
Appendix A 

Proof of Proposition 1 (Equation 5 with cost function 4) 

The proof follows from Proposition 2 by replacing the cost functions of Proposition 2, and the geometric 

sum Dn by arithmetic cost functions and an arithmetic sum, since the case enumerations for Propositions 

1 and 2 are exactly the same. Although not central to the argument, the replacement cost functions are 

as follows. 

For n-non-service players P2,…,Pn with values v2- …,vn-  define a cost function by replacing the 

geometric term d|C| in (6) by the arithmetic term d.  

v(CUPr) = v(C) + v(Pr) -dvr- dm= v(C) + vr- - dvr - dm where 0 <d< 1 is a constant factor and m is the 

median of v2…,vn.                               () 

Similarly, the Service player P1 has value (n-1), and its cost function is derived by replacing the 

geometric term d|C| in (6a) by the arithmetic term d. 

v(CU P1) = v(C) + (n-1) + (n-1)dm                 (a) 

The proof then uses result B8, with the replacement Dn → d + d + ... +d = (n-1)d, 

For the non-service cases, 2 ≤ r ≤ n 

SH(n,r) = vr -  - (m + vr)Dn/n → vr -  - (m + vr) (n-1)d/n = vr -  - dvr(1 – 1/n) - dm(1−n).      (A2) 

Similarly, for the service case   

SH(n,1)  = (n-1) + (n-1)mDnn →(n-1) + (n-1)m(n-1)dn = (n-1) + (n-1)dm(1−n).                (A2a) 

This completes the proof of Proposition 1.  Equations A2 and A2a correspond to (5). 

 

  



Appendix B 

Proof of Proposition 2 (Equation 7 with cost function 6)   

We consider enumerations for four cases. 

Case 1:  P1 is first in the permutation: allocation is to the service P1 

P1 is first (n-1)! times out of n!, and the marginal allocation to P1 each time is (n-1) (from 

Equation 7).  The total marginal allocation for this case is  

M(1)(P1) = (n-1)!×(n-1)                    (B) 

Case 2:  P1 is not first in the permutation: allocation is to the service P1 

P1 is not first [n! - (n-1)!] times.   When P1 joins the coalition, P1 receives a marginal allocation 

(n-1)  Additionally there are (n-1)! diversification cases of each of the following, to be 

added: 

 (n-1)md,   (n-1)md2,   ...,   (n-1)mdn-1.  

Therefore the total marginal allocation for this case is (with Dn = d + d 2 + ... +d n-1) 

M(2)(P1) = [n! - (n-1)!]×(n-1) + (n-1)! (n-1)m(d + d 2 + ... +d n-1)  

   = [n! - (n-1)!]×(n-1) + (n-1)! (n-1)mDn                 (B) 

 

Case 3:  Pr (a non-service) is first in the permutation: allocation is to Pr 

Pr is first in (n-1)! cases, each with marginal allocation vr - .  There is no diversification.  The 

total marginal allocation for this case is  

M(3)(Pr) = (n-1)!×(vr - )                    (B) 

Case 4:  Pr is not first in the permutation: allocation is to Pr 

Pr is not first in [n! - (n-1)!] cases.  When Pr joins the coalition, Pr receives a marginal allocation 

(vr - ) in all of those cases  Additionally there are (n-1)! diversification cases of each of the 

following, to be subtracted: 

 vrd,   vrd 2,   ...,   vrd n-1, 

 md,   md 2,   ...,   md n-1.  

 The total marginal allocation for this case is then (with Dn = d + d 2 + ... +d n-1 as in Case 2) 

 M(4)(Pr) = [n! - (n-1)!]×(vr−) − (n-1)!(vr + m)(d + d 2 + ... +d n-1)  

  = [n! - (n-1)!]×(vr−) − (n-1)!(vr + m)Dn                          (B5) 

By symmetry, all non-service players can be analysed in the same way and have the results that follow 

the same pattern. 



The total marginal allocation for P1, M(P1) is the sum of the marginal in (B2) and (B3). 

M(P1)  = M(1)(P1)  + M(2)(P1)  

= (n-1)!×(n-1)  + [n! - (n-1)!]×(n-1) + (n-1)! (n-1)mDn  

= n!×(n-1) +  (n-1)m(n-1)!Dn                          (B6) 

The total marginal allocation for Pr, M(Pr) is the sum of the marginal in (B4) and (B5). 

M(Pr)  = M(3)(Pr) + M(4)(Pr) 

 = (n-1)!×(vr - ) +[n! - (n-1)!]×(vr−) − (n-1)!(vr + m)Dn  

 = n!×(vr−) − (vr -+m)Dn(n-1)!                (B7)

       

The final stage in the proof is to calculate the mean marginal allocation by dividing (B6) and (B7) by 

the total number of permutations, n! 

SH(n,1)  = (n-1) +  (n-1)mDnn                (B8a)

            

SH(n,r)  = vr− − (vr + m)Dnn   (2 ≤ r ≤ n)                    (B8) 

This completes the proof of Proposition 2, and Equations (B8, B8a) correspond to (7).  

 

  



Appendix C 

Summary of the LDA algorithm (Frachot et al 2001) 

The algorithm was designed to estimate value-at-risk (VaR) in the context of operational risk losses.  

Therefore we use to the term ‘loss’ in this appendix, although, in principle, the data can originate from 

elsewhere.  LDA is a Monte Carlo process with T trials. Given a list of N losses covering a period Y 

years, the algorithm requires a pre-calculated severity distribution D for the losses (typically fat-tailed 

such a Lognormal). 

Algorithm LDA(T): 

1. Calculate frequency f = N/Y 

2. For trial t from 1 to T do 

a. Generate a loss number n from a Poisson(f) distribution. This represents an annual 

number of losses 

b. Generate a random sample of size n from D 

c. Calculate the sum S(t) of the elements in the random sample in the previous step 

3. End_For 

4. Calculate VaR = the 99.9 percentile of the S(t) 

 

 

 


