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In this article, we aim to conceptualize and formalize the construct of

resilience using the tools of active inference, a new physics-based modeling

approach apt for the description and analysis of complex adaptive systems.

We intend this as a first step toward a computational model of resilient

systems. We begin by offering a conceptual analysis of resilience, to clarify its

meaning, as established in the literature. We examine an orthogonal, threefold

distinction between meanings of the word “resilience”: (i) inertia, or the ability

to resist change (ii) elasticity, or the ability to bounce back from a perturbation,

and (iii) plasticity, or the ability to flexibly expand the repertoire of adaptive

states. We then situate all three senses of resilience within active inference.

We map resilience as inertia onto high precision beliefs, resilience as elasticity

onto relaxation back to characteristic (i.e., attracting) states, and resilience as

plasticity onto functional redundancy and structural degeneracy.

KEYWORDS

active inference, resilience, elasticity, plasticity, robustness, complex adaptive
system, inertia

1 Introduction

Over the last few decades, there has been a multidisciplinary effort to investigate
resilience. But the word “resilience” is, in practice, polysemous: it is used in several
different ways in relevant literature. In this article, we first engage in some conceptual
analysis to disentangle three uses of the term, which distinguish three complementary
aspects of resilience, conceived of as processes. We then examine resilience from the
point of view of active inference, a new physics-based modeling framework for complex
adaptive systems. After briefly introducing active inference, we examine how each sense
of “resilience” (as inertia, elasticity, and plasticity) can be given a straightforward and
formal interpretation within the active inference framework. Explicitly, we map inertia
onto high precision beliefs, elasticity onto the ability to seek out characteristic states, and
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plasticity onto the capacity for functional redundancy and
structural degeneracy, defined in a technical sense (Sajid et al.,
2020). Rethinking our understanding of resilience in formal
terms is important as it allows us to model systems which have
resilient properties in relation to their environment. Given a
context, we can establish the kinds of patterns which can lead
an agent to maintain itself through time. This can be applied to
adaptive or maladaptive processes, such that a simulation may
be used to reinforce the resilience of a process, or destabilize a
maladaptive one.

2 Three senses of resilience

In the resilience literature, in addition to disagreements
about the locus of resilience (McEwen, 2003; Kirmayer et al.,
2009; Masten and Wright, 2010; Ungar, 2011; Dresen et al.,
2019), there is also some muddle about what the concept of
“resilience” denotes or means (Anthony, 1987; Masten, 2002;
Herrman et al., 2011; Reghezza-Zitt et al., 2012; Helfgott, 2015;
Woods, 2015; Rose, 2017). We have conducted an analysis
of the concept of resilience, based on an extensive literature
review (Holling, 1973; Cairns et al., 1977; Westman, 1978,
1986; Cicchetti and Curtis, 2006; Lerner, 2006; Soule, 2006;
DuMont et al., 2007; Masten, 2007; Lemery-Chalfant, 2010;
Rutter, 2012; Duchek, 2014; Standish et al., 2014; Luthar, 2015;
Juster et al., 2016; McJunkin and Rieger, 2017; Santarelli et al.,
2017; Cousijn et al., 2018; Dresen et al., 2019; Mertoguno et al.,
2019; Den Hartigh and Hill, 2022). We believe, consonant with
the analysis in Den Hartigh and Hill (2022), that there are
three closely related concepts at play in discussions of resilience,
which are not usually distinguished from one another. The word
“resilience” is used in the literature to mean either: (i) inertia, i.e.,
the ability to resist change when subjected to a disturbing force,
roughly synonymous with robustness (Westman, 1978; Woods,
2015; Scheffer et al., 2022); (ii) elasticity, i.e., the ability to flexibly
return to good states following a perturbation (Cairns et al.,
1977; Gapp et al., 2014); and (iii) plasticity, i.e., the ability to
expand the repertoire of good states—and courses of action—in
the face of a changing environment (Cicchetti and Curtis, 2006;
Soule, 2006; Duchek, 2014).

Intuitively, we regard an agent as being resilient when it is
able to successfully weather stressful situations, and in particular
to return to well-functioning after suffering a setback or insult
of some kind.1 This is evident in the etymology of the word
“resilience”: the Latin resiliō means, quite literally, to bounce or

1 Resilience is best understood in terms of degrees rather than a
categorical trait. All agents can be considered resilient to some degree.
However, those that are more resilient are such that they remain more
stable in times of strong uncertainty and unexpected change in the
environment. In light of this, this article intends to shine light on the
qualities that allow an agent to with more stability to unexpected
environmental change.

spring (saliō) back (re). The resilient agent is thus one that can,
when perturbed, bounce back to a desirable state. Arguably the
two other senses of “resilience” we identified in the literature
are distinct from, though closely related to, resilience in this
original sense: inertia has the characteristic of weathering stress,
but not by bouncing back (since the strictly inert object is never
moved in the first place); and expanding one’s tolerance to
change is more a means of creating resilience (as elasticity) than
a subgenre of resilience. Despite these verbal issues however,
these concepts are clearly closely interrelated and are all crucial
to understanding the processes of resilience. In the remainder of
this section, we briefly review these three uses of “resilience.” In
the following sections, we leverage the tools of active inference
to provide a formalism in which to articulate all three aspects—
a formalism that allows us to simulate, estimate, and predict the
key facets of resilience quantitatively.

2.1 Resilience as inertia (being
impervious to change)

First, resilience can mean inertia, or the ability to resist
change in structure or function (Holling, 1973). An object with
inertia is one that resists displacement by resisting being moved
if it is immobile, and resisting changing direction if it is moving
along a path. Hard materials like diamond and concrete exhibit
resilience as inertia as they are not typically deformed by the
forces that act upon them, and instead tend to deform most
materials that impact them. Organic systems exhibit resilience
as inertia by retaining a physical or functional state at rest or
when acting in their environment. For example, a person can
stay standing, walking, or running when there is wind—we do
not dissipate.

2.2 Resilience as elasticity (bouncing
back to set points)

Resilience can also mean elasticity (Westman, 1978, 1986;
Reghezza-Zitt et al., 2012), which is the disposition and capacity
to return to good states after being forced to depart from them
due to environmental perturbations. A rubber band is resilient
in this sense, as it can stretch away from its normal state, and
return to it easily, without tearing.

In living systems, this capacity to return to characteristic
states is usually attributed to the functions of homeostasis and
allostasis (McEwen, 2003), in which an organism can inhabit
different states—which are adaptive in a given context—and
eventually return to their characteristic states. Homeostasis
refers to the capacity of an adaptive system to maintain
those relatively stable internal conditions that are necessary
for their survival (Recordati and Bellini, 2004; Herrman et al.,
2011; Cummins and Wooden, 2014). For example, plants
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adapt and change their internal structures, and thus occupy
pro-optimal states, in response to an environmental signal
(e.g., phototropism, growing in the direction of the sun). In
animals, this is done in part through automatic “reflex actions”
(e.g., burning fat when we are hypoglycemic, keeping body
temperature and blood oxygen saturation levels within viable
bounds). Maintaining oneself in a persistent, life-conducive set
of states is a central process for all biological organisms. To the
degree that an organism can self-regulate in ways that allow it
to persist over time in the face of perturbations (from within its
own body or from the world), it can be said to be resilient. As
such, all persisting self-organizing systems are resilient to some
degree.

However, it is not enough to reactively avoid dangerously
unexpected states, as captured by homeostasis. Successfully
maintaining life-conducive steady states requires that the
organism be able to anticipate future disturbances and
opportunities and so adjust itself and its chosen courses of
actions to optimize future fitness. Hence, in complex systems,
resilience requires an ability to successfully plan. This online
evaluation of possible future needs and selection of courses
of action to meet them is known as allostasis (Sterling and
Eyer, 1988; Corcoran, 2021). Roughly speaking, if homeostasis
is the controlled process of returning to set-points, allostasis
is the preemptive control of set-points themselves to meet the
demands of a situation. In other words, allostasis is the altering
of structure and function of the agent to finesse homeostasis.
For example, in addition to burning fat when blood sugar levels
drop (a homeostatic process), we mitigate or nuance autonomic
responses by indulging in a quick snack (an allostatic process).

2.3 Resilience as plasticity (expanding
one’s repertoire of good states)

Finally, resilience can mean plasticity or growth, the ability
to explore or increase the repertoire of states that are compatible
with thriving and a healthy state of being (Duchek, 2014),
reducing the probability that a difficult event will dissipate or
destroy the agent (Soule, 2006; Dresen et al., 2019). Anthony
(1987) described this process as psycho-immunization, wherein
the agent develops some form of resistance to future risk by
learning from previous and current experiences and difficulties,
and better equipping the self to handle future risks. Throughout
its development, an agent must grasp at the opportunities
presented by its ecological niche that maximize the potential
for plasticity (Masten and Wright, 2010), increasing the breadth
of safe states. Perhaps paradoxically, some lines of research
suggest that, at least within certain bounds, exposure to psycho-
social stressors and deprivation during the early stages of
life can, at least in some people, result in the emergence
of beneficial, protective traits, such as secure attachment,
educational engagement and achievement, and prosociality,

later in life (Gapp et al., 2014; Chaby et al., 2015; Santarelli
et al., 2017). This seeming paradox is dissolved by noting
that such individuals tend to develop psychological traits,
such as hyper-vigilance, that benefit them in a threatening
environment. This illustrates how resilience emerges in the
dynamic interplay between the agent and its environment.
This dynamic interplay leading to learning extends to learning
allostasic and homeostatic states. In what follows, we revisit
these distinct facets of resilience and cast them as formal aspects
of sentient behavior; namely, active inference and learning.

3 Active inference

The active inference framework provides us with formal
tools well-suited to help us understand resilience, which we take
to be the key feature of any complex adaptive system with the
ability to persist over time; namely, the tendency to return to
characteristic states that enable its continued existence. Using
this approach, we can frame the extant senses of resilience,
and provide a formal account of resilience that situates—and
relates—each of the concepts discussed above. First, we review
active inference. Then, in the following section, we examine
how each of sense of resilience can be fleshed out in the
ensuing frame-work.

3.1 Overview of active inference

Active inference is a process theory derived from the
variational free energy principle (FEP) in theoretical biology
and statistical physics. The FEP is a principle of least surprise
(technically, a variational principle of least action or constrained
maximum entropy principle): it says that systems that exist, on
average, do what is characteristic (i.e., unsurprising) of them,
given the kind of thing that they are. This is a tautology, but
its consequences are profound. Said differently, in order to
persist as a bounded, separable system (and not merely dissipate
into the embedding environment), a system that exists must
on average return to its characteristic states, which are limited
in number. This means that the probability distribution over
its states (including the states of its sensory input channels)
must have relatively low entropy. From this perspective,
agents are fashioned by natural selection, development, and
learning to expect to sense the consequences of their continued
existence; this is sometimes called self-evidencing (Hohwy,
2016).

The FEP originated as a theory of the function, structure,
and dynamics of the brain and can be applied to provide
an understanding of any adaptive system that persists over
time. When the FEP is applied to sentient (i.e., sense making)
systems we get a process theory called active inference.
This process theory allows us to model and understand
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the dynamics of adaptive systems at different scales of self-
organization, from the cellular to the societal. The FEP
provides a first-principles account of adaptive, belief-driven
behavior, by providing a general formalism to model the
representational capacities of living tissues (and physical
systems more generally) (Friston et al., 2017; Ramstead et al.,
2022). One of the central innovations of active inference is
the re-conceptualization of living systems generally, such as
bodies, brains, and even ecosystems, as machines driven by
probabilistic prediction. According to active inference, the
dynamics or behavior of the situated brain and body entail
an implicit statistical (i.e., generative) model (Ramstead et al.,
2020), which enables us to cast the very existence of an
agent as a process of making inferences about the causes
of incoming sensory perturbation—perturbations that stem
both from within the body and from the extra-personal
world.

In this setting, the internal states of something come
to encode a “best guess” about the state of the world
(technically, internal states parameterize a posterior or
conditional probability density over external states, which
is called a variational density). This best guess is elaborated
under a model that generates the sensory consequences
of external causes; including the action of the agent in
question. Over time, this “world model” comes to instantiate
knowledge about the environment’s statistical structure and
contingencies. Discrepancies between what the organism
predicts, based on its probabilistic beliefs, on the one hand,
and the actual sensory feedback that it registers, on the
other hand, is a quantity called variational free energy; and
the FEP says that things that exist follow paths of least
free energy (under Gaussian assumptions, this free energy
is simply a prediction error). Free energy is minimized in
one of two ways: either by updating the model itself (i.e.,
perception and learning), which makes our predictions more
like the data that we sense; or altering the body and/or
world, to make it better fit our predictions (i.e., action and
niche construction).

Existence in a changing world requires that one must plan
ahead to a greater or lesser extent. Accordingly, adaptive systems
must not only consider how well they perform in the present
moment, but also how they will fare in the future if they pursue
this or that course of action. To account for this temporal depth,
agents need to evaluate the free energy that they expect to
encounter in the future, contingent on specific courses of action.

Arguably, much of what we take to be central to human
intelligence—perception, action, attention, emotion, learning,
social interaction, culture—can be modeled within this simple
framework of prediction generation and error reduction
(Hohwy, 2016, 2018; Veissière et al., 2020; Hesp et al., 2021;
Parr et al., 2022). So long as the agent is able to minimize
its prediction errors or free energy, it will typically succeed at
remaining well-adapted to its environment.

3.2 Active inference, free energy, and
expected free energy

The phrase “active inference” generally refers to a process
theory that describes how the FEP may be instantiated
in particular intelligent systems, allowing us to describe
the path of least surprisal taken by an agent. In applied
computational modeling work, however, its meaning is usually
narrower: in such contexts, “active inference” refers to a
more specific family of implementations of the general process
theory, as inference processes performed under partially
observable Markov decision processes (POMDPs). These kinds
of generative models are generic but assume the world (and
body) can be explained in terms of discrete states—states that
can be fine-grained or coarse-grained, depending upon what is
apt to minimize free energy or surprise.

There are three main kinds of belief updating in such
models. First, there is inference or state estimation, i.e., inferring
the state of the world from the data to which one has access; this
is taken as a formal model of perception. There is a special kind
of state estimation that corresponds to inferring “what I must
be doing, given what I know and what I have sensed currently”:
this kind of inference over beliefs about possible courses of
action is, appropriately enough, called policy selection, which
in this case is a form of planning as inference (Attias, 2003;
Botvinick and Toussaint, 2012). Second, there is parametric
learning or parameter estimation, i.e., learning the value of the
parameters of the generative model (e.g., the likelihood matrix
and transition matrices). Finally, we have structure learning;
namely learning the structure and architecture of generative
models per se (Gershman and Niv, 2010; Friston et al., 2017).

We use the tools of active inference to formalize the
structure of the agent environment system as a generative model
(Ramstead et al., 2020, 2022), which contain states, directed
edges between states, and parameters associated with those
edges. The structure of these models is usually described in an
easy-to-remember ABC. . . fashion, where the A corresponds to
the likelihood part of a generative model and everything else
corresponds to priors over states and their trajectories. See an
example of their structure in Figure 1. In brief: As summarized
in Table 1.

State estimation depends on the likelihood matrix, denoted
A, which lists the probability of some data under the assumption
that the world is in a certain state. B matrices encode transition
probabilities among states, and therefore the evolution of
the world over time. State transitions are dependent on
courses of action or policies. The final sensory outcomes—that
agents prefer—are specified in a matrix denoted C. Similarly,
priors over initial states of a new context are encoded in a
matrix labeled D. In empirical Bayes (i.e., deep or hierarchical
generative models), priors over initial states are updated when
the context changes. Policy selection is also guided by beliefs
that are accumulated over contexts. These play the role of
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FIGURE 1

An example of generative model taken from Albarracin et al. (2021).

TABLE 1 Parameters used in the general model under the active
inference frame-work.

o Observations or sensory states of an agent

s Hidden or external states

A Likelihood matrix that captures beliefs about the mapping from
observations to their causes (hidden)

B Transition matrix that captures beliefs about the mapping between
states at one time step to states at the next time step

C Prior preference matrix that captures the preferred observations for the
agent, which will drive their actions

D Priors that capture beliefs about base rates of occurrence of the hidden
states

E Prior preferences for policies in the absence of data

F Variational free energy

G Expected free energy

π Policy matrix that captures the policies available to an agent

γ Precision of beliefs

We explain the generative model symbols that refer to different matrices and elements
which are connected through them. Albarracin et al., 2022b.

habits: a prior belief about which policies to pursue in this
context, in the absence of sensory evidence. These habits are
encoded in an E matrix. Finally, free energy is denoted F, and
the expected free energy of plausible policies is encoded in a
G vector.

Crucially, to each of these parameters and beliefs one can
associate a precision or inverse variance. Precision is a key
construct in data assimilation and computational neuroscience.
It basically quantifies confidence invested in a belief or
model parameters (e.g., likelihood mappings or prior transition
probabilities). For instance, the contribution of expected free
energy to policy selection is modulated by the a precision term
denoted γ: when it is high, policy selection is driven more by
expected free energy than habitual priors (c.f.: model-based vs.
model free formulations in reinforcement learning). In other
words, the precision of beliefs about policies simply reflects
the confidence an agent has in her plans. This, in turn, can
be thought of as arbitrating between habitual responses in any
given context and deliberative (although usually sub-personal)
goal-directed behavior; where the goal is to minimize expected
free energy. Since free energy can be thought of as a surrogate
for surprise, goals can always be cast as minimizing expected
surprise or uncertainty of one sort or another.

The expected free energy of a policy can be rearranged
in different ways that reveal the preference and information-
seeking aspects of goal-directed behavior. One of the most
revealing decompositions is into pragmatic and epistemic
value, respectively. Agents that minimize expected free energy
are motivated to act within the world according to two
core incentives. On the one hand, agents may leverage their
probabilistic models of the world and choose their actions
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to obtain preferred (unsurprising) outcomes. These are called
pragmatic or instrumental actions. On the other hand, agents
often choose to act in ways that allow them to learn more about
the environment and seek out those observations (i.e., surprising
or novel ones) that allow them to most efficiently update their
models. These are called epistemic actions, which are chosen to
maximize information gain.

Under the FEP, instrumental and epistemic imperatives
for actions—or affordances—are automatically balanced given
beliefs about states of the world and their inherent uncertainty.
If agents are unsure about the state of their environment, they
will usually select policies that have high epistemic value. On the
other hand, if an agent already knows its environment well—or
has very precise preferences—then their actions will be guided
more strongly by an instrumental drive. Technically, this dual
aspect of planning can be framed as Bayes optimal, in the
sense of complying with the principles of optimum Bayesian
decision and design, respectively (Lindley, 1956; Berger, 2013).
The FEP places both of these imperatives on the same footing,
and resolves the conflict between exploration and exploitation—
in the right order (i.e., agents act to disambiguate their situation,
and then seek their preferred outcomes). Therefore, an agent’s
behavior is such that the chosen policy has the highest combined
instrumental and epistemic value.

3.3 Second-order inference and affect

In recent work on active inference (Hesp et al., 2021),
affective inference is formalized as a form of second-order
inference: these are inference about our inferences, which take
posterior state estimations at one level of the generative model
and pass them onto a super-ordinate layer, as data requiring
further explanation. In this way, active inference agents tune
their adaptive behaviors to changes in how the generation of
error itself changes over time; specifically, changes relative to
expectations about velocity and acceleration of error generation
and minimization. As discussed below, these second-order,
affective dynamics play a key role in keeping predictive agents
poised, in a meta-stable fashion, between well-known and
unknown niches. Crucially, optimal inference does not mean
avoiding surprising data per se. To the contrary, any system that
minimizes its expected free energy is also, ipso facto, organized
to seek out interesting slopes of error and has a propensity to
actively seek out surprises.

4 Resilience from the active
inference perspective

Before we describe resilience through the lens of active
inference, we motivate the endeavor. Why use active inference
to study resilience? One reason is theoretical unification: as

we shall see, active inference allows us to provide an account
of resilience that does justice to all the main ways in which
the concept has been deployed in the specialist literature.
A second reason is that it enables us to explain how each
of the three processes of resilience that we identified relate
to, and complement, each other. Finally, our active inference
formulation of resilience also allows us to see that and,
especially, why inertia and elasticity are not sufficient on their
own for a system to be resilient in a robust sense. We will argue
that without plasticity, agents may have, as it were, too much
resilience for their own good, and may be caught in locally
optimal, but globally sub-optimal, solutions.

4.1 Inertia as high precision

We now turn to our active inference account of the three
concepts or processes of resilience. The first, and perhaps most
taken for granted, aspect of resilience is inertia, or robustness,
which denotes the fact that an agent has the ability to withstand
change, without affecting its internal structure or dynamics.
More precisely, inertia entails that an agent’s internal states and
parameters do not change given some disturbance.

This is exactly analogous to inertia in physics, which roughly
speaking scores how difficult it is to get some system to
deviate from its current trajectory (or to get it moving if it is
motionless). In the active inference framework, this corresponds
quite naturally to beliefs endowed with high precision (Kim et al.,
2022). With high enough precision over the model, sensory
perturbations do not disturb the agent enough to move it away
from prior set points. Consider an aforementioned example of a
person being able to stay walking, or even running, when there
is wind. The physical structure of the person is not threatened
by the wind around the person. The precision (in the sense
of the inverse of the variance of a distribution describing the
person’s state) of the connections between molecules (such as
skin cells) that form the person is higher than the degree of
disturbance entailed by the environment. This sense of resilience
(inertia) is also occurring at a coarser grain, where shorter-
term perturbations are not causing disturbance. For instance,
internal biological processes in a person, such as breathing and
blood circulation results in a variety of different states. But, the
physical structure of the person remains intact, unperturbed by
the different molecules entering, moving within, and exiting the
person.

Another perspective on this is to note that an agent’s
internal states and configuration encode beliefs, which means
that inertia implies a resistance to belief updating. This can
be guaranteed if prior beliefs are very precise and resistant to
revision by sensory evidence. Recall that in active inference,
sensory evidence is sampled via action. In other words, an agent
is in part the author of her own sensations and can therefore
sample the world in a way that conforms to her precise beliefs
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and predictions. A simple example of this would be homeostasis
that keeps certain (interoceptive) sensations within very tight
bounds; in virtue of precisely held prior beliefs that these
“essential variables” should be close to homeostatic setpoints.
One can generalize this idea beyond interoception to other
forms of niche construction; from keeping the extrapersonal
world predictable, clean and tidy; through to cultural niche
construction by adhering to precisely held beliefs in social
exchanges (Seth and Tsakiris, 2018).

4.1.1 Rigidity
However, with high precision also comes low flexibility.

High-precision beliefs act as a strong inductive bias and limit
the capacity of an agent to update their prior beliefs and
change in the face of changing circumstances. A very rigid agent
does not have the ability to explore new options, since it is
entrenched in its own beliefs. Such an agent may struggle with
volatility. The only way for an agent with overly precise beliefs
to maintain itself in its characteristic states is to remain in low
volatility environments.

When an agent has a high precision policy that occupies
low volatility states, resilience would take form of selectively
sampling for states with little unexpected surprise. For example,
people who believe that the Earth is flat may still gather new
evidence to confirm or disconfirm their beliefs (i.e., engage
in epistemic actions). However, if the precision of their prior
beliefs is too high, they will not be receptive to evidence
that challenges their core assumption that the Earth is flat.
See Albarracin et al. (2022a) for a simulation of a system
inoculating its high precision beliefs and policies by operating
in echo chambers. Such people could be examples of agents
that are resilient (in the sense that their beliefs are robust),
while still holding a suboptimal model of the world. Within
their specific social niche, these people will reduce expected free
energy by engaging in such kinds of actions that align with
their core assumptions, since they are shared by others (as they
are frequenting situations which support and reinforce their
beliefs).

4.2 Elasticity as relaxation back to
characteristic states

Resilience as elasticity refers to a system’s ability to “bounce
back” to a previous state after some disturbance. For example,
rubber is a resilient material in the sense that it returns to its
initial state when deformed by a physical force applied to it: it
is elastic. A ceramic mug, in contrast, is inelastic: if its physical
structure is perturbed to any significant degree, it shatters and is
not able to recover that structure.

We can understand the anticipatory dynamics of biological
resilience through the lens of active inference. The elastic aspect
of resilience then can be modeled in terms of homeostasis

and allostasis—the processes that allows such a self-organizing
system to anticipate and compensate for various forms of
volatility and uncertainty. In effect, resilience as elasticity (as the
capacity to return to a set-point) can be understood as the most
basic feature of any active inference agent, which is its capacity
to return to its characteristic states. This kind of resilience
rests upon planning over extended temporal horizons; namely,
deep temporal models that afford a route back to preferred
states. In other words, the very distinction between allostasis
and homeostasis depends upon the pre-emptive policies that
anticipate the consequences of action in the distant future. In
this sense, resilience is conferred upon agents whose priors
encompass policies with temporal depth, and therefore a future-
pointing kind of self-evidencing that can circumnavigate short-
term surprises in an unpredictable world. Active inference under
deep generative models provides a powerful formal model of
homeostasis and allostasis (Corcoran, 2021).

Suppose a person goes out for a run. We know that humans
have a high precision expected state of body temperature being
around 37◦C. So, the person would produce sweat as a cooling
mechanism for the body while on the run. This is homeostatic
elasticity. The person would also take some water in a bottle to
the run to ensure enough water in their body to produce more
sweat, and maybe draw their curtains close at home before going
on the run so they have a cool space to return to after their
run. This is allostatic elasticity, with deep temporal models as
planning was conducted over extended temporal horizons to
bring the person back to preferred states.

In short, the C vector provides the agent with homeostatic
set-points specified in terms of preferred sensory data. The
active inference scheme essentially tells us how agents generate
their preferred sensory data through commitment to certain
policies, which they infer by minimizing expected free energy.

4.2.1 Bad bootstraps
For complex organisms like us, who are endowed with

models that make inferences not just about the present but
also about future states (i.e., a deep temporal model), lifelong
resilience often requires more than these first two forms of
resilience that we have discussed. While these can lead to
various forms of local stability, this stability can itself sometimes
become sub-optimal, and so undercut longer term, more global
patterns of resilience. To be resilient, it is not sufficient that
a self-organizing system merely persist through time. The fact
is that, even in minimizing free energy, agents can become
suboptimal relative to other agents in the same situation—
based on important changes in the generative model they entail.
However, this persistence may involve adaptation to a changing
environment (Constant, 2021). This is crucial for the wider
discussion about the importance of resilience—the fact that a
system is resilient according to the first and second definitions
that we provided (i.e., inertia and elasticity) does not guarantee
that the agent is in fact flourishing, and responding responds
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adaptively to its environment in the long term. At higher levels
of organization and temporal scales, the very structure of the
generative model—under which active inference unfolds—has
itself to be learned. This is known as structure learning in
radical constructivism or Bayesian model selection in statistics
(and perhaps natural selection) (Gershman and Niv, 2010;
Tenenbaum et al., 2011; Gershman and Blei, 2012; Vanchurin
et al., 2022). One key aspect of this kind of structure learning is
the scope of policies entailed by policy selection. For example,
in an unchanging world, if I see myself behaving in a particular
way, I will learn that this is the kind of thing I do and develop
habits, which could be epistemic habits (e.g., always watching
the news at 10 o’clock) (Friston et al., 2016). However, in
a changing world these habits may no longer be apt, and I
may need to extend the repertoire of explanations for—and
explorations of—the lived world. In other words, plans can
become entrenched and acquire unduly high precision as I base
my experience-dependent learning of policies on past perceptual
inferences, yielding a “bad boot-strap” from past experience that
renders me to unable to respond to a change in circumstances.

Bad boots-straps arise when an agent has prior beliefs that
prevent them from learning adaptively about the environment,
and are likely to result in inferences that seem optimal within a
narrow frame of reference, but which are sub-optimal for the
agent from a broader point of view. For instance, the agent
may fail to have an accurate representation of the world, or
try to optimize performance with respect to incomplete data;
namely, data from the past that necessarily “ignores” data from
the future. These ill-sampled actions or bad boot-straps show
that it is not enough for an agent to bounce back to well-trodden
paths, as those policies may be maladaptive; i.e., “I am stuck in a
rut.” As there is no guarantee that the models entailed by agents
are accurate representations of a changing reality, there is no
guarantee that behavior premised on these beliefs will be optimal
(Tschantz et al., 2020). For instance, the compulsion to consume
potentially addictive stimulant drugs may be adaptive within a
specific niche; e.g., the use of amphetamines or modafinil by
soldiers on the battlefield. In such delimited situations, such
actions may optimal (e.g., because they allow soldiers to remain
awake and alert). From a broader point view, however, these
actions can be detrimental, in the sense that lead to maladaptive
states in the long term (e.g., leading to addiction after returning
from service).

Mathematically, this phenomenon can be understood as
getting trapped in local minima. If the agent’s beliefs about
the world—or its engagement with that world—are too precise
or restricted, then the agent denies itself the possibility of
exploring alternative explanations or repertoires of behavior
that would be more apt for a changed world (e.g., the world
following the death of a loved one). What it would take to
overcome these local minima is a broader vantage point from
which the agent could see that there are alternative priors
to explore. This might involve changing the structure of a

generative model to include alternative hypotheses about ways
of being. Alternatively, the requisite increase in the repertoire
of priors follows from reducing the precision of high-level
beliefs; enabling low-probability priors to compete on a more
even footing. This is sometimes cast in terms of flattening
the landscape of prior beliefs through reducing their precision
(Hohwy et al., 2008; Carhart-Harris and Friston, 2019).

This idea has been formalized in active inference by means
of generative models that are able to track both local and
global precision dynamics (Miller et al., 2022). Local precision
dynamics indicate our performance on specific tasks: e.g., in
singing, being a good friend, at work, etc. We may optimize
performance on each of these tasks specifically. Global precision
dynamics indicate our overall performance, meaning how well
we balance all these local aspects. If one fails to optimize
global precision, one may only optimize locally. In such a case,
epistemic actions will be useful to improve performance for a
local task, but will fail to promote good overall performance. For
example, one may imagine someone who puts all their energy
into performing better and better at their job, while neglecting
all other aspects of life, leading to depression. This would be an
instance of high local precision on one specific aspect but low
global precision dynamics due to the neglect of other aspects of
life.

4.2.2 Exploiting error dynamics and precision
to find optimality

Optimality entails an optimal balance of epistemic and
instrumental action. This balance depends upon the precision
afforded prior preferences, relative to epistemic affordances; and
the precision afforded free energy, relative to habitual priors.
In short, a high-order kind of resilience—that rests on being
able to revise the very fabric or structure of generative models—
depends upon assigning the right precision or subpersonal
confidence to various beliefs. It is perhaps interesting that the
very systems that are thought to encode these kinds of precision
are those that underwrite goal-directed behavior, responses to
novelty and indeed, the very capacity to act: e.g., dopamine
in the encoding of novelty and its role in Parkinson’s disease
(Adams et al., 2013; Schwartenbeck et al., 2015, 2019). The
implicit kind of resilience at this level of self-evidencing rests
upon the ability to adapt by ensuring the right level of structure
learning through not ascribing too much precision to prior
beliefs. In short, this amounts to resilience as plasticity of a
certain sort; namely, the ability to entertain new hypotheses
and update the repertoire of explanations and plans that are
evaluated in terms of variational and expected free energy.
There are many examples of how this formulation translates
into clinical practice; ranging from cognitive behavior therapy
(CBT) that encourages the search for evidence against “bad
bootstrap” priors, through to the relaxation of prior precision
via psychedelic drugs that act on particular neuromodulatory
(5-HT2A) receptors (Carhart-Harris and Friston, 2019).
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In summary, resilience can arise from a system’s adaptive
capabilities, wherein higher-level processes emerge from
densely interacting components and processes unfolding
at hierarchically lower levels, resulting in self-organization
at multiple scales (Levin, 1998; Holling, 2001). The most
important instrument for the development of resilience in this
sense is the optimization of precision or learning rates (i.e.,
learnability or adaptability) that is inherent in many natural
systems. Elastic resilience is the return to prior functioning
(through homeostatic processes and selective sampling under
active inference in general)—this is adaptive (or minimizes
FE), but can get caught in local minima where elastic resilience
prevents learning of larger scale state transitions, and where
functioning at longer time scales is compromised (the world
transitioned to another state for which the agent has no useful
policy repertoire to return to low FE states). Hence, inertia and
elasticity needs to be accompanied by plasticity.

4.3 Plasticity via redundancy and slope
chasing

4.3.1 Redundancy and degeneracy
Effective homeostasis and allostasis often require executing

complex chains of actions, based on a model of possible
situations and responses to them. These chains enable complex
systems to infer pathways back to desired or preferred states
after disturbances, and to plan ahead in ways that minimize
future exposure to uncertainty. In order for systems to frequent
a finite set of characteristic states despite variable circumstances,
this model of possibilities and responses must be redundant
to a certain degree: many states lead to a relatively small set
of desirable outcomes. As discussed at length in Sajid et al.
(2020)—and as we will unpack below—redundancy, although
it increases the complexity (thus energy expense) of a model,
is nonetheless crucial for resilience to the extent that it enables
an agent to manage greater levels of uncertainty. This type of
“useful redundancy” is often called degeneracy.

Whitacre and Bender (2010) define “degeneracy” in
biological systems in a related way:

“Degeneracy is also known as partial redundancy. In
biology it refers to conditions under which the functions
or capabilities of components overlap partially (Edelman
and Gally, 2001). It particularly describes the coexistence of
structurally distinct components (genes, proteins, modules,
or pathways) that can perform similar roles or are
interchangeable under certain conditions, yet have distinct
roles under other conditions.”

Degeneracy in this sense implies a many-to-one relationship
among parts as discussed above, but also a one-to-many
relationship, since partial redundancy requires that components

have multiple functions (and thus variable relations to other
parts). We note that this differs extensionally from the previous
definition only in cases of pure redundancy, which arguably
never occurs (e.g., the left kidney has the function of detoxifying
the blood even if the right kidney is damaged, but the right
kidney lacks this function).

As Sajid et al. (2020) argue, there is a simple relationship
between degeneracy, in the sense of useful redundancy, and
variational free energy, which—as discussed above—is the base
quantity optimized in active inference (with expected free
energy scoring the plausibility of a policy, given a temporally
deep generative model that allows for planning based on
expectations over future observations). The variational free
energy (VFE) can be expressed in several ways, each of which
illuminates a different aspect of the utility of VFE minimization.
Degeneracy is most clearly evinced if the VFE is expressed as a
Helmholtz free energy:

F = EQ[−1n P(s, o)]︸ ︷︷ ︸
Energy

−EQ[−1n Q(s)]︸ ︷︷ ︸
Entropy

(1)

The second term in (1) is simply the entropy of the recognition
(approximate posterior) density Q(s), which (Sajid et al., 2020)
argue to be formally equivalent to degeneracy. A second way
of decomposing the VFE foregrounds the term EQ[ln P (o| s)],
which measures the accuracy of using inferred hypotheses to
predict sensory inputs (e.g., expected prediction error):

F = DKL[Q(s)||P(s)]︸ ︷︷ ︸
Complexity

−EQ[1n P(o|s)]︸ ︷︷ ︸
Accuracy

(2)

The first right-hand term is the KL divergence or asymmetrical
difference between Q(s), the approximate posterior over hidden
states, and P(s), the prior distribution over those same hidden
states. This term is called complexity because it is a measure of
“the degrees of freedom that are used to provide an accurate
account of sensory data” (Sajid et al., 2020, p. 5,752). More
simply, it scores the degree to which one changes one’s mind
from beliefs prior to seeing some sensory evidence to the same
beliefs a posteriori. This information gain is often considered as
a complexity cost because the implicit erasure of information
is energetically and metabolically expensive. In other words,
assimilating some new sensory evidence entails a complexity
cost that ensures belief updating provides an accurate account
of sensations that is as simple as possible (i.e., does not diverge
too much from prior beliefs), also thereby avoiding overfitting.

Given the definition of complexity, it is clear that more
complex models are, ipso facto, less efficient: they explain
a given sensory data-point using more degrees of freedom
than alternative models. Complexity is then precisely the
opposite of efficiency, which has been called redundancy
in the literature: a redundant system is an inefficient one,
since it uses the same resources that a simpler system would
use to achieve the same goal, plus some extra resources
(the redundancies).

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1059117
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-1059117 December 16, 2022 Time: 15:7 # 10

Miller et al. 10.3389/fpsyg.2022.1059117

Simply using log rules to expand the expression for
complexity, i.e., the KL divergence from posterior to prior
beliefs, we then obtain the following (cf. Sajid et al., 2020,
p. 5,753):

DKL[Q(s)||P(s)]︸ ︷︷ ︸
Complexity

= EQ[−1n P(S)]︸ ︷︷ ︸
′cos t′

−EQ[−1n Q(s)]︸ ︷︷ ︸
Degeneracy

(3)

This breakdown reveals a “residue” of complexity (“cost”) that is
not exploited by the system in the service of sustaining a variety
of useful means to an agent’s ends. Degeneracy, on the other
hand, is the degree to which different causes in a system may lead
to the same outcome, and the entropy of the recognition density
(second right-hand term) quantifies precisely how many distinct
states the agent believes to have some significant probability of
producing a given outcome (observation).

Sajid et al. describe the “cost” in Eq. (3) as the negative
expected “value” (log of prior preferences) of inferred states.
This is one way of viewing why this term is “costly”: it quantifies
the extent to which inferred states of affairs are a poor fit with
an agent’s prior preferences (in this case, over states). But it is
also possible to view this cost from an epistemic point of view.
In epistemic terms, the residual complexity or “cost” term is
a measure of how surprising the agent’s posterior inferences
about the world are, on average, when measured against the
agent’s own prior over hypotheses (specifically, it is the Shannon
description length of the agent’s inferred states, under its
generative distribution). Interestingly, in the case in which
this cost term and the degeneracy are equal, the complexity
vanishes—but the uncertainty remains. This suggests that the
complexity term in effect encodes “useless uncertainty,” while
the entropy over posterior beliefs (degeneracy) is useful or
functional uncertainty. Intuitively, uncertainty is useful when it
mirrors actual causes for uncertainty in the environment—that
is, when the entropy of the belief distribution accurately models
the entropy of the source of sensory signals. Given free energy as
an objective function for inference and learning, we can expect
the entropy of Q to be maximized, insofar as doing so does not
impair accuracy (cf. Eq. 2 above). This is all entirely consistent
with the basic physics of measurement (i.e., inference) and self-
organization; ranging from Jaynes’ maximum entropy principle,
through to universal computation via the minimization of
algorithmic complexity and description lengths (Wallace and
Dowe, 1999; Hutter, 2004; Sun et al., 2011; Ramstead et al.,
2022).

The key take away is that, in order to minimize this type of
functional, it is sufficient to change the prior belief distribution
so that it matches the posterior distribution. If this is done
optimally, then any remaining model complexity is due to the
entropy of the posterior distribution itself. And for reasons that
have been widely discussed (Jaynes, 1957; Sajid et al., 2020), it is
optimal to maximize this entropy subject to constraints afforded
by the generative model. Note here, that one can minimize
variational free energy by changing priors; namely the model
per se. This is the basis of structure learning that underwrites
resilience as plasticity.

To return to the example of a soldier returning from war:
addiction involves a highly precise (rigid) prior over specific
states, which, among other problems, leads to acute suffering
when the need for the addictive substance cannot be satisfied.
Relaxing this prior preference distribution to match the wider
range of states that is available once the solider returns home
leverages model complexity in the service of degeneracy, trading
rigidity for long-term resilience.

4.4 Slope chasing and error
consumption

Having set up the temporally deep and hierarchically nested
architecture of the generative models, we can now reconsider
what optimal performance for such a system would look
like. Here, we will argue that optimal performance occurs
when the agent seeks out interesting slopes of error and
has a propensity to actively seek out surprises. Technically
speaking, this entails maximizing the epistemic part of expected
free energy namely, maximizing expected information gain.
Although it may sound paradoxical, this means that surprising
events in the future are now attractive because they provide
the opportunity to resolve uncertainty. This is reflected in the
epistemic affordance that is often discussed in terms of saliency
(resolving uncertainty about latent states) or novelty (resolving
uncertainty about model parameters) (Schwartenbeck et al.,
2019). As uncertainty is resolved, the precision of beliefs about
states of the world—and action upon that world—changes. The
dynamics of precision are thought by many to undergird affect
and emotional valence (Joffily and Coricelli, 2013; Smith et al.,
2019; Hesp et al., 2021).

Affective valence acts as a second-order form of information
in the system, tuning our adaptive behaviors to changes in how
our generation of error itself changes over time; specifically,
changes relative to expectations about velocity and acceleration
of error generation and minimization itself. Because of this,
resilient systems must be slope chasers: they must always be on
the lookout for optimal error reducing opportunities. We might
call these optimal slopes “consumable errors”—errors that have
the right amount of complexity so that the agent can learn at
a good rate. Here, a good rate is one where the system is not
overwhelmed by the situations that it encounters, while at the
same time learning as much as possible about its environment,
to perform better in forthcoming settings. These second-order,
affective dynamics play a key role in keeping predictive agents
poised, in a meta-stable fashion, between well-known and
unknown niches—that is, at the edge of criticality, where they
optimize learning rates and empowerment, exhibiting the right
kind of resilient plasticity.

While systems consume error in order to be prepared for
volatile onslaughts, some threshold of error will be beyond what
a system can consume. In addition to the dangers outlined
above concerning bad bootstraps, it is a fact that in uncertain
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environments, organisms do not succeed at managing errors
for very long by retreating into well-known homeostatic (i.e.,
safe) situations and stereo- typed behaviors. In effect, some
events will trigger cascades of surprising events, which even
the most avoidant strategy cannot overcome. This emergence
of this kind of error, by its very nature, is itself unpredictable,
as it extends beyond the reach of the agent’s model. The best
strategy, in this case, is to be a system which thrives in risky
settings, quickly consumes errors thrown in its direction, and
is able to grow from it.

5 Conclusion

Our aim in this article was to conceptualize—and
formalize—the construct of resilience using the tools of active
inference. When viewed through the lens of active inference and
free energy minimization, this relational aspect becomes key:
this follows from the fact that free energy scores the goodness
of “fit” be- tween an agent and her physiological, physical or
cultural niche. The existential imperatives—implicit in free
energy minimization—are only defined in terms of how an agent
actively engages with, or relates to, her environment.

We presented a conceptual analysis of resilience,
distinguishing between meanings of the word “resilience”: (i)
as inertia, or the capacity to resist change (ii) as elasticity,
i.e., the capacity to bounce back from a perturbation, and (iii)
as plasticity, the capacity to flexibly expand the repertoire of
hypotheses and responses. We provided a formal interpretation
of each aspect of the concepts via the active inference
framework. In particular, we discussed resilience as inertia,
which can be mapped onto high-precision beliefs about essential
variables; resilience as elasticity, which ensures an ultimate
return to characteristic states; and finally resilience as plasticity,
which we unpack in terms of the learnability that underwrites
functional redundancy and structural degeneracy. We hope
these will provide first steps toward a formal (i.e., quantitative,
computational) study of resilience. In follow up work, we plan to
investigate the resilience of communities; notably by examining
the concept of sustainability.
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