Appendix A

Proof of Proposition 1 (Equation 5 with cost function 4)
The proof follows from Proposition 2 by replacing the cost functions of Proposition 2, and the geometric sum D_{n} by arithmetic cost functions and an arithmetic sum, since the case enumerations for Propositions 1 and 2 are exactly the same. Although not central to the argument, the replacement cost functions are as follows.

For n-non-service players $\mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ with values $v_{2^{-}} \varepsilon, \ldots, v_{n^{-}} \varepsilon$ define a cost function by replacing the geometric term $d^{|C|}$ in (6) by the arithmetic term d.
$v\left(C \mathrm{UP}_{r}\right)=v(C)+v\left(\mathrm{P}_{r}\right)-d v_{r}-d m=v(C)+v_{r}-\varepsilon-d v_{r}-d m$ where $0<d<1$ is a constant factor and m is the median of v_{2}, \ldots, v_{n}.

Similarly, the Service player P_{1} has value $(n-1) \varepsilon$, and its cost function is derived by replacing the geometric term $d^{|C|}$ in (6a) by the arithmetic term d.
$v\left(C \cup \mathrm{P}_{1}\right)=v(C)+(n-1) \varepsilon+(n-1) d m$
The proof then uses result B8, with the replacement $D_{n} \rightarrow d+d+\ldots+d=(n-1) d$,
For the non-service cases, $2 \leq r \leq n$
$S H(n, r)=v_{r}-\varepsilon-\left(m+v_{r}\right) D_{n} / n \rightarrow v_{r}-\varepsilon-\left(m+v_{r}\right)(n-1) d / n=v_{r}-\varepsilon-d v_{r}(1-1 / n)-d m(1-1 / n)$.
Similarly, for the service case
$S H(n, 1)=(n-1) \varepsilon+(n-1) m D_{n} / n \rightarrow(n-1) \varepsilon+(n-1) m(n-1) d / n=(n-1) \varepsilon+(n-1) d m(1-1 / n)$.
This completes the proof of Proposition 1. Equations A2 and A2a correspond to (5).

Appendix B

Proof of Proposition 2 (Equation 7 with cost function 6)
We consider enumerations for four cases.
Case 1: P_{1} is first in the permutation: allocation is to the service P_{1}
P_{1} is first ($n-1$)! times out of $n!$, and the marginal allocation to P_{1} each time is ($n-1$) ε (from Equation 7). The total marginal allocation for this case is
$M_{(1)}\left(\mathrm{P}_{1}\right)=(n-1)!\times(n-1) \varepsilon$
Case 2: P_{1} is not first in the permutation: allocation is to the service P_{1}
P_{1} is not first $[n!-(n-1)!]$ times. When P_{1} joins the coalition, P_{1} receives a marginal allocation $(n-1) \varepsilon$. Additionally there are $(n-1)$! diversification cases of each of the following, to be added:

$$
(n-1) m d, \quad(n-1) m d^{2}, \quad \ldots, \quad(n-1) m d^{n-1} .
$$

Therefore the total marginal allocation for this case is (with $D_{n}=d+d^{2}+\ldots+d^{n-1}$)

$$
\begin{align*}
M_{(2)}\left(\mathrm{P}_{1}\right) & =[n!-(n-1)!] \times(n-1) \varepsilon+(n-1)!(n-1) m\left(d+d^{2}+\ldots+d^{n-1}\right) \\
& =[n!-(n-1)!] \times(n-1) \varepsilon+(n-1)!(n-1) m D_{n} \tag{B3}
\end{align*}
$$

Case 3: P_{r} (a non-service) is first in the permutation: allocation is to P_{r}
P_{r} is first in $(n-1)$! cases, each with marginal allocation $v_{r}-\varepsilon$. There is no diversification. The total marginal allocation for this case is

$$
\begin{equation*}
M_{(3)}\left(\mathrm{P}_{r}\right)=(n-1)!\times\left(v_{r}-\varepsilon\right) \tag{B4}
\end{equation*}
$$

Case 4: P_{r} is not first in the permutation: allocation is to P_{r}
P_{r} is not first in $[n!-(n-1)!]$ cases. When P_{r} joins the coalition, P_{r} receives a marginal allocation $\left(v_{r}-\varepsilon\right)$ in all of those cases. Additionally there are ($n-1$)! diversification cases of each of the following, to be subtracted:

$$
\begin{array}{llll}
v_{r} d, & v_{r} d^{2}, & \ldots, & v_{r} d^{n-1} \\
m d, & m d^{2}, & \ldots, & m d^{n-1}
\end{array}
$$

The total marginal allocation for this case is then (with $D_{n}=d+d^{2}+\ldots+d^{n-1}$ as in Case 2)

$$
\begin{align*}
M_{(4)}\left(\mathrm{P}_{r}\right) & =[n!-(n-1)!] \times\left(v_{r}-\varepsilon\right)-(n-1)!\left(v_{r}+m\right)\left(d+d^{2}+\ldots+d^{n-1}\right) \\
& =[n!-(n-1)!] \times\left(v_{r}-\varepsilon\right)-(n-1)!\left(v_{r}+m\right) D_{n} \tag{B5}
\end{align*}
$$

By symmetry, all non-service players can be analysed in the same way and have the results that follow the same pattern.

The total marginal allocation for $\mathrm{P}_{1}, M\left(\mathrm{P}_{1}\right)$ is the sum of the marginal in (B2) and (B3)

$$
\begin{align*}
M\left(\mathrm{P}_{1}\right) & =M_{(1)}\left(\mathrm{P}_{1}\right)+M_{(2)}\left(\mathrm{P}_{1}\right) \\
& =(n-1)!\times(n-1) \varepsilon+[n!-(n-1)!] \times(n-1) \varepsilon+(n-1)!(n-1) m D_{n} \\
& =n!\times(n-1) \varepsilon+(n-1) m(n-1)!D_{n} \tag{B6}
\end{align*}
$$

The total marginal allocation for $\mathrm{P}_{r}, M\left(\mathrm{P}_{r}\right)$ is the sum of the marginal in (B4) and (B5).

$$
\begin{align*}
M\left(\mathrm{P}_{r}\right) & =M_{(3)}\left(\mathrm{P}_{r}\right)+M_{(4)}\left(\mathrm{P}_{r}\right) \\
& =(n-1)!\times\left(v_{r}-\varepsilon\right)+[n!-(n-1)!] \times\left(v_{r}-\varepsilon\right)-(n-1)!\left(v_{r}+m\right) D_{n} \\
& =n!\times\left(v_{r}-\varepsilon\right)-\left(v_{r}+m\right) D_{n}(n-1)! \tag{B7}
\end{align*}
$$

The final stage in the proof is to calculate the mean marginal allocation by dividing (B6) and (B7) by the total number of permutations, n !
$\operatorname{SH}(n, 1)=(n-1) \varepsilon+(n-1) m D_{n} / n$

SH(n,r)
$=v_{r}-\varepsilon-\left(v_{r}+m\right) D_{n} / n$
$(2 \leq r \leq n)$
This completes the proof of Proposition 2, and Equations (B8, B8a) correspond to (7).

Appendix C

Summary of the LDA algorithm (Frachot et al 2001)
The algorithm was designed to estimate value-at-risk (VaR) in the context of operational risk losses. Therefore we use to the term 'loss' in this appendix, although, in principle, the data can originate from elsewhere. LDA is a Monte Carlo process with T trials. Given a list of N losses covering a period Y years, the algorithm requires a pre-calculated severity distribution D for the losses (typically fat-tailed such a Lognormal).

Algorithm LDA(T :

1. Calculate frequency $f=N / Y$
2. For trial t from 1 to T do
a. Generate a loss number n from a Poisson (f) distribution. This represents an annual number of losses
b. Generate a random sample of size n from D
c. Calculate the sum $S(t)$ of the elements in the random sample in the previous step
3. End_For
4. Calculate $\mathrm{VaR}=$ the 99.9 percentile of the $S(t)$
