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Summary. Predicting the future performance of young runners is an important research
issue in experimental sports science and performance analysis. We analyse a data set
with annual seasonal best performances of male middle distance runners for a period of
14 years and provide a modelling framework that accounts for both the fact that each
runner has typically run in three distance events (800, 1500 and 5000 meters) and the
presence of periods of no running activities. We propose a latent class matrix-variate state
space model and we empirically demonstrate that accounting for missing data patterns in
runners’ careers improves the out of sample prediction of their performances over time. In
particular, we demonstrate that for this analysis, the missing data patterns provide valuable
information for the prediction of runner’s performance.

Keywords: Informative missing data; Longitudinal latent class analysis; Matrix-variate
state-space model; Sparse mixture model; Sports performance analysis.

1. Introduction

Planning the future career of young runners is a relevant aspect of the work of coaches,
whose role is to guide them during training so that they can perform at their best
in competitions. Identifying runner’s capabilities and future possibilities is important
for multiple reasons. It allows the training load to be appropriately allocated over the
years, for improving their performances and reducing their risk of injuries. Good plan-
ning, along with support during injuries, has been identified as one of the relevant factors
that help avoiding drop-outs of runners (Bussmann, 1999). Moreover, good planning is
important also from a psychological and emotional point of view, as it allows runners to
strive for achievable goals and collect successes over the years. Pleasant emotions, in-
cluding satisfaction, have been associated with positive outcomes in, e.g. mental health,
performance and engagement (Cece et al., 2019). In this context, the identification of
possible careers for a runner, in terms of observed personal performance trajectories over
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time, is of paramount importance. For example, identifying the period in which runners
reach their peaks can help prepare them for the most important events in their career.
Similarly, the knowledge of the expected progress of different runners over the years
provides an indication of whether the training process has been carried out correctly.
The analysis of athletes’ trajectory is carried out in various sports. Leroy et al. (2018)
study young swimmers’ progression using a functional clustering approach, while Boccia
et al. (2017) focus on individual careers of Italian long and high jumpers to figure out
which characteristics of young jumpers are predictive of good-level results during their
careers.

We focus on the analysis of performances of Italian male middle distance runners,
born in 1988, in a period ranging from 2006 to 2019. Previous studies on middle distance
runners are few or limited to samples with a small number of runners (see, e.g., Weippert
et al., 2021). We use a combination of latent class and matrix-variate state space models.
Latent class models for time dependent data have been extensively studied in cluster-
ing (see, among others, Frühwirth-Schnatter, 2011; Maharaj et al., 2019; Bartolucci and
Murphy, 2015) and hidden Markov models (Cappé et al., 2005; Frühwirth-Schnatter,
2006; Bartolucci and Farcomeni, 2015). They allow to capture the heterogeneity in the
careers of runners, thereby describing various possible observable scenarios. Combining
them with state space models offers additional advantages, including the possibility of
building models for multivariate time series in an intuitive manner as well as the pos-
sibility of leveraging well-known tools for inference, including the treatment of missing
data (Durbin and Koopman, 2012). Unlike other types of runners and sports, middle
distance runners have the major feature of competing in different distances, i.e. in the
800, 1500 and 5000 meters distances, as well as in other spurious ones (i.e. the mile, 3000
meters, etc.). The choice of discipline in which to compete is subjective and typically
associated with personal attitudes (Mooses et al., 2013). A runner capable of developing
higher speed and greater power typically competes in shorter distances, with respect to
those with greater endurance who compete in longer distances. As a consequence, obser-
vations in different distances are available for each runner over time, but the absence of a
particular discipline can be informative on the runner’s attitude. Beyond the variability
among subjects related to the type of discipline performed, there is also variability in
the developing of runners’ careers related to both their abilities and histories. Runners
that begin their career late in life are less likely to reach high levels; similarly, runners
with unsatisfactory careers are likely to end their careers earlier, with respect to those
satisfied with their performances (Hernandez et al., 2011). These aspects are related to
drop-in and drop-out phenomena, defined as the events where runners enter and exit the
observed sample, respectively.

A key interesting and important question that naturally emerges is whether the ab-
sence of data is really associated with observed performances. We attempt to shed light
in this question by proposing a matrix state space model in which multivariate time
series are clustered together on the basis of their observed trend. Matrix-variate state
space models have found application in finance and engineering in past years (see, e.g.,
Choukroun et al., 2006; Wang and West, 2009), but have recently gained additional
interest in the statistical literature to analyze problems in which observations over time
are matrices (see, e.g., Hsu et al., 2021; Chen et al., 2020, 2021). In this part of model
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specification, clustering is achieved via a latent selection matrix which is involved in the
measurement equation. We propose to include temporal dynamics that aim to describe
missing data patterns using two different processes. First, runner’s personal history is
described by a three state process, which describes their entry (drop-in) and exit (drop-
out) from the sample. Second, different propensities to compete in different distances
are considered to describe runner’s personal attitude. The probabilities of both the pro-
cesses are assumed to be dependent on the latent classes stored in the selection matrix
previously mentioned, allowing to consider the possible relation of missing data patterns
with the observed performances. In this way, clustering is not only achieved on the basis
of runners’ performances, but the presence and absence of data is considered informa-
tive as well. Works on latent class and clustering models for longitudinal data where
the presence of missing values may be informative on the latent structure behind the
data are few or limited to domain-specific works (see, e.g., Bartolucci and Murphy, 2015;
Mikalsen et al., 2018).

Since the seminal work on missing values by Rubin (1976), researchers have wondered
if and when it is possible to ignore the presence of missing values in their datasets. In
this work, we consider this problem in a pure predictive framework, in which missing
values will be considered as informative if having information on their presence and
distribution over time helps in predicting runners performances over the years. If so,
one could think to a causal relationship, in a Granger’s sense, between missing values
and observed performances. Although coherent with our model construction, we avoid
the use of definition of informativeness of missing data in a causal sense. Indeed, while
correlation between missing data and performances is typically expected in sports per-
formance analysis, direct cause-effect relationships between them and their directions
are not clearly defined in the sports science literature.

The rest of the paper is organized as follows: Section 2 presents a new publicly avail-
able dataset on middle distance runners; Section 3 describes the proposed model; Section
4 discusses the likelihood and the prior specification; Section 5 presents the evaluation
strategy of the model; Section 6 shows the results with the real data. Additional details
on the data, the algorithms, and the results are reported in the supplementary material
accompanying the paper.

2. Data and exploratory analysis

Our data refer to annual seasonal best performances of male Italian runners, born in
1988, on 5000, 1500 and 800 meters distances in a period between 2006 and 2019. They
were collected from the annual rankings accessible on the website of the Italian athletics
federation (www.fidal.it), which stores results and rankings in competitions since 2005.
All runners with at least two observations were selected and the data are illustrated in
Figure 1 with the help of a local regression fit that allows us to perceive a U-shaped
curve that describes the distribution of sample trajectories across ages. U-shapes are
typically observed in the evolution of runners careers (Haugen et al., 2018). However,
their shape can be biased by the presence of missing data, related for example to early
exit or late entry in the sample.

Indeed, unlike other type of data, the presence of missing values is predominant in
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Fig. 1. Seasonal best performances of 369 Italian male middle distance runners in 5000, 1500,
and 800 meters distances. Points represent the observed performances. Lines connect the
performances in consecutive years of the same runner. The black lines are obtained using local
regression.

the careers of these runners. Out of 15498 observable seasonal best performances of
Q = 369 runners in P = 3 distances and T = 14 years, only 2411 seasonal best results
are observed. A missing value is observed for one runner if the runner does not conclude
(and, hence, record) any official competition in a specific discipline during one year. The
reasons for not observing any performance can be multiple. The runner can be not in
career in a specific year, and hence no races are performed during that year. Alterna-
tively, a runner in career can decide not to compete in a specific discipline for several
reasons, such as lack of preparation, attitude, technical choices, etc. To understand how
missing data patterns differ between runners, Figure 2 shows the observed patterns of
missing data for nine distinct runners present in the sample. The patterns shown differ
in various features. Some runners have few observations, such as runners 241 and 119.
Other runners are characterized by long careers, such as runners 129 and 256. These
two runners are interesting because they differ in the type of discipline they run: while
runner 129 competes only in the 1500 meters discipline, runner 256 competes in all the
distances, recording a different number of observations for each distance. The observed
differences are typically associated both with technical choices, but also with different
attitudes of the runners, leading them to compete in races of different length, according
for example to their endurance and speed abilities. We define the drop-in and drop-out
as the runner age in which the first observation in at least one discipline is present and
the age after the last performance is observed, respectively. Naturally, the careers of the
runners differ both in length and the age they start racing. Based on this definition,
runner 129 drops-in at age 19 and drops-out at age 31 and runner 233 drops-in at age
18 and has not dropped-out in the period under examination.

The empirical distribution of runners careers’ length, shown in panel (a) of Figure
3, is right skewed, with an average length of 5.04 years. The increased observation at
year 14 is due to data censoring. Panel (b) illustrates that around 60% of runners in
the sample competes when they are 18 years old, but about 20% of them have already
left the competition at the age of 20. A visual exploration that indicates whether these
aspects are effectively associated with observed performances are presented in panel (c)
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Fig. 2. Missing data patterns for nine runners describing their actual participation in different
distances across their ages, shown on top. Yellow squares indicate that the performance is
present, blue squares the absence of the observations.

that depicts that performance at drop-in seems to be worse (higher times) if the runners
start competing late in life and in panel (d) that shows the distributions of the observed
performances, distinguishing between runners with careers longer or shorter than 7 years.
In our data runners with longer careers perform typically better than those with shorter
careers. The reason for this behavior can be either because runners with unsatisfactory
career leave the competitions earlier, or because competing (and, hence, training for it)
for a long period is a prerequisite for improving. We refer to the supplementary material
for similar plots with other distances.

3. The model

3.1. Clustering longitudinal data with matrix state space model
Let the scalar element ypq,t denote the observation of the performance in discipline p
for runner q during year t, for p = 1, . . . , P , q = 1, . . . , Q, and t = 1, . . . , T . To
facilitate the exposition, in this Section we assume that the complete set of observations
is available in the sense that runners participate in all P distances during the years and
that no drop-ins or drop-outs are observed. We assume that runners are divided into
G different unobserved groups according to the evolutionary trajectories during their
careers. Suppose that runner q belongs to group g, and that their observations over
time are described by the following dynamic linear model

ypq,t = z⊤p α
(g)
p,t + εpq,t, (1)

α
(g)
p,t+1 = T pα

(g)
p,t + ξ

(g)
p,t , (2)

in which α
(g)
p,1 ∼ NFp

(α̂
(g)
p,1|0,P

(g)
p,1|0), for p = 1, . . . , P , t = 1, . . . , T , and α̂

(g)
p,1|0, P

(g)
p,1|0 are

fixed mean and variance for the initial state, respectively. The row vector z⊤p , which has

a known structure, links the observation ypq,t to the column vector α
(g)
p,t , which describes

the group-specific dynamics of the p–th discipline for all the runners that belong to group
g. These dynamics are determined by the state transition equation that describes a
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Fig. 3. Panel (a) shows the distribution of runners career length, panel (b) the percentage of run-
ners that are in career (or not) in the different ages considered, and panel (c) the performances
at drop-in in 1500 meters. Panel (d) shows the distributions of seasonal best performances over
ages in 1500 meters discipline, grouped by the career length of the runners. Blue boxplots rep-
resent the performances of runners with a career shorter than 7 years (included), red boxplots
the performances of runners with a career longer than 7 years.
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first-order autoregressive process with transition matrix T p, which is discipline-specific,
known, and shared across all the groups. In this way, for a generic discipline p, we
require that the latent states of the different groups are different from each other, but
are characterized by the same Markovian dependence induced by T p. Moreover, this
dependence is not required to be common across different distances, as T p may differ
from T p′ for any p ̸= p′. The error terms εpq,1, . . . , εpq,T are assumed to be Gaussian with
zero-mean and variances that can be discipline and subject-specific. They are assumed

to be serially independent and independent of both the states α
(g)
p,1, . . . ,α

(g)
p,T and the

disturbances ξ
(g)
p,1, . . . , ξ

(g)
p,T , whose covariance is Ψpg, for p = 1, . . . , P and g = 1, . . . , G.

Let y·q,t = (y1q,t, . . . , yPq,t)
⊤, α

(g)
t = (α

(g)⊤
1,t , . . . ,α

(g)⊤
P,t )⊤, ε·q,t = (ε1q,t, . . . , εPq,t)

⊤,

ξ
(g)
t = (ξ

(g)⊤
1,t , . . . , ξ

(g)⊤
P,t )⊤, α̂

(g)
1|0 = (α̂

(g)⊤
1,1|0, . . . , α̂

(g)⊤
P,1|0)

⊤, and F =
∑P

p=1 Fp. Moreover, let

T = blkdiag(T 1, . . . ,T P ), P
(g)
1|0 = blkdiag(P

(g)
1,1|0, . . . ,P

(g)
P,1|0), as well as the covariance

matrix P 1|0 = blkdiag(P
(1)
1|0, . . . ,P

(G)
1|0 ) where blkdiag(Xa, . . . ,Xz) is the block-diagonal

operator, creating a block-diagonal matrix with arguments Xa, . . . ,Xz stacked in the
main diagonal. Finally, let Z be the P×F matrix storing, in its p–th row, the row-vector
z⊤p starting from column 1+

∑p−1
j=1 Fj , and zeros otherwise, and define also the following

matrices:

Y t =
[
y·1,t . . . y·Q,t

]
, At =

[
α

(1)
t . . . α

(G)
t

]
, S⊤ =

[
s⊤1· . . . s⊤Q·

]
,

Et =
[
ε·1,t . . . ε·Q,t

]
, Ξt =

[
ξ
(1)
t . . . ξ

(G)
t

]
, Â1|0 =

[
α̂

(1)
1|0 . . . α̂

(G)
1|0

]
,

where s⊤q· = (1(Sq = 1), . . . ,1(Sq = G))⊤ is an allocation vector such that 1(Sq = g) = 1
if runner q belongs to group g, and 0 otherwise. Leveraging the previous notation, the
model admits a matrix-variate state space representation, in which

Y t = ZAtS
⊤ +Et, Et ∼ MNP,Q(0,Σ

C ⊗ΣR), (3)

At+1 = TAt +Ξt, Ξt ∼ MNF,G(0,Ψ
C ⊗ΨR), (4)

with A1 ∼ MNF,G(Â1|0,P 1|0). The matrix S in Equation (3) is a selection matrix, with
the role of selecting, for each runner, the columns of states associated with the group the
runner belongs to, and silencing the others. The matrices of errors and disturbances are
assumed to follow a matrix-variate Normal distribution with covariance matrix decom-
posed by a Kronecker product (Gupta and Nagar, 2000), which is a typical assumption in
models for matrix-variate time series (see, e.g., Wang and West, 2009; Chen et al., 2020).
Here, ΣR and ΨR are row-covariance matrices with dimensions P × P and F × F , and
measure row-wise dependence of errors and disturbances, respectively. Conversely, the
matrices ΣC and ΨC are column-covariance matrices with dimensions Q×Q and G×G
that measure column-wise dependence of errors and disturbances, respectively. Depen-
dent rows or columns are characterized by full covariance matrices, while independent
row or columns are characterized by diagonal matrices (Gupta and Nagar, 2000). Thus,
the model is general enough to encopass various forms of dependence, while keeping the
number of parameters low with respect to alternative full specifications of the covariance
matrices.
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Although the model is general enough to include a variety of standard state space
models (see, e.g. Durbin and Koopman, 2012), in our application we deal with annual-
based data describing the careers of different runners, so it seems reasonable to impose
the following restrictions: Z = IP , T = IP , Σ = IQ ⊗ΣR and Ψ = IG ⊗ΨR. These
assumptions imply that the states of different groups describing runners’ performance
across years are independent of each other and characterized by the same temporal
dependence structures, which are those implied by local level models in which the trend
of each discipline is a discrete random walk (Durbin and Koopman, 2012). Assuming
a priori that performance on discipline p at time t + 1 is a deviation from that at year
t seems reasonable, as a runner is not expected to progress or regress excessively from
year to year. Further, setting ΨC to be diagonal implies that groups are independent
of each other, a typical assumption in clustering. In this framework, the role of the

states (i.e. α
(g)
p,t ) is to describe various evolution of the performances of the runners.

How these states evolve can be considered as the combination of many factors (e.g.
individual traits, training, motivation, etc) that lead to unpredictable prior behaviors.
Further, conditional on the states and S, there is no reason to assume the runners to be
dependent between each other. We note also that imposing ΣC = IQ and ΨC = IG are
restrictions even stronger than required, but they help in stabilizing the estimation of the
other components given the large number of missing observations present in the data.
Removing these restrictions is a delicate aspect in the predictive context in which we fit
our model (see Section 5). Indeed, the aim of increasing flexibility struggles with the
goal of reducing the variability of the estimates and predictions, due to both the large
dimensions of the state space we are considering, but also to the need of adopting a
diffuse prior specification and a large number of groups for well capturing the variability
of the considered phenomena (see Section 4).

3.2. Missing data inform on clustering structure
The previous section was developed conditional on all data being observed, i.e., when
the runners run all P distances during the entire period of observation. However, this
is not the case for data that describe the career trajectories of runners, since the lack of
data is part of the career itself. To include these factors as informative aspect of runners’
careers, we consider two other variables in the model. As first, we consider

dpq,t =

{
1, if discipline p for runner q is observed at time t,

0, otherwise,

to describe the presence or absence of the observed discipline for the runners. Then we
consider the variable d⋆q,t that informs whether the runner q is in career during year t,
which is

d⋆q,t =


0, if runner q has not started the career before t (included),

1, if runner q is in career during t,

2, if runner q has finished the career in t (included).

The variable d⋆q,t is not decreasing in t, and describes the three possible states of runner’s
career. Moreover, if d⋆q,t ∈ {0, 2}, then dpq,t = 0 with probability 1, for p = 1, . . . , P ,
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meaning that no distances are observed since the runner is not competing. On the
contrary, there might be runners with dpq,t = 0, for p = 1, . . . , P , even if d⋆q,t = 1. This
is typical of runners who, despite being in a career, decide not to compete during one
specific year, but compete in the following years.

The division into three non-concurrent states allows for the introduction of temporal
dynamics within the model of missing data patterns in an easy way. In particular,
let d⋆

q = (d⋆q,1, . . . , d
⋆
q,T ), d·q,t = (d1q,t, . . . , dPq,t)

⊤, and Dq =
[
d·q,1 . . . d·q,T

]
, D =

{D1, . . . ,DQ}, and D⋆ = {d⋆
1, . . . ,d

⋆
Q}. First, we make the following independence

assumption among different subjects

pθ(D,D⋆|S) =
Q∏

q=1

pθ(Dq,d
⋆
q |Sq). (5)

As a second step, we let d⋆
q and Dq be dependent on the group Sq = g to which the

runner q belongs, and make the following conditional independence assumption

pθ(Dq,d
⋆
q |Sq) = pθ(Dq|d⋆

q , Sq)pθ(d
⋆
q |Sq)

=

T∏
t=1

{ P∏
p=1

pθ(dpq,t|d⋆q,t, Sq)

}
pθ(d

⋆
q,t|d⋆q,t−1, Sq), (6)

where pθ(d
⋆
q,1|d⋆q,0, Sq) = λ⋆

1g if d⋆q,1 = 1, and pθ(d
⋆
q,1|d⋆q,0, Sq) = 1 − λ⋆

1g if d⋆q,1 = 0.
Note that, in Equations (5) and (6), the subscript θ in pθ(A|B) denotes conditional
dependence of the form p(A|B,θ), for slight abuse of notation, where θ denotes a set of
unknown parameter with finite dimensions (specified later).

In Equation (6) we consider the following assumptions: for runner q, the conditional
probabilities at time t of transition from state 0 to state 1 is pθ(d

⋆
q,t = 1|d⋆q,t−1 = 0, Sq =

g) = λ⋆
1g and from state 1 to state 2 is pθ(d

⋆
q,t = 2|d⋆q,t−1 = 1, Sq = g) = λ⋆

2g. Both
the probabilities are group dependent but constant over time. By construction, the
transitions from state 1 to state 0 or from state 2 to states 0 or 1 are impossible events.
Further, for runner q, the conditional probability at time t of observing a value for the
generic discipline p is pθ(dpq,t = 1|d⋆q,t = 1, Sq = g) = δpg, which is group-dependent, but
fixed over time. Although transitions in the prevalence of the type of discipline done
in a long career are possible for some runners (e.g. from shorter to longer distances),
these transitions are difficult to detect with annual based data—which are summaries
of the entire years—since it is enough to compete in only one race of the considered
discipline to be included in the discipline-specific ranking lists. Similarly, the assumption
of constant probabilities during years used to describe the presence of missing values
does not contemplate the possibility that runners would get seriously injured, and, thus,
they would not compete in any discipline for more than a year. Although there is no
clear indication in the literature about the average duration and severity of an injury
in middle distance runners (see, e.g., van Gent et al., 2007), we assume here that severe
injuries (injuries that stop competitions for more than one year) are present only in low
proportions, leaving open possible investigations on this aspect in the future.
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4. Likelihood and posterior distributions

4.1. Likelihood and prior distributions for the proposed model
Let Y denote the set of observations as if they were fully observed, Y⋆ the set of variables
which are effectively observed, and Ỹ the completion of Y⋆, i.e. such that Y = Y⋆ ∪ Ỹ
and Y⋆ ∩ Ỹ =Ø. Let also A = {A1, . . . ,AT } be the set storing the latent states of the
state space model. In order to derive the posterior distribution of the parameters, we
present the likelihood of the observed process first, augmented for both the states A, the
missing observations Ỹ, and S.

The augmented likelihood is characterized by the following conditional independence
structure

pθ(Y,D,D⋆,A,S) = pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S)pθ(A). (7)

In Equation (7), pθ(Y|D,D⋆,A,S) = pθ(Y|D,A,S), and is determined by the measure-
ment Equation (3), for which all observations are assumed to be available, and the prior
on A is implicitly determined by the form of the state equation of the state space in
Equation (4). However, only Y⋆ = {Y⋆

1 , . . . ,Y⋆
T } is observed, but pθ(Y|D,A,S) can be

obtained by conditioning, noting that

pθ(Y|D,A,S) = pθ(Y⋆|D,A,S)pθ(Ẽ |Y⋆,D,S),

where Ẽ stores all those entries in E = {E1, . . . ,ET } associated with the missing values.
To characterize S, we make the following independence assumption

pθ(S) =

Q∏
q=1

pθ(sq·) =

Q∏
q=1

G∏
g=1

π1(Sq=g)
g , (8)

where π = (πg, . . . , πG) is such that πg ∈ (0, 1), for g = 1, . . . , G, and
∑G

g=1 πg = 1.
As concerns model parameters, we assume that the prior distribution of θ factorizes

as follows

p(θ) = p(Â1|0)p(Σ
R)p(ΨR)p(π)

G∏
g=1

{
p(λ⋆

g)

P∏
p=1

p(δpg)

}
, (9)

where λ⋆
g = (λ⋆

1g, λ
⋆
2g). We further assume the prior distributions of the probabili-

ties driving missing data patterns to be uninformative Beta distributions, such that
λ⋆
1g ∼ Be(1, 1), λ⋆

2g ∼ Be(1, 1), and δpg ∼ Be(1, 1), for any p = 1, . . . , P and g =
1, . . . , G. Covariance matrices are assumed to be Inverse Wishart distributions, such
that ΣR ∼ IWP (P + 1, IP ) and ΨR ∼ IWP (P + 1, IP ). For what concerns the state

space model, Â1|0 is assumed to follow a matrix-variate Normal distributions of mean

ȳ11
⊤
G and covariance P 1|0 = IG ⊗ P 0

1|0, with P 0
1|0 = diag(p21, . . . , p

2
P ), where ȳ1 is the

vector storing sample average of observed distances at first time instant and p2p is twice
the sample variance of the p–th observed discipline at the first time instant. It is inter-
esting to observe, however, that the number of parameters depends on the number of
groups G, which is fixed. We consider an overfitting finite mixture specification of the
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model (see, e.g., Malsiner-Walli et al., 2016, 2017), in which G is set to be large, and
π = (π1, . . . , πG) ∼ DirG(e1, . . . , eG) with hyper-parameters e1 = . . . = eG = 1/G. The
prior on the mixture weights favours emptying the extra components, leaving complete
symmetry between the different components included in the model. This assumption
implies that, during the estimation procedure, the number of filled components may be
lower than G, leading to the classical distinction between the number of clusters G+

(i.e. the number of filled components) and the number of components G included in
the model, with G+ ≤ G (see, Malsiner-Walli et al., 2016, 2017; Frühwirth-Schnatter
et al., 2021, for an extensive discussion on the topic). Under this prior specification, it
is possible to derive a Gibbs sampling algorithm that involves all full conditionals that
are conditionally conjugate, see the supplementary material for details. Note that the
algorithm allows to explore the G! symmetric modes of the posterior distribution by
including a step in which we randomly permute the labels of S (see, e.g. Fruhwirth-
Schnatter, 2001; Malsiner-Walli et al., 2016). Draws of the states A are obtained using
the simulation smoothing technique by Durbin and Koopman (2002), applied to a re-
duced form of the model derived using the reduction by transformation technique (see
Jungbacker and Koopman, 2008).

4.2. Posterior distribution, alternative specifications and interpretability
The goal of our inferential procedure is to derive quantities of interest (e.g. predictive
distributions) from a sample of the posterior distribution

pC(θ,A,S, Ẽ |Y⋆,D,D⋆) ∝ p(θ)pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S)pθ(A). (10)

A sample from the posterior distribution can be obtained using a Gibbs sampling scheme,
as discussed in the supplementary material. In Equation (10), the superscript C indicates
that the considered posterior is referring to the complete model (or model 1), because
it assumes that both attitudes and history matter. By restricting the complete model
in Equation (10) it is possible to obtain a set of alternative reduced specifications, in
which different missing data pattern schemes have different influence for clustering. More
specifically, a set of alternative specifications can be derived by dropping the dependence
on the selection matrix S in some parts of the model. We consider the following set of
alternative specifications:

Model 2: Missing data do not matter:

pNM(θ,A,S, Ẽ |Y⋆,D,D⋆) ∝ p(θ)pθ(Y|D,A,S)pθ(S)pθ(A); (11)

Model 3: Only attitude matters:

pA(θ,A,S, Ẽ |Y⋆,D,D⋆) ∝ p(θ)pθ(Y|D,A,S)pθ(D|D⋆,S)pθ(S)pθ(A); (12)

Model 4: Only history matters:

pH(θ,A,S, Ẽ |Y⋆,D,D⋆) ∝ p(θ)pθ(Y|D,A,S)pθ(D⋆|S)pθ(S)pθ(A). (13)
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Alternative model specifications in Equations (11)–(13) have meaningful structural in-
terpretations, if compared with the complete model in Equation (10). In model 2 both
pθ(D|D⋆,S) = p(D|D⋆) and pθ(D⋆|S) = p(D⋆), meaning that neither attitude nor his-
tory matter for clustering, and therefore are not correlated with the evolution of perfor-
mances. In this case, missing data are still considered in the estimation procedure for
obtaining Ẽ and other elements related to the set of completed observations Y (e.g., ΣR),
but the part of likelihood describing the evolution of D and D⋆ is no longer dependent
on θ and S. Alternatively, in model 3 the attitude matters but history does not. This
is obtained by requiring pθ(D⋆|S) = p(D⋆). Note that the dependence of pθ(D|D⋆,S)
on D⋆ is preserved, an important aspect because it is involved in the estimation of the
parameters δpg related to runners’ attitudes. Finally, in model 4 pθ(D|D⋆,S) = p(D|D⋆),
leading to a model in which runners’ attitudes do not matter for the evolution of the
performances. For simplicity, we do not distinguish p(θ) in the different models letting
the elements included in θ under different model specifications differ, based on the sin-
gle case being considered (e.g. θ = {Â1|0,Σ

R,ΨR,π} in model 2). We can provide
an interpretation to our model construction from a two-step Bayesian learning perspec-
tive. First, different structured priors on S are obtained, which simply reflect different
clustering structures that we believe to be relevant for clustering the performances. For
example, for the complete model, this structured prior is

pC(θ,S|D,D⋆) ∝ p(θ)pθ(D|D⋆,S)pθ(D⋆|S)pθ(S).

Second, the knowledge on the clustering structure is updated by considering the like-
lihood related to the performances, which is pθ(Y|D,A,S)pθ(A). Comparing different
models allows to determine which of the four alternative specifications is most credible
in explaining the observed variability in runners’ performances. Comparisons between
models are obtained by assessing the models’ abilities to predict the performance of out-
of-sample runners, as explained in Section 5.2. We note here that, in our model construc-
tion, performances depend directly on missing data patterns, as the term pθ(Y|D,A,S)
is considered in Equation (10), and that the opposite direction, in which the performances
have a direct influence on the fact that runners remain (or not) in the sample, is not con-
sidered. In general, it is easy to imagine that runners with unsatisfactory careers are more
likely to leave competitions. Then, the drop-out probability pθ(d

⋆
q,t = 2|d⋆q,t−1 = 1, Sq) in

Equation (6) should be performance dependent, e.g. pθ(d
⋆
q,t = 2|d⋆q,t−1 = 1, Sq,y·q,t−1).

Our conjecture is that, conditional on the latent allocation Sq, the decision of competing
is the predominant factor for improving the performances, independently of the previ-
ous ones, and this is motivated by both physiological and psychological considerations
for which defining goals and training for achieving them can help in improving perfor-
mances as well. Furthermore, although the priors on clustering structure do not depend
on the performances, both the posteriors and the posterior probabilities of drop-out
do depend. The choice of considering a sufficiently large number of groups G allows to
account also for variability present in the data that may be effectively caused by cases
in which performances have a direct impact on the choice of leaving the competitions.

Finally, it is interesting to highlight that similar information can be obtained by using
any kind of regression model in which D and D⋆ are treated as covariates for explaining
the evolution of the performance over time. We discuss these alternative linear models in
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Section 6 and Section S.4 of the supplementary material. Our approach differs from these
alternatives as it accounts for and quantifies the uncertainty related to dpq,t and d⋆q,t and
endogenizes the fact that both ypq,t, dpq,t, and d⋆q,t are measures (with errors) of runners
abilities, attitudes and histories, respectively, three aspects of runners’ careers that are
captured by the latent matrix S. The role of the latent matrix S is indeed to describe
the heterogeneity present in the data and to account for the potential correlation between
performances and missing data patterns. As a consequence, the latent cluster allocations
could represent a meaningful information from a sports science point of view. Despite
this, in this paper we do not approach the analysis from the perspective of clustering of
runners’ performances, preferring a prediction-oriented focus that allows us to highlight
if D and D⋆ provide valuable information in determining Y⋆. Indeed, when facing the
clustering problem with these data, various issues arise, from both a technical and an
interpretative point of view. First, it is well-known that model based clustering with
symmetric priors suffers from the problem of label switching due to the unidentifiability
of the components related to the perfect symmetry of the posterior distribution. Second,
in our model the clustering represents a combination of various aspects of Y, D, and D⋆,
which are mixed together and whose contribution is hard to disentangle to recognize well
separated and meaningful clusters. This aspect is even exacerbated by both the fact that
we are considering a large number of G, of which G−G+ are empty, and by the large state
space involving many parameters. Although significant works on relabeling techniques
have been proposed in recent years (see, e.g. Wade and Ghahramani, 2018; Malsiner-
Walli et al., 2017; Egidi et al., 2018), our high-dimensional model does not leave space
for guarantees about interpretable clusters. Thus, our inferential procedure in the next
Section is solely based on predictive distributions.

5. Posterior predictive inference and out of sample predictions

5.1. Predictive inference

Let Y⋆
[n], D[n], and d⋆

[n] denote the random variables describing, respectively, the per-

formances, the participation in the distances and the history of a new runner n, not
included in the sample. Let also Θ = (A,θ) be the unknown elements which are shared
across different runners, characterized by a posterior distribution pj(Θ|Y⋆,D,D⋆) that
can be obtained by means of an MCMC algorithm under model j. We consider the
following predictive density:

pj(Y⋆
[n]|D[n],d

⋆
[n],Y

⋆,D,D⋆) =

∫
pj(Θ|Y⋆,D,D⋆)pjΘ(Y⋆

[n]|D[n],d
⋆
[n])dΘ, (14)

for j ∈ {C,NM,A,H} which can be obtained using Monte Carlo estimation. In Equa-
tion (14), missing data patterns are supposed to be known and are treated as control
variables that potentially have an influence on the predicted performances Y⋆

[n]. While

the posterior distribution pj(Θ|Y⋆,D,D⋆) is an output of the MCMC algorithms (see

supplementary material), the likelihood pjΘ(Y⋆
[n]|D[n],d

⋆
[n]) for the new individual n can
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be obtained by marginalizing over groups as follows:

pjΘ(Y⋆
[n]|D[n],d

⋆
[n]) =

G∑
g=1

pjΘ(S[n] = g|D[n],d
⋆
[n])p

j
Θ(Y⋆

[n]|D[n],d
⋆
[n], S[n] = g).

In the equation, the cluster allocation follows a multinomial distribution characterized
by weights

pjΘ(S[n] = g|D[n],d
⋆
[n]) ∝ pjΘ(S[n] = g)pjΘ(D[n],d

⋆
[n]|S[n] = g),

that depend on the likelihood related to cluster allocation pΘ(S[n] = g) but also on the
observed missing data patterns, that weigh differently the cluster allocation by means
of pΘ(D[n],d

⋆
[n]|S[n] = g). We note here that the predictive distribution is invari-

ant with respect to permutations of the labels, so that the label switching that usually
represents a relevant issue in MCMC-based parameters estimation, in this context, guar-
antees the exploration of the multiple modes of the posterior distribution. The Monte
Carlo procedure for obtaining the predictive distribution is reported in Section S.2 of
the supplementary material. Next section details the use of the predictive distribution
developed here for evaluating informativeness of missing data patterns under different
model specifications.

5.2. Informativeness of missing data: out of sample comparison of alternative speci-
fications

Let Y[1:N ] be a test set, storing the performances in different distances and years of N
runners not included in the training sample for model estimation. Let also yp[n],t be the
generic scalar element denoting the performance of runner n in discipline p during year
t. The quantity

Qj(yp[n],t) = pj(yp[n],t|D[n],d
⋆
[n],Y

⋆,D,D⋆),

represents the predictive distribution obtained under model j, conditional on miss-
ing data patterns (D[n],d

⋆
[n]) and the set of available information (Y⋆,D,D⋆). Let

also Q̃j(yp[n],t) denote an approximation of Qj(yp[n],t), given by a set of B particles

{y1p[n],t, . . . , y
B
p[n],t}. It is possible to use the samples Q̃j(yp[n],t) to evaluate and compare

the ability of our proposals in predicting the performances over different distances, for
fixed missing data patterns described by D[n], and d⋆

[n]. We base our evaluations on the

empirical counterpart of the continuous ranked probability score (CRPS) and the inter-
val score (see, Gneiting and Raftery, 2007; Krüger et al., 2021), preferring models that
minimize these scoring rules and that provide adequate prediction interval estimates in
term of coverage and interval width. The CRPS is defined as

S1(Qj(yp[n],t)) =

∫ ∞

−∞

{
Qj(yp[n],t)− 1(yp[n],t ≤ z)

}2
dz, (15)

and the interval score is defined as

S2(Qj(yp[n],t)) = (ujα − ljα) +
2

α

{
(ljα − yp[n],t)1(yp[n],t < ljα) + (yp[n],t − ujα)1(yp[n],t > ujα)

}
,
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where ljα and ujα are the α/2 and 1−α/2 quantiles for the distribution Qj(yp[n],t), respec-
tively, and α ∈ (0, 1/2) is a fixed tolerance. The interval score rewards narrow prediction
intervals, and penalizes prediction intervals that do not include the observations. Details
on these scores and their computation using sample from the predictive distribution are
reported in Krüger et al. (2021) (see, e.g., Equation (9) of their paper). It is relevant to
highlight, however, that these scores are scale sensitive, and the scale of the predictions
might depend both on the discipline p, the age t, as well as on the specific missing data
pattern of runner n we are considering. For this reason, we propose to evaluate the pre-
dictions of a reference model j and the prediction of an alternative model j′ by means
of the following score

Sjj′

s (Y[1:N ]) =
1

|Y[1:N ]|

N∑
n=1

∑
yp[n],t∈Y[n]

1(Ss(Qj(yp[n],t) < Ss(Qj′(yp[n],t)), (16)

for s ∈ {1, 2}. In Equation (16), |Y[1:N ]| denotes the number of distinct observations

present in the test set Y[1:N ]. The scores Sjj′
s (Y[1:N ]) range in (0, 1), and suggest that

model j is overall better than model j′ if Sjj′
s (Y[1:N ]) > 0.5.

6. Real data analysis

6.1. Informativeness of missing data
The models were estimated randomly splitting the runners into a training set, composed
of 70% of runners, and a test set with the remaining 30%. Samples from the posterior
distributions were obtained on the training set, using the last 2000 of 10000 iterations
of the Gibbs sampling for each model (see Section S.3 of the supplementary material for
details on chains convergence). The number of components G was fixed to 50. Samples
from the predictive distributions in Equation (14) were obtained, conditional on knowing
the missing data patterns of runners in the test set (i.e. D[n] and d⋆

[n], for n = 1, . . . , N).

The comparison over different models’ predictions was done both graphically and
using the scores described in Section 5.2. Results are summarized in Figure 4 and Table
1. In the figures, the real data are represented by black solid lines, while the colored lines
delimit 95% quantile-based prediction bands. A model is preferred if: (a) the real data
lies within the prediction bands, (b) the predictions bands are narrower. By looking
at the results we can claim that model 1 (both attitude and history are considered as
informative) and model 3 (only attitude is considered as informative) provide better
results in terms of band widths, while including within the bands the real data. As
we note, different missing data patterns are represented in the figures. We note the
tendency of model 1 and model 3 of yielding lower upper limits of the band, an aspect
that is even more evident for runners that participated to many competitions in different
years (e.g. runners 100, 63, and 56). Knowing that one runner has competed for many
years reduces the uncertainty in the predictions by reducing the probability of observing
bad performances. This highlights the effective presence of an association between the
abilities of the runners in recording better performances with long histories and their
participation in many competitions during the years. Further, by comparing runner 89
with runner 56, for example, it is possible to grasp how entering later in competitions
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Table 1. Comparison between models given by Sjj′

s with the different scores. In this table,
model j (row) is compared to model j′ (column) with respect the two scores. Above the
diagonal we report the scores for CRPS, below the diagonal we report the scores for IS,
computed with α = 0.05. A value above 0.5 indicates preference of model j with respect
to model j′. Remember that Sjj′

s = 1− Sj′j
s , for any score considered.

Model Complete (1) No missing (2) Attitude (3) History (4)
Complete (1) – 0.574 0.537 0.520
No missing (2) 0.178 – 0.402 0.395
Attitude (3) 0.364 0.757 – 0.511
History (4) 0.233 0.680 0.306 –

leads to more uncertainty in the performance predictions, increasing also the probability
of observing worse performances. While the effect of knowing missing data patterns is
clear when we compare the upper limits of the predictions bands, the distances between
the lower limits produced by the four models appear to be limited and less pronounced.
This aspect is interesting because it points out that there are runners that, despite being
characterized by short histories, are still able to perform satisfactorily when compared
with those with longer histories. These reasonings are conditional on the graphs shown,
which are, of course, a selection of the runners in the test set. The complete set of
plots is reported in the supplementary material, showing a large number of runners with
different missing data patterns and, as a consequence, different behaviors of the bands.

The predictive scores computed with data of the test set suggest that the complete
model is better than the others considering both the scores. However, the interval score
suggests this aspect more markedly, highlighting the ability in outperforming the model
that does not treat missing values as informative for around 80% of the observations
present in the test set. For both the scores, the complete model is better than model 3
(only attitude), which is better than model 4 (only history), which is itself better than
model 2 (uninformative missing data patterns). These results highlight how attitude and
history (encopassed in the term missing data) seem to be effectively related to perfor-
mances, giving support to the hypothesis that considering these aspects in the analysis
of runners careers is definitely relevant and that, in this context, missing data have to be
considered as informative. Note that both the estimates of predictive scores are based on
741 scalar observations which are characterized by different levels of dependence, so that
a proper evaluation of uncertainty of these estimates is difficult. In the supplementary
material (Sections S.4 and S.5), a three-fold cross validation scheme shows that results
seem to be stable. Moreover, we also show how our multivariate modelling approach
outperforms simpler models (such as linear regression) and discuss the goodness of fit of
the model. Among the limits of the complete model, we highlight the tendency of the
model to over-estimate the left tail quantiles (< 0.10) and underestimate the right tail
quantiles (> 0.90). In the practical context of interest, although this implies a slight
lowering of the marginal predictive coverage, we do not consider this to be an issue if
the interest concentrates on the “average” runners, rather than the top performers and
high level runners. Note also that our model comparison procedure based on the Interval
Score already considers the width of the prediction bands in the calculation, penalizing
lower coverage.
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Fig. 4. Quantile-based 95% prediction intervals for the observed distances obtained conditional
on knowing the missing data patterns of runners included in the test set. The red-dotted lines
represent the intervals for the model that treats missing data as informative, while the blue-
dashed lines represent the respective intervals for the model that does not treat them as such.
The black lines represent the observed performance of the runners.



18 Mattia Stival et al.

6.2. Application

We illustrate how the complete model can be meaningful for sports scientists and coaches,
answering to two specific questions, based on samples of size 2000 of the predictive distri-
butions illustrated in Section 5 (see Section S.3 of the supplementary material for details
on using multiple chains). The first question is: how do late entry into competitions and
early exit from competitions are related to performances? To answer this question, we
consider the conditional predictive distribution in Equation (14), in which we vary the
age at which the runner enters or exits from the sample, letting the runner participate
in both 800 and 1500 discipline for all the years of his career. Comparing the differ-
ent distributions of the performance allows to catch how the uncertainty related to the
predicted performance changes, according to the different histories considered. Figure 5
shows the results of our procedure for the 1500 and 800 meters distances. Solid central
lines represent the median of the predictive distributions over different ages. Quantile-
based 95% prediction bands are on the contrary represented with different dashed lines,
that denote the respective lower an the upper limits. For what concerns drop-in, we
note from the left panels that late entry into competition is associated with worse me-
dian performances over the years, with lower limits of the predictive confidence bands
that worsen only for runners that entry into competition at ages 26 and 30. The upper
limits, on the contrary, seem to rise with later drop-in. Based on these results, we can
say that for the ideal runners we are considering, later entry in career can still permit to
reach good levels, but it is much more likely that their performances will be worse with
respect to runners with a longer career (earlier drop-in). A similar reasoning applies for
drop-out, in the right panels. The median of the predictive distributions seems indeed
to be worse for runners that drop-out earlier in their life, with the upper limits that
seem to show more variation with respect to the lower ones. In this case, it is not un-
likely to expect runners that drop-out earlier, although their performances seem good,
but it is more unlikely that runners that compete for more years record worse results.
Similar results for different scenarios can be obtained with an analogous approach and
are reported in the supplementary material.

The second question is: how does competing in different disciplines impact the per-
formances? In this case, we consider runners with a complete observed career, and that
compete, every year, in the distances with different strategy: the first runner competes
only in the 1500 meters discipline; the second runner competes in 1500m and 5000m dis-
tances; the third one competes in 1500m and 800m distances; the fourth runner competes
in all distances. Results are shown in Figure 6, in terms of their respective predictive
distributions in 1500 meters discipline. By comparing the results, we see clearly how,
in the training sample, worse performances appear to be associated with the choice of
competing only in one discipline over the years. On the contrary, being a runner that
competes in more than one discipline seems to be associated with better performances,
with differences between the respective predictive distributions which are less evident.
More specifically, the greater differences can be seen comparing runners that compete
in two distances with the one that competes in all three. Indeed, both the limits of the
bands and the median of the predictive distribution appear to be shifted up for the run-
ner that competes in all distances, implying a slightly worse performance for these kind
of runners. Based on our results, competing in all distances seems not to be an optimal
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Fig. 5. The association between drop-in and drop-out with performances in the 1500 meters
discipline, for an ideal runner that competes regularly in 1500 (top) and 800 meters (bottom).
On the left, the runner drops-in at ages 18, 22, 26, 30, respectively. On the right, the runner
drops-out at age 20, 24, 28 or after 32 years old. Central solid line indicate the median of the
predictive distributions. External lines indicate the 95% confidence bands based on symmetric
quantiles of the predictive distributions.
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Fig. 6. Predictive distributions of performances in the 1500 meters discipline, obtained for four
different runners with different ways of participation in other distances during the years.

choice to achieve better results in the 1500 meters discipline. On the contrary, runners
that specialize in 1500 and 5000 meters or in 1500 and 800 meters distances seem to have
better performances overall, especially for the latter type of runners. While the answers
to the first question can generally be obtained by considering only univariate models,
the second one can be addressed only by fitting a multivariate model which allows to
understand how competing in different disciplines interacts with performances. Further
analyses with other distances are in the supplementary material.

7. Conclusions

This paper investigates whether prediction of the runners’ performance is improved by an
accurate assessment of the presence of missing data patterns. Our analysis has provided
strong evidence that for our data, missing data patterns are informative in predicting
performances and they constitute a structural part of the signal explaining the observed
variability of the runners’ performances.

The statistical analysis took place via a matrix-variate state space model, in which
the observed trends were clustered by employing a selection matrix involved in the
measurement equation, and by storing the unknown cluster allocations of the runners.
To include observed missing data patterns as informative on the clustering structure,
two distinct processes were included in the model. The first included the runner’s history
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as potentially informative by considering when a runner starts or stops competing. The
second aimed to include as potentially informative the runner’s attitude by considering
in which distances the runner mostly participates.

Our results based on out of sample comparisons suggest that it is important to con-
sider both these processes when describing runners’ performances whereas considering
only attitude is better than considering only history. There is evidence for a deteriora-
tion in performance when one runner starts competing later or finishes earlier and for
improvement for runners that compete regularly in more distances compared to run-
ners that compete only in one distance. Finally, competing in all three distances does
not seem to be associated with better performances with respect to competing in two
adjacent distances, such as 800 and 1500 meters or 1500 and 5000 meters.

Our key message is to illustrate the usefulness of considering missing data when
describing runners’ performances. Our modelling framework can be straightforwardly
applied to other athletic disciplines, such as sprinting and hurdling, or even to multidis-
ciplinary competitions such as heptathlon and decathlon. It would be also interesting to
investigate whether these findings differ in female runners or in countries with possibly
different coaching methodologies.
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