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ABSTRACT

In this paper, the importance of the empirical bootstrap (EB) in assessing minimal
operational risk capital is discussed, and an alternative way of estimating minimal
operational risk capital using a central limit theorem (CLT) formulation is presented.
The results compare favorably with risk capital obtained by fitting appropriate dis-
tributions to the same data. The CLT formulation is significant in validation because
it provides an alternative approach to the calculation that is independent of both the
empirical severity distribution and any dependent fitted distribution.

Keywords: central limit theorem (CLT); operational risk; value-at-risk (VaR); minimum risk
capital; loss distribution.

1 INTRODUCTION

In this paper, we describe an alternative method to calculating minimal operational
risk capital: one that can replace the empirical bootstrap (EB). The way in which
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operational risk capital should be calculated is governed by the regulations of the
Basel Committee on Banking Supervision (2011, Guideline 196), which gives us a
great deal of flexibility when building a capital model. The overall aim of this process
is to estimate how much capital should be retained in order to cover future expected and
unexpected operational risk losses. There is a de facto standard methodology for doing
this, consistent with the aforementioned Basel regulations. An appropriate severity
distribution is fitted to historical losses, samples are taken from that distribution, and a
Monte Carlo process is used to simulate annual losses. The Monte Carlo method was
established by Frachot et al (2001), and it is now widely known as the loss distribution
approach (LDA). The 99.9% value-at-risk (VaR) is then extracted. Internal data may
be augmented using external data in order to model the losses that could possibly
have been incurred but have not been. Scenarios provide a forward-looking view of
losses that are anticipated in the near future. The thrust of operational risk modeling
is to combine the three elements – internal data, external data and scenarios – in order
to produce the VaR value. A well-known validation check on the result is to apply the
LDA process to the empirical data rather than samples taken from a fitted curve. This
step is known as the EB. The purpose of this paper is to discuss an alternative to the
EB that has certain advantages over it.

Calculating VaR using empirical data (as opposed to a fitted distribution) is a useful
tool in the process of calculating operational risk capital for one principal reason: to
provide an estimate of the minimum capital. Samples are taken only from losses
that have been incurred, so it is not possible to draw a sample that contains a value
greater than the maximum empirical loss. If an appropriate distribution is fitted to
operational risk loss data and samples are drawn from that distribution, then it is
possible – although unlikely – to draw values that are much larger than the maximum
empirical loss. The expectation is therefore for a larger VaR result than would be
obtained using empirical losses only, although it is impossible to predict from the
outset how much larger the VaR derived from a fitted distribution might be.

In this paper, we employ the central limit theorem (CLT) to develop an “alternative
bootstrap” that does not involve sampling. The results are then compared with those
obtained via a “traditional” EB as well as with those obtained by fitting appropriate
severity distributions. The advantages of using this method are stated in the following
section.

1.1 Bootstrapping

“Bootstrap” sampling techniques were originally developed by Bradley Efron and
are discussed in Efron and Tibshirani (1986). Such methods depend on resampling
from a single initial sample. We can imagine a theoretical infinite population, and
we want to make inferences about the structure of that population. For example, its
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distribution, descriptive statistics and confidence intervals are all of interest. To make
inferences about such a population, we would normally draw random samples from
it. It is assumed that these samples will reflect the structure of the parent population,
and that the way to ensure this is to draw a sufficient number of samples. However,
in the context of operational risk losses, there is no such infinite population. The
number of losses is finite and may even be small. To draw random samples from
such a finite population may not provide reliable inferences about the population. A
common adjustment is to apply the following multiplicative correction factor to the
estimator for the sample variance, r

N � �

N � 1
;

where N is the population size and � is the sample size (see, for example, Isserlis
1918). A “rule of thumb” is to do this if � is greater than 5% of N . Thompson
(2012) presents examples of sampling from small populations and gives an account
of associated bias. The present discussion is more applicable to larger population
sizes, for which a variance correction may still be appropriate.

1.2 Advantages for model validation

The use of the EB in operational risk modeling is recommended for validation pur-
poses by the US Board of Governors of the Federal Reserve System (2014, p. 17).
The alternative that we propose goes further: with a suitable configuration, it could be
used as an alternative way to calculate operational risk capital rather than minimum
operational risk capital.

We stress the following advantages for model validation.

� Using an independent methodology is a good way to validate the efficacy of a
model and the results it produces. In this case, the input data is the only common
element shared by the EB method and the proposed CLT method.

� The proposed methodology is not stochastic, so there is no need for extensive
simulations to achieve a given degree of accuracy.

� In order to estimate VaR, the proposed methodology integrates the three ele-
ments – internal data, external data and scenarios – into a common method. This
unified methodology takes advantage of well-established statistical results, and
it is easy to formulate and implement.

� We give examples in the ensuing discussion of distributions of VaR that do
not appear to fit common probability distributions well. The CLT approach
is distribution independent because all calculations are based on “normal”
distributions.
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In addition, there are some more general reasons for stressing the applicability of
the CLT as an alternative validation method to the EB. If the VaR calculated by the EB
is greater than the VaR calculated by fitting a distribution, then this is an indication
that the fitted distribution underestimates tail VaR. In these circumstances, a quick and
convenient check of the EB value is a useful validation technique. Indeed, there have
been previous warnings about the use of the EB with heavy-tailed distributions. Balta
et al (2009) say that “traditional resampling methods typically fail for heavy-tailed
loss models and rare event estimation” and call for further investigation. To say that
these methods “typically fail” is to be overly pessimistic; however, it is not hard to
observe failure in the sense that a fitted distribution produces a “VaR that is too low”.

Balta et al (2009) also suggest that alternative sampling methods (such as impor-
tance sampling) might be used in an EB. We suggest that amendments to these sam-
pling methods cause further validation problems. Instead, more parameters must be
introduced. The parameters chosen and their values should be validated and sensitiv-
ities to them should be calculated. The CLT approach is more “validation friendly”,
as sampling is not applicable.

1.3 The empirical bootstrap procedure

In the EB procedure, resamples with replacement are drawn from a base sample that
constitutes the set of empirical losses in the case of operational risk. With replacement,
individual losses can be selected multiple times; this is effectively a proxy for not being
able to include any loss greater than the largest empirical loss in a given sample. There
is an assumption that resamples – if chosen randomly – will resemble the population
that they came from. Resampling gives an estimate of the sampling distribution of
the sample statistic in question (usually the sample mean and variance), rather than
providing an estimate of the statistics and distribution of a population. In passing,
resampling is of primary importance in the context of sampling from organic material
(museum items, for instance), which often involves destructive sampling. Items that
are sampled cannot be replaced, so one small sample is often all that exists.

Dutta and Perry (2007) amplify this point (that it is not possible for a future loss to
be greater than the maximum empirical loss); however, they also give some caveats.
First, sampling can be unduly affected by the existence of a single large loss, leading
to an overestimate of capital. Second, smaller financial institutions are less likely to
have very large losses, leading to an underestimate of capital. They do not discuss
the dependence of any capital estimate on the modeling threshold. Experience shows
that capital value is heavily dependent on the modeling threshold. In order to not bias
its results, an empirical method should use a modeling threshold of zero: the value
used in all the calculations presented here.
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ALGORITHM 1

(1) Calculate an annual loss frequency, f D N=y.

(2) Repeat n times.�

(a) Obtain a sample size z by drawing a random sample of size 1 from a
Poisson.f / distribution.��

(b) Generate a uniform random sample of size z; Sz D fN1; N2; : : : ; Nzg from the
set of index numbers f1,2; : : : ; N g, with replacement.

(c) If z D 0, set a sum of losses variable, sz , to zero and do not apply steps (d)
and (e).

(d) If z > 0, extract the losses corresponding to the index set Sz .

(e) If z > 0, set the sum of losses variable, sz , to the sum of the losses in Sz (that
is, an estimate of annual loss) and retain the result.

(3) End repeat.

(4) Calculate the 99.9th percentile of the retained sums.

�Generally, we usen � 100 000, which provides sufficient confidence in the result without taking too long to calculate.
(If n < 1000, the 99.9th percentile is always the largest value of the retained sums.)
��A Poisson distribution is not the only way to do this. A negative binomial distribution is often used. For large f , a
normal approximation to the binomial is appropriate.

1.3.1 Sampling methodology

In the context of a Monte Carlo VaR process, Efron’s resampling method is applied
in the same way that it is applied in the LDA calculation effected by Frachot et al
(2001), except that only empirical losses are used, rather than losses generated by
fitting a distribution. The EB algorithm is as follows: let L D fL1; L2; : : : ; LN g be
a set of N .>0/ losses covering a period y years, and let n be the number of Monte
Carlo trials used.

Algorithm 1 is discussed from a theoretical point of view in the context of
operational risk by Cruz et al (2015).

1.4 Summary of previous work on the empirical bootstrap

Shevchenko (2011) gives an outline of how a “vanilla” bootstrap method may be
applied in operational risk modeling. This is a very general account of operational
risk modeling focusing, in particular, on two “flavors” of bootstrap: parametric and
nonparametric. In this paper, the nonparametric bootstrap, which does not assume
any severity distribution, is used. Homolka (2012) gives a similar account but rather
misses the point that the EB should be used to estimate minimum capital. This point
was stated in the introduction to this paper and we stress it again here. Homolka’s
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account compares the EB with sampling from an extreme value distribution; it is not
surprising that the capital and error bounds from the latter exceed those from the EB.

Previous research on the EB has concentrated on amending the sampling technique
described above. One example comes from Pfeffermann and Correa (2012), who
developed a method for bias correction by considering the error in estimating model
parameters. They considered a number of plausible parameter values and sought an
appropriate functional relationship between the original sample for each parameter
and the corresponding bootstrap samples. A comparison with the bootstrap method
of Section 1.3.1 shows a good agreement.

Hall and Presnell (1999) tackle another well-known problem in operational risk
capital calculations. Samples drawn from heavy-tailed distributions can contain huge
values that affect statistical estimators adversely. Hence, Hall and Presnell (1999)
use a weighted bootstrap to moderate the “contaminated” distribution, in which each
member of a bootstrap sample is assigned a weight according to an assessment of its
influence on dispersion. Their paper is interesting in that, in principle, its technique
might be applied in reverse in order to estimate a maximum capital value.

The accuracy and stability of variance estimates in bootstrap processes was inves-
tigated by Manzi and Mecatti (2008). They accounted for auxiliary variables and the
sampling design in resampling, tying results to the strategies, decisions and policies
that depend on them.

In the following section of this paper, we will highlight the different characteris-
tics of the distribution of operational risk losses. We will then formally model this
distribution as a bipartite entity in Section 2.2. Separate treatments of ordinary losses
(due to high-frequency, low-severity events) and large losses (due to low-frequency,
high-severity events) are undertaken by Wang et al (2012) in a sophisticated manner.
They combine a bootstrap with a piecewise-defined severity distribution in order to
measure small operational risk samples. This approach helps to correct bias in the
estimators (caused by the small sample) and – due to the bipartite split – permits a
better fit to the distribution as a whole.

The bipartite nature of an operational risk loss distribution is treated in a dif-
ferent way by Böcker and Klüppelberg (2005), who showed that an approximate
loss distribution may be obtained under the assumption that the loss severities are
subexponentially distributed. Specifically, the condition they use is that, for n losses
fL1; L2; : : : ; Lng drawn from a distribution arising from a random variable L,

P.L1 C L2 C � � � C Ln > x/ D P.max.L1; L2; : : : ; Ln/ > x/ as x !1:

This condition is known as the “principle of the single big jump” or the “catastro-
phe principle”. The impact of this approximation is that it formally characterizes the
VaR calculation in terms of the distribution tail, but only under the subexponential
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assumption. The normal approximation to the EB proposed in this paper confirms
the heavy dependence of VaR on the distribution tail. Böcker and Sprittulla (2006)
noted that the Böcker–Klüppelberg approximation is prone to significant errors when
the confidence level for the sum L1 C L2 C � � � C Ln is not very close to 1. In such
cases, the expected loss is not negligible compared with the operational VaR. Böcker
and Sprittulla (2006) show that, as the confidence level decreases from 99.9% to
99%, the approximation error reduces rapidly to about 50%. Their method links the
probability that the total loss exceeds some x with the probability that the largest
loss exceeds a smaller amount, which they estimate. Advancing the method further,
Hannah and Puza (2015) extend the Böcker–Klüppelberg–Sprittulla formulas to mul-
tiple loss types, where the aggregate loss is a sum of random sums, each defined by
a different subexponential distribution. VaR rates of less than 99.9% might typically
be used for nonregulatory purposes, such as risk appetite calculations (at 95%, for
instance). The decreasing accuracy of the EB at VaR < 99:9% makes the proposed
alternative CLT method all the more applicable.

In a more general context, Abad et al (2015) discuss the relationship between VaR
and financial time series returns, linking the two via a loss function. They propose
a firm’s loss function that measures the opportunity capital cost of the firm when its
losses are covered and also find that theVaR model (designed to minimize total losses)
is robust to the regulator’s loss function but not to the firm’s loss function. Abad et al
(2015) emphasize the importance of the EB, even though the word “bootstrap” does
not appear in their paper:

Supervisors are concerned about how many times losses exceed the VaR and the size
of the noncovered losses. However, the risk managers have a conflict between the
goal of safety and the goal of profit maximization.

This type of conflict is common, and a minimum VaR estimate serves to tie down
what the VaR value “should” be. Of course, an estimate of the maximum VaR would
also be useful, but that is a matter for further research.

1.5 Regions in the frequency distribution

Figure 1 shows a typical frequency distribution for operational risk losses. The loss
frequency for high-value losses is very small compared with the loss frequency for
low-value losses. In addition, a small number of extremely high-value losses are only
hinted at in Figure 1. These three categories of loss – low, high and extremely high
– are treated separately in the ensuing discussion, as each has a distinct effect on the
VaR calculation of Algorithm 1.

The illustration in Figure 1, although originating from genuine loss data, does
present a somewhat idealized view of a frequency distribution. In other cases,
low-value losses occupy a single, left-most bar in the histogram; an extended loss
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FIGURE 1 Typical loss frequency distribution.
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(horizontal) axis is also shown. This indicates that a small number of extremely large
losses (perhaps only one) are present, but their frequency is so small as to be invisible
in the figure.

In order to account for the characteristics of the three loss categories mentioned
above, we partition the frequency distribution into three regions as follows, with
respect to a percentage p.

� Outlier: a set of the largest losses, as determined by an “outlier test” discussed
below. This set may be empty if the “outlier test” returns a result of nil.

� Tail: the largest (100 � p)% of the remaining losses (ie, total losses after
removing the outliers).

� Body value: the smallest p% of remaining losses, comprising low- and mid-
value losses. The largest losses in this category can still be considerable.

In practice, a common value for p is 95%. Usually, there are only a few outliers,
if any at all. The distribution “body” typically has considerably more losses than the
distribution “tail”. The somewhat bizarre situation can arise where the sum of all
losses in a 95% tail (that is, only 5% of the total number of losses) can also represent
95% of the sum of all losses. That leaves the bulk in the “body” representing 95%
of the total number but only 5% of the total value. Outliers and tail losses can affect
the final VaR unduly. Therefore, it is expedient to treat them separately, as described
below.
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1.6 Treatment of outliers and tail losses

An expedient and simple way to detect outliers is to use a “u-sigma” test. Given a set
of lossesL, a set of outliersLO is defined in terms of the mean and standard deviation
of the losses in L, and a multiplier u:

LO D fL W jL �mean.L/j > u � sd.L/g: (1.1)

Values of u are given in subsequent sections. There are alternative ways to detect
outliers. Grubbs’s test (Grubbs 1950) is a de facto standard for the detection of outliers
and is readily available in theR programming language. However, it is only applicable
if the underlying distribution is normal, and operational loss distributions are not. The
distribution of log(losses) has some chance of being normally distributed but, all too
often, even log(loss) distributions have fat tails. Dixon’s Q test (Dixon 1950) has
the same normality requirement. Further, Grubbs’s test yields only the largest outlier
per application of the test; it is more useful to detect all at once given an objective
detection criterion as in (1.1).

From a validation viewpoint, rejecting outliers may be an undesirable practice.
Pyle (2003, Chapter 8), for example, makes the point that validation should always
account for outliers, since outliers may be informative. Our proposed CLT alternative
is not significantly affected by outliers, so it is a viable alternative to the EB.

2 THE NORMAL APPROXIMATION TO THE EMPIRICAL BOOTSTRAP

In this section, we develop the theory that underpins the “normal approximation to
EB” and provide a means of calibrating the method.

2.1 Value-at-risk is asymptotically normally distributed

As per Rao (2001), it can be shown that VaR is normally distributed. The proof
provided by Rao assumes the existence of a sequence of n independent and identically
distributed (iid) random variables X1; X2; : : : ; Xn. In the context in which we use
them, these random variables represent losses selected at random from a distribution
appropriate to operational risk losses. They have a distribution function F , and Rao
defines a real number p .0 < p < 1/ that serves as a binomial parameter. Rao then
shows that the speed of convergence depends on n, p and F . Let � be the mean and
�2 be the variance of each of theX1; X2; : : : ; Xn. Guegan et al (2015) prove the same
result and use it to build a set of confidence intervals around the true but unknown
VaR, producing a “spectral stress VaR”. The proof provided by Rao (2001) applies to
a continuous distribution, and we extend it to apply to a discrete empirical distribution
without assuming the existence of any underlying probability distribution. Our proof
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is given in Proposition 1 in online Appendix D. The first key result from this (labeled
D16 online) is

p
n.Fn.l/ � F.l//

d
! N .0; �2/; (2.1)

in which l is any fixed (positive) loss, Fn.l/ denotes the empirical cumulative distri-
bution function derived from an observed sample of n losses, F.l/ denotes a limiting
cumulative distribution function, and �2 is expressed as F.l/.1 � F.l//. Although
there are theoretical expressions for the mean and variance of the normal distribution
shown in (2.1), what really matters for the validation process is what is observed in
practice, that is, why an alternative validation method (derived, in this case, from the
CLT) is valuable as a complement to the existing EB method. There are a number of
reasons for this. First, the results from the two methods should be “about the same”.
The loose language here is intentional and appropriate, because the meaning of “about
the same” is a matter of judgement. For example, a 50% difference in two very small
VaR results might be as acceptable as a 5% difference between two very large VaR
results.

Second, the bootstrapped empirical VaR X has an asymptotic normal distribution
given by

X � N.�0; .� 0/2/; (2.2)

where �0 and � 0 are given in D22 of online Appendix D. In practice, �0 and � 0 would
be estimated from data.

2.1.1 Convergence speed of the empirical bootstrap to normal
approximation

Compared with the CLT, the Berry–Esseen theorem (Esseen 1956) gives a more
stringent formulation for the convergence of the scaled mean of a random sample to a
normal distribution with increasing sample size. It indicates the rate of convergence by
giving a bound on the maximal error of approximation between the standard normal
distribution and the distribution of the scaled sample mean. The rate of convergence
is proportional to both 1=

p
n (for sample size n) and the third moment of the scaled

empirical distribution.
Reiss (1974) uses the Berry–Esseen theorem to bound the approximation error

between the sample quantiles and the standard normal distribution. With the appli-
cation of Reiss’s result, it can be shown that the approximation error of our normal
VaR approximation (2.2) is also bounded. Further, by assuming such lenient con-
ditions as a subexponential distribution for the underlying losses (see Goldie and
Klüppelberg 1998) and an easily met requirement on the number of iterations of
the bootstrap parameter k, it can be shown that the order of convergence for our
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normal approximation of the EB VaR is approximately O.1=
p
n/: the same rate of

convergence obtained under the Berry–Esseen theorem.

2.2 The body/tail partition

The parameters � and � are not known but can be estimated from data. It must be
remembered that the normal distribution in (2.1) is derived from a particular set of
samples – namely, the ones that result in a VaR at a given confidence level – out
of all the samples that could be taken. Many of those samples will not include the
largest losses. Consequently, � and �2 cannot be taken as the mean and variance,
respectively, of the set of all losses L. In order to model the tail behavior, a body/
tail split may be used. Given an appropriate real number p in the range .0; 1/, the
distribution body comprises the smallest 100p% of all losses, and the distribution tail
comprises the remaining largest 100.1�p/% of all losses (see Wang et al (2012) for
a similar body/tail split).

Estimators of � and �2 may be found by defining similar estimators for the body
and tail of the distribution, and combining them under the assumption that the body
and tail portions of the distribution are both normally distributed. In practice, if only
the tail estimators are used, the results are almost unchanged. Useful values for the
body/tail threshold p are 0.95 or 0.99. This gives a good balance between a tail that
is too small (and therefore gives unreasonably small capital values) and a tail that
is too large (and therefore gives unreasonably large capital values). Algorithm 2 is
used to determine appropriate estimators of � and �2. The estimators of � and �2

are denoted by O� and O�2, respectively, with subscripts as appropriate.

2.3 Configuration for the body/tail weight

The body/tail weight parameter t was determined by configurations based on known
distributions. The assumption is then that the result will be applicable to loss distri-
butions derived from actual data, which may not fit any formal distribution well. The
aim of the configuration was to determine, for the configuration data sets, a capital
value slightly in excess of the capital value derived from the EB, resulting in a capital
value slightly more conservative than the EB capital value.

A range of distributions that are commonly used for operational risk capital calcu-
lation (lognormal, Weibull, log gamma, generalized Pareto (GP), lognormal mixture,
Burr, loglogistic, Gumbel, Fréchet and g-and-h) were selected. Tukey’s g-and-h dis-
tribution (Jiménez and Arunachalam 2011) is peculiar in that it is very difficult to
find an initial parameterization to achieve a data fit; further, it can be useful for fits
to distributions with both large outlier losses and small losses. For each distribution,
random losses were generated. The resulting distributions covered a range of losses
typically found in loss distributions: a large number of small to medium-sized losses,
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ALGORITHM 2 Combined body/tail estimators.

(1) Define body and tail losses, LB and LT (remembering that the losses are ordered):

LB D fLi W 1 6 i < pN g; LT D fLi W 1C pN 6 i 6 N g:

(2) Calculate separate estimators for body and tail mean and variance:

O�B D mean.LB/; O�2
B D sd.LB/;

O�T D mean.LT/; O�2
T D sd.LT/:

(3) Define a body/tail weight, t (see Sections 2.2 and 2.3).

(4) Calculate the distribution estimators O�, O�2 (the norm notation j�j denotes the number
of elements in a set, and y is the number of years of data used):

O� D
. O�BjLBj C t O�TjLTj/

y
;

O�2 D
. O�2

BjLBj C t O�
2
T jLTj/

y
:

9>>>=
>>>;

(2.3a)

(5) Calculate VaR using

VaR D O�C 3
p
O�2: (2.3b)

In stage (5), the multiplier 3 provides the 99.9% VaR (˚�1.3/ D 0.9987, where ˚
is the standard normal CDF function).

In practice, the following estimators give numerical results that differ from those
obtained with (2.3a) by less than 0.5%:

O� D
t O�TjLTj

y
and O�2 D

t O�2
T jLTj

y
: (2.3c)

The above estimators do not require any assumptions of normality for either the body or
the tail VaR distribution.

with some very large ones. VaR was calculated for each using the EB. The values
generated were typical of capital values calculated using actual loss data, ranging
from less than one million to billions.

The scale factor calculation was found to be relatively insensitive to the value of p
in the .0:9; 0:99/. In cases where the number of losses is small (less than twenty), a
body/tail threshold of 0.9 was enough to provide sufficient points for all subsequent
calculations. In practice, p D 0:99 resulted in capital values that were very near
to the EB capital values. As the body/tail threshold decreased to 0.9, an increase
in capital value relative to the bootstrap capital values was noted; but this increase

Journal of Risk Model Validation www.risk.net/journals



A central limit theorem formulation 61

was acceptable on the grounds that a larger “minimal” capital value provides a more
conservative view.

2.3.1 Scale factor indicators

In order to avoid reliance on only one scale factor calculation methodology, five
indicators were used to calculate the scale factor t in (2.3a). They are discussed in
this section. The intuition underlying our scale factor calculation is that the “shape”
of the underlying distribution CDF is important in determining the influence of tail
losses on total capital value, and that this shape may be characterized in several ways.
The important characteristics of the shape of the CDF are its curvature and how
corresponding statistics (that is, the mean, standard deviation, etc) compare for the
body and the tail.

Each indicator, as detailed below, delivers a single numerical result; these results are
then combined (see Section 2.3.2) to produce the scale factor value. The first indicator
is the Jarque–Bera statistic, which uses a combination of the first four empirical
moments of the distribution. The second and third both measure the curvature of the
distribution empirical CDF in different ways. The third and fourth compare statistics
of the body with those of the tail. In every indicator calculation, the losses for each
test distribution are scaled to the range .0; 1/ for consistency. Figure 2 shows a scaled
idealized empirical CDF, and some key points on the CDF are marked for reference
in the detailed discussion that follows.

In subsequent sections, the following notation is used:

� n denotes the total number of losses;

� nT denotes the number of losses in the tail;

� nB denotes the number of losses in the body;

� m is the mean of all losses; and

� s is the standard deviation of all losses (with divisor n, not n � 1).

2.3.1.1 Jarque–Bera indicator. The Jarque–Bera (JB) statistic (Jarque and Bera
1980) is a test for the deviation from normality of a distribution, and it uses empir-
ical skewness and kurtosis as measures of this deviation. It is used here because
skewness and kurtosis are important characteristics of fat-tailed operational risk loss
distributions. JB is formulated as follows.
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Let the third and fourth moments of the n losses be

m3 D
X

.Li �m/
3=n

and

m4 D
X

.Li �m/
4=n;

respectively. Then, the JB statistic is given by

S D m3=s
3;

C D m4=s
4;

JB D .n � k C 1/.S2 C .C � 3/2=4/=6;

with k D 2, corresponding to two moments. For large samples, the JB statistic has
a �2.2/ distribution. For smaller samples, it is better to assess critical values using
Monte Carlo methods (Jarque and Bera 1981). The indicator used in this analysis is
given by

J D

r
JB

9:21
: (2.4)

The divisor 9.21 is the 1% �2.2/ critical value, and the ratio JB=9:21measures the
effective scaling of the data, so a null hypothesis that the data is normally distributed
may be accepted. The square root is compensation for having squared C and S in the
JB expression. The critical 5% �2.2/ value (5.991) was also considered, but the 1%
value proved to be satisfactory in combination with other indicators.

2.3.1.2 Curvature indicator 1. The first curvature indicator measures the curva-
ture of the empirical CDF in terms of the maximum perpendicular distance, Dmax,
of the scaled CDF (to .0; 1/, as above) from the 45ı line. This is distance PP0 in
Figure 2. An examination of the perpendicular distance of all points on the empirical
CDF quickly yields the maximum distance, even when the number of such points is
large. There is some possibility of optimizing the search process if assumptions are
made about where the maximum might occur. Distance Dmax is then scaled by the
ratio nT=n in order to account for the tail volume. Thus, the first curvature indicator
is given by

C1 D
1

DmaxnT=n
: (2.5)

The inversion brings the value of the indicator more in line with other indicators.
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FIGURE 2 Idealized empirical CDF.
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Scaled to .0;1/, this empirical CDF shows division between body and tail as well as a maximum deviation PP0 from
the 45 degree line. This figure is referenced throughout Section 2.3.1.

2.3.1.3 Curvature indicator 2. The second curvature indicator estimates the ac-
tual curvature at point P in Figure 2. In terms of the coordinates representing loss (L)
and cumulative probability (c), let P be the point .Lmax; cmax/ on the empirical CDF
corresponding with the maximum distance PP0. A neighborhood of n=100 points on
the empirical CDF surrounding .Lmax; cmax/ is selected, and a quadratic curve Q.L/
is fitted to the points in the neighborhood. Fitting a curve in this way helps to reduce
volatility in the result. The curvature �.L/ at a point .L; c.L// on a curve is calculated
using the curvature expression

�.L/ D
c00

.1C .c0/2/3=2

(see, for example, Weisstein 1999, Equation 14). This provides the second curvature
measure:

C2 D Q.Lmax/: (2.6)

2.3.1.4 Ratio indicator. The ratio indicator R is a comparison of the body and
tail of the empirical distribution using the minimum and maximum losses in the tail
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and for all losses:

R D 1C
max.tail/ �min.tail/

max.all/ �min.all/
: (2.7)

2.3.1.5 Quantile indicator. The quantile indicator Q–Q is a comparison of the
body and tail of the empirical distribution using the quantile losses. Denoting the
25%, 50% (ie, the median) and 75% quantiles for all losses by q25, q50 and q75,
respectively,

Q–Q D
q25 C q75 � 2q50

max.all/
: (2.8)

This measure is similar to the Bowley–Galton skewness statistic (see Shanmugam
and Chattamvelli 2015, Section 4.3.1).

2.3.2 Combined indicators

Once the indicators given by (2.4)–(2.8) have been calculated, they are scaled to a
uniform range .0; 1/ using a sigmoid function M.z/ D z=.1 C z/. The combined
indicator – the scale factor t used in (2.3a) – is given by twice the mean of the scaled
indicators, as follows:

t D 2
M.JB/CM.C1/CM.C2/CM.Q–Q/CM.R/

5
: (2.9)

The mean value of the indicators, .M.JB/ C M.C1/ C M.C2/ C M.Q–Q/ C
M.R//=5, provides a comprehensive indicator value that is not too dependent on any
one of the indicators. It was found that, used without factor 2 in (2.9), the resulting
VaR was underestimated in some cases. Therefore, factor 2 was introduced to redress
this imbalance. The value 2 arises from calibration using the test distributions. It is
geared to provide marginally larger VaR results than obtained with the EB, in order
to be more conservative. It is expected that, in many cases, the VaR derived from a
fitted distribution will be much larger than the EB VaR.

2.3.3 Indicators as a diagnostic tool for validation

Thus far, our discussion has concentrated on the technicalities of the indicators used
to calculate the scale factor that determines the weight placed on the tail losses in
determining the CLT approximation (parameter t in (2.3a)). Using the mean of all
five indicators (2.9) provides as objective a value for t as possible. Varying t from its
indicator-calculated value can then be used as a validation technique for a fitted distri-
bution in the following way. If the VaR value obtained by placing greater emphasis on
tail losses increases markedly with increasing t , then this is an indication that the loss
distribution has a very fat tail, and that an appropriate fitted distribution might be the
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GP, the generalized extreme value (GEV) or similar. If, as t increases, the VaR value
increases at a much slower rate, an appropriate fitted distribution might be lognormal
(ie, one that rarely produces extreme VaR values). The problem of producing inflated
VaR values when fitting very fat-tailed distributions to loss data is less pronounced
when using the CLT method, which is less sensitive to outlier loss values. Diagnosing
the type of fitted distribution in this manner provides a way to validate the actual fit-
ted distribution. Deviations from the diagnosis would indicate that the VaR calculated
from the fitted distribution is either too low or too high.

2.3.4 Indicators for the validation of fitted distributions

Validation of a fitted distribution (rather than theVaR calculated using that distribution)
has two useful implications. First, if the best-fit distribution is GP- or GEV-like, and
CLT validation indicates that the best-fit VaR is too high, there is a case for rejecting
the best-fit distribution and selecting the next-best fit as an alternative. The CLT
method is more stable than the EB method when used in this way because it is not
prone to stochastic sampling variations. Diagnosing the VaR calculated from a fitted
distribution as being “too high” is an unsolved problem in operational risk analysis.
VaR that is “too high” often arises from GP- or GEV-like fitted distributions as well
as when attempting to fit any distribution to a small number of very large losses. The
latter problem is described in Mitic (2017). Whereas the EB and its CLT equivalent are
both aimed at estimating minimum VaR, no technique currently exists for estimating
maximum VaR.

The second useful validation advantage is for a fitted loglogistic distribution. Esti-
mating VaR multiple times using the LDA method with a loglogistic distribution can
result in a bimodal VaR distribution. Looking ahead, Figure 3(b) is a case in point.
Such a result is due to a propensity of the loglogistic distribution to occasionally
produce excessive very high losses in a random sample. Calculating the mean value
of those annual losses produces a VaR value, but it is not necessarily representative
of the true VaR, which might be much nearer one peak of the VaR distribution than
the other. Deciding which peak to choose is the task of the CLT estimation. A full
validation process is then, given a fitted loglogistic distribution, to detect a bimodal
VaR distribution in the first place, and to compare VaR values corresponding to the
peaks in that distribution with the CLT VaR estimation.

2.4 Configuration results

Algorithm 2 and (2.9) were applied to twenty-one loss distributions, generated from
the range mentioned in Section 2.2. The resulting VaR values are given in Table 1. In
that table, the abbreviations used for the distribution taxonomy are
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� LND lognormal,

� WDWeibull,

� LGD log gamma,

� GPD generalized Pareto,

� LNMixD lognormal mixture,

� BD Burr,

� LLD loglogistic,

� GD Gumbel,

� FD Fréchet,

� GHD Tukey g-and-h.

The normal approximation results are compared with the results estimated using
the EB (see Algorithm 1). Two flavors of the normal approximation are shown. One
has the body/tail partition parameter p (see Section 2.2) set at 0.99, and the other at
0.95.

Table 1 shows a good agreement between the empirical VaRs and the two flavors
of normal approximation VaR. In most cases, the 99% flavor agrees marginally bet-
ter. The empirical VaRs are accurate to approximately 1%. In many cases, the normal
approximation VaRs fall within the 95% confidence intervals indicated. When they do
not, they tend to exceed the upper confidence limit. The normal approximation VaRs
are, therefore, more conservative than the empirical VaRs, which is an advantage from
a prudential point of view. There are two notable exceptions: LL1 and G1, for which
the normal approximation VaRs are underestimates. The loglogistic and Fréchet dis-
tributions are not commonly used in capital calculations; thus, while underestimates
are not worrying, they should be noted.

We stress that the principal purpose of the CLT alternative to EB is to derive an
approximation that is exactly that: an approximation. As such, it is a viable alternative
to the EB, and may be used to validate VaR calculated from a fitted distribution.
The EB and the CLT VaR values should agree within tolerable limits, despite any
concerns due to Berry–Esseen considerations. In this context, such tolerance is a
matter of experience and judgement, but the two calculations should certainly not be
an order of magnitude apart. No normal approximation VaR in Table 1 differs from
its empirical VaR equivalent by more than 20%, which is a sufficient tolerance for
practical purposes.

Journal of Risk Model Validation www.risk.net/journals



A central limit theorem formulation 67

TABLE 1 Capital values for configuration distributions in € (millions).

95% confidence Normal Normal
Empirical interval for approximation approximation

Distribution VaR empirical VaR VaR (99%) VaR (95%)

LN1 23.18 (22.33, 23.89) 23.51 26.39
LN2 0.40 (0.39, 0.41) 0.39 0.41
LN3 97.13 (92.34, 101.19) 104.21 111.87
GPD1 0.74 (0.73, 0.75) 0.72 0.74
GPD2 13.68 (13.45, 13.77) 13.13 13.65
GPD3 3367.99 (3192.25, 3551.95) 3584.26 3580.09
GPD4 82.54 (79.72, 85.67) 87.66 93.21
WB1 221.59 (212.7, 232.19) 227.74 254.32
WB2 30.08 (29.18, 30.57) 29.99 33.52
WB3 101.36 (99.7, 103.02) 99.84 105.89
LNMix1 10.98 (10.8, 11.12) 10.95 11.60
LNMix2 282.57 (278.94, 286.66) 276.43 292.82
GH1 2.24 (2.14, 2.3) 2.31 2.59
GH2 8.46 (8.04, 8.85) 8.78 9.97
LG1 0.17 (0.16, 0.18) 0.19 0.19
LG2 34.13 (32.83, 35.88) 30.07 28.78
B1 7084.26 (6632.76, 7518.45) 7689.92 7189.44
B2 336.11 (318.38, 353.92) 355.46 377.36
LL1 8422.43 (8417.13, 8425.34) 7128.96 6545.38
LL2 1.67 (1.58, 1.76) 1.92 1.90
G1 1142.59 (1134.32, 1151.17) 1008.79 1024.19
F1 133.54 (122.1, 142.6) 141.21 132.12

2.5 Cases where VaR is not always normally distributed

Outliers in the data can result inVaR distributions that are clearly nonnormal. Consider
the case where one loss, lmax, is very much greater than all the others. The VaR value
will either include lmax or not. If it does not, VaR will be very small compared with
lmax. If the VaR value contains lmax, VaR will be of comparable size to lmax. If the VaR
value contains two instances of lmax, the VaR will be much greater than lmax. Further
cases can be noted where there are more instances of lmax as part of the VaR value.
Overall, this gives rise to a multimodal population.

In the numerical examples that follow in subsequent sections, twelve sets of loss
data are used. The following example uses the first of them (INT_1) to illustrate the
nonnormal distribution phenomenon. INT_1 has one huge loss of €31.15 million
that is significantly larger than all other losses. Indeed, this one loss is larger than
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FIGURE 3 Three-part figure comparing various modes of VaR distribution.
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(a) Trimodal VaR distribution: all data. (b) Bimodal VaR distribution: largest loss removed. (c) Unimodal VaR
distribution: largest two losses removed.

the sum of all the other losses. The second largest loss is €9.59 million. There are
908 losses in all, and the mean loss is €69 610. INT_1 is unremarkable apart from its
largest two losses. If all losses are included and Algorithm 1 is applied, a histogram of
100 identical VaR calculations clearly shows that the distribution is not normal (see
Figure 3(a)).

For the full set of data included in INT_1, the VaR obtained was approximately
€90 million. This figure is approximately three times the value of the maximum
loss, indicating that it is likely that the VaR figures contain two (perhaps even three)
instances of the maximum loss.

If the maximum loss of €31.15 million is removed so that there is a new maximum
loss of €9.59 million, the equivalent histogram is bimodal (as in Figure 3(b)). The
VaR value in this case is approximately €26 million. Again, it is likely that two or
perhaps three instances of €9.59 million are included in the VaR figure.

It is not until the largest two losses are removed that the VaR distribution appears
normal (as in Figure 3(c)). In this case, VaR is approximately €7 million.
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It is clear that the existence of outliers has a dramatic effect on the VaR distribution
and, more importantly, on the VaR calculated.

2.6 Validation: sensitivity to model parameters

Investigating the sensitivities of model outputs to input parameters and data is an
important aspect of validation. In the context of operational risk capital calculations,
this causes particular problems because of (1) the number of parameters involved and
(2) the length of time it takes to complete sufficient Monte Carlo iterations (in an
LDA process) for one to have confidence in the result.

Each complete Monte Carlo calculation can be very time consuming, especially
if a large number of operational risk losses are involved. The calculation may take
several hours to achieve a standard 1% confidence for the calculated VaR value. That
makes it very difficult to validate the essential parameters, and even more difficult
to do extra data validations. Using a mixture of internal and external data and then
adding scenarios introduces parameters that determine the relative mix of these three
components in the LDA calculation. Further, higher-value losses and scenario values
have a significant effect on the calculated VaR, and validation runs are required to
assess the effects of each of them. The CLT method makes it very quick and easy to
do all of these validations, because the calculations it entails are practically instant.
A quick alternative to the EB, the proposed CLT method makes sensitivity analysis
easily feasible in all cases. Time dependence is almost not applicable for the proposed
CLT method. It involves calculations of means and standard deviations as well as
combinations of them, all of which are fast. The slowest step is a data read. The
slowest step of all in the LDA procedure, the Monte Carlo simulation, is absent from
the CLT method.

2.7 Validation: regulatory aspects

Validation of the operational risk capital calculation has recently come under scrutiny
from the Federal Reserve Board (Fed). Their Comprehensive Capital Analysis and
Review (CCAR) requires banks to project operational risk losses under stressed sce-
narios. The Fed has issued recent guidance (Curti et al 2016) to the effect that bench-
marking should include an EB calculation. As a result, a way to check what may
become a new regulatory requirement is an essential tool in the validation process.

3 NUMERICAL RESULTS FOR SEPARATE INTERNAL AND
EXTERNAL LOSS DATA

The calibration discussed in the previous section gives some confidence that the
normal approximation to the EB provides a reasonable estimate of minimum VaR
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TABLE 2 Capital values for internal data in € (millions).

Empirical Normal Normal
bootstrap approximation approximation

UoM VaR VaR 95% VaR 99%

1 108.1 93.1 89.5
2 70.4 75.3 70.0
3 15.0 16.8 15.5
4 3.1 3.1 3.0
5 678.7 530.9 528.1
6 1.2 0.8 0.8
7 0.8 0.5 0.4
8 1.7 1.4 0.6
9 64.1 42.5 43.8

10 8.2 6.5 6.5
11 80.6 103.5 93.3
12 0.6 0.5 0.5

Total 1032.6 874.8 852.0

for the test data sets used. In this section, we apply the same method to actual loss
data. We could regard an actual loss data set as having some sort of combination of
characteristics (as yet undefined) of the test data sets. If so, applying Algorithm 1 with
the combined indicator from (2.9) may be expected to yield satisfactory results.

Table 2 shows the EB VaR and the normal approximation to it (of the 99% flavor)
for the internal data for twelve units of measure (UoMs).

Informally summarizing the results from Table 1, the normal approximation tends
to underestimate VaR with respect to the EB. If the VaR calculated by either method
is very small, the differences in percentage terms tend to be greater, but both are
immaterial in absolute terms (that is, when compared with the totals). The normal
approximation can therefore be regarded as less conservative than an LDA analysis.
As such, the normal approximation can be regarded as more applicable for the case
of regulatory purposes. This is particularly so in the case of INT_5, which is worth
more than 50% of the total VaR. This UoM has a small number of huge losses with
thousands of very small ones, and it is thought that the huge losses have an undue
influence on all of the VaR calculations in this case. Hence, empirical VaR values for
INT_5 are probably overestimates. The normal calculation also has the advantage of
being purely deterministic. This makes it fast.

For validation purposes, a general delivery of a lower “minimum VaR” (less than
the EB VaR) should be regarded as a more stringent “minimum VaR” criterion when
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TABLE 3 Capital values for external data in € (millions).

Empirical Normal Normal
bootstrap approximation approximation

UoM VaR VaR 95% VaR 99%

1 320.1 357.9 310.3
2 978.5 1102.9 1012.2
3 17.0 16.1 15.8
4 770.1 827.3 777.7
5 2750.1 3556.6 3097.1
6 2714.3 3547.1 3138.5
7 106.9 118.6 104.3
8 105.9 110.7 102.3
9 1189.3 1358.5 1230.4

10 484.1 552.1 492.2
11 414.9 474.5 422.4
12 408.5 462.6 404.0

Total 10 259.8 12 484.9 11 107.1

calculating VaR via a fitted distribution. The standard practice when using EB VaR
has been to build in a subjective allowance such that if VaR from a fitted distribution
is “about 20%” below the EB VaR, the fitted distribution VaR would be acceptable.
This 20% criterion is subjective, and it could be abandoned if the CLT VaR is used.

The corresponding results for external data, derived from the Operational Riskdata
eXchange Association (ORX) website (http://bit.ly/2oi9Hgk), are shown in Table 3.
External losses are much higher than internal losses and, as expected, both the EB
and the normal approximation results are greater than their corresponding internal
results. In some cases, overestimation ofVaR by the normal approximation is apparent,
particularly in the 95% case.

In the context of external data, the question of how to treat outliers becomes par-
ticularly significant. All of the VaR values in Table 3 were calculated having removed
outliers according to theu-sigma rule (1.1). This process may be challenged when val-
idated, but removal of outliers has been “unofficially” sanctioned recently by Europe’s
Basel banking authority (Farkas 2015).

With external data, the pattern of overestimating EB VaR has the opposite effect on
validation to that which is suggested with the internal data. Were the VaR calculated
from it to be considered “too low”, one would have to be more cautious in rejecting
a fitted distribution. Usually, external data is not processed in isolation and so is not
validated separately.
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4 EXTENSION TO COMBINED INTERNAL AND EXTERNAL LOSS
DATA

The results of Section 2.2 will now be applied to the case where two data sets, assumed
to be independent, are available for a VaR calculation. Under Basel II rules, internal
and external data may be combined (Basel Committee on Banking Supervision 2011).
The same regulations permit the inclusion of scenarios, and these will be added to
the model in Section 5. Internal and external data sets have been analyzed separately
in the preceding section; our proposal to combine the two in a normal approximation
model only amounts to considering a linear combination of the underlying random
variables for the corresponding internal and external data sets. Minimal further theory
is required. The procedures that follow in this section and in Section 5 (in which sce-
narios are considered) employ a uniform linear combination approach to combining
data. Such uniformity is not always applicable to the LDA calculation, where internal
data may be combined with other data in many ways (through maximum likelihood
estimates, for instance). Linear combinations of data statistics in the CLT method
make intuitive sense.

In the discussion that follows, the subscripts “I” and “E” will refer to “internal”
and “external”, respectively. As in the previous section, the symbols � and �2, with
the appropriate subscripts, will denote unknown means and variances, respectively.
The sample size n in the context of empirical VaR refers to the size of the empirical
population, from which random samples are drawn with replacement. The notation
for VaR, Vt.c/, becomes rather clumsy once subscripts are added to refer to internal
and external data, so the “t .c/” subscript will be dropped, and we will simply use V
for VaR.

For internal data,
VI � N.nI�I; nI�

2
I /: (4.1)

Similarly, for external data,

VE � N.nE�E; nE�
2
E /: (4.2)

In practice, the means and variances may be estimated from the unbiased estimators
of the means and variances for the empirical internal and external data, denoted in
the following equations by the usual “hat” notation. Replacing the expressions for VI

and VE, we get

VI � N.nI O�I; nI O�
2
I /; (4.3)

VE � N.nE O�E; nE O�
2
E /: (4.4)

The mean and variance for the internal data in (4.3) correspond with the combined
body/tail mean and variance derived in (2.3a). The mean and variance for external
data in (4.4) can be derived in the same way.
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Assuming that the internal and external populations are independent, we can form a
linear combination of VI and VE as follows, using a predetermined weightw 2 .0; 1/.
The numerical value of the weight should be such that the bias is largely in favor
of the internal data. Very often, external losses are significantly higher and more
frequent than internal losses, and they should not be allowed to influence the overall
VaR calculation unduly. A method of determining the weight w, based on credibility
theory (Bühlmann and Straub 1970), is given in online Appendix A, although any
other objective method might be used:

V D wVI C .1 � w/VE: (4.5)

V also has a normal distribution:

V � N.wnI O�I C .1 � w/nE O�E; w
2nI O�

2
I C .1 � w/

2nE O�
2
E /: (4.6)

Therefore, VaR for the “internal plus external” combination may be estimated
using the 99.9% quantile of V . In practice, however, a more conservative approach
is recommended. VaR is not subadditive: given two random variables, A and B , the
VaRs generated by each of them, and the VaR generated by their sum, are related by
VaR.AC B/ 6 VaR.A/C VaR.B/. Discussions on the implications of the nonsub-
additivity of VaR may be found in both Desmedt and Walhin (2009) and Danielsson
et al (2005). Calculating VaR for the linear combination V is therefore less conserva-
tive than evaluating VaR for VI and VE separately and weighting the resulting VaRs.
The idea of separate evaluations of VaRs, followed by the weighting of results, can
be extended further once scenarios are accounted for. Therefore, in the following
sections, VaR due to scenarios is described as an “add-on”.

4.1 Numerical results: internal/external data combination

Using (4.5), with weights for each UoM calculated using the credibility method
in online Appendix A, the following results were obtained (see Table 4). The 99%
versions for the normal approximations are shown. To calculate the VaRs for external
data, the u-sigma rule outlined in (1.1) was applied, with u D 0:674, thus excluding
the upper quartile of the external data. Higher values for u, in the range (1,3), produce
VaR values that are about 10% higher, meaning they are more conservative.

A comparison of the results in the right-most columns of Tables 3 and 4 shows that,
in general, the effect of introducing augmented internal data with external data is to
increase the VaR. A much higher VaR for UoM 5 might reasonably be expected, but
the influence of external data is limited by a credibility weight value that is near to 1.

Using a mix of external and internal data provides a further validation opportunity.
With internal/external combinations, external losses should not dominate (provided
there is sufficient internal data). If, using the same credibility weight as was calculated
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TABLE 4 Capital values for external data in € (millions).

Credibility
UoM weight .w/ wVI C .1 �w/VE

1 0.8789 116.2
2 0.9467 120.3
3 0.9621 15.6
4 0.9814 17.4
5 0.9990 530.7
6 0.9985 5.5
7 0.9976 0.7
8 0.9878 1.8
9 0.8405 233.1

10 0.9582 26.8
11 0.9834 98.7
12 0.9989 0.9

Total 1167.6

for the EB, the CLT approximation with both external and internal data is much larger
than the CLT approximation with internal data only, then the calculated weight is
suspect and should be investigated. For validation purposes, the percentage increase
on calculating VaR when external data is added should be approximately the same
for both CLT and EB calculations.

5 EXTENSION TO A SINGLE SCENARIO

The use of historic data (as in Sections 3 and 4) to estimate a future capital requirement
must assume that past experience is an adequate predictor of future experience. This
assumption is not always justifiable in the context of operational risk because changes
to the regulatory environment, operational risk control and antifraud measures are
common. A standard way to address this problem is through the use of scenarios. In
the context of operational risk, a “scenario” is a qualitative estimate of the largest
future loss that could be incurred within a given time horizon. Typical time horizons
are five, ten, twenty or forty years. Scenarios effectively answer questions such as:
What is the largest operational risk loss expected in the next ten years? Answers
typically take the form of a single number, such as “£45.9 million”. Scenarios are
usually determined by teams of experts – there may be several per UoM – and cover
several time horizons. Using scenarios in capital calculations is intended to provide
a forward-looking view that accounts for future events, environment changes and
procedural advances. As with the internal/external data combination, scenarios are
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also combined with data statistics linearly. This practice preserves the consistency of
the CLT method. It is not necessarily applicable to the LDA method, for which many
methods may be used, such as treating scenarios as weighted losses in maximum
likelihood estimation.

Having obtained an EB estimate of VaR using internal and external data, an add-on
can be formulated to account for one or more scenarios per UoM. This section contains
a discussion of the case of a single scenario and will be followed by an extension to
many scenarios.

Appendix B (available online) suggests a way to calculate the scenario weightwS.y/

for a single 1-in-y scenario value S.y/ (see equations (B1) and (B2) in Appendix B,
available online). The precise method used is not central to this discussion. Having
predetermined a scenario weight, the productwS.y/�S.y/ is simply added to theVaR
calculated from the random variable V (as in (4.5)). This method should be seen as
a calculation of a minimal scenario add-on, to match the minimality of the empirical
VaR. Appendix C (also available online) contains details of a more sophisticated
model.

5.1 Extension to many scenarios

Consider the case of a sequence of m scenario values, S.y.1//; S.y.2//; : : : ;
S.y.m//, with respective time horizons y.1/; y.2/; : : : ; y.m/. Assume further that a
corresponding sequence of scenario weights, wS.y.1//; wS.y.2//; : : : ; wS.y.m//, has
been determined. Then, each triple fSy.t/; y.t/; wS.y.t// W 1 6 t 6 mg can be
treated in the way described in the previous section, deriving variances �2t D
.0:1Sy.t/=1:96/

2. Denoting the VaR for each scenario by Vt .S.y.t///, the total
scenario VaR add-on, VS, is then

VS D

mX
tD1

wS.y.t//Vt .S.y.t///: (5.1)

Each term in this sum is positive and will thus increase the total VaR. However, there
are limited merits to including any scenarios with time horizons that are less than the
highest time horizon. All others are likely to be effectively represented by the external
data. However, Dutta and Babbel (2014) make a valid point that scenarios should not
be treated in the same way as data, since scenarios are forward looking and perform
a different function. The add-on calculation for lower horizon scenarios should at
least be done. It can be ignored, however, if it makes an insignificant difference to the
overall VaR.

A practical point arises if a scenario value is generated without recourse to the
external data. A rare scenario value (for instance, 1 in 40 or 1 in 50) is intended to
represent an event, the severity of which exceeds the generality of external losses.
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TABLE 5 Capital values for scenarios in € (millions).

1-in-40 scenario 1-in-10 scenario‚ …„ ƒ ‚ …„ ƒ Total
Weight � Weight � scenario

UoM Weight Value Value Weight Value Value VaR VS

1 0.0028 945.000 2.68 0.0040 77.00 0.31 3.00
2 0.0040 567.000 2.26 0.0020 123.00 0.24 2.50
3 0.0068 348.300 2.38 0.0459 5.40 0.25 2.63
4 0.0131 175.365 2.30 0.0962 3.30 0.32 2.61
5 0.0001 369.900 0.04 0.0007 403.00 0.27 0.31
6 0.0001 114.075 0.01 0.0014 194.00 0.27 0.28
7 0.0031 449.280 1.38 0.1389 0.18 0.03 1.40
8 0.0177 253.125 4.47 0.0066 41.50 0.27 4.74
9 0.0041 589.952 2.39 0.0098 27.60 0.27 2.66

10 0.0023 123.389 0.29 0.0749 4.00 0.30 0.59
11 0.0027 47.925 0.13 0.0052 52.00 0.27 0.40
12 0.0007 328.050 0.22 0.0334 8.50 0.28 0.50

Total 18.54 3.08 21.62

If this is not so, the suggested scenario is effectively modeling with the inclusion
of external data. An alternative view is that external data that exceeds the scenario
value is unrepresentative of losses that are likely (or even unlikely) to be incurred.
We subscribe to the latter view by basing the scenario weight calculation on external
data capped at the scenario value. This is particularly important when dealing with
scenarios that have shorter time horizons (1-in-5 years, 1-in-10 years, etc).

5.2 Numerical results: scenarios

The results in Table 5 were obtained using the 1-in-40 and 1-in-10 scenarios for the
same twelve UoMs of Tables 1–3. The VaRs due to scenarios were calculated using
(5.1). The figures in the “1-in-y” columns are given without their weight multipliers,
which are recorded in other columns instead. This gives some idea of comparability
with the internal and external VaRs in Tables 1 and 2, respectively. The actual VaR to
be added on is then the product of the 1-in-y values and their corresponding weights.

6 NUMERICAL RESULTS: COMBINED AND WEIGHTED VAR

Table 6 shows the combined and weighted VaRs, V , using the results from Tables 4
and 5. Given a credibility weight w and a scenario weight wS, the overall weighting
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TABLE 6 Combined capital values in € (millions).

Credibility Scenario Total
weight VaR VaR

UoM .w/ wVI .1 �w/VE wVI C .1 �w/VE .VS/ .V /

1 0.8789 78.7 37.6 116.2 3.0 119.2
2 0.9467 66.3 53.9 120.3 2.5 122.8
3 0.9621 15.0 0.6 15.6 2.6 18.2
4 0.9814 2.9 14.5 17.4 2.6 20.0
5 0.9990 527.6 3.1 530.7 0.3 531.0
6 0.9985 0.8 4.7 5.5 0.3 5.7
7 0.9976 0.4 0.3 0.7 1.4 2.1
8 0.9878 0.6 1.2 1.8 4.7 6.5
9 0.8405 36.8 196.2 233.1 2.7 235.7

10 0.9582 6.2 20.6 26.8 0.6 27.3
11 0.9834 91.7 7.0 98.7 0.4 99.1
12 0.9989 0.5 0.4 0.9 0.5 1.4

Total 827.4 340.2 1167.6 21.6 1189.2

scheme used is
V D wVI C .1 � w/VE C wsVS: (6.1)

The weights w are shown in Table 4. Table 6 shows a slightly different view of the
composition of the total VaR presented in Tables 4 and 5. It sets out the weighted
internal and external VaRs for comparison with the weighted scenario VaR. The val-
idator should compare these values for each UoM in order to detect any anomalies.
For example, for UoMs 4 and 8, the weighted external VaR is much greater than the
weighted internal VaR. This disparity might then be investigated further and possible
causes explored. In the case of UoM 9, the credibility weight is relatively low. For
UoM 4, the internal plus external VaR is low compared with the total VaR (for all
UoMs); thus, if an underlying problem exists, it is unlikely to be material.

6.1 Comparison with results based on fitted distributions

The primary purpose of this discussion is not to formally compare capital values
derived from an EB with the generality of calculation methods that use fitted distribu-
tions. It is worth reiterating the point that the EB method should provide a minimum
estimate of capital. Therefore, a smaller capital value derived from any other method
should be investigated and a resolution sought. Dutta and Perry (2007) give a summary
comparison of the EB method with calculations based on the g-and-h distribution.
They state that the 25th percentile and the median of the empirical estimates are about
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TABLE 7 LDA and OpVision-fitted capital values in € (millions).

Total LDA VaR using distributions
UoM VaR .V / fitted using OpVision

1 119.2 112.1
2 122.8 292.7
3 18.2 25.5
4 20.0 71.8
5 531.0 387.9
6 5.7 142.8
7 2.1 4.6
8 6.5 23.4
9 235.7 266.2

10 27.3 10.8
11 99.1 106.9
12 1.4 55.4

Total 1189.2 1500.1

one-half and one-third of the g-and-h estimates, respectively. The 75th percentiles of
the empirical estimates are greater than the corresponding g-and-h estimates. Overall,
they stress the dependence of the EB on the sampling method used.

Summary results obtained using distributions fitted to the twelve UoMs using the
OpVision application are shown in Table 7. This application allows the user to choose
a severity and a frequency distribution, fits data to those distributions and calculates
a goodness-of-fit measure. It also calculates capital using the convolution method of
Frachot et al (2001).1

It should be noted that the VaR values calculated by fitting a distribution to data
are greater than the corresponding theoretical minimums (the LDA totals), except
in the case of UoMs 1, 5 and 10. In the case of UoMs 6 and 12, the fitted VaRs
are substantially greater than the minimum VaR. In both cases, the discrepancy is a
signal to investigate further. Having two calculation methods for the “minimum VaR”
helps the validation process. If both are greater than the VaR calculated from a fitted
distribution, then the conclusion that the latter is “too low” is strengthened. Major
discrepancies are often due to the influence of external data and to the modeling
threshold set in the fitting process. Using high modeling thresholds has the effect

1 For further details of the software used to generate these results, see OpVision’s website:
www.qrr.es/products/opvision.
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of reducing frequency in the LDA process by cutting out a significant number of
low-value losses, while retaining the bulk of the total loss. We have often observed
this phenomenon. In extreme cases, removing 95% of the lowest value losses results
in the retention of 95% of the total loss in the remainder (that is, the 95% that were
removed comprised only 5% of the total value). Raising the modeling threshold often
depresses the calculated VaR value. In cases where the fitted distribution produces an
“excessively high” VaR value, very high scenarios were responsible for inflating the
values due to data alone.

From a validation viewpoint, an inflated VaR after the addition of scenarios could
be taken as an indicator, alerting us to the fact that a scenario value is out of line
with the data. Although a scenario value can be compared directly with a maximum
datum, for example, it is sometimes only after the VaR has been calculated that such
problems become apparent.

6.2 Summary of validation points

In this section, we summarize positive reasons for introducing the CLT method as a
validation tool. They are as follows.

� CLT calculations are quick to complete and require simple initial calculations.
The Monte Carlo calculations involved in the EB can be very time consuming.
A crude comparison is between an instant CLT calculation and an hour-long
EB requiring more than a million iterations.

� The CLT method can be used to investigate the sensitivity of VaR to outliers,
weights, system parameters and statistics of the data. In the past, we have used
many weeks of overnight runs to produce heat maps as part of an extensive
validation process. Using the CLT, that work could have been done in hours.

� With increased regulatory interest in the calculation of operational risk capital,
a method allowing us to validate a bootstrap calculation is a useful weapon.

� The CLT method can be used as a tool to detect fitted distributions that produce
VaR results that are either too small (because they are less than a theoretical
minimum) or too large (because they are from a particular class of distributions
that is known to produce excessively high VaRs).

7 CONCLUSION

The aim of this paper was to formulate a realistic process that would be an alternative
to the EB method of estimating minimal capital value. The proposed normal approx-
imation agrees well with the EB results and has certain advantages over it. They are
as follows.
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� The normal approximation is an independent method of validation.

� Sampling is not required as the method is not stochastic. The normal approxi-
mation is fast: the rate-determining step is the data read.

� It is a unified methodology: the same methods may be used to estimate a
component of VaR based on internal data, external data and scenarios.

� The normal approximation method does not depend on modeling a loss distri-
bution. In particular, the problem of grossly inflated VaR does not arise if a GP
(or similar) distribution is used.

� The normal approximation produces a more conservative (that is, a higher)
minimal capital than the EB in most cases.

� The normal approximation allows for fast approximation of VaR at different
percentiles to inform on an institution’s risk appetite considerations.

We stress that the processes described in this paper – either the EB or the normal
approximation – tell us nothing about what the actual capital values should be. They
only provide minimum values. The normal approximation is capable of being con-
figured to estimate the capital value itself (as opposed to the minimal capital value)
by choosing the appropriate parameters, which is a further advantage of using it.
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