)|m .

In particular, since we work near the p flow-out of N∗� ∩ {p = t} where
t ∈ [a, b], and

N∗� = {(x, ξ, x,−ξ) : (x, ξ) ∈ T ∗M},
we may work as though Pt were elliptic in�m(M ×M), and apply the results
of the previous sections by accepting O(h∞) errors. We will do this without
further comment.

We next describe the tubes relevant in this section. We will work microlo-
cally near a point ρ0 ∈ N∗�∩p−1([a, b]). Let πR , πL : T ∗(M×M)→ T ∗M
denote the projections to the right and left factor, and let ZπL (ρ0)

⊂ T ∗M be
a transversal to the flow for p containing πL (ρ0). (Such a hypersurface exists
since dp(ρ) �= 0 on p−1([a, b]).) Define a transversal to the flow for p by

Zρ0 := ZπL (ρ0)
× T ∗M,

and let U be a neighborhood of ρ0 in N∗� such that U ∩ p−1([a, b]) ⊂ Zρ0 .

We will use the metric d̃ on T ∗M × M defined by d̃
(
(ρL , ρR ), (qL , qR )

)
:=

max
(
d(ρL , qL ), d(ρR , qR )

)
, for (ρL , ρR ), (qL , qR ) ∈ T ∗M × M. With this

definition, for ρ = (ρL , ρR ) ∈ N∗� ∩ {pt = 0},

Tρ := �τ
ρ(r) = �̃τ

ρL
(r)× B(ρR , r)

where �τ
A(r) is defined by (2.2) with ϕt the Hamiltonian flow for p and T̃ =

�̃τ
ρL

(r) denotes a tube with respect to p and the hypersurface ZπL (ρ0)
. In

particular, when we use cutoffs with respect to a tube T , we will always work
with cutoffs of the form

χT (x, ξ, y, η) = χT̃ (x, ξ)χρR
(y, η), suppχρR

⊂ B(ρR , r).

Wewill refer only to this tube in T ∗M , leaving the other implicit and will think
of the kernel of A11[a,b](P)A2 as that of1[a,b](P) acted on by A1⊗At

2.Before
we start our proof of the improved Weyl remainder, we need a dynamical
lemma.

Lemma 7.1 Let Cnp > 0, a ≤ b, and U ⊂ T ∗M satisfying dπMHp �= 0 on

p−1([a, b])∩U. Then there are τ0 > 0 and C̃np = C̃np(p,U,Cnp) such that the
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1250 Y. Canzani, J. Galkowski

following holds. If U is (t0,T) non-periodic for p in the window [a, b] with
constant Cnp , then N∗�∩(U×T ∗M) is (t0+3τ0,T(16R)−3τ0) non-looping
for p via τ0-coverings in the window [a, b] with constant C̃np .

Proof Let E ∈ [a, b]. We work withLR,E
�,�

(t0, T ) as defined in Definition 1.12

but with p replaced by p, ϕp
t := exp(t Hp), and ��

E
= N∗� ∩ {p = E}. First,

we claim

πL

(
B

��
E

(
LR,E
�U ,�U

(t0,T ), R
)) ⊂ B

��
E

(
PR
U (t0,T ), 2R

)
. (7.2)

Here, through a slight abuse of notation, we write LR,E
�U ,�U

for (1.5) with S∗x M
and S∗y M replaced by �U := N∗� ∩ (U × T ∗M) and ϕt = exp(t Hp). To
prove (7.2) suppose ρ0 ∈ B

��
E

(
LR,E
�U ,�U

(t0,T ), R
)
. Then, there are ρ1 ∈ ��

E
∩�U

and ρ′1 ∈ T ∗(M × M) such that

d̃(ρ0, ρ1) < R, d̃(ρ1, ρ
′
1) < R, and

⋃
t0≤|t |≤T

ϕ
p
t (ρ

′
1) ∩ B(��

E
, R) �= ∅.

Therefore, there is ρ2 ∈ ��
E

such that d̃
(
ϕ
p
t (ρ

′
1), ρ2

)
< R for some t0 ≤

|t | ≤ T . Let ρ′1 = (x ′, ξ ′, y′,−η′) with (x ′, ξ ′), (y′, η′) ∈ T ∗M . Then, since
ρ1 = (x, ξ, x,−ξ) and ρ2 = (y, η, y,−η) for some (x, ξ) ∈ T ∗M and
(y, η) ∈ T ∗M , we have d(ϕt (x ′, ξ ′), (x ′, ξ ′)) < 4R and πL (ρ

′
1) = (x ′, ξ ′) ∈

P4R
U

(t0, T ). On the other hand, since d(πL (ρ0), πL (ρ
′
1)) < 2R we obtain

πL (ρ0) ∈ BS∗M
(
P4R
U (t0,T ), 2R

)
. This proves claim (7.2).

Next, note that since πL : �U ∩��
E
→ {p = E} ∩U is a diffeomorphism

for E ∈ [a, b], it follows that there exists C = C(p) > 0 such that for all
E ∈ [a, b]

μE

(
B

��
E

(
LR,E
�U ,�U

(t0,T ), R
)) ≤ CμS∗M

(
BS∗M

(
P4R
U (t0,T ), 2R

))
.

Hence, if U is (t0,T) non-periodic for p at energy E , we have

μE

(
B

��
E

(
LR,E
�U ,�U

(t0,T(4R)), R
))

T(4R)

≤ CμS∗M

(
BS∗M

(
P4R
U (t0,T(4R)), 4R

))
T(4R) ≤ CCnp,

and so �U is (t0,T(4R)) non-looping for p at energy E . The result follows
from Corollary 3.1. ��

In what follows, we write ‖ · ‖HS for the Hilbert-Schmidt norm.
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Lemma 7.2 Let V ⊂ Sδ(T ∗M; [0, 1]) be a bounded subset. Then, there are
C > 0 and h0 > 0, and for all N > 0 there exists CN > 0, such that for all
t ∈ [a, b], χ ∈ V , 0 < h < h0, and |s| ≤ 2h,

‖1[t−s,t](P)Oph(χ)‖2
HS
≤ Ch1−nμ

p−1(t) (suppχ ∩ p−1(t))+ CN h
N ,

(7.3)

h−2‖Pt1[t−s,t](P)Oph(χ)‖2
HS
≤ Ch1−nμ

p−1(t) (suppχ ∩ p−1(t))+ CN h
N .

(7.4)

Proof We follow the proof of [18, Lemma 3.11]. Letψ ∈ S(R)withψ(0) = 1
and supp ψ̂ ⊂ [−1, 1]. Define ψε(s) := ψ(εs). Then, there is ε0 > 0 small
enough so thatψε0(s) >

1
2 on [−2, 2]. Abusing notation slightly, putψ = ψε0 .

Then, there exists an operator Zs such that 1[t−s,t](P) = Zsψ
( Pt
h

)
, [Zs, P] =

0, and ‖Zs‖L2→L2 ≤ 3 for |s| ≤ 2h. Therefore, ‖1[t−s,t](P)Oph(χ)‖HS ≤
3
∥∥ψ( Pt

h

)
Oph(χ)

∥∥
HS

and the Hilbert–Schmidt norm is the L2 norm of the
kernel. Next, we recall that after application of a microlocal partition of unity,
we may write

ψ
(
Pt
h

)
(x, y) = h−n

∫
R

∫
Rn

ψ̂(τ )e
i
h (ϕ(τ,x,η)−〈y,η〉−tτ)a(τ, x, y, η)dηdτ + O(h∞)HS

for a symbol a ∼ ∑
j h

ja j and phase ϕ solving ∂tϕ = p(x, ∂xϕ) and
ϕ(0, x, η) = 〈x, η〉. At this point the proof of (7.3) follows exactly as in [18,
Lemma 3.11].

To obtain (7.4), we write Pt1[t−s,t](P) = Zs Ptψ
( Pt
h

)
and note that

Pt
h ψ

( Pt
h

) = (tψ)
( Pt
h

)
. Hence the same argument applies with t̂ψ(τ) =

−i∂τ ψ̂(τ ) replacing ψ̂(τ ). ��
We will also need the following trace bound for 1[t−s,t].

Lemma 7.3 Suppose a, b ∈ R, ε0 > 0, �1, �2 ∈ R, V1 ⊂ ��1(M), and
V2 ⊂ �

�2
δ (M) bounded subsets, U ⊂ T ∗M open such that |dπMHp| >

c > 0 on p−1([a − ε0, b + ε0]) ∩ U. Let τ0,R0, δ, R(h), and τ be as in
Lemma 4.1. Let {T j } j∈J (h) be a (D, τ, R(h)) good covering of p−1([a, b])∩
N∗�∩(U × T ∗M) and V ⊂ Sδ(T ∗M×T ∗M; [0, 1]) bounded. Then, there is
C0 > 0 such that for all {χT j

} j∈J (h) ⊂ V partitions for {T j } j∈J (h), j ∈ J (h),

A1 ∈ V1, A2 ∈ V2, and |s| ≤ ε0

∣∣∣
∫
�

Oph(χT j
)A11[t−s,t](P)A2dσ�

∣∣∣ ≤ C0h
1−n R(h)2n−1

〈 s
h

〉
.

Proof We first note that it suffices to prove the statement for |s| ≤ 2h. Indeed,
this is because we may apply the arguments from Lemma 5.4 and decompose
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1252 Y. Canzani, J. Galkowski

1[t−s,t](P) = ∑k0−1
k=0 1[tk ,tk+1](P), with |tk+1 − tk | ≤ 2h. This allows us to

obtain the result for |s| ≤ ε0.
Suppose |s| ≤ 2h. Let Ũ ⊃ B(U, 2R(h)), j ∈ J (h), and A :=

Oph(χT j
)(A1 ⊗ A2). Note that

[Pt, A] = [Pt, Oph(χT j
)](A1 ⊗ A2)

+Oph(χT j
)[P − t, A1] ⊗ A2 ∈ �δ(M) (7.5)

with seminorms bounded by those of χT j
, A1, and A2. We next apply

Lemma 4.1 with A := Oph(χT j
)(A1⊗ A2), Pt in place of Pt , k = n, M ×M

in place of M , and u := 1[t−s,t](P)Oph(χŨ
), where the latter is viewed as

a kernel on M × M . Here, χ
Ũ
∈ Sδ(T ∗M) with χ

Ũ
≡ 1 on B(U, R(h)),

suppχ
Ũ
⊂ Ũ . Let χ̃T j

∈ V with supp χ̃T j
⊂ T j and χ̃T j

≡ 1 on suppχT j
.

Then, since MSh(A) ⊂ T j , by Lemma 4.1 there existC0 > 0 andC > 0, such
that

h
n−1
2

∣∣∣
∫
�

Oph(χT j
)A11[t−s,t](P)A2dσ�

∣∣∣
≤ C0R(h)

2n−1
2

(
‖Oph(χ̃T j

)u‖
L2(M)

+ C

h
‖Oph(χ̃T j

)Pt u‖L2(M)

)
.

Note that we omit the analogous error terms appearing in the estimate of
Lemma 4.1 since these error terms can be dealt with by applying the bounds
in (5.7) and (5.8) in combination with (7.1).

Next, since Oph(χ̃T j
) = Oph(χ̃T̃ j

) ⊗ Oph(χ̃ρ j ), where χ̃ρ j and χ̃T̃ j
are

bounded in Sδ(T ∗M; [0, 1]) by the seminorms in the set V , we obtain

h
n−1
2 R(h)−

2n−1
2

∣∣∣
∫
�

Oph(χT j
)A11[t−s,t](P)A2dσ�

∣∣∣
≤ C0‖Oph(χ̃T̃ j

)uOph(χ̃ρ j )‖HS + C0Ch−1‖Oph(χ̃T̃ j
)PtuOph(χ̃ρ j )‖HS

≤ C0h
1−n
2 R(h)

2n−1
2 ,

where u is now viewed as an operator. In the last line we used Lemma 7.2 and

the existence of C > 0 such that μt

(
(supp χ̃ρ j ) ∩ p−1(t)

)
≤ CR(h)2n−1.

This finishes the proof when |s| ≤ 2h. ��
Lemma 7.4 Let a, b, ε0, τ0, V1,V2 R0, τ , δ, R(h) and α as in Lemma 4.4.
Let N∗� ∩ (U × T ∗M) be T non-looping for p in the window [a, b] via τ -
coverings and let Cnp be the constant Cnl in Definition 2.1. Then, there is
C0 = C0(n, P,V1,V2,Cnp, ε0) > 0 and for all K > 0 there is h0 > 0 such
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that for all 0 < h ≤ h0, A1 ∈ V1, A2 ∈ V2 with MSh(A2) ⊂ U, |s| ≤ 2h, and
t ∈ [a − Kh, b + Kh],

hn−1
∣∣∣
∫
�

A11[t−s,t](P)A2dσ�

∣∣∣2 ≤ C0

1

T (h)

〈T (h)s

h

〉
‖1[t−s,t](P)Oph(χŨ

)‖2L2,

where Ũ (h) ⊃ B(U, 2R(h)),χ
Ũ
∈ Sδ ,χŨ

≡ 1on B(U, R(h)), and suppχ
Ũ
⊂

Ũ .

Proof Since N∗� ∩ (U × T ∗M) is T non-looping in the window [a, b] via
τ0-coverings, for all t ∈ [a − Kh, b + Kh], there is a partition of indices
Jt (h) = Gt,0(h) � Gt,1(h) as described in Definition 2.1 (with H = �). Let
t0 = t0, t1 = 1, T0(h) = T (h) and T1(h) = 1. Then, there is Cnp > 0 such
that for all t ∈ [a − Kh, b + Kh]

1∑
�=0

√
|Gt,�(h)|t�

T�
≤ CnpR(h)

1−2n
2√

T (h)
,

1∑
�=0

√
|Gt,�(h)|t�T� ≤ CnpR(h)

1−2n
2

√
T (h). (7.6)

Next, we argue as in (5.5), and then apply a combination of Lemma 4.3 and
Lemma 4.4 with A := A1 ⊗ A2, Pt in place of PE , 2n in place of n, M × M
in place of M , k = n, and u := 1[t−s,t](P)Oph(χŨ

), where u is viewed as a
kernel on M × M . Then, there is C0 > 0 so that

h
n−1
2

∣∣∣
∫
�

A11[t−s,t](P)A2dσ�

∣∣∣

≤ C0R(h)
2n−1
2

( 1∑
�=0

(|Gt,�(h)|t̃�)
1
2

(τ T̃�)
1
2

‖u‖L2 +
∑
�

(|Gt,� (h)|t̃�T̃�)
1
2

h
‖Pt u‖L2

)
,

where t̃� and T̃� are as in (5.4). We have used that, since MSh(A) ⊂ U ×T ∗M
and the tubes are a covering for p−1([a, b]) ∩ N∗�∩(U × T ∗M), then
MSh(A) ∩�τ

��
t
(R(h)/2) ⊂ ⋃

j∈Jt (h)
T j . Also, note that we omit the analo-

gous error terms appearing in the estimate of Lemma4.4 since these error terms
can be dealt with by applying the bounds in (5.7) and (5.8) in combination
with (7.1).
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The proof follows from applying the bounds in (5.5) in combination with
(7.1). ��
Lemma 7.5 Let �i ∈ R, Vi ⊂ �

�i
δ (M) bounded for i = 1, 2. Then, there are

N0 > 0, C > 0, h0 > 0 such that for all A1 ∈ V1 and A2 ∈ V2, s ∈ R and
0 < h < h0

∣∣∣
∫

A11(−∞,s](P)A2dσ�

∣∣∣ ≤ Ch−
n
2 〈s〉N0‖1(−∞,s](P)‖L2 .

Proof We apply Lemma 4.5with H = �, A = A1⊗A2, and u = 1(−∞,s](P).
Then, for r >

n+2(�1+�2)
2m , there is C > 0 such that for all N > 0 there is

CN > 0 such that

h
n
2

∣∣∣
∫
�

A11(−∞,s](P)A2dσ�

∣∣∣
≤ C(‖1(−∞,s](P)‖L2 + ‖Pr1(−∞,s](P)‖L2)+ CNh

N‖1(−∞,s](P)‖L2 .

It follows from (7.1) that the last term can be bounded by C(1 + |s|r )
‖1(−∞,s](P)‖L2 . ��

7.1 Proofs of Theorems 2 and 6

We claim that for E ∈ [a − Kh, b + Kh] and A1 ∈ V1, and A2 ∈ V2 with
MSh(A2) ⊂ U ,

hn−1
∣∣∣
∫
�

A1

(
1(−∞,E](P)− (

ρh,t0 ∗ 1(−∞,·](P)
)
(E)

)
A2dσ�

∣∣∣ ≤ C0
/
T (h).

(7.7)

We start by showing under the same assumptions that

hn−1
∣∣∣
∫
�

A1

((
ρh,T (h) ∗ 1(−∞, · ](P)

)
(E)− 1(−∞,E](P)

)
A2dσ�

∣∣∣
≤ C0

/
T (h), (7.8)

hn−1
∣∣∣
∫
�

A1

((
ρh,T (h) ∗ 1(−∞, · ](P)

)
(E)− (

ρh,t0
∗ 1(−∞, · ](P)

)
(E)

)
A2dσ�

∣∣∣
≤ C0

/
T (h). (7.9)

for some t0 independent of h. At the end of the section we will derive Theo-
rems 2 and 6 from (7.7).
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7.1.1 Proof of (7.8).

Let Ũ ,U0 ⊂ T ∗M with B(U0, 2R(h)) ⊂ U ⊂ B(U0, 4R(h)) ⊂ Ũ .
Then, let χ

Ũ
, χU0

, χ
Ũ\U0

∈ Sδ(T ∗M; [0, 1]) with χ
Ũ
≡ 1 on U , suppχ

Ũ
⊂

B(U0, 3R(h)), χU0
≡ 1 on B(U0, R(h)), suppχU0

⊂ U , χ
Ũ\U0

≡ 1 on

suppχ
Ũ
(1 − χU0

), suppχ
Ũ\U0

⊂ Ũ \ U0. By Lemma 7.2 and (1.12) there
exists C0 > 0 such that for |s| ≤ 2h,

hn−1
∥∥1[t−s,t](P)Oph(χŨ\U0

)
∥∥2
HS

≤ C0μp−1(t) (p
−1(t) ∩ (Ũ \U0)) ≤ C0CU

/
T (h). (7.10)

Note that when U = T ∗M this is an empty statement. Then, for |s| ≤ 2h, by
Lemma 7.4

hn−1 tr
(
1[t−s,t](P)Oph(χU0

)
)2( 1

T (h)

〈T (h)s

h

〉)−1 ≤ C0‖1[t−s,t](P)Oph(χŨ
)‖2L2

≤ C0 tr 1[t−s,t](P)Oph(χU0
)+ C0‖1[t−s,t](P)Oph(χŨ\U0

)‖2
HS
+ CN h

N .

Then, applying the quadratic formula with x = tr 1[t−s,t](P)Oph(χU0
), for

|s| ≤ 2h we have

0 ≤ hn−1 tr 1[t−s,t](P)Oph(χU0
) ≤ C0

T (h)

〈T (h)s

h

〉
+ CUC0

T (h)
+ cNh

N .

Next, for |s| ≤ ε0, splitting 1[t−s,t](P) = ∑k0−1
k=0 1[tk ,tk+1](P) as before,

we have by Lemma 7.4 and Lemma 7.5 that there exists N0 > 0 such that

hn−1
∣∣∣
∫
�

A11[t−s,t](P)A2dσ�

∣∣∣ ≤ C0
1

T (h)

〈 T (h)s

h

〉
, (7.11)

h
n
2
∣∣∣
∫
�

A11(−∞,s](P)A2dσ�

∣∣∣ ≤ C〈s〉N0‖1(−∞,s](P)‖L2 ≤ Ch−
n
2 (1+ |s|2N0 ), (7.12)

where to get the last inequality, we use Lemma 7.5 withU = M , A1 = A2 =
Id.

In particular, combining (7.11) and (7.12) together with Lemma 5.3
implies (7.8) holds.
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7.1.2 Proof of (7.9).

Using Lemma 6.3, the proof of (7.9) amounts to understanding

A1
(
(ρ

h,T̃ (h)
− ρh,t0

) ∗ 1(−∞, · ](P)
)
(E)A2

= A1 ft0,T̃ (h),h

(
PE

)
A2 + O(h∞)H−N

scl →HN
scl
,

where fS,T,h is given by (6.2), and T̃ (h) = T (h)
2 . In particular, for E ∈

[a−Kh, b+Kh], we consider tr A1 ft0,T̃ ,h

(
PE

)
A2. For this, we let {T j } j∈J (h)

be a (D, τ, R(h))-good covering of p−1([a, b]) ∩ N∗� ∩ (U × T ∗M) and
V ⊂ Sδ(T ∗M × M; [0, 1]) a bounded subset. Let {χT j

} j∈J (h) ⊂ V be a
partition associated to {T j } j∈JE (h).

Lemma 7.6 Let I ⊂ JE (h), V1 ⊂ ��1(M), V2 ⊂ �
�2
δ (M) bounded subsets.

Then, there exist C0 > 0 and h0 > 0 such that for all A1 ∈ V1, A2 ∈ V2,
0 < h < h0

∣∣∣
∫
�

∑
j∈I

Oph(χT j
)A1 ft0,T̃ ,h

(
PE

)
A2dσ�

∣∣∣ ≤ C0h
1−n R(h)2n−1|I|.

Proof We first note that ft0,T̃ (h),h(PE ) = �h ∗ ∂s1(−∞, · ](P)(E), where

�h(s) := ft0,T̃ (h),h(−s).Then, since f̂t0,T̃ (h)(0) = 0, we have
∫

R
∂s�h(s)ds =

0. In particular, by the estimates (6.3), Lemma 5.3 applieswith σh = h−1. Note
that by Lemma 7.3, for t ∈ [a − Kh, b + Kh], and |s| ≤ 1,

∣∣∣
∫
�

Oph(χT j
)A1(1(−∞,t] − 1(−∞,t−s])A2dσ�

∣∣∣ ≤ Ch1−n R(h)2n−1
〈 s
h

〉
.

(7.13)

Also, by Lemma 7.5, there exists N0 such that for s ∈ R,

∣∣∣
∫
�

Oph(χT j
)A11(−∞,s](P)A2dσ�

∣∣∣ ≤ Ch−n〈s〉N0 . (7.14)

The proof follows from Lemma 5.3 using (7.13) and (7.14), and by summing
in j ∈ I. ��
Lemma 7.7 LetV1,V2 as inLemma 7.6 and suppose T j is a tube such that T̃ j ,
its corresponding tube in T ∗M, satisfies ϕt (T̃ j )∩ T̃ j = ∅ for |t | ∈ [t0, T (h)].
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Weyl remainders: an application 1257

Then for all N > 0 there is CN > 0 such that for all A1 ∈ V1, and A2 ∈ V2,

∣∣∣
∫
�

Oph(χT j
)A1 ft0,T̃ ,h

(
PE

)
A2dσ�

∣∣∣ ≤ CN h
N .

Proof Note that the assumption on T̃ j implies exp(t Hp)(T j ) ∩ N∗� = ∅
for |t | ∈ [t0, T (h)]. Therefore, the same application of Egorov’s theorem as
in Lemma 6.4, completes the proof. ��

Since U is T non-periodic in the window [a, b] via τ -coverings, for all E ∈
[a − Kh, b + Kh], there is a splitting JE (h) = BE (h) ∪ GE (h) such that
ϕt (T̃ j ) ∩ T̃ j = ∅ for |t | ∈ [t0, T (h)] for j ∈ GE (h), and |BE (h)|R(h)2n−1 ≤
T−1(h). We write, using MSh(A1 ⊗ A2) ∩�τ

��
t
(R(h)/2) ⊂⋃

j∈Jh,E
T j ,

∫
�

A1 ft0,T̃ ,h

(
PE

)
A2dσ�

=
∑

j∈GE (h)∪BE (h)

∫
�

Oph(χT j
)A1 ft0,T̃ ,h

(
PE

)
A2dσ� + O(h∞).

Applying Lemma 7.7 to the sum over GE (h) and Lemma 7.6 to the sum over
BE (h), we have

∣∣∣
∫
�

A1 ft0,T̃ ,h

(
PE

)
A2dσ�

∣∣∣ ≤ Ch1−n|BE (h)|R(h)2n−1 + O(h∞) ≤ C
/
T (h)

for any E ∈ [a − Kh, b + Kh]. In particular (7.9) holds.

7.1.3 Completion of the proof of Theorem 6

In order to complete the proof of Theorem 6, we take A1 = Id and A2 = At

and apply (7.7) to obtain the theorem. ��

7.1.4 Proof of Theorem 2

We assume W ⊂ M is T non-periodic and let P = Q as in (2.14). Then
|dπMHp| > c > 0 on |ξ |g > 1

2 > 0 so we may apply (7.7) for E > 1
2 .

Let 0 < δ < 1
2 . Let χh ∈ C∞c (M) as in [9, (19)] i.e. such that χh ≡ 1 in

a neighborhood of ∂W , suppχh ⊂ {d(x, ∂W ) < 2hδ}, |∂α
x χ | ≤ Cαh−|α|δ,

volM (suppχh) ≤ Chδ(n−dimbox ∂W ).
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1258 Y. Canzani, J. Galkowski

Let R(h) ≥ hδ , and T (h) = T(R(h)). Then, put A1 = 1 and A2 =
(1− χh)1W in (7.7) to obtain

∣∣∣
∫
�

(
1(−∞,1](P)− ρh,t0 ∗ 1(−∞,·](P)(1)

)
(1− χh)1Wdσ�

∣∣∣ ≤ C0h
1−n/T (h).

Next, since ρh,t0 ∗ 1(−∞,·](P)(1)(x, x) = volRn (B
n)

(2πh)n + O(h−n+2) (apply The-
orem 3 with T = 1),

∣∣∣
∫
W
(1− χh(x))

(
�h(1, x, x)− (2πh)−n volRn (Bn)

)
dvg(x)

∣∣∣ ≤ C0h
1−n/T (h).

Also, since�h(1, x, x) = (2πh)−n volRn (Bn)| = O(h1−n) (apply Theorem3
with T = injM),

∣∣∣
∫
W

χh(x)
(
�h(1, x, x)− (2πh)−n volRn (Bn)

)
dvg(x)

∣∣∣ ≤ Ch1−n+δ(n−dimbox(∂W )),

where we used vol(suppχh) ≤ hδ(n−dimbox(∂W )). In particular,

∣∣∣
∫
W

�h(1, x, x) dvg(x)− (2πh)−n volRn (Bn) volM(W )

∣∣∣
≤ Ch1−n

(
T (h)−1 + Chδ(n−dimbox ∂W )

)
.

��

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, youwill need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Index of notation

In general we denote points in T ∗M by ρ. When position and momentum need
to be distinguished we write ρ = (x, ξ) for x ∈ M and ξ ∈ T ∗x M . The natural
projection is πM : T ∗M → M . Sets of indices are denoted in calligraphic font
(e.g., J ). Next, we list symbols that are used repeatedly in the text along with
the location where they are first defined.
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ρσ (1.7) E A1,A2
H1,H2

(1.17) Kα (2.8)

Et0
λ (1.8) �τ

A
(r) (2.2) |HprH | (2.10)

�max (1.11) Z (2.1) I0 (2.11)
Te(h) (1.11) τinj (2.3) ρh,T (1.16)
�[a,b] (1.14) JE (h) (2.5) PE (4.3)

For U ⊂ V ⊂ T ∗M we write BV (U, R) = {ρ ∈ V : d(U, ρ) < R}
and B(U, R) = BT∗M (U, R). For A ⊂ T ∗M we write μA for the Liou-
ville measure induced on A. The injectivity radius of M is denoted by injM .
For the definitions of the semiclassical objects ��(M), ��

δ (M), S�(T ∗M),
S�δ (T

∗M), WFh, MSh, HN
scl(M), we refer the reader to [11, Appendix A.2].

See also (2.12) and (4.1) for the definitions of HN
scl(M) and Sδ, �δ respectively.

For the definition of [t, T ] non-self looping, see (2.6), that of (D, τ, r) good
covers, see (2.4). Non-periodic, non-looping, and non-recurrent are defined in
Definitions 1.9, 1.12, and 1.13 respectively. For non-looping via coverings
and non-recurrent via coverings, see Definitions 2.1 and 2.2.

Appendix B: Examples

In this section, we verify our dynamical conditions in some concrete examples
(some of which are displayed in Tables 1 and 2). In particular, we verify that
certain subsets of manifolds are non-periodic (see Definition 1.2), that various
pairs of submanifolds (H1, H2) are non-looping (see Definition 1.3), and that
certain submanifolds are non-recurrent either via coverings (seeDefinition 2.2)
or simply non-recurrent (see Definition 1.7). Recall also that if (H1, H1) is a
non-looping pair, then H1 is non-looping and hence also non-recurrent. Once
these conditions are verified, one can directly apply the relevant theorems
(Theorem 2, 3, 4, and 5).

B.1 Manifolds without conjugate points and generalizations

Let � denote the collection of maximal unit speed geodesics for (M, g). For
m a positive integer, R > 0, T ∈ R, and x ∈ M define

�m,R,T
x := {

γ ∈ � : γ (0) = x, ∃ at least m conjugate points to

x in γ (T − R, T + R)
}
,
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1260 Y. Canzani, J. Galkowski

where we count conjugate points with multiplicity. Next, for a set W ⊂ M
write

Cm,R,T
W

:=
⋃
x∈W

{γ (T ) : γ ∈ �m,R,T
x }.

Note that if T(R)→∞ as R → 0+, then saying y ∈ Cn−1,R,T(R)x for R small
indicates that x behaves like a point that is maximally conjugate to y. Note
that if (M, g) has no conjugate points, then Cm,r,T

x = ∅ for all x ∈ M and
r < |T |.
Lemma B.1.1 Let α > 0, t0 > 0 and T(R) = α log R−1. Then there are
Cnl > 0 and c > 0 such that if H1, H2 ⊂ M of co-dimension k1, k2, and

d
(
H1, Ck1+k2−n−1,R,T(R)H2

)
> R

for all R < e−t0/α , then (H1, H2) is a (t0, c log R−1) non-looping pair with
constant Cnl , for p(x, ξ) = |ξ |g(x).
Proof By [8, Proposition 2.2, Lemma 4.1] there exist τ > 0, δ > 0, Cnl > 0,
C > 0, such that the pair (H1, H2) is a (t0, T (h)) non-looping via (τ, hδ)

coverings with constant Cnl in the window [a, b] for any 0 < a < b, where
T (h) = c log h−1 for some c > 0 depending on (M, g, α). Combining this
result with Lemma 3.4 completes the proof. ��
Remark B.1.2 We note that [8, Proposition 2.2] was only proved for H1 = H2.
However, the same argument works for the general case.

B.1.1 Product manifolds

Let (Mi , gi ), i = 1, 2, be two compact Riemannian manifolds. Let M =
M1×M2 endowed with the product metric g = g1⊕ g2. By [11, Lemma 1.1]
we have Cn−1,r,Tx = ∅ for 0 < r < |T |. Therefore, by Lemma B.1.1 for every
α, t0 > 0 there is Cnl such that every x ∈ M is (t0, α log R−1) non-looping
with constant Cnl for |ξ |g(x). Note that, integrating over M , and using

μS∗M (A) =
∫
M

μ
S∗x M (A ∩ S∗x M) dvg,

this also implies M is α log R−1 non-periodic. We point out that although
Cn−1,r,Tx is empty for 0 < r < |T |, M may, and often does, have conjugate
points. For example, this is the case when M1 = Sn1 with n1 ≥ 2.
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B.1.2 Flow invariance of non-looping condition

In this section, we show that non-looping properties of a pair (H1, H2) are
inherited by their flow-outs Ht := π(ϕt (SN∗H)). Note, for example, that a
geodesic sphere is given by Ht when H = {x} is a point for some t > 0.

Lemma B.1.3 Suppose (H1, H2) is a (t0,T) non-looping pair. Then, for all
s, t ∈ R there exists C > 0 such that (Ht

1, H
s
2 ) is a (t0 + |t | + |s|, T̃) non-

looping pair where T̃(R) = T(CR)− (|t | + |s|).
Proof First, note that SN∗Ht

j = ϕt (SN∗Hj ) ∪ ϕ−t (SN∗Hj ) for j = 1, 2. Let

T > 0 and suppose ρ ∈ B(LR,1
Ht
1,H

s
2

(t0, T ), R). Then, there is q1 ∈ LR,1
Ht
1,H

s
2

(t0, T )

such that d(q1, ρ) < R. In particular, there are q2 ∈ T ∗M and t0 ≤ |t1| ≤ T
such that d(q1, q2) < R and d(ϕt1(q2), SN

∗Hs
2 ) < R.

Now, either ϕ−t (q1) ∈ SN∗H1 or ϕt (q1) ∈ SN∗H1. We consider the case
ϕt (q1) ∈ SN∗H1, the other begin similar. Then, there exist Ct ,Cs > 0 such
that

d(ϕt (q1), ϕt (q2)) < Ct R, d(ϕ−t+t1±s ◦ ϕt (q2), SN∗H2) < Cs R.

In particular, letting C = max(Ct ,Cs), ϕt (q1) ∈ LCR
H1,H2

(t0 + |t | + |s|, T −
(|t | + |s|)), and, since d(ϕt (ρ), ϕt (q1)) < CR,

ϕt (ρ) ∈ B
(
LCR,1

H1,H2
(t0 + |t | + |s|, T − (|t | + |s|)),CR

)
.

Repeating this argument when ϕ−t (q1) ∈ SN∗H1, we obtain

B
SN∗Ht

1
(LR,1

Ht
1,H

s
2

(t0, T ), R)

⊂
⋃
±

ϕ±t
(
BSN∗H1 (L

CR,1
H1,H2

(t0 + |t | + |s|, T − (|t | + |s|)),CR)
)
.

In particular, there is C > 0 such that

μ
SN∗Ht

1

(
B

SN∗Ht
1
(LR,1

Ht
1,H

s
2

(t0, T ), R)
)

≤
∑
±

CμSN∗H1

(
BSN∗H1 (L

CR,1
H1,H2

(t0 + |t | + |s|, T − (|t | + |s|)),CR)
)
.

Therefore, since (H1, H2) is a (t0,T) non-looping pair, (Ht
1, H

s
2 ) is a (t0 +

|t | + |s|, T̃) non-looping pair with T̃(R) = T(CR)− |t | − |s|. ��
Now, by Lemma B.1.1, in the case d

(
y, Cn−1,R,T(R)x

)
> R, for R < e−t0/α

and T(R) = α log R−1, we have (x, y) is a (t0, c log R−1) non-looping pair.
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1262 Y. Canzani, J. Galkowski

Hence, by Lemma B.1.3 that the geodesic spheres generated by x and y form a
non-looping pair with resolution functionT(R) = C̃ log R−1 for some C̃ > 0.

B.2 Surfaces of revolution

Consider M = S2 with the metric a ι∗g where

g(s, θ) = ds2 + α2(s)dθ2, (B.1)

and ι : [−π
2 ,

π
2 ]×R/2πZ → S2, with ι(s, θ) = (cos(s) cos(θ), cos(s) sin(θ),

sin(s)).Here,α is a smooth function satisfyingα(±π
2 ) = 0 and±α′(±π/2) =

1. This assumption implies g is a smooth Riemannian metric. Furthermore,
we assume −sα′(s) > 0 for s �= 0 and α′′(0) < 0. Note that the round sphere
is given by α(s) = cos(s).

For a unit speed geodesic, t 
→ (s(t), θ(t)) with (s(0), θ(0)) = (0, 0),
θ̇ (0) > 0, ṡ(0) > 0, we have by the Clairaut formula (see e.g. [3, Proposition
4.7])

(
ṡ(t)

)2 + α2(s(t))
(
θ̇ (t)

)2 = 1 and θ̇ (t) = α(s+)α−2(s(t))

where s+ is the maximal value of s on the geodesic. In particular, putting
t (s+) for the first time when s(t) = s+, we have s : [0, t (s+)] → [0, s+] is
invertible,

t (s) =
∫ s

0

α(w)√
α2(w)− α2(s+)

dw, θ(t (s+)) =
∫ t (s+)

0

α(s+)
α2(s(t))

dt

and, changing variables tow = s(t) and using ṡ(t) =
√
1− α2(s+)

α2(s(t))
, we have

θ(t (s+)) =
∫ s+

0

α(s+)
α(w)

1√
α2(w)− α2(s+)

dw.

We then define θ+(s+) := 2θ(t (s+)). If we instead suppose θ̇ > 0 and ṡ < 0,
we can define θ−(s−) analogously where s− is the minimal s value on the
trajectory. Now, there is a smooth function

s− : [0, π/2] → [−π/2, 0]

such that if s+ is themaximal s value of a trajectory, then s−(s+) is theminimal
s value. Moreover, ∂s+s− < 0.
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Finally, note that for a trajectory with maximal s value s+, s(0) = 0, ṡ �= 0,
if T is the second return time to s(0) = 0, then

�0(s+) = θ(T )− θ(0), �0(s+) := θ+(s+)+ θ−(s−(s+)).

Note that apriori, θ(T ) − θ(0) could depend on the precise geodesic whose
maximal s value is s+. However, the integrable torus, Ts+ , consisting of all
such geodesics has the same θ(T )− θ(0) up to sign.

In the next lemmas, we reduce the study of dynamical properties on (M, g)
to the Poincaré section {s(0) = 0, ṡ(0) > 0} ⊂ T M . The function �0 :
(0, π/2] → R is the change in θ after a return to the Poincaré section. In
particular, Ts+ is a periodic torus (i.e. all its trajectories are periodic) if and
only if for some p, q ∈ Z, q �= 0,

�0(s+) = 2π p/q.

Lemma B.2.1 Suppose there exists b > 0 such that

∂s+�0(s+) �= 0, s+ ≥ b.

Then, there are Cnp, c > 0 such that every subset U ⊂ {s > b} ∪ {s < s−(b)}
is T non-periodic for T(R) = cR−1/3 with constant Cnp .

Proof Suppose ρ ∈ S∗M with s+(ρ) > b, and let t ∈ R be such that

ϕt (BS∗M (ρ, R)) ∩ BS∗M (ρ, R) �= ∅. (B.2)

Then, there is |t1| ≤ R such that d(ϕt+t1(ρ), ρ) < (1+C(|t | + |t1|))R. Now,
for some 0 ≤ t2 ≤ c, we have s(ϕt2(ρ)) = 0 and

d(ϕt+t1+t2(ρ), ϕt2(ρ)) < (1+ C(|t | + |t1| + t2))R.

Let s+ be the maximal s value for the trajectory through ρ. Then, there are
p, q ∈ Z with |p|, |q| ≤ C(1+ |t |), |q| ≥ c(1+ |t |) such that

∣∣∣�0(s+)− 2π p/q
∣∣∣ < C(1+ C(|t | + |t1| + t2))R/q ≤ CR. (B.3)

We have shown that if ρ ∈ S∗M is such that (B.2) holds, then ρ ∈⋃
s+∈A(t) Ts+ , where

A(t) := {s+ ∈ (b, π
2 ] : ∃p, q ∈ Z, |p|, |q| ≤ C(1+ |t |), (B.3) holds, }.
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Next, we claim

|A(t)| ≤ C(1+ |t |)2R. (B.4)

Indeed, #{r ∈ [0, 1] : ∃p, q ∈ Z, r = p/q, |p|, |q| ≤ C(1 + |t |)} ≤
C(1 + |t |)2 and hence, the volume of possible values of �0(s+) such that
(B.3) holds is bounded by C(1+ |t |)2R. The claim in (B.4) then follows from
the assumption ∂s+�0(s+) �= 0 on s+ ≥ b.

Our next goal is to show that the bound in (B.4) translates to a bound on the
set of ρ with (B.2). To see this, note that Ts+ = {|ξθ | = α(s+)}∩S∗M where
we work in the cotangent bundle with coordinates (s, θ, ξs, ξθ ). Therefore,
when α(s+) < α(s0), the intersection Ts+ ∩ S∗(s0,θ)M is transversal for any θ .
In particular, for any ε > 0 and s0 ≥ 0, there exists Cε > 0 such that for any
A ⊂ [s0 + ε, π/2]

μ
S∗
(s0,θ)

M

( ⋃
s+∈A

Ts+ ∩ S∗(s0,θ)M
)
≤ Cε|A|.

Moreover, since there is T > 0 such that the restriction of the map (t, q) 
→
ϕt (q)

[−T, T ] ×
( ⋃
s+≥s0+ε
θ∈[0,2π ]

S∗(s0,θ)M ∩ Ts+
)
→

⋃
s+≥s0+ε

Ts+

is a surjective local diffeomorphism,

μS∗M

( ⋃
s+∈A

Ts+ ∩ S∗M
)
≤ Cε|A|. (B.5)

In particular, by (B.4), since b > 0, there exists Cb > 0 such that

μS∗M

( ⋃
s+∈A(t)

Ts+ ∩ S∗M
)
≤ Cb |A(t)| ≤ Cb(1+ |t |)2R.

Hence, for U ⊂ {s > b} ∪ {s < s−(b)},

μS∗M

(
BS∗M

(
P R
U (t0,T(R)), R

)) ≤ C(1+ |T(R)|)2R.

So, providedT(R) ≤ R−1/3,U isT(R)non-periodicwith constantCnp = C/2.
��
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Lemma B.2.2 Suppose x0 is a pole, and x1 = (s1, θ1) for−π/2 < s1 < π/2.
Then, there is Cnl > 0 such that (x0, x1) is a T(R) = R−1 non-looping pair.

Proof Suppose x0 is the polewith s = π/2. Supposeρ ∈ S∗x1M and there exists
ρ1 ∈ S∗x1M such that d(ρ, ρ1) < R and ϕt (B(ρ1, R)) ∩ B(S∗x0M, R) �= ∅.
Then, there is ρ2 ∈ B(ρ1, R) such that s+(ρ2) > π/2 − R. Therefore, there
is C > 0 such that s+(ρ) > π/2− CR and (since |s1| < π/2),

μ
S∗x1M

( ⋃
s+>π/2−CR

Ts+ ∩ S∗x1M
)
≤ CR.

In particular, for any t0 > 0, T > 0,

μ
S∗x1M

(
B(LR,1

x1,x0(t0, T ), R)
)
≤ CR

and hence (x0, x1) is a T(R) = R−1 non-looping pair. ��
Lemma B.2.3 Suppose the assumptions of Lemma B.2.1 hold and x0 =
(s0, θ0) with s ∈ (−π/2, s−(b)) ∪ (b, π/2). Then there is δ > 0 such that
x0 is T(R) = R−δ non-looping.

Proof The proof is identical to [11, Lemma 5.1]. ��

B.2.1 Perturbed spheres

Next, we construct examples which have large (positive measure) periodic
sets as well as large non-periodic sets. In particular, we find examples where
the assumptions of Lemma B.2.1 hold and such that there is c > 0 with the
property that the flow is periodic on −c < s < c. If s0 > 0, we will call
(s0, θ0) aperiodic if

∂s+�0(s+) �= 0 on {s+ ≥ s0}.

In the case s0 < 0, we require the same condition on {α(s+) ≤ α(s)}. We
define the aperiodic set to be the set of aperiodic points and Theorem 2 holds
for any U inside this set.

In order to do this, wemake a small perturbation of the roundmetric (α(s) =
cos s). First, we compute

∂s+θ+ = 2α′(s+)
∫ s+

a

[
α2(w)− 2α2(s+)

] 2(α′(w))2 + α(w)α′′(w)√
α2(w)− α2(s+)α3(w)(α′(w))2

dw

− 2α′(s+)
α2(b)− 2α2(s+)√

α2(b)− α2(s+)α2(b)α′(b)
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+ 2α′(s+)
∫ b

0

α(w)

(α2(w)− α2(s+))3/2
dw.

Let 0 < a < b < π/2 and αε = α0+ ε( f+ + f−), with supp f+ ⊂ (a, b) and
supp f− ⊂ (−π/2, 0). We have for s+ ≥ b,

∂ε∂s+θ+
∣∣∣
ε=0 = −2α

′
0(s+)

∫ b

0
f+(w)

2α2
0(w)+ α2

0(s+)
(α2

0(w)− α2
0(s+))5/2

dw.

Arguing identically for θ−, if αε = α0 + ε( f+ + f−) with supp f− ⊂
(s−(b), s−(a)) and supp f+ ⊂ (0, π/2), then

∂ε∂s−θ−
∣∣∣
ε=0 = −2α

′
0(s−)

∫ 0

−b
f−(w)

2α2
0(w)+ α2

0(s−)
(α2

0(w)− α2
0(s−))5/2

dw.

To construct an example where the assumptions of Lemma B.2.1 hold, let
α0(s) = cos(s) so that α0 induces the standard round metric. Let 0 < a <

b < π
2 , f+ not identically 0 and f+ ≥ 0 with supp f+ ⊂ (a, b), and let

f− ≥ 0 with supp f− ⊂ (s−(b), s−(a)). Then, we have for s+ ≥ b, and �0,ε
corresponding to the perturbed metric with αε,

∂ε∂s+
(
�0,ε(s+)

)
> 0, s+ ≥ b.

In particular, we may choose ε0 > 0 small enough such that for 0 < ε < ε0
and α = αε, we have −sα′ε(s) > 0 when s �= 0, and

∂s+
(
�0,ε(s+)

)
> 0, s+ ≥ b.

Moreover, since α0 is the round metric on the sphere, the flow is periodic
for trajectories not leaving (s−(a), a). (See Fig. 1)

B.2.2 The spherical pendulum

We now recall the spherical pendulum on S2 whose Hamiltonian is given in
the (s, θ) coordinates by

q(s, θ, ξs, ξθ ) = ξ2s + cos−2(s)ξ2θ + 2 sin s − E .

This Hamiltonian describes the movement of a pendulum of mass 1 moving
without friction on the surface of a sphere of radius 1. When E > 2, up
to reparametrization of the integral curves, the dynamics for the spherical
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pendulum are equivalent to those for the Hamiltonian p = |ξ |2ι∗g and g is
given by

g = (E − 2 sin(s))ds2 + (E − 2 sin(s)) cos2(s)dθ2.

Making a further change of variables in the s variable, we can put the metric
in the form (B.1) and, moreover, by [26] for E ≥ 14√

17
, |∂s+�0| > c > 0 for

s+ ∈ (0, π/2]. Note that the failure of this condition at the torus T0 is due to
the fact that this torus is singular, consisting of the two curves {s = 0, θ ∈
R/2πZ, ξr = 0, |ξθ | = α(0)}. In fact, it is easy to see that |�0(s+)| > cs1/2+
for s+ near 0. This, together with Lemmas B.2.1 and [11, Lemma 5.1] are
enough to obtain the results in Table 2 and that Theorem 2 applies to the
spherical pendulum with U = M .

B.3 Submanifolds of manfiolds with Anosov geodesic flow

We next recall some examples when (M, g) has Anosov geodesic flow. The
geodesic flow is Anosov if there is B > 0 such that for all ρ ∈ T ∗M there is
a splitting

TρT
∗M = E+(ρ)⊕ E−(ρ)⊕ RHp(ρ)

such that

|dϕt (v)| ≤ Be∓
t
B |v|, v ∈ E±(ρ), t →±∞,

where | · | is the norm induced by a Riemannian metric on T ∗M . Here, E+(ρ)
is called the stable space and E−(ρ), the unstable space.

We also note (see [20,32]) that a manifold with non-positive sectional cur-
vature has no conjugate points and that

negative sectional curvature ⇒ Anosov geodesic flow

⇒ no conjugate points.

Note that these implications are not equivalences. Indeed, there existmanifolds
with Anosov geodesic flow containing sets with strictly positive sectional
curvature as well as manifolds with no conjugate points which do not have
Anosov geodesici flow.

One of the main goals of [8] was to prove that various submanifolds of
manifolds with the Anosov or non-focal property are non-recurrent via cover-
ings. We will review only some of these results here, referring the reader to [8]
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for further examples. In what follows we present several dynamical lemmas
which yield the statements from Table 2.

Define for a submanifold H ⊂ M , and for every ρ ∈ SN∗H

m±(H, ρ) := dim(E±(ρ) ∩ TρSN
∗H).

Note that in two dimensionsm±(H, ρ) �= 0 is equivalent to H being tangent to,
and having the same curvature as, a stable/unstable horosphere with conormal
ρ. In fact, in any dimension, a generic H ⊂ M satisfies m±(H, ρ) = 0 for all
ρ ∈ SN∗H .

Lemma B.3.1 Let H ⊂ M be a smooth submanifold . Suppose (M, g) is a
manifold with Anosov geodesic flow and for all ρ ∈ SN∗H

m+(H, ρ)+ m−(H, ρ) < n − 1 or m−(H, ρ)m+(H, ρ) = 0.

Then there are c, δ, τ > 0 such that for all 0 < a < b, H is c log h−1
non-recurrent via (τ, R(h)) coverings for the symbol p(x, ξ) = |ξ |g(x) in the
window [a, b].
Proof The proof of this result is that of [8, Theorem 6], see [8, Section 5.1]. ��
Lemma B.3.2 Suppose (M, g) is a manifold with Anosov geodesic flow
and H1, H2 ⊂ M are a smooth submanifolds such that for i = 1, 2,
supρ∈SN∗Hi

m±(Hi , ρ) = 0. Then there are c, t0 > 0 such that for all
0 < a < b, (H1, H2) is a (t0, c log R) non-looping pair for p(x, ξ) = |ξ |g(x)
in the window [a, b].
Proof By [8, Proposition 2.2, Lemma 5.1] (in particular, adapting the argu-
ments in [8, “Treatment of D ∈ {Di }i∈IK ”, page 38]) there exist τ > 0, δ > 0,
Cnl > 0, C > 0, such that the pair (H1, H2) is a (t0, T (h)) non-looping via
(τ, hδ) coverings with constant Cnl in the window [a, b] for any 0 < a < b,
where T (h) = c log h−1 for some c > 0 depending on (M, g, α). Combining
this result with Lemma 3.4 yields the claim. ��

Recall that a stable/unstable horosphere is defined by the property that
TρSN∗H = E±(ρ) for all ρ ∈ SN∗H .

Lemma B.3.3 Suppose (M, g) is amanifoldwithAnosov geodesic flow, H± ⊂
M is a compact subset of a stable/unstable horosphere and H2 ⊂ M is a
submanifold with m±(H2, ρ) < n − 1 for all ρ ∈ SN∗H2. Then, there are
c, t0 > 0 such that for all 0 < a < b, (H±, H2) is a (t0, c log R) non-looping
pair for p(x, ξ) = |ξ |g(x) in the window [a, b].

For simplicity, we prove only Lemma B.3.3 but point out that the arguments
similar to those in [8, Lemma 5.1] can be used to obtain much more general
statements.
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Proof We consider the case H+. The other case following identically. By
Lemma 3.4 it suffices to show (H+, H2) is a non-looping pair via coverings.
Thus, by [8, Proposition 2.2] and Lemma 3.4 it suffices to show there exists
α > 0 such that for all (t, ρ) ∈ [t0, T0]×SN∗H+ such that d(ϕt (ρ), SN∗H2) ≤
e−α|t |/α, there exists w ∈ TρSN∗H+ for which the restriction

dψ(t,ρ) : R∂t × Rw→ Tψ(t,ρ)R
n+1

has left inverse L(t,ρ) with ‖L(t,ρ)‖ ≤ αeα|t |. Here, ψ : R× SN∗H+ → R
n+1

is given by ψ(t, ρ) = F ◦ϕt (ρ) and F : T ∗M → R
n+1 is a defining function

for SN∗H2 = F−1(0).
Note that TρSN∗H+ = E+(ρ) and there is D > 0 such dϕt : E+(ρ) →

E+(ϕt (ρ)) is invertible with inverse satisfying

‖(dϕt )−1‖ ≤ e−D|t |/D.

Since H2 is compact, and m+(H2, q) < n − 1 for all q ∈ SN∗H2, there is
c > 0 such that for all q ∈ SN∗H2 there is u ∈ E+(q) with |u| = 1 such that
|dFu| ≥ c|u|.

Since ρ 
→ E+(ρ) is ν-Hölder continuous for some ν > 0 [30, Theorem
19.1.6], there is CM > 0 and ũ ∈ E+(q̃) with

d(ũ,u) < CMd(q, q̃)ν, |ũ| = 1.

Therefore,

|dF ũ| ≥ (c − Cd(q, q̃)ν)|ũ|.
Let q̃ = ϕt (ρ), so that d(q, q̃) < e−αt/α and set w = (dϕt )−1(ũ). The

claim follows provided α > 1 is large enough (depending on D, ν, c,C). ��
Lemma B.3.4 Suppose (M, g) has Anosov geodesic flow and non-positive
curvature. Then if H ⊂ M is a totally geodesic submanifold, m±(H, ρ) ≡ 0.

Proof Weneedonly show that for a totally geodesics submanifoldm+(H, ρ) =
m−(H, ρ) = 0. It is easier to work on the tangent space side, so we will do
so, denoting E 

±(ρ ) for the dual stable and unstable bundles.
Suppose ρ ∈ SNH . Then, arguing as in [8, Proof of Theorem 4.C], and

using that H is totally geodesic, we have for all v ∈ Tρ SNH

−〈∇̃dπvN , dπv〉 = 〈ρ ,�H (dπv, dπv)〉 = 0.

Here N : (−ε, ε) → NH is a smooth vectorfield with N (0) = ρ and
N ′(0) = v, ∇̃ is the Levi-Civita connection on M , and �H is the second
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fundamental form to H . On the other hand, by [8, (5.46)], for v± ∈ E 
±(ρ ),

| − 〈∇̃dπv±N , dπv±〉| = |〈ρ ,�W±(dπv, dπv)〉| > 0,

where W± is a stable/unstable horosphere with normal vector ρ . Therefore,
Tρ SNH ∩ E 

±(ρ ) = ∅ and in particular m±(H, ρ) = 0. ��
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