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Abstract

Motivation: CATH is a protein domain classification resource that exploits an automated workflow of structure and
sequence comparison alongside expert manual curation to construct a hierarchical classification of evolutionary
and structural relationships. The aim of this study was to develop algorithms for detecting remote homologues
missed by state-of-the-art hidden Markov model (HMM)-based approaches. The method developed (CATHe) com-
bines a neural network with sequence representations obtained from protein language models. It was assessed
using a dataset of remote homologues having less than 20% sequence identity to any domain in the training set.

Results: The CATHe models trained on 1773 largest and 50 largest CATH superfamilies had an accuracy of
85.6 6 0.4% and 98.2 6 0.3%, respectively. As a further test of the power of CATHe to detect more remote homo-
logues missed by HMMs derived from CATH domains, we used a dataset consisting of protein domains that had
annotations in Pfam, but not in CATH. By using highly reliable CATHe predictions (expected error rate <0.5%), we
were able to provide CATH annotations for 4.62 million Pfam domains. For a subset of these domains from Homo
sapiens, we structurally validated 90.86% of the predictions by comparing their corresponding AlphaFold2 struc-
tures with structures from the CATH superfamilies to which they were assigned.

Availability and implementation: The code for the developed models is available on https://github.com/vam-sin/
CATHe, and the datasets developed in this study can be accessed on https://zenodo.org/record/6327572.

Contact: c.orengo@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The CATH database (www.cathdb.info) (Sillitoe et al., 2021) classi-
fies protein domain structures into superfamilies when there is
strong evidence that domains share a common evolutionary ances-
tor. The resource was established in 1994 and currently comprises
over 500 000 domains from experimental structures in the
Worldwide Protein Data Bank (wwPDB) (wwPDB consortium,
2019), classified into 5481 CATH superfamilies. The classification
protocol exploits a number of computational methods to provide
evidence for evolutionary relationships including structure-based

[SSAP (Taylor and Orengo, 1989) and CATHEDRAL (Redfern
et al., 2007)] and sequence-based comparison tools [HMMER
(Mistry et al., 2013), PRC (Madera, 2008), HHsearch (Steinegger
et al., 2019a) and MMseqs2 (Steinegger and Söding, 2017)]. Since
experimental structural data are only available for a small (<1%)
fraction of known protein sequences, sequence-based tools are used
to detect CATH homologues from large protein sequence resources,
such as UniProt (UniProt Consortium, 2015) and ENSEMBL (Aken
et al., 2016). In the latest version of CATH [version 4.3 (Sillitoe
et al., 2021)], hidden Markov models (HMMs) derived from CATH
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structural superfamilies (i.e. CATH-HMMs) were used to predict
CATH domain locations and superfamilies for over 150 million pro-
tein domain sequences (Lewis et al., 2018).

HMM–HMM strategies like HHblits (Remmert et al., 2012)
have proven powerful in detecting very remote homologues.
However, methods that improve on HHblits in sensitivity and speed
would allow CATH and other related resources to keep pace with
the expansion in the protein sequence repositories, including
MGnify (Mitchell et al., 2020), and the Big Fantastic Database
(Steinegger and Söding, 2018; Steinegger et al., 2019b) which are
about 20-fold, and 11-fold larger than UniProt, respectively. In the
future, high-quality 3D models for UniProt sequences [e.g. from
AlphaFold2 (AF2) (Jumper et al., 2021, p. 2)] could be scanned
against CATH domain structures to detect homologues. However,
currently the low coverage of structural data in CATH compared
with sequence data means that many relationships would be missed.
Furthermore, the most sensitive structure comparison algorithms
tend to be much slower than sequence-based methods.

Recently, numerical representations (embeddings) of protein
sequences obtained from protein language models (pLMs) have
gained a lot of interest as important input features for classification
of protein superfamilies. Language models (LMs), commonly used
in the domain of natural language processing (NLP), were adapted
to the protein space. Instead of being trained on natural language,
they are trained on large protein sequence sets from UniProt. The
so-called self-supervised pre-training (a special form of unsupervised
training) of these pLMs allows them to readily derive benefits from
large unlabelled data as they are only trained on reconstructing cor-
rupted input tokens (words/amino acids) from non-corrupted se-
quence context (sentence/protein sequence). In a second step, the
learned information can be transferred to downstream tasks (trans-
fer learning).

Bepler and Berger (2021) used sequence information extracted
from pLMs in conjunction with structural information to predict
SCOP families derived from the ASTRAL benchmark dataset
(Brenner et al., 2000). Their proposed model, the MT-LSTM,
achieved an accuracy of 96.19%. However, while most studies use a
25% sequence identity threshold for removing redundancy between
training and test sets, they used a more redundant dataset by apply-
ing a sequence redundancy filter of 40%. They found that including
structural data led to a much better organization of the proteins in
the embedding space when compared with the use of sequence infor-
mation alone. An important conclusion from this study was the fact
that pLMs had the power to capture evolutionary information from
sequence alone. More recently, the ProtENN (Bileschi et al., 2022)
method used an ensemble deep learning framework that generated
protein sequence embeddings to classify protein domains into Pfam
(Mistry et al., 2021) families. ProtENN applied an ensemble built
from 13 variations of the ProtCNN models which were developed
using the ResNet (He et al., 2016) architecture. ProtENN achieved
an accuracy of 87.8% when the sequence identity between testing
and training sets was set to be less than 25%.

Other approaches that seek to improve on HMM-based strat-
egies for protein evolutionary classification but do not use pLMs in-
clude DeepFam (Seo et al., 2018), which was developed to classify
protein sequences from the Clusters of Orthologous Groups (COG)
of proteins database and the G Protein-Coupled Receptor (GPCR)
dataset. DeepFam did not employ a pLM to generate protein se-
quence embeddings but instead used one-hot encodings of the se-
quence as input for a neural network model; furthermore, there was
no application of a sequence redundancy filter on their dataset.
DeepFam attained a prediction accuracy of 97.17% on the family
level on the GPCR dataset, and 95.4% on the COG dataset (with
protein families having at least 500 sequences). DeepNOG
(Feldbauer et al., 2020) employed a method similar to DeepFam to
classify sequences from COG and eggNOG5 databases.

In this study, we employed the ProtT5 (Elnaggar et al., 2022)
pLM to recognize very remote homologues (i.e. less than 20% se-
quence identity). We chose ProtT5 pLM as it had previously been suc-
cessfully employed in other related tasks such as prediction of protein
structure (Weißenow et al., 2021), function (Littmann et al., 2021)

and prediction of single amino acid variant effect (Meier et al., 2021).
Our new approach (CATHe; short for CATH embeddings) uses
embeddings from ProtT5 as input to train machine learning models to
classify protein sequences into CATH superfamilies. To make sure
that our models were capable of detecting very remote homologues in
these superfamilies, they were trained on non-redundant homologues
with at most 20% sequence identity. We have therefore used a more
stringent test set than the approaches mentioned above for protein
family classification (i.e. DeepFam and deepNOG).

The performance of the proposed CATHe model was measured
on two sets: one consisting of the largest 1773 superfamilies in
CATH and the other of the top largest 50 superfamilies. The model
achieved an accuracy of 85.6% on the former and 98.2% on the lat-
ter set of more highly populated superfamilies. Furthermore,
CATHe was able to predict CATH superfamily annotations for 4.62
million Pfam domains that could not be mapped to CATH superfa-
milies using HMM models. For a subset of these Pfam domains in
Homo sapiens, that had good quality AF2 models, we were able to
structurally validate 91% of the CATHe predictions using the struc-
ture comparison method SSAP (Taylor and Orengo, 1989).

2 Materials and methods

2.1 TOP 1773 SUPERFAMILIES dataset
The aim of this study is to develop a deep learning tool to detect re-
mote homologues for CATH superfamilies. In order to achieve this,
it is necessary to generate a dataset from which the classifiers can
learn. We made sure that the testing and validation sets of the data-
set consisted only of sequences from the Protein Data Bank (PDB)
(wwPDB consortium, 2019), whereas the training set contained
sequences from CATH-Gene3D (v4.3) (Lewis et al., 2018). CATH-
Gene3D contains all the UniProt sequences which can be assigned to
CATH superfamilies via scanning against CATH-HMMs (Sillitoe
et al., 2021) (which uses an e-value of 1e�3). The following steps
were conducted to generate the dataset for this task:

a. Cluster the sequence domains present in CATH from the PDB

using MMseqs2 (Steinegger and Söding, 2017) with a 20% se-

quence identity filter. To gain an in-depth understanding of the

data processing using MMseqs2, see Supplementary Section S2.1.

b. Using the MMseqs2 output from step (a), choose those superfa-

milies that have at least two PDB sequences so that they can be

split into testing and validation sets. The remaining superfami-

lies are used to create a ‘mixed-bag’ class summarizing all ‘other’

superfamilies classes.

c. Build the training set using all the sequence domains from

CATH-Gene3D for all the superfamilies decided in step (b) (i.e.

superfamilies that have at least two PDB S20 sequences and

‘other’ superfamilies).

d. Use MMseqs2 to reduce the sequence identity between training

and the other two (testing and validation) sets to less than 20%.

e. As a further check, use BLAST (Altschul et al., 1990) to remove

homologous sequences, at 20% sequence identity, between the

three sets.

f. Randomly under-sample the ‘other’ superfamilies class to reduce

the class imbalance in the dataset.

g. Generate embeddings for the protein sequences using the pLMs

ProtBERT and ProtT5 (Elnaggar et al., 2022). To understand

more about the pLMs and the embedding generation process,

refer to Supplementary Section S2.1.

After step (a), we identified 1773 CATH superfamilies, having at
least two non-redundant PDB sequences. We set the threshold at
two sequences because that is the minimum number of sequences
that we need in order to split the resultant set into testing and valid-
ation sets. The rest of the superfamilies in CATH (3456 superfami-
lies) were used to make the ‘other’ superfamilies class. The 1773
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superfamilies had a total of 82 720 883 domain sequences in the
CATH database (which is 87.6% of the CATH v4.3 database) be-
fore being processed. The number of sequences in each of the three
sets after processing is given in Table 1. This dataset is referred to as
the ‘TOP 1773 SUPERFAMILIES’ dataset.

2.2 TOP 50 SUPERFAMILIES dataset
To investigate more closely the performance on large (i.e. with high
numbers of predicted domains) and highly diverse superfamilies, a
subset of the TOP 1773 SUPERFAMILIES dataset that summarizes
the 50 largest CATH superfamilies was created. This set holds a
total of 39 625 167 domain sequences in the CATH database
(37.32% of the CATH domain sequences) and will be dubbed TOP
50 SUPERFAMILIES throughout the text.

The number of sequences in training, testing and validation sets
after processing is given in Table 1.

2.3 Models
Traditional bioinformatics techniques, as well as advanced machine
learning methods, were used to develop classifiers to detect remote
homologues. The various techniques that were used are outlined below.

2.3.1 Homology-based inference via BLAST

To develop the BLAST (Altschul et al., 1990) homology-based

predictor tool, the NCBI BLASTþ toolkit (version 2.11.0) was

used. First, a target database was built from the training set using

the makeblastdb command. The testing set was used as the query

and searched against the target database using the blastp com-

mand. For the blastp search, the e-value cutoff was set at 1e þ 6.

This was done in order to obtain hits, even insignificant ones, for

all the sequences in the testing set.

Once all the possible hits were obtained for all the sequences in

the testing set, they were analysed to find the most significant hit.

For each sequence in the testing set, this was done by first finding

the hits with the lowest e-value. Among the hits with the lowest

e-value, the hit with the greatest per cent sequence identity was

chosen. This hit was deemed to be the prediction made by the

model. This homology-based inference (HBI) via BLAST model

is dubbed as the ‘BLAST model’.

2.3.2 Artificial neural network

A simple artificial neural network (ANN) was developed for the

task of remote homologue detection. The ANN had one hidden

layer consisting of 128 nodes. The hidden layer was followed by

the output layer. To reduce overfitting, a dropout (Srivastava

et al., 2014) layer with a rate of 0.3 and a batch normalization

(Ioffe and Szegedy, 2015) layer were added to the model. The

hidden layer used a rectified linear unit (Agarap, 2019) activation

function, whereas the output layer used a Softmax (Bridle, 1989)

activation function. The Adam (Kingma and Ba, 2017) optimizer

was used with an initial learning rate of 1e�3. The model was set

to train for a maximum of 200 epochs, but early stopping was

implemented to prevent the model from overfitting. Early stop-

ping was measured on the validation accuracy with the patience

set to 20 epochs. A batch size of 256 was used for the training

process. Three ANNs were trained independently on three differ-

ent features, that is, ProtBERT embeddings, ProtT5 embeddings

and Protein Sequence Lengths, to make the ‘ANN þ ProtBERT’,

‘CATHe’ (the ANN model trained on the ProtT5 embeddings)

and ‘ANN þ Length’ models, respectively.

The significance of the ‘ANN þ Length’ model comes from the

assumption that the protein sequence embeddings generated by

the pLMs, though they were of fixed size, were able to distin-

guish between small and long sequences. This model was devel-

oped in order to make sure that the classification of the protein

sequences into CATH superfamilies was not simply based on

their respective sequence lengths.

To arrive at the architecture that we use for the ANN, we con-

ducted an optimization study where we measured the perform-

ance of different ANN architectures trained on the ProtT5

embeddings on the testing set of TOP 1773 SUPERFAMILIES,

and TOP 50 SUPERFAMILIES datasets. We noticed that the

model outlined here performed at par with more complex ANN

models and that models with fewer parameters greatly underper-

formed, hence we chose this architecture (refer to Supplementary

Section S2.2).

2.3.3 Logistic regression

Logistic regression (LR) is a traditional machine learning method

that is often used as a baseline to put the performance of more

complex ANN models into perspective. In this study, we devel-

oped an LR model using the SciKit-Learn (Pedregosa et al.,

2011) python library. An ‘lgbfs’ solver was used with the max-

imum iterations set to 5000. The other parameters were set to

the default values. This LR model was trained on the ProtBERT

and ProtT5 embeddings to make the LR þ ProtBERT and LR þ
ProtT5 models, respectively.

2.3.4 Random

The random predictor model assigns an output class for each of

the sequences at random taking into account the class imbalance.

This serves as an important sanity check for measuring and com-

paring the performance of the proposed model.

In Figure 1, we outline the data preprocessing steps and the vari-
ous models that we have used in this study in order to develop a tool
for the detection of remote homologues in the CATH database.
Supplementary Table S7 has a summary of the seven different mod-
els developed in this study.

2.4 Metrics
Four different metrics, accuracy, F1-score, MCC and balanced ac-
curacy, were used to measure the performance of the models in this
study. Refer to Supplementary Section S2.3 for more information on
the metrics and how they are calculated.

2.5 Validation of CATHe by structure-based analysis of

Pfam domains assigned to CATH superfamililes by

CATHe
2.5.1 Generation of Pfam domain set

In order to test if CATHe can detect remote homologues, we gener-
ated a set of Pfam domains that do not have annotations in the
CATH database, that is, could not be detected by CATH-HMMs.
The CATH-HMMs are derived for CATH S95 representatives (by
running HMMER3 on all non-redundant representative sequences

Table 1. Description of the training, validation and testing sets for the two datasets generated by processing the data from the CATH

database

Dataset Number of training sequences Number of validation sequences Number of testing sequences

TOP 1773 SUPERFAMILIES 1 039 135 6863 6862

TOP 50 SUPERFAMILIES 528 863 1948 1946

CATHe 3
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at 95% sequence identity from each of the CATH superfamilies). To
generate the Pfam set of domains missed by CATH-HMMs, we
scanned UniProt protein sequences (version 2019_05) against
CATH-HMMs (derived from CATH v 4.3). Approximately 60% of
the UniProt predicted domains can be assigned to CATH superfami-
lies using CATH-HMMs. Any regions not matching the CATH-
HMMs were scanned against the library of Pfam-HMMs (from
Pfam v 33.1). Those that matched Pfam-HMMs were used to com-
pile our Pfam domain test set and the CATHe model trained on the
TOP 1773 SUPERFAMILIES dataset was used to determine whether
these could be assigned to CATH superfamilies based on CATHe
predictions.

2.5.2 Pfam-human domains

There are a total of 36 318 Pfam domains from H.sapiens which are
not in CATH (Pfam v33.1 and UniProt 2019_05 were used for the
generation of this dataset) but for which AF2 has predicted struc-
tures. In order to study the performance of CATHe and structurally
validate the CATHe CATH predictions for these domains, we
decided to choose only those domains for which the AlphaFold
structure did not have any structurally problematic regions. By
problematic, we mean domains with regions that will make it harder
to detect structural relationships with CATH structural domains.
The Pfam domain structures were obtained from the EBI AF2 data-
base (https://alphafold.ebi.ac.uk/) (Jumper et al., 2021; Varadi et al.,
2022). An AF2 domain was considered problematic if it met any of
the following conditions:

a. Model quality (pLDDT) is less than 90%.

b. Less than three secondary structures in the 3D structure of the

domain. This was calculated using DDSP (Kabsch and Sander,

1983).

c. The longest problematic region (the longest stretch of residues

that had less than 70% pLDDT) covered more than one-third of

the domain length.

d. Disorder greater than 70%. This was also measured using DSSP.

The residues for which the DSSP secondary structure is defined

by ‘-’ (None) was considered to be disordered.

Of these Pfam domains with good quality 3D models not map-
ping to CATH, CATHe predicted 197 domains with a good predic-
tion probability (probability threshold of 90%; 0.5% error rate).
This domain set is named ‘Pfam-human’.

2.5.3 SSAP threshold analysis and expansion of CATH superfamily

structural data using AF2 structures

The domains that are assigned to CATH superfamilies using CATH-
HMMs or CATHe predictor were structurally validated by compar-
ing their AF2-predicted structure against structural relatives in the
predicted superfamily using SSAP (Taylor and Orengo, 1989).
Specific SSAP score thresholds were applied for the different CATH

protein classes (i.e. score thresholds of 71, 66 and 69 for CATH
classes alpha, beta and alpha–beta, respectively). We also applied a
structural domain overlap threshold of 60%. These thresholds are
associated with a 5% error rate (see Supplementary Section S2.5 for
description of how the thresholds were determined).

The addition of AF2 structures from the CATH-HMM matches
greatly expands the structural data in CATH (by �60% on
average).

2.5.4 Comparison of human domains from CATH-HMM matches

and CATHe matches

In order to gauge how remote the CATHe assigned Pfam-human
domains are relative to human domains assigned to CATH superfa-
milies by the CATH-HMMs, we compared these two sets in terms
of the SSAP scores between their AF2 domains and the closest rela-
tive in the CATH superfamily to which they were assigned. For both
CATHe and CATH-HMM, we only considered comparisons involv-
ing good quality AF2 structures. For CATHe, this filtering left 150
domains (out of 197); for CATH-HMMs, this left 14 790 domains
(out of 39 405) where the structural domain overlap from SSAP was
greater than 60%.

2.5.5 Understanding disease mutations in Pfam-human domains

using CATHe

We performed a case study on the Pfam-human domains and
studied mutations in them which could possibly be associated with
diseases. In order to assess the likely impact of mutations in these
domains, we analyse their proximity to conserved sites in the do-
main families. Therefore, the Pfam-human domains were aligned
with sequences in their CATHe-predicted superfamily using
jackhmmer (Johnson et al., 2010) (with an e-value cutoff of 1e�5,
set for three iterations). In order to detect conserved residues we
used the scorecons (Valdar, 2002) tool and identified domains for
which the alignments had a diversity of positions score greater than
80, reflecting an alignment informative enough to detect conserved
residues. A scorecons score cutoff of 0.7 was then used to detect
conserved residues.

3 Results

To develop our novel machine learning model for homologue detec-
tion, we generated a training set with CATH domains (version 4.3)
(Sillitoe et al., 2021) from the whole database (i.e. CATH relatives
with known structure from PDB and those with predicted CATH
structural annotations, from UniProt), whereas the testing and valid-
ation sets consisted only of domains of known structure in CATH.
To be certain that the models learned to detect remote homologues,
we ensured there was less than 20% sequence identity between and
within the three sets.

To convert the domains into a format accessible for the machine
learning models, we generated sequence embeddings for all of them.
The performance of the proposed CATHe model (which is an ANN
model trained on ProtT5 embeddings) was compared with six other
baseline models: (1) HBI via BLAST (Altschul et al., 1990), (2) an
ANN trained on ProtBERT (Elnaggar et al., 2022) embeddings, (3)
an ANN trained only on sequence lengths, (4) LR trained on
ProtBERT embeddings, (5) LR trained on ProtT5 embeddings and
(6) a random baseline (refer to Section 2.4 and Supplementary Table
S7). The performance of CATHe and the six other baseline models
was measured using four metrics: accuracy, F1-score, MCC and bal-
anced accuracy (refer to Supplementary Section S2.3).

3.1 Evaluation on the TOP 1773 SUPERFAMILIES

dataset
The TOP 1773 SUPERFAMILIES dataset consisted of 1773 individ-
ual, well-populated (�1 sequences) CATH superfamilies and an
additional ‘mixed-bag’ set called the Other superfamilies (refer to
Section 2.1). This set includes all CATH domain superfamilies

Fig. 1. Illustration of the pipeline followed in this study which includes the gener-

ation of the two datasets, TOP 1773 SUPERFAMILIES and the TOP 50

SUPERFAMILIES, the features extracted from these datasets and the various models

that were developed

4 V.Nallapareddy et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btad029/6989624 by U
niversity C

ollege London user on 24 February 2023

https://alphafold.ebi.ac.uk/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad029#supplementary-data


containing a sufficient number of sequences (�1) for testing and val-
idating each.

The performance of CATHe and the six other baseline models
was measured on the testing set of the TOP 1773 SUPERFAMILIES
dataset. The results are highlighted in Figure 2(A) and described in
more detail in Supplementary Table S1(A). The performances are
given along with a 95% confidence interval obtained by conducting
bootstrapping on the testing set with 1000-folds. The standard devi-
ation obtained from this bootstrapping method was multiplied with
1.96 to obtain the 95% confidence interval values. When comparing
these methods, we noticed that the two models trained on ProtT5
embeddings (CATHe and LR þ ProtT5) outperformed all other
methods, including those trained on ProtBERT (ANN þ ProtBERT
and LR þ ProtBERT). Among models trained on ProtT5, the ANN
outperformed the LR with an F1-score of 72.4 6 0.7%. Compared
with these embedding-based approaches, BLAST reached lower per-
formance but outperformed the ANN þ Length model which
improved only slightly over the random baseline. In general, we can
see that the models trained on embeddings from pLMs outper-
formed traditional methods like BLAST.

3.2 Evaluation on the largest 50 superfamilies
The TOP 50 SUPERFAMILIES dataset is a subset of the TOP 1773
SUPERFAMILIES dataset, consisting only of the 50 largest CATH
superfamilies chosen according to the population of the superfamily
in the TOP 1773 SUPERFAMILIES dataset (refer to Section 2.2).
These are highly populated superfamilies accounting for 37.32% of
all non-redundant domains in CATH. We re-trained CATHe and
the six baseline models and measured their performance on the test-
ing set for the TOP 50 SUPERFAMILIES dataset using the four per-
formance metrics. The results are highlighted in Figure 2(B) and
described in more detail in Supplementary Table S1(B).

Again, the highest performance (F1-score of 95.5 6 0.9%)
among all these seven models was achieved by CATHe. The

performance of the other six models follows a similar trend as for
the TOP 1773 SUPERFAMILIES dataset, that is, models trained on
ProtT5 embeddings outperform models trained on ProtBERT
embeddings and pLM-based methods outperform baselines, includ-
ing BLAST. Furthermore, the CATHe superfamily predictions for
this test set were the same for the TOP 50 SUPERFAMILIES model
and the TOP 1773 SUPERFAMILIES model.

In an effort to check what CATHe is learning and to understand
to what extent CATHe captured superfamily-specific information
during training, we compared the original ProtT5 embeddings of the
protein domain sequences and the embeddings derived from the
final layer of the CATHe ANN after training (dubbed CATHe
embeddings). t-SNE (van der Maaten and Hinton, 2008) was used
to project the high-dimensional embeddings, for both the ProtT5
(which were 1024-D) and CATHe embeddings (which were 128-D),
in 2D.

Colouring the 2D projections (Fig. 3A) based on CATH domain
architecture (i.e. the arrangement of secondary structures in 3D)
shows that embeddings from the ProtT5 pLM are able to cluster
some of the architectures such as 2.60, 2.40 and 1.10 quite well, but
the larger, more diverse architectures such as 3.40 and 3.30 are
more dispersed. This is likely to be due to the fact that there are
many different topologies for the superfamilies in these latter two
architectures (126 and 224 topologies present in the 3.40 and 3.30
architectures, respectively, compared with <50 topologies for most
of the remaining architectures). Furthermore, these latter two archi-
tectures comprise superfamilies that are particularly structurally di-
verse, in some cases showing 3-fold or more variation in the size of
the relatives (Dessailly et al., 2010) (refer to Supplementary Figs S3
and S4).

The distinct clustering of CATH architectures in CATHe embed-
ding space (Fig. 3B) indicates that CATHe is able to recognize differ-
entiating information about the domain structure architecture level
during the training process. Additionally, we notice that CATHe is
also capable of recognizing fold-level information. 2D t-SNE plots

Fig. 2. (A) Performance comparison using TOP 1773 SUPERFAMILIES. Seven methods for remote homology detection for CATH homologous superfamilies were compared

using the TOP 1773 SUPERFAMILIES test set: two models trained on ProtT5 embeddings (ANN and LR with the ANN being dubbed CATHe), two models trained on

ProtBERT embeddings (ANN and LR) and three baselines consisting of HBI via BLAST, an ANN trained only on protein sequence lengths and a random baseline. The per-

formance was measured using accuracy, F1-score, MCC and balanced accuracy (Bal Acc) along with 95% confidence intervals. The proposed model, CATHe, has the highest

performance and the machine learning models that were trained on pLM embeddings outperformed BLAST. (B) Performance comparison using TOP 50 SUPERFAMILIES

dataset, the previously mentioned approach with the seven methods and four metrics were used in this analysis as well. We notice a similar trend that the proposed CATHe

model had the highest performance and the machine learning models trained on pLM embeddings had a better performance than the baselines (including BLAST)
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were generated for the different topologies in the 3.40 architecture
and we notice that the point clouds for the different topologies in
this architecture are well separated (refer to Supplementary Fig. S5).

3.3 Checking for class imbalance
A number of tests were conducted to determine how the class imbal-
ance for specific homologous superfamilies in the two datasets, TOP
1773 SUPERFAMILIES and the TOP 50 SUPERFAMILIES, affected
the CATHe performance. We examined the relationship between
the population of a superfamily as defined by the number of sequen-
ces for this superfamily in the training set and the CATHe perform-
ance for these superfamilies in terms of F1-score, but found no
linear relationship (see Supplementary Figs S1A–C and S2A–C).
Further analysis of the relationship between the CATHe perform-
ance for a superfamily and the structural diversity present in the
superfamily as defined by the number of structurally similar groups
at 5Å (SSG5 groups) also failed to detect a direct linear relationship
(Supplementary Figs S1D and S2D). These studies are discussed in
more detail in Supplementary Section S1.1.

3.4 Further evaluation of CATHe by comparison against

HMMs
We considered directly comparing the performance of CATHe
against state-of-the-art HMM-based techniques [e.g. HMMer
(Mistry et al., 2013)]. However, conducting a direct comparison be-
tween the performance of these two techniques on the same dataset
would mean building HMM libraries from the sequences of training
sets of the TOP 1773 SUPERFAMILIES and TOP 50
SUPERFAMILIES datasets. This could result in poorly performing
HMMs as the alignments for building the HMMs would be derived
from very small sequence sets (i.e. non-redundant sets at <20% se-
quence identity) making it challenging to perform a direct and fair
comparison.

Therefore, we compared the HMM and CATHe performance in
an indirect fashion. We determined whether CATHe was able to as-
sign any Pfam domains in UniProt sequences missed by scanning the
sequences against CATH-HMMs for CATH superfamilies. There
are nearly 38M domain regions in sequences from UniProt [version
2018_02 (UniProt Consortium, 2015)] which do not map to CATH-
HMMs but which can be mapped to Pfam (see Section 2.5). To ob-
tain a more tractable number for our CATHe evaluations, we clus-
tered these at 60% sequence identity (to ensure significant structural
and functional similarities) using MMseqs2 (Radivojac et al., 2013).

The resulting set (named PFAM-S60) had 10.5M domains which
were converted to embeddings using ProtT5. In order to obtain a re-
liable threshold on prediction probability for our CATHe model, we
measured the error rate at various prediction probability thresholds
and concluded that by only allowing predictions with a prediction
probability above 0.9 (or 90%, which corresponds to a 50% cover-
age), we ensure an expected error rate of 0.5% (for additional
details see Supplementary Section S2.4).

These CATHe assignments were then validated by structure
comparison. Although these domains do not have experimental
structures in the PDB, where available we used good quality 3D-

models from the AF2 dataset at the EBI (Jumper et al., 2021; Varadi
et al., 2022) for the structural validation. Since assignment of very
remote homologues to CATH also involves manual inspection of the

match, we selected a tractable number of domains and chose a sub-
set of the Pfam-S60 set belonging to H.sapiens. Allowing an error

rate of 0.5% and only testing sequences with AF2 models of good
quality (see Section 2.5) CATHe predicted 197 domains with a good
prediction probability (named Pfam-human).

To structurally validate the CATHe superfamily predictions for
Pfam-human, we used our in-house protein structure comparison

method, SSAP (Taylor and Orengo, 1989) to compare them against
structural relatives in the CATH superfamily to which they were

assigned by CATHe. However, since the Pfam-human domains are
likely to be very remote homologues of CATH superfamilies, the
CATH superfamilies were first expanded (by �60%, on average) by

including AF2-predicted structural regions corresponding to close
CATH-HMM matches already present in the CATH database (see
Section 2.5). The SSAP thresholds for a structural match were set at

a SSAP score of 71, 66 and 69 for CATH classes alpha, beta and
alpha–beta, respectively, with an additional threshold of 60% for

the structural domain overlap (see Section 2.5).
We could structurally validate 142 out of the 197 of the Pfam-

human domains predicted to belong to a specific CATH superfamily
by CATHe. Additionally, manual curation on the 55 domains that
did not cross the SSAP thresholds confirmed that 37 more domains

were valid superfamily matches (refer to Supplementary Section
S1.1 for more information on the manual curation). Therefore, a

total of 179 domains out of 197 (90.86%) from Pfam-human that
matched CATH superfamilies using CATHe could be structurally
validated as true positives. This experiment confirms our hypothesis

that although CATHe was trained on the CATH-HMM-predicted
domains, it goes beyond this set of relatively close homologues to

detect more remote homologues. Further analyses showed that
domains assigned by CATH-HMM had a greater average SSAP
score (89.45) than the CATHe set of human domains (84.60)

(Fig. 4) (see Section 2.5 for further details).

3.4.1 Assessing the value of the human Pfam assignments and

assigning further Pfam domains to CATH

We analysed all of the CATHe predictions in the Pfam-human set to

assess the value of these new assignments and noticed that there are
four domains with possible disease causing mutations. For one of

these ‘Q8NE79_40_267’ (Q8NE79: Blood vessel epicardial sub-
stance protein—residue range, 40–267), we observed that the dis-
ease associated mutations were close to conserved residues (See

Section 2.5 for details). This domain was assigned to the CATH
superfamily 2.60.120.10 by CATHe with a 100% prediction prob-
ability and was subsequently manually curated to confirm the super-

family match. Residues 165, 179 and 200 were found to be
conserved [scorecons (Valdar, 2002) score > 0.8]. We observed that

there is a mutation in residue 201, Ser201Phe, which lies near highly
conserved residues, possibly causing a functional impact which leads
to limb-girdle muscular dystrophy autosomal recessive 25. Serine

201 is well conserved with a scorecons value of 0.786. The AF2
structure with the conserved and mutated residues in this domain is

depicted in Figure 5.

3.4.2 CATH superfamily expansion using CATHe

Since our analyses with the Pfam-human subset showed that the

CATHe predictions are highly reliable (we were able to structurally
validate 90.86%), we used CATHe to predict the superfamily anno-

tations for the full Pfam-S60 set which contained 10.5M domains.
Applying the threshold probability of 0.9 to CATHe predictions for
the PFAM-S60 set allowed us to assign CATH homologous superfa-

milies to roughly 4.6M (4 623 730) PFAM-S60 domains (43.72% of
the PFAM-S60 set). Adding these newly predicted domains to
CATH v 4.3 led to a 3.06% increase in database size.

Fig. 3. t-SNE projections of high-dimensional embedding spaces for the TOP 50

SUPERFAMILIES test set coloured by CATH architectures. (A) The information

learned by the pLM ProtT5 during self-supervised pre-training, that is, without any

supervised training. (B) Embeddings were extracted from the last layer of the trained

CATHe ANN to highlight the additional benefit of supervised training for distin-

guishing CATH architectures
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4 Discussion and conclusion

The CATH database currently uses a combination of protein struc-
ture comparison and sequence comparison tools to identify homo-
logues for CATH superfamilies (Sillitoe et al., 2021). In this study,
we present a deep learning-based tool, CATHe, that trains an ANN
on embeddings from the pLM ProtT5 to detect remote homologues
for these CATH superfamilies. Our models perform well—an accur-
acy of 85.6 6 0.4% for the model based on a large set of 1773
CATH superfamilies and an accuracy of 98.2 6 0.3% for the model
based on the 50 most highly populated CATH superfamilies.

We set very stringent levels of non-redundancy between the
training and test sets to make sure that we have a test dataset that
properly encapsulates the features of remote homologues. This
threshold (�20% sequence identity) was much stricter than applied
in related studies on protein sequence classification such as
DeepFam (Seo et al., 2018) and DeepNOG (Feldbauer et al., 2020)
which did not apply any redundancy removal filters, and Bepler and

Berger’s (2021) study that used a sequence identity filter of 40%,
but CATHe achieved a comparable performance, and higher per-
formance for the TOP 50 SUPERFAMILIES model.

We further validated the performance of CATHe and demon-
strated that it could outperform HMM-based protocols for homo-
logue detection by using CATHe to predict CATH superfamilies for
Pfam-human domains not detected by CATH-HMMs. Validation of
these CATHe predictions by structure comparison of the AF2-
predicted structures against CATH structures gave an accuracy of
90.86%. We consider this a compelling result as Pfam domains do
not always correspond to a single domain, they can comprise partial
or multiple domains making it harder for CATHe to detect the
relationship.

Less than 20% of CATH superfamily relatives have structural
characterization and these may be extremely remote, structurally di-
verse homologues of the Pfam-human domains. In some CATH
superfamilies, structural similarity between very distant homologues
can fall below 50%. Therefore, it is possible that more of the
CATHe predictions are correct. In fact, manual evaluation of those
not verified by structure comparison showed that most (�90%) had
the correct architecture (i.e. arrangement of secondary structures in
3D), suggesting CATHe is able to capture important elements of the
structural environment.

Although the CATHe model made a total of 36 misclassifica-
tions on the testing set of the TOP 50 SUPERFAMILIES dataset (see
Supplementary Table S2), manual analysis showed that even when
the CATHe-predicted superfamily annotation was incorrect,
CATHe was able to correctly predict the Class (level 1 of CATH
hierarchy) and Architecture (level 2 of CATH hierarchy) for 23 and
14 domains, respectively. This again suggests that CATHe is able to
capture elements of secondary structures and the 3D packing of sec-
ondary structures (refer to Supplementary Section S1.1 for more
information).

For both datasets (TOP 1773 SUPERFAMILIES and TOP 50
SUPERFAMILIES), we found that the ANN models (CATHe and
ANN þ ProtBERT) outperform the two LR models (LR þ ProtT5
and LR þ ProtBERT), justifying the usage of an ANN which has a
higher number of parameters when compared with a LR model.

Fig. 4. Comparison of SSAP scores for superfamily predictions made by the CATH-HMMs for Gene3D domains from H.sapiens (orange box) and CATHe for Pfam domains

from H.sapiens (blue box). The SSAP boxplots for both of these sets have been annotated with their average SSAP score. The CATH-HMM set had a greater average SSAP

score than the Pfam-human set showing that they tend to be closer homologues to the existing CATH superfamily relatives than those detected by CATHe

Fig. 5. AF2-predicted structure of Q8NE79 blood vessel epicardial substance pro-

tein for the residue range 40–267. In this structure, the conserved residues: ASP 165,

GLY 179 and ASP 200 are coloured in red whereas the residue with the disease asso-

ciated mutation SER 201 is coloured in purple
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However, for the TOP 50 SUPERFAMILIES dataset, the increase in
performance relative to the LR þ ProtT5 models is not statistically
significant, most likely due to the shallow nature of the neural net-
work used in CATHe. This could mean that both CATHe and the
LR model learn similar representations of the data resulting in simi-
lar performances. It has already been shown previously that even
very simplistic models achieve competitive performance when using
ProtT5 embeddings as input. This is in line with results from NLP
where simple networks applied together with embeddings achieve
competitive performance. One working hypothesis is that the LM al-
ready extracts very informative embeddings that are easily ‘readable’
by downstream predictors. So, the heavy lifting of feature extraction
is already done by the LM. Vice versa it is difficult to improve over
this result with more complex networks as it might be difficult to ex-
tract additional information that was not already extracted by the
pLM, especially, given the limited dataset size of most supervised
tasks. We refer to these publications for more details and discussion
(Elnaggar et al., 2022; Ilzhöfer et al., 2022).

The models trained on the ProtT5 embeddings (CATHe and LR
þ ProtT5) perform better than the models trained on the ProtBERT
embeddings (ANN þ ProtBERT and LR þ ProtBERT), this was
noticed in the initial study of these pLMs (Elnaggar et al., 2022). As
regards the performance of ProtT5 relative to ProtBERT—one of
the most striking differences between the two is model size: ProtT5
has a total of 3B parameters (1.5B for the encoder that is used here)
while ProtBERT has only 420M. This gives ProtT5 much more cap-
acity to absorb information. While there is clearly a limit on just
scaling model size up, for example, the larger ProtT5-XXL with 11B
parameters performed worse than its 3B pendant used here, this
limit seems not to be reached by the comparatively small ProtBERT.

Furthermore, from the low performance of the ANN þ Length,
we conclude that sequence length is not a feature that is very useful
for superfamily classification. The significant improvement in the
performance of the ANN models trained on sequence embeddings
(CATHe and ANN þ ProtBERT) over ANN þ Length suggests that
these models not only capture sequence features such as length but
are also able to extract superfamily-specific information from the
sequence.

A limitation of our method is the number of sequences needed
for training the models which means that we cannot currently clas-
sify distant homologues for all the 5481 superfamilies in CATH.
The models we built using highly populated superfamilies (TOP 50
SUPERFAMILIES dataset) significantly outperformed the model
trained on superfamilies having far fewer sequences (98.2% on the
TOP 50 SUPERFAMILIES dataset and 85.6% on the TOP 1773
SUPERFAMILIES dataset). However, all the publicly available se-
quence repositories [e.g. UniProt (UniProt Consortium, 2015) and
Mgnify (Mitchell et al., 2020)] are expected to continue their expo-
nential increases in the foreseeable future and the significant expan-
sion of predicted structural data by AF2 and related methods (Lin
et al., 2022; Wu et al., 2022) will significantly expand the popula-
tions of the CATH superfamilies, to enable training of more power-
ful CATHe models that can classify homologues for all CATH
superfamilies.

Our models were trained using highly non-redundant datasets to
evaluate the performance for detecting very remote homologues. In
the future, we will also train our models using the full sequence
datasets available for the superfamilies so that we can apply CATHe
to bring in closer homologues as well. Since CATHe is at least twice
as fast as our CATH-HMM-based protocol, new classification pipe-
lines for the CATH database will employ these faster and more sen-
sitive sequence embeddings-based approaches. More sensitive
sequence-based homologue detection tools than HMMs (e.g.
HMM–HMM-based methods) may outperform pLMs, like CATHe,
for remote homologue detection, but these are even slower than
HMMs.

Other protein family resources [e.g. Pfam (Mistry et al., 2021)
and InterProscan (Mitchell et al., 2019)] are also considering classi-
fication protocols that exploit these faster, more energy efficient and
therefore more environmentally sustainable approaches. We will

work with those communities to evaluate the best strategies and
monitor improvements in performance.

In summary, our method was tested on a dataset of very remote
homologues (less than 20% sequence identity). To our knowledge, it
is the only method that has been evaluated on such a strict dataset
and subsequently validated by structural comparison using AF2 3D
models for predicted classifications. We demonstrated that 4.62 mil-
lion Pfam domains previously unmapped to CATH could be brought
in using a reliable threshold on accuracy and error rate (0.5% error
rate). This will expand CATH by 3.06%. However, Pfam does not
classify all of UniProt and we will apply CATHe in the future to de-
tect additional domains in UniProt, not classified in Pfam, that can
be assigned to CATH superfamilies. Where possible, we will use
good-quality AF2 structures to confirm these assignments. The
CATH domain sequence embeddings generated by ProtT5 and the
source code for the CATHe model can be found at https://github.
com/vam-sin/CATHe.
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