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ABSTRACT
Although the medical device industry operates within a stringent
regulatory environment, the growing deployment of connected,
intelligent medical devices (CIMDs) in the healthcare sector is chal-
lenging these established regulatory frameworks. CIMDs come in a
variety of forms, from implantables, to specialist IoMT devices de-
ployed at the point-of-care, to AI-based medical devices, and AI as a
medical device (AIaMDs). These devices raise several cybersecurity,
data management, and algorithmic integrity concerns for patient
safety and the delivery of reliable, responsible healthcare. The pur-
pose of this article is to focus on a particular characteristic of CIMDs:
their changing risk profile, several times throughout their lifecycle,
with limited awareness from users, manufacturers, and regulators.
Looking at the implications of these often subtle yet meaningful
software modifications for current medical device regulations and
for critical stakeholders in the CIMD ecosystem, the article high-
lights three main challenges to: i) risk assessment, classification
and management frameworks that underpin current medical device
regulations; ii) current medical device compliance frameworks, es-
pecially the post-market surveillance of medical devices; and iii) the
detection, categorization, and reporting of compromised devices
that might not perform according to their intended purpose. The
article brings empirical evidence from a qualitative research study
conducted with critical stakeholders in the medical device sector.
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1 INTRODUCTION
The use of software in medicine and healthcare, including software
as a medical device (SaMD1), has been growing over the years,
having a variety of applications and purposes from clinical decision
support, diagnosis, treatment, and assistance in complex medical
interventions. Within the broad category of software-based medical
devices and SaMDs, we have identified a category of healthcare
technologies that is raising considerable concerns about patient
safety and security, and the integrity of digital healthcare, which we
call “connected, intelligent medical devices” (CIMDs). CIMDs are
“medical devices that incorporate software and artificial intelligence
tools, and use communication technologies and networks to trans-
fer, manage, store, and analyze health data” [31:10]. These can be
connected devices used in various healthcare settings such as smart
CT scanners, as well as wearables or implantables such as heartrate
monitors that collect patient data and can provide therapeutic op-
tions. They can also be AI-based medical devices or standalone
AI as a Medical Device (AIaMD) that provide decision support or
assistance to professional staff. Together, these devices form a con-
nected, intelligent medical device ecosystem at the confluence of
the Internet of Medical Things (IoMT) and artificial intelligence (AI)
[22, 40, 42] – a connected infrastructure of smart medical devices,
software applications, and communication systems and services
that facilitate data collection, transmission, storage, management,
analysis, and actuation in digital healthcare.

While CIMDs have undoubtable benefits – from remote man-
agement of heart failure in implantables to sophisticated ma-
chine learning software that provides considerable support in di-
agnosis or surgery – they also raise critical cybersecurity and
algorithmic integrity concerns. These challenges are becoming
more well documented in the specialist literature and practice
[7, 8, 10, 25, 27, 29, 41, 44], highlighting their serious consequences
for patient safety, their health outcomes and fundamental rights,
as well as important consequences for medical professionals and
the resilience of the healthcare infrastructure [31].

Because of their potentially life-threatening consequences for
patients, medical devices are strictly regulated in most jurisdic-
tions in order to evaluate and manage their safety and performance
(Section 3). The regulation is generally structured on a risk-based
medical device classification system, from low to moderate to high
risk. Risk assessment and classification are conducted by the de-
vice manufacturer and reported to the regulator for review and/ or
market authorisation, or to an approved body as part of conformity

1The IMDRF defines SaMD as “software intended to be used for one or more medical
purposes that perform these purposes without being part of a hardware medical device”
[21:6].
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assessment and certification. In recent years, medical device regula-
tions have tried to keep pace with innovations in digital healthcare,
recognizing that medical device software and SaMDs fall within
their scope as “active medical devices” [14, 54].

However, these regulatory reforms are also perceived as insuffi-
cient in keeping pace with the cybersecurity, data quality, and algo-
rithmic integrity challenges raised by CIMDs [6, 31, 33, 39, 49, 55].
A particular concern that will be explored in this article is guided
by the following set of questions:

1. To what extent does the risk profile of a connected, intelligent
medical device – based on its risk classification declared by man-
ufacturers at certification, regulatory review, or market approval –
changes once the device is in use?

2. How often is a CIMD’s risk profile modified throughout its life-
cycle, and how transparent are those changes to critical stakeholders?

These are important questions given that the risk-based classifi-
cation of medical devices is a fundamental pillar of current medical
device regulations.

1.1 Key Findings
In this article, we highlight that some CIMDs can change their risk
profile several times throughout their lifecycle with limited aware-
ness from users, manufacturers, and regulators. These changes are
attributed to the more dynamic nature of software in/as medical
device than their conventional counterparts. The modifications can
result from both the exploitation of cybersecurity vulnerabilities in
the IoMT and from the growing use of unlocked, “adaptive” algo-
rithms in medical device software based on continuous learning2
[15, 43, 45]. Our scenario below (Section 2) shows that these dy-
namics can have serious consequences in the connected, intelligent
medical device ecosystem where IoMT and AI medical devices are
increasingly embedded and rely on each other’s functionalities to
create the smart healthcare environment our societies require. In
our discussion (Section 4), we further highlight that the changing
risk profile of CIMDs raises challenges for: i) the risk assessment,
classification and management frameworks that underpin current
medical device regulations; ii) current medical device compliance
frameworks, especially the post-market surveillance of medical
devices; and the iii) the detection, categorization, and reporting of
compromised devices that might not perform according to their
intended purpose.

1.2 Methodology
The findings and discussion points highlighted in this article are
based on research conducted in the Reg-MedTech Project [56] of the
PETRAS National Centre of Excellence in IoT Systems Cybersecu-
rity between October 2021 and August 2022. The project examines
the critical regulatory and standardization challenges raised by

2The terms “locked” and “adaptive” algorithms are used in relation to medical devices.
According to the FDA, “locked algorithms are those that provide the same result each
time the same input is provided. As such, a locked algorithm applies a fixed function
(e.g. a static look-up table, decision tree, or complex classifier) to a given set of inputs.
These algorithms may use manual processes for updates and validation. In contrast
to a locked algorithm, an adaptive algorithm (e.g. a continuous learning algorithm)
changes its behaviour using a defined learning process. The algorithm adaptation
or changes are implemented such that for a given set of inputs, the output may be
different before and after the changes are implemented” [16:5].

CIMDs. The findings outlined below are derived from the following
data collection methods employed in our research:

Semi-structured interviews with 12 stakeholders from different
organizations involved in the manufacturing, development, regula-
tion, and operation of CIMDs in the digital healthcare and medical
device space. The categories of respondents included 4 device manu-
facturers, 2 software developers/ researchers, 1 security practitioner,
1 lawyer, 1 regulator, 1 standards-maker, 1 clinician, 1 academic
researcher. The interviews were conducted with a consistent line of
inquiry that was two-fold: i) understanding the existing process of
regulating CIMDs; ii) understanding the critical challenges posed
by CIMDs to current regulatory frameworks, manufacturing and
clinical practices. The chosen line of inquiry was to facilitate a
detailed analysis based on practitioner and expert knowledge in the
field. Consistent with the practice of conducting semi-structured
interviews, the duration of interviews and the number of ques-
tions varied across different participants and was determined by
the knowledge and willingness of participants to discuss pertinent
issues. All the interviews were digitally recorded, transcribed, and
checked. On average, most interviews lasted one hour. These prac-
titioner and expert elicitation interviews allowed the researchers
to gain a deeper understanding of the benefits and limitations of
existing regulatory frameworks and the obstacles faced by different
stakeholders in developing and deploying CIMDs.

A roundtable (in workshop format) entitled “The Future of Med-
ical Device Regulation and Standards: Dealing with Software Chal-
lenges”, held on 27 April 2022, organized in collaboration with
BSI (UK national standards body) and MHRA (UK medicines and
healthcare products regulator). The roundtable was attended by 45
participants with representation across the following stakeholder
categories: medical device manufacturers, software developers, reg-
ulators, standards-makers, researchers, lawyers, security practition-
ers, clinicians, industry association representatives. The roundtable
included a plenary session with keynote talks that focused on the
latest regulatory responses to software-based medical devices and
how standards can best support these regulatory developments.
The keynotes were followed by several rounds of small group dis-
cussions tackling the main hurdles that software developers and
device manufacturers face pre- and post-market to demonstrate
conformity and ensure an appropriate level of cybersecurity, data
governance, and integrity of algorithmic decisional tools in the
medical field. This approach facilitated a broad range of responses
and the provision of critical details based on expert and practitioner
experiences [23]. Participants also reflected on current gaps in reg-
ulatory guidelines and standards and discussed priority areas for
future standards development. Full details of the workshop method-
ology and findings, including the workshop design and questions,
can be found in the White Paper entitled “The Future of Medical
Device Regulation and Standards: Dealing with Critical Challenges
for Connected, Intelligent Medical Devices” [31], in Section 3 and
Appendices A-C.

Desk-based analysis of relevant policy, legislative, and regulatory
documents applicable to medical devices, including software-based
and standalone medical device software. The study applied in-depth
content analysis as a method to review policy papers. Full details
of the policy and regulatory frameworks reviewed can be found in
the White Paper entitled “The Future of Medical Device Regulation
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and Standards: Dealing with Critical Challenges for Connected,
Intelligent Medical Devices” [31], in Section 2.

Ethical considerations were fundamental in the conduct of this
research as it involved personal data collection and collection of
viewpoints from individuals and organizations. Ethics approval
was thus obtained from UCL Research Ethics. Necessary steps for
ensuring privacy, anonymity, and confidentiality were designed into
the research programme. Prior to the interviews and roundtable,
informed consent to take part in the study was obtained from each
participant.

In the sections below, we provide anonymized evidence from
our interviews and roundtable event to substantiate our findings
and discussion points.

2 CHANGING RISK PROFILE OF CONNECTED,
INTELLIGENT MEDICAL DEVICES (CIMDS)

Let us imagine the relatively likely scenario where a new pandemic
is affecting our global society. Like Covid-19, it is based on the
airborne transmission of a respiratory virus that affects the lungs.
The extent to which and how the virus affects the respiratory sys-
tem varies considerably. Patients arrive in hospital with different
degrees of lung damage, making it hard to identify critical early
treatment. Because the condition is poorly understood and contin-
uously evolving, several hospitals decide to employ a new medical
imaging analysis software using an unlocked, adaptive algorithm
that processes and analyses chest and lung images sent from several
hospitals and offers clinical decision support to professional staff,
such as whether an antiviral agent or mechanical ventilation should
be administered.

The benefits of employing an adaptive algorithm using a deep
learning architecture that pools data from various hospital sources
and learns continuously are undoubtable: it supports medical
decision-making in situations of public emergency, where data
about the nature of the condition and patient outcomes are abun-
dant but dispersed and evolving. However, our scenario presents
some critical challenges. The X-ray images that the medical device
software pools from various hospitals differ considerably in quality,
being taken on different machines, which reduces image compara-
bility. The likelihood of this situation occurring is supported by a
recent study that pointed out “algorithm performance may degrade
when applied to images generated by equipment from a different
manufacturer or in a different clinical environment than those of
the training set” [26:415]. Another study emphasised that “the rapid
evolution of continuous learning AI models makes implementation
of continuous learning AI quality control measures challenging”
[36:11].

Continuing with our scenario, we can easily imagine that, with-
out the awareness of clinical staff, some of the smart X-raymachines
used in hospitals to take and send images to the cloud have been
compromised, exploiting a security vulnerability that allowed hack-
ers to upload old chest X-rays from patients with already known
conditions. As the decision support medical device software is based
on a weakly supervised, deep learning model, it soon starts training
on these images, slowly worsening its treatment recommendations.
The changes are not immediately noticeable to professional staff,
who continue to administer treatment informed by the outputs

of the AI medical device software. Because staff use their medical
discretion, some rely on the software outputs more than others,
making it hard to identify which patient conditions have worsened
due to what treatment input. It thus takes a while before hospi-
tal staff and administrators realize that something is going awry
with the software tool. In addition, identifying which X-ray ma-
chines have been compromised and are uploading old images, and
in which hospitals these are situated, is also proving difficult be-
cause only a particular model from a particular manufacturer had
the compromise, and this model was distributed in several hospitals
contributing to the imaging system, alongside other machines that
were not compromised.

While this might seem like a long-term scenario, its fundamental
pieces are very much present today. We are currently testing and de-
ploying smart healthcare systems that present a multi-layered, con-
nected, intelligent medical device ecosystem comprising of smart
medical sensors, connected devices, cloud computing, and AI-based
healthcare technologies [1, 28]. Adaptive algorithms based on deep
learning models that are relatively inscrutable are already available
on the market [46:16] and are considered for interventions simi-
lar to the healthcare crisis presented above [2, 34]. AI tools have
already been considered for similar purposes during the Covid-19
pandemic, and can be used to distinguish chest X-rays of Covid-
19 patients from other diseases like influenza pneumonia [19]. It
is, thus, not impossible to image other scenarios where deploying
these technologies can have life threatening consequences, such
as aiding with brain mapping in surgery (helping surgeons decide
which part of the brain to remove to treat a tumor) [37:544], helping
with cancer screening and diagnosis, and even using implantable
AI platforms to identify pathological patterns [9, 38].

A fundamental feature of the CIMDs described in this scenario
is that their risk profile changes relatively subtly over time, yet
the cumulative effects of the security vulnerability in the X-ray
machines plus the adaptive learning properties of the imaging anal-
ysis algorithmic tool could cause substantial harm to patients, their
health, and long-term wellbeing. In our roundtable, the “dynamic
risk profile” of connected, intelligent medical devices was identified
by bothmanufacturers and regulators as a critical challenge because
it can affect the declared safety classification of the device without
the manufacturer’s, the healthcare professional’s, or the regulator’s
knowledge. As a regulator explained during the roundtable, these
subtle yet meaningful changes can be triggered in equal measure by
exploited cybersecurity vulnerabilities or by dynamic algorithmic
learning processes, even without continuous connectivity to the
hospital network (Regulator, Reg-MedTech roundtable, 2022). This
increases the opacity of the interactions in a connected, intelligent
medical device ecosystem like the one described above that sits
across several physical sites (hospitals), brings several digital tech-
nologies and processes together (IoT, AI, cloud computing), and
involves both algorithmic and human decisions.

The extent of software vulnerabilities and, consequently, device
failure modes in a CIMD ecosystem should not be taken for granted.
The ECRI Top Ten Technology Hazards for 2022 report identifies
both cybersecurity attacks and poorly performing AI tools in its list:
“1. Cybersecurity attacks can disrupt healthcare delivery, impacting
patient safety” and “7. AI-based reconstruction can distort images,
threatening diagnostic outcomes” [11:2].
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A recent study conducted by Cynerio in over 300 hospitals, look-
ing at over 10 million IoT and IoMT devices, highlights that “a
whopping 73% of IV pumps have a vulnerability that would jeop-
ardize patient safety, data confidentiality, or service availability if
it were to be exploited by an adversary” and that “more than a
half of connected medical and other IoT devices in hospitals have a
known critical vulnerability”, with “a third of bedside healthcare
IoT devices, the devices closest to patient care” having “an identified
critical risk” [53:3]. Vulnerabilities in cardiac or drug infusion de-
vices are also well known to the security community [3, 10, 24, 25].
Generally, vulnerabilities in hospital or patient-deployed connected
medical devices stem from maintaining default passwords or set-
tings, failing to update outdated software, long lifecycle of devices
that are in continuous use as part of the healthcare infrastructure,
and relatively insecure hospital networks [31:41].

The situation is equally challenging when it comes to AI soft-
ware in standalone form or integrated into other medical devices
or technologies. Recent examples include AIaMDs (with FDA clear-
ance and a CE mark) aimed to detect diabetic retinopathy that
performed as accurately as a human specialist during development,
yet witnessed decreased performance over time in test clinics in
rural Thailand [20]. Unlocked algorithms that are frequently fed
new data and learn continuously from it using machine learning or
deep learning models are particularly opaque and even the smallest
change from the development lab, such as the image quality [43],
can have important consequences to patients, from reinforcing
harmful biases to affecting their safety and wellbeing [17, 18, 31:44–
48, 48]. The consequences of deploying unlocked algorithms are
already known in self-diagnosis apps, where they are shown to be
worsening in results over time [5].

Lastly, several studies have shown that the number of software-
related medical device recalls is increasing substantially, varying
in application from decision support systems, to implants, to life-
sustaining devices [37]. This raises critical concerns about the ex-
tent to which current medical device regulations are fit for purpose
when it comes to medical software in standalone form or integrated
in other products. Below, we briefly explore the main features of
medical device regulations and highlight some of the key challenges
that CIMDs raise for them.

3 THE REGULATION OF MEDICAL DEVICE
SOFTWARE

To ensure patient safety, medical device regulations largely con-
cern the “placing on the market, making available on the market or
putting into service of medical devices for human use” [12:Art 1.
para 1]. This generally means that without conformity assessment
and certification by an approved body, or regulatory review and/or
authorisation (depending on the jurisdiction and the device classi-
fication), medical devices cannot be placed on the market [12:Art
5. para 1]. Thus, the regulatory regime for medical devices can be
imagined as having four stages: 1) device manufacturers have an
obligation to specify the intended purpose of a device, conduct clin-
ical trials and performance assessments, establish risk assessment,
and classify their medical device following a low (class I), medium
(II), or high (III/ IV) risk-based classification system set in place by
the regulator; 2) this information is captured in technical documents

Figure 1: Example of IMDRF’s SaMDs Risk Categorization
Interfacing with Regulation (EU) 2017/745 – Medical Device
Regulation [54:26]. A similar approach can be seen in the US
[16:5].

that are put forward to the regulator or other approved bodies for
certification, review, or market approval (market approval is needed
for devices classed as high or highest risk); 3) once the device can
be placed on the market, the manufacturer has a responsibility to
conduct post-market surveillance to ensure the device continues
to be safe and is performing according to its intended purpose, as
stated in its original documentation; 4) manufacturers are required
to maintain records and report the results of their post-market
monitoring and surveillance to the regulator on a regular basis. If a
device becomes faulty or new risks to patient safety are discovered
or disclosed, the regulator can recall the device from the market.
While jurisdictional differences exist, the foundational principles of
medical device regulations are largely aligned internationally and
voluntary bodies such as the International Medical Device Regula-
tors Forum (IMDRF) provide an opportunity for rule harmonization
in this space.

Initially, when software become recognized in the medical device
regulation, it was classed as low risk due to its largely assistive role
in clinical management. As software become more complex and
increasingly used in treatment and diagnosis, regulators exhibited
concerns about its impact on patient safety and its performance
over time. In 2014, the IMDRF put forward a risk categorization
framework for SaMDs, which interfaces with national regulatory
frameworks and their device classification systems, as seen in 1
below.

As noted above, products expected to pose less risks to patient
safety do not go through a full regulatory market authorisation
process. Instead, in jurisdictions such as the US or the EU, an “equiv-
alence” pathway can be used, which allowsmanufacturers to submit
clinical evaluation documentation for their products based on equiv-
alence to an already marketed device [47:15, 52]. In the US, this is
known as the 510(k) review pathway.

Growing evidence from the specialist literature shows that med-
ical device software is placed on the market with a predominantly
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medium (even low) risk classification and through the equivalence
review process, which essentially asks manufacturers to demon-
strate that their products are similar to others already approved on
the market, before they are cleared. For instance, in their study on
medical device software recalls in the US, Ranquillo and Zucker-
man note: “Of the 11 software devices reviewed through the 510(k)
process, none was tested in clinical trials to determine safety or
effectiveness. In their publicly available 510(k) application sum-
maries, the manufacturers stated that they performed nonclinical
testing (eg, simulation, performance testing, software validation)
to determine substantial equivalence to software devices already
on the market” [37:544]. In addition, Vokinger et al note that: “A
majority of AI/ML-based medical devices are cleared through the
510(k) pathway. [. . .] The 510(k) clearance can lead to chains of
medical devices that claim substantial equivalence to each other,
but over the years or even decades, may diverge substantially from
the original device” [47:15]. They further note that, in the man-
ufacturer submitted documentation, “only rarely does the device
description state whether a medical device contains an AI/ML com-
ponent”, while in practice several devices are entering the market
being advertised as “adaptive” algorithms on the manufacturers’
websites [47:16–17]. This is confirmed by further studies, which
demonstrate that a considerable proportion of FDA-cleared AI/ ML
medical device software is not declared as such in official documen-
tation [4] and that, at the moment, there are clear limitation with
the evaluation process for approved medical AI devices [50].

We are, thus, witnessing important challenges with the current
processes for evaluating, reporting, classifying, reviewing, and ap-
proving CIMDs on the market. While the regulation has been trying
to catch up with digital technology innovation in this space, we are
also seeing that it is not always possible to capture the appropriate
risk profile of these devices at the pre-market and review stage. The
situation becomes even more complex once the devices are in use,
as discussed below.

4 DISCUSSION: IMPACT OF CIMDS ON RISK
ASSESSMENT, CLASSIFICATION, AND
MANAGEMENT

If we return to our scenario, we see how easy it is for CIMDs
to change their risk profile and interact with each other in less
transparent ways, increasing vulnerabilities, risks, and potential
harm to patients. Below, we focus on what the changing risk profile
of CIMDs, once deployed and in use, means for the fit-for-purpose
of current medical device regulations.

4.1 Risk assessment and classification
challenges

The procedural limitations discussed above are critical in the con-
text of CIMDs, because a large proportion of these devices rely on
general purpose technologies. Thus, it is important to note the “user
and context-specific nature of AI applications” [35:326] and IoMT
systems. As noted by Park et al, “AI solutions for healthcare differ
from drugs or [traditional] medical devices in that they are designed
to affect human decision-making. The utility of conveyed informa-
tion is determined by perception, comprehension, and subsequent
actions of the user” [35:327].

This implicitly means that the profile of CIMDs is very likely
to change based on its use, which often makes it hard for manu-
facturers to risk assess and classify their devices with complete
understanding of how they might change over time and who might
affect this change. This is confirmed by a participant in our study,
who noted: “The risks of artificial intelligent software are not well
understood because a lot of times the algorithms are learning upon
themselves without necessarily an oversight right away from an
expert or a clinician” (Manufacturer, Interview-004, 2022). Further-
more, a regulator present in our roundtable highlighted that, as
more innovations enter this space – such as the use of foundation
models [32] and meta learning - the qualification and classification
of AI medical devices will become increasingly difficult and main-
taining the initial device risk profile is almost impossible (Regulator,
Reg-MedTech roundtable, 2022).

Regulators are already thinking about how to address this chal-
lenge, but much more is needed in terms of procedural clarity and
guidance provision. For instance, in the US, software modifications
through the lifecycle of a medical device are already tackled in
regulatory guidance, with manufacturers having to submit and
obtain FDA clearance of a new premarket notification (510(k)) if
their software has changed in a manner that “could significantly
affect the safety or effectiveness of the device”, or has seen ma-
jor changes in its intended use [13]. In addition, The FDA is also
proposing a new regulatory approach to better capture modifica-
tions to AI/ML-based software as a medical device throughout their
lifecycle [15]. Through a “Predetermined Change Control Plan” in
premarket submissions and a continuous algorithmic performance
monitoring plan, the FDA is hoping to address the changing risk
profile of AI in and as a medical device. Regulatory plans to mitigate
the risks associated with adaptive algorithms in the medical device
sector are also considered in the UK [30]. While these initiatives
are still under development, several challenges remain in this space.
A manufacturer at our roundtable noted: “There is lack of regu-
latory guidance on what constitutes a major change (i.e. change
in input, architecture) and how to keep up with the pace of inno-
vation” (Manufacturer, Reg-MedTech roundtable, 2022). Another
stressed the lack of clarity for when regulatory documents need
to be updated if software updates are performed ((Manufacturer,
Reg-MedTech roundtable, 2022). A start-up developer added: “We
have a physical device and then software device which goes on
top of that. Issue: how do you rate the classification of the first
device, when you have lots of different software on it?” (Software
developer, Reg-MedTech roundtable, 2022).

4.2 Risk management and post-market
surveillance

Due to the critical nature of medical devices, regulatory compliance
in this field is complex and, as noted in Section 3, extends beyond
review and market approval, to post-market surveillance of the
product’s safety and performance through established quality and
risk management processes. This is particularly challenging for
CIMDs. In our study, several roundtable participants reflected on
issues with measuring CIMDs performance and identifying when
things go wrong, especially for AIaMDs. This opacity was revealed
in our scenario too (Section 2), where it is not clear whether the AI
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imaging analysis software was performing poorly because it was
fed images of different quality from different machines, old images
from the hacked X-ray devices, or both. This makes the issue of the
evidence requirement for risk assessment of post-market device
performance a particularly thorny one. A start-up developer in our
study noted that even if you plot a pathway for the algorithm, it
is often difficult, if not impossible, to map out what your code is
doing at all times, especially if the algorithm is adaptive (Software
developer, Reg-MedTech roundtable, 2022).

Currently, regulators are proposing increased post-market device
surveillance as a potential solution for dealing with the changing
nature of CIMDs in use. For instance, in its AI/ML-based Software
as a Medical Device Action Plan discussed above, the US regulator is
proposing an “Algorithm Change Protocol” based on “transparency
and real-world performance monitoring by manufacturers that
could enable FDA and manufacturers to evaluate and monitor a
software product from its premarket development through post-
market performance” [15:1]. This process is intended to improve
existing quality management systems used in device surveillance
and to address the challenges of conducting postmarket clinical
follow-ups on adaptive algorithms [18:3–5]. This approach would
entail that a substantial software modification could lead to the AI
medical device undergoing a new conformity assessment or market
review (depending on the jurisdiction). Yet, adaptive algorithms
are highly dynamic, and the change might be drastic but opaque
and temporary, hence difficult to spot, measure, and evaluate. An-
other consideration is that the kind of continuous post-market
surveillance needed for adaptive algorithms will inevitably favour
established manufacturers with the resources to do so, rather than
start-ups. A participant at our roundtable noted that, in order to
address some of these challenges, “we need to define performance
criteria for AI, depending onmedical device characteristics. Also, we
need methods for evaluation of performance criteria. This is where
standards would also come in to evaluate the performance and
safety of AI devices” (Product assessor, Reg-MedTech roundtable,
2022).

4.3 Detecting, categorizing, and reporting
compromises

A final consideration in our analysis is the difficulty of detecting,
categorizing, and reporting device compromises if exposed to a
cybersecurity incident or failure mode in the case of AI medical
devices. This goes back to the user and context-specific nature
of CIMDs and, subsequently, their contextual risk profile. In our
scenario (Section 2), we demonstrate that CIMD ecosystems can
become incredibly complex, with marginal changes over time re-
sulting in disruptive systemic risks with serious consequences to
patient safety and wellbeing.

In our scenario, the human-machine relationship at the point of
care is critical, yet highly opaque. What triggered the suboptimal
outcome we saw in the scenario? Is it the fact that the compromised
smart X-ray equipment was not updated or had other security vul-
nerability that should have been addressed by the manufacturer
and/or the hospital staff? Is it that the algorithm was not trained
on different data quality in development (X-rays taken by different

devices) and, once exposed to that, started deviating from its ex-
pected performance? Or was it that the algorithm itself performed
absolutely fine, but by deliberately being fed inappropriate data
(chest X-rays from previously known illnesses) via the compro-
mised machines, it ultimately produced the outcomes it did? How
can healthcare professionals and manufacturers be aware of these
dynamics?

The critical aspect of the “human factor” or “human oversight”
was addressed in our roundtable, with a participant asking: “Is it
reasonable and realistic to expect clinicians to remember all the
questions AI can ask? Do we end up building software that even
experts can’t understand the outputs of?” (Standards-maker, Reg-
MedTech roundtable, 2022). Another participant noted that the
question around explainability of AI medical devices is a recurring
one with clinicians, whomake the main customer base for advanced
medical device software used, for instance, in diagnostics. They
highlighted that, when questioned why an algorithm produced the
output it did, which the clinician considered false, they went back
and created a heatmap technology to show what the algorithm
was “seeing”, providing further explainability for their tool (Soft-
ware developer, Reg-MedTech roundtable, 2022). Such measures
can help healthcare professionals better understand why CIMDs are
behaving in the way that they are and how to distinguish between
expected and abnormal device performance. However, as uncovered
in our study so far, the awareness and preparedness of medical pro-
fessionals dealing with CIMDs has to be substantially strengthened
[31]. Thus, it is vital for qualified users to have information about
recent updates and current performance metrics. Testing AI-based
medical devices “performance is a necessary and important task,
primarily to control a sufficient level of efficiency and minimize
false results that may affect medical decisions” [51:1974].

5 CONCLUSION
In this article, we investigated some of the risk assessment, classi-
fication, and management challenges emerging from the growing
deployment of connected, intelligent medical devices in healthcare
settings. CIMDs come in a variety of forms, from implantables, to
specialist IoMT devices deployed in hospitals, to AI-based medical
devices and AI as a medical device (AIaMDs). These devices raise
several cybersecurity, data management, and algorithmic integrity
concerns and, when interacting with each other in complex CIMD
ecosystems, can have serious effects on patient safety and on the
delivery of reliable, responsible healthcare.

Our analysis focused on the changing risk profile of CIMDs and
the implications of these often subtle yet meaningful software mod-
ifications for current medical device regulations and for critical
stakeholders such as device manufacturers, software developers,
and healthcare professionals. The discussion points above show
that much more regulatory guidance and standards need to be pro-
vided so that critical stakeholders can confidently develop, place on
the market, and use CIMDs, especially those based on adaptive al-
gorithmic learning. This point has been highlighted in our research
study, when several roundtable participants noted that “the state
of the art in this field is not yet settled” and changes need to occur
to the way regulatory obligations and expectations are set (Device
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Manufacturer, Reg-MedTech roundtable, 2022). Stakeholders con-
sulted throughout our research highlighted some immediate steps
that can be taken to address these challenges: providing clear guid-
ance and standards for the evaluation, classification, and software
modification of adaptive AI-based medical devices and AIaMDs;
the importance of developing continuous performance monitoring
of devices in the post-market surveillance stage; and the need to
provide further explainability of device performance and safety
parameters for medical staff and healthcare professionals.
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