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Background and aims: Heart rate variability (HRV) has previously been assessed
as a biomarker for brain injury and prognosis in neonates. The aim of this cohort
study was to use HRV to predict the electroencephalography (EEG) grade in
neonatal hypoxic-ischaemic encephalopathy (HIE) within the first 12 h.
Methods:We included120 infantswithHIE recruitedaspart of twoEuropeanmulti-
centre studies, with electrocardiography (ECG) and EEG monitoring performed
before 12 h of age. HRV features and EEG background were assessed using the
earliest 1 h epoch of ECG-EEG monitoring. HRV was expressed in time, frequency
and complexity features. EEG background was graded from 0-normal, 1-mild, 2-
moderate, 3-major abnormalities to 4-inactive. Clinical parameters known within
6 h of birth were collected (intrapartum complications, foetal distress, gestational
age, mode of delivery, gender, birth weight, Apgar at 1 and 5, assisted ventilation
at 10 min). Using logistic regression analysis, prediction models for EEG severity
were developed for HRV features and clinical parameters, separately and
combined. Multivariable model analysis included 101 infants without missing data.
Results: Of 120 infants included, 54 (45%) had normal-mild and 66 (55%) had
moderate-severe EEG grade. The performance of HRV model was AUROC 0.837
(95% CI: 0.759–0.914) and clinical model was AUROC 0.836 (95% CI: 0.759–
0.914). The HRV and clinical model combined had an AUROC of 0.895 (95% CI:
0.832–0.958). Therapeutic hypothermia and anti-seizure medication did not
affect the model performance.
Conclusions: Early HRV and clinical information accurately predicted EEG grade in
HIEwithin thefirst 12 hof birth. ThismightbebeneficialwhenEEGmonitoring is not
available in the early postnatal period and for referral centres who may want some
objective information on HIE severity.
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Introduction

Despite developments in feto-maternal monitoring and

care, hypoxia-ischaemia (HIE) remains the main cause of

neonatal encephalopathy with an incidence of up to 1.5–3 per

1000 live births in high-income countries and significantly

higher in low-middle income countries (1, 2). Therapeutic

hypothermia is the only available treatment which has been

shown to improve outcomes for moderate and severe HIE

(3–6). To optimise the beneficial effects of hypothermia,

treatment has to start as soon as possible after birth (7).

Sometimes, the early clinical picture alone is insufficient to

decide if a newborn will benefit from therapeutic hypothermia

and many neonatal centres use electroencephalography (EEG)

to help assess the severity of encephalopathy. The use of EEG

monitoring in neonatal units for diagnosis, treatment

monitoring and prognosis is increasing worldwide (8, 9).

International guidelines recognise the benefit of EEG for

improved neonatal outcomes and recommend EEG for accurate

diagnosis and monitoring of high risk infants (10, 11).

However, introducing neonatal EEG monitoring is challenging;

equipment is expensive and specialised personnel are required

24/7 to interpret the EEG. This is not readily available for most

neonatal units, especially in low-income countries, thus the

need of other methods to help identify those most at risk (12, 13).

Due to the widespread use of electrocardiography (ECG)

monitoring, heart rate variability (HRV) has been assessed as a

possible biomarker for brain injury and prognosis in neonatal

populations (14–17). The naturally occurring variation in

heartbeat can be described by HRV analysis. The autonomic

nervous system, through sympathetic and parasympathetic

control regulates HRV. Changes in beat-to-beat heart rate have

been correlated with stress levels. A decrease in HRV was

associated with stress elevation and studies suggest that HRV

could predict HIE severity and outcome (18–21). In this study

we investigated if HRV can predict EEG grade in infants with

HIE in the first 12 h after birth. We hypothesised that HRV

analysis may be a useful, objective tool to indicate EEG

encephalopathy grade in HIE, which could be beneficial when

EEG is not yet available. The aim of this study was to assess

the use of early HRV analysis for the prediction of EEG

encephalopathy grade in newborn infants.
Methods

Study setting and participants

The current study presents the results of a secondary analysis

of data from two multi-centre cohort studies (ClinicalTrials.gov

Identifier: NCT02160171 and NCT02431780) (22, 23) which

recruited newborn infants requiring EEG monitoring across eight

European tertiary Neonatal Units. Both studies had ethical
Frontiers in Pediatrics 02
approval granted by national and local ethics committees and

parental/legal guardian written consent was obtained.

Newborn infants with the following were included: 36 weeks

gestation or greater with presumed HIE and EEG-ECG

monitoring for at least one hour before 12 h of age. The

diagnosis of HIE was initially established based on signs of

perinatal asphyxia and encephalopathy on neurological

examination (modified Sarnat score within 24 h of age) and

retrospectively corroborated with abnormalities suggestive of

HIE on EEG and brain MRI. The clinical grade of HIE was

based on the most severe score of modified Sarnat score.

Infants with sepsis, meningitis, stroke, metabolic or genetic

encephalopathy were excluded. Infants were also excluded if

seizures were detected before, during or at least one hour after

the EEG-ECG epoch selected for analysis.
EEG and ECG monitoring

EEG monitoring commenced as soon as possible after birth,

using disposable electrodes according to the 10:20 electrode

placement system for neonates (F3, F4, C3, C4, Cz, T3, T4,

O1/P3 and O2/P4). EEG recording sampling rate was 250 Hz

or 256 Hz and filter bandwidth was 0.5 to 70 Hz. Separate

electrodes on each shoulder of the newborn were used for

single channel ECG monitoring synchronised with EEG. The

EEG machines used were: NicoletOne ICU Monitor (Natus,

United States), Nihon Kohden EEG (Neurofax EEG-1200,

Japan) or XLTek EEG (Natus, United States).

The earliest one-hour epoch of EEG-ECG was extracted for

each infant, within 12 h of age.
EEG analysis and grading of HIE

EEG background was graded using a system described

previously by our group: 0-normal EEG background, 1-mild

abnormalities, 2-moderate abnormalities, 3-major abnormalities

and 4-inactive EEG background (24).
HRV analysis

In-house software (HRV Analysis, Beta Version 1.12,

©University College Cork 2008–2012) was used to automatically

identify R-peaks on ECG. A manual correction was applied after

visual inspection to ensure all R-peaks were correctly identified

and artefacts were annotated and removed from analysis. The

RR interval was generated as the time difference between each R

peak. HRV features were calculated for five-minute segments

with 50% overlap, using the same procedure described in

previous studies (19, 25–27). If more than 50% of a five-minute

segment was artefact, this was removed. Across all 1 h epochs
frontiersin.org
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included in the analysis a median (IQR) of 1.2% (0.2% to 4.4%)

was removed from the analysis. Features were summarised by

median value over all segments. HRV was expressed in time,

frequency and complexity features. The time domain features

were mean NN-interval (the normalised RR interval), standard

deviation of the NN-interval (SDNN), triangular interpolation of

NN-interval histogram (TINN). The frequency domain features

were high frequency power (HF, 0.2 to 2 Hz), low frequency

power (LF, 0.04 to 0.2 Hz), very low frequency power (VLF, 0.01

to 0.04 Hz) and the low frequency/high frequency (LF/HF) ratio.

The complexity features were calculated from multiscale entropy.

The moving-average filter was used to generate the HRV at

different scales, then entropy was calculated for each of these

multiscale HRV signals (25, 26). Entropy was estimated using

sample entropy with an embedding dimension of 2 and a

tolerance of 0.15 (25). Four features were calculated from the

plot of scale vs. entropy: 1) complexity index, estimated as the

total area under the multiscale entropy curve, 2) maximum

entropy, 3) slope of multiscale entropy over short-duration scale

factors, by fitting a line to the entropy curve from scales 1 to 5

then calculating the slope of this line, and 4) slope of long-

duration scale factors, the slope of a line fitted to the 6 to 20

scale factors (25, 26).
Clinical parameters

Several clinical features known within 6 h of birth were

collected: presence of intrapartum complications, suspected

foetal distress predelivery, gestational age, delivery mode,

gender, birth weight, Apgar scores (1 and 5 min), need for

assisted ventilation at 10 min of age, cord pH, first postnatal

lactate, first postnatal base deficit. We considered intrapartum

complications and their consequences as per the

following: placental abruption, ruptured uterus, vasa praevia,

intrapartum haemorrhage, cord accident or prolapse, shoulder

dystocia, meconium-stained liquor or other (poor progression,

HELLP syndrome/Eclampsia, breech presentation, reduced

foetal movements, foetal bradycardia, prolonged rupture of

membranes). These clinical parameters were used to predict

the EEG grade of encephalopathy. Mode of delivery was

combined into emergency (assisted vaginal delivery and

emergency caesarean section) and non-emergency (unassisted

vaginal delivery and elective caesarean section). The clinical

management of each infant (including the need for

therapeutic hypothermia and anti-seizure medication) was

decided by the local clinical teams at each study site.
Statistical analysis

Categorical variables were described using frequencies and

percentages and continuous variables using means and
Frontiers in Pediatrics 03
standard deviations (SDs), when data was normally

distributed or medians and inter-quartile ranges (IQRs)

otherwise. We investigated the ability of HRV features and

clinical parameters (alone and in combination) to predict

EEG encephalopathy grade using univariable and

multivariable logistic regression analysis. The EEG grade was

classified as a dichotomous variable, normal-mild group

(grades 0 to 1, outcome = 0) and moderate-severe group

(grades 2 to 4, outcome = 1). Univariable logistic regression

analysis investigated the prediction of each variable for

outcome (moderate-severe EEG grade). Using multivariable

logistic regression analysis, we combined the variables with

the best prediction for outcome and developed a HRV

prediction model, a clinical prediction model and a

combined model (HRV and clinical model). Variables with

p < 0.25 in univariable analyses were eligible for inclusion in

multivariable models. If variables were highly correlated, the

variable with the highest area under receiver operating

characteristic curve (AUROC) in the univariable analysis

was included in the multivariable model. The Hosmer-

Lemeshow goodness of fit test was used to determine the fit

of the multivariable models with p < 0.05 indicating lack of

fit. The following clinical parameters had missing data:

suspected foetal distress in labour (14 (11.7%) infants),

Apgar score at 1 min (4 (3.3%) infants), 5 min (4 (3.3%)

infants) and 10 min 15 (12.5% infants), pH (18 (15%)

infants), lactate (35 (29.2%) infants), base deficit (31 (25.8%)

infants). For accurate comparison between models, the

multivariable analysis included 101 infants with no missing

clinical data. Subgroup analyses were performed exclusively

with infants who received therapeutic hypothermia (n = 97

infants) and with infants not on anti-seizure medication

prior to selected epoch (n = 71 infants). Due to missing data,

cord pH, lactate and base deficit could not be included in

the main multivariable analysis. However, the subgroup

analyses also included the information on blood gases. Prior

to performing logistic regression analyses, positively skewed

HRV features were first log transformed and then all

features were standardised to make the regression

coefficients comparable. The AUROC and its corresponding

95% confidence interval (CI) were calculated from the

univariable and multivariable models to assess their ability

to predict EEG grade. An AUROC can range from 0.5

(discrimination no better than chance) to 1 (perfect

discrimination). For multivariable models, Youden’s index

(index = sensitivity + specificity-1) was used to find the

optimal sensitivity-specificity cut-off point on the AUROC

curve and the corresponding sensitivity, specificity, positive

predictive value (PPV) and negative predictive value (NPV)

were estimated.

All tests were two-sided and a p < 0.05 was considered

statistically significant. IBM SPSS Statistics (version 25.0, IBM

Corp., Armonk, NY, United States) was used for the statistical
frontiersin.org
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analysis AUC curves were drawn using Stata (version 17.0,

StataCorp, LP College Station, TX, USA).
Results

Out of the two original cohorts, 120 infants with HIE had at

least one hour of EEG-ECG monitoring and were included in

this analysis: 54 (45%) had a normal-mild EEG grade and 66

(55%) had a moderate-severe EEG grade on earliest EEG

epoch. The two groups were similar in terms of gestational

age, birth weight, gender, age at start of EEG monitoring and

age when EEG epoch was analysed. Compared with the

normal-mild EEG group, the moderate-severe EEG group had

lower Apgar scores at 1 min (median (IQR) 2 (1 to 4) vs. 1 (0
TABLE 1 Study cohort demographics.

n All infants

n = 120a

Gestational age at birth (weeks), median (IQR) 40.1 (39.2 to
41.0)

Mode of delivery, n (%)

Unassisted vaginal delivery 39 (32.5)

Assisted vaginal delivery 43 (35.8)

Elective caesarean section 6 (5.0)

Emergency caesarean section 32 (26.7)

Birth weight (g), mean (SD) 3,475 (607)

Gender, male n (%) 75 (62.5)

Apgar score at 1 min, median (IQR) 116 1 (0 to 3)

Apgar score at 5 min, median (IQR) 116 4 (2 to 6)

Apgar score at 10 min, median (IQR) 105 5 (4 to 8)

Adrenaline during resuscitation, yes n (%) 20 (16.6)

Assisted ventilation at 10 min of age, yes n (%) 118 80 (67.8)

Lowest cord pH, mean (SD) 102 7.0 (0.2)

First postnatal lactate, mean (SD) 85 11.90 (4.35)

First postnatal base deficit, mean (SD) 89 15.8 (5.6)

HIE clinical grade at discharge

Mild, n (%) 51 (42.5)

Moderate, n (%) 44 (36.7)

Severe, n (%) 25 (20.8)

Therapeutic hypothermia (yes), n (%) 97 (80.8)

Age at start of therapeutic hypothermia (hours), median
(IQR)

97 1 (1 to 3)

Age at start of EEG monitoring (hours), median (IQR) 4.4 (3.2 to 7.4)

Age at start of EEG epoch (hours), median (IQR) 5.0 (4.1 to 8.3)

Electrographic seizures (yes), n (%) 40 (33.3)

Any anti-seizure medication given before EEG epoch
analysed (yes), n (%)

19 (15.8)

EEG, electroencephalography.
aunless otherwise stated.
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to 2)), at 5 min (median (IQR) 5 (4 to 7) vs. 3 (1 to 4)) and

at 10 min (median (IQR) 7 (5 to 9) vs. 4 (3 to 5)), had lower

pH (mean (SD) 7.05 (0.15) vs. 6.95 (0.20)), higher lactate

(mean (SD) 10.9 (3.2) vs. 13.0 (5.2)), higher base deficit

(mean (SD) 14.6 (4.5) vs. 17.0 (6.4)), higher need for

ventilation (22 (41.5%) vs. 58 (89.2%)), more infants were

cooled (33 (61.1%) vs. 64 (97%)), and more infants had

electrographic seizures (6 (11.1%) vs. 34 (51.5%)).

Demographic data is presented in Table 1.
Univariable analysis

Out of the HRV features, a higher mean NN and lower LF/

HF ratio, TINN, MSE complexity index, MSE short-scale slope
Normal-mild EEG
background group

Moderate-severe EEG
background group

n = 54a n = 66a

40.6 (39.4 to 41.1) 40.0 (39.0 to 40.9)

13 (24.1) 26 (39.4)

25 (46.3) 18 (27.3)

1 (1.9) 5 (7.6)

15 (27.8) 17 (25.8)

3,525 (492) 3,434 (689)

32 (59.3) 43 (65.2)

2 (1 to 4) 1 (0 to 2)

5 (4 to 7) 3 (1 to 4)

7 (5 to 9) 4 (3 to 5)

3 (5.6) 17 (25.8)

22 (41.5) 58 (89.2)

7.1 (0.2) 7.0 (0.2)

10.9 (3.2) 13 (5.2)

14.6 (4.5) 17 (6.4)

40 (74.1) 11 (16.7)

13 (24.1) 31 (47.0)

1 (1.9) 24 (36.4)

33 (61.1) 64 (97.0)

2 (1 to 3) 1 (1 to 4)

4.3 (3.2 to 7.4) 4.7 (3.3 to 7.7)

5 (4.1 to 8.2) 6.5 (4.2 to 8.6)

6 (11.1) 34 (51.5)

0 19 (28.8)
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TABLE 2 HRV univariable analysis.

HRV Features Normal-mild EEG group
(median, IQR)

Moderate-severe EEG group
(median, IQR)

ORa (95%
CI)

p
value

AUROC (95%
CI)

n = 54 n = 66

Mean NN (ms)b 523.3 (481.9 to 603.6) 591.6 (532.6 to 692.6) 1.97 (1.30–2.97) 0.001 0.675 (0.579–0.772)

SDNN (ms)c 18.0 (13.6 to 34.0) 19.8 (10.6 to 33.8) 0.93 (0.65–1.34) 0.712 0.504 (0.400–0.609)

VLF power (ms2)c 1772.5 (678.3 to 4452.1) 1835.8 (495.9 to 4308.9) 0.79 (0.54–1.15) 0.211 0.544 (0.441–0.648)

LF power (ms2)c 271.0 (65.3 to 719.9) 194.6 (47.4 to 958.3) 0.89 (0.62–1.28) 0.529 0.526 (0.422–0.629)

HF power (ms2)c 3.8 (1.1 to 18.6) 8.0 (2.3 to 43.2) 1.38 (0.95–2.00) 0.091 0.585 (0.483–0.688)

LF/HF ratioc 48.9 (24.6 to 73.6) 18.4 (7.8 to 37.1) 0.40 (0.25–0.64) <0.001 0.721 (0.629–0.813)

TINN (ms)c 62.5 (46.9 to 95.7) 56.6 (31.3 to 78.1) 0.66 (0.45–0.97) 0.035 0.597 (0.495–0.698)

MSE Complexity
Indexb

26.5 (23.4 to 29.6) 23.5 (18.9 to 25.8) 0.46 (0.29–0.73) 0.001 0.695 (0.600–0.790)

MSE short-scale
slopeb

0.11 (0.05 to 0.14) 0.04 (-0.01 to 0.07) 0.26 (0.15–0.47) <0.001 0.776 (0.692–0.860)

MSE long-scale
slopeb

-0.01 (-0.03 to 0.03) 0.00 (-0.02 to 0.03) 1.14 (0.79–1.64) 0.477 0.555 (0.447–0.663)

MSE maximumb 2.4 (2.2 to 2.6) 2.2 (1.9 to 2.5) 0.39 (0.22–0.69) 0.001 0.690 (0.596–0.783)

aFor the non-transformed variables the odds ratio represents the change in odds for a one-standard deviation increase in the HRV variable. For the transformed

variables the odds ratio represents the change in odds for a one-standard deviation increase in the log HRV variable.
bHRV variable was standardised prior to conducting the logistic regression.
cHRV variable was log transformed (log base 10) and then standardised prior to conducting the logistic regression.

HRV, Heart Rate Variability; EEG, electroencephalography; NN interval, normalised RR interval; SDNN, standard deviation of the NN interval; VLF power, very low

frequency power (≤ 0.04 Hz); LF power, low frequency power (0.04–0.15 Hz); HF power, high frequency power (0.15–0.4 Hz), LF/HF ratio, low frequency/high

frequency ratio; TINN, triangular interpolation of the NN interval histogram; MSE, multiscale entropy.
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and maximum MSE were associated with moderate-severe EEG

grade (analysis presented in Table 2).

Out of the clinical parameters, non-emergency delivery

mode, lower Apgar scores, higher need for ventilation at

10 min, lower pH and higher lactate and base deficit were

associated with moderate-severe EEG grade (analysis

presented in Table 3).
Multivariable analysis

For comparability of the multivariable models, we report the

results of the multivariable analysis restricted to 101 infants

with complete clinical information, which were included in

the clinical prediction model. The AUROC for the

multivariable HRV prediction model was 0.837 (95%

CI:0.759–0.914, p < 0.001), Table 4. Based on Youden’s index,

the optimal cut-off was p = 0.66, giving sensitivity 63.6%,

specificity 91.3%, PPV 89.7% and NPV 67.7%. The AUROC

for the multivariable clinical prediction model was 0.836 (95%

CI:0.759–0.914, p < 0.001), with sensitivity 87.3%, specificity

69.6%, PPV 77.4% and NPV 82.1% using the optimal cut-off

p = 0.57, Table 5. The combined HRV and clinical model, had

the best performance with an AUROC of 0.895 (95%

CI:0.832–0.958, p < 0.001) (Table 6), with sensitivity 74.6%,

specificity 95.7%, PPV 95.3% and NPV 75.9% (optimal cut-off

p = 0.66). Performance of prediction models is shown in

Figure 1.
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To account for the confounding effect of therapeutic

hypothermia and anti-seizure medication, we analysed data

exclusively from infants undergoing therapeutic

hypothermia and from infants which did not receive anti-

seizure medication prior to the selected epoch. For these

subgroup analyses we also included data on blood gases

(pH, lactate and base deficit). Predictive performance of the

models including only infants that received therapeutic

hypothermia (n = 97 infants) was: HRV model AUROC

0.812 (95% CI:0.726–0.898), clinical model AUROC 0.781

(95% CI:0.658–0.905), HRV and clinical model AUROC

0.864 (95% CI:0.766–0.963) (Table 7). Models from the

subgroup of infants without anti-seizure medication given

prior to selected ECG-EEG epoch (n = 71 infants) were:

HRV model AUROC 0.821 (95% CI:0.721–0.922), clinical

model AUROC 0.829 (95% CI:0.736–0.923), HRV and

clinical model AUROC 0.883 (95% CI:0.800–0.965)

(Table 8).
Discussion

Using a large multicentre European dataset, the current study

is the first to develop HRV and clinical models that accurately

predict EEG grade in neonatal HIE. Early HRV analysis at

median age of 5.9 h showed that high mean NN and low LF/

HF rate, TINN, MSE complexity index, MSE short-scale slope
frontiersin.org
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TABLE 3 Clinical univariable analysis.

Clinical Parameters Normal-mild EEG
group

Moderate-severe EEG
group

OR (95% CI) p
value

AUROC (95%
CI)

n = 54a n = 66a

Any Intrapartum complications, yes n (%) 46 (85.2) 57 (86.4) 1.10 (0.39–3.08) 0.854 0.506 (0.402–0.610)

Suspected foetal distress in labour, yes n (%)b 40 (81.6) 39 (68.4) 0.49 (0.20–1.22) 0.123 0.566 (0.457–0.675)

Gestational age at birth (weeks), median (IQR) 40.6 (39.4 to 41.1) 40.0 (39.0 to 40.9) 0.78 (0.59–1.05) 0.099 0.591 (0.489–0.694)

Mode of delivery, emergency n (%) 40 (74.1) 35 (53.0) 0.40 (0.18–0.86) 0.019 0.605 (0.504–0.707)

Gender, male n (%) 32 (59.3) 43 (65.2) 1.29 (0.61–2.70) 0.507 0.529 (0.425–0.634)

Birth weight (g), mean (SD) 3,525 (492) 3,434 (689) 0.98 (0.92–1.04)h 0.410 0.570 (0.468–0.673)

Apgar scores at 1 min, median (IQR)c 2 (1 to 4) 1 (0 to 2) 0.71 (0.57–0.88) 0.002 0.708 (0.614–0.802)

Apgar scores at 5 min, median (IQR)c 5 (4 to 7) 3 (1 to 4) 0.67 (0.55–0.81) <0.001 0.756 (0.667–0.846)

Assisted ventilation at 10 min of age, yes n (%)d 22 (41.5) 58 (89.2) 11.68 (4.49–30.36) <0.001 0.739 (0.644–0.833)

Lowest cord pH, mean (SD)e 7.05 (0.15) 6.95 (0.20) 0.97 (0.95–0.99)i 0.008 0.666 (0.562–0.770)

First postnatal lactate, mean (SD)f 10.9 (3.2) 13.0 (5.2) 1.13 (1.01–1.25) 0.029 0.644 (0.519–0.768)

First postnatal base deficit mean (SD)h 14.6 (4.5) 17.0 (6.4) 1.08 (1.00–1.17) 0.050 0.658 (0.539–0.777)

aunless otherwise stated.
bn= 49 in normal-mild group and n= 57 in moderate-severe group.
cn= 52 in normal-mild group and n= 64 in moderate-severe group.
dn= 53 in normal-mild group and n= 65 in moderate-severe group.
en= 45 in normal-mild group and n= 57 in moderate-severe group.
fn= 44 in normal-mild group and n= 41 in moderate-severe group.
gn= 46 in normal-mild group and n= 43 in moderate-severe group.
hThe odds ratio represents the change in odds for a 100 g increase in birthweight.
iThe odds ratio represents the change in odds for a 0.01 increase in cord pH.

Mode of delivery was defined as emergency (assisted vaginal delivery and emergency caesarean section) and non-emergency (unassisted vaginal delivery and elective

caesarean section).

TABLE 5 Clinical multivariable analysis (clinical prediction model), n =
101 infants.

OR (95% CI) p
value

AUROC (95% CI)

Suspected foetal distress
in labour (yes)

0.28 (0.06–1.39) 0.120 0.836 (0.759–0.914)

Gestational age (weeks) 0.78 (0.52–1.17) 0.233

Mode of delivery
(emergency)

0.73 (0.20–2.58) 0.619

Apgar scores at 5 min 0.93 (0.74–1.17) 0.532

Assisted ventilation at
10 min of age (yes)

14.92 (3.81–58.35) <0.001

The multivariable model is: log[p/(1-p)] = 9.71-1.26 (suspected foetal distress in

labour)-0.25 (GA at delivery) −0.32 (emergency delivery) – 0.07 (Apgar score at

5 min) + 2.70 (assisted ventilation) p=0.325 for Hosmer-Lemeshow goodness

of fit.

TABLE 4 HRV multivariable analysis (HRV prediction model), n = 101
infants.

ORa

(95% CI)
p value AUROC

(95% CI)

Mean NN (ms)b 2.73 (1.34–5.53) 0.005 0.837 (0.759–0.914)

HF power (ms2)c 1.45 (0.44–4.81) 0.544

LF/HF ratioc 1.48 (0.51–4.34) 0.471

TINN (ms)c 0.61 (0.19–1.93) 0.398

MSE Complexity Indexb 0.60 (0.32–1.13) 0.115

MSE slope shortb 0.31 (0.12–0.79) 0.014

aFor the non-transformed variables the odds ratio represents the change in

odds for a one-standard deviation increase in the HRV variable. For the

transformed variables the odds ratio represents the change in odds for a

one-standard deviation increase in the log HRV variable.
bHRV variable was standardised prior to conducting the logistic regression.
cHRV variable was log transformed (log base 10) and then standardised prior to

conducting the logistic regression.

The multivariable model is: log (p/(1− p)) = 0.49 + 1.00 (standardized Mean

NN) + 0.37 (standardised log 10 HF power) + 0.40 (standardised log 10 LF

HF ratio) −0.50 (standardised log 10 TINN)− 0.51 (standardised MSE c index)

−1.16 (standardised MSE slope short) p = 0.480 for Hosmer-Lemeshow

goodness of fit.

HRV, Heart Rate Variability; NN interval, normalised RR interval; HF power, high

frequency power (0.15–0.4 Hz), LF/HF ratio, low frequency/high frequency

ratio; TINN, triangular interpolation of the NN interval histogram; MSE,

multiscale entropy.
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and maximum MSE were associated with a worse

encephalopathic EEG grade. When these HRV features were

combined into a prediction model, the performance improved

beyond individual features. The clinical model had a similar

predictive value to the HRV model. However, the model with
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TABLE 6 HRV and clinical prediction model, n = 101 infants.

OR (95% CI) p
value

AUROC
(95% CI)

Mean NN (ms)a 2.34 (1.07–5.10) 0.032 0.895
(0.832–0.958)HF power (ms2)a 1.94 (0.47–7.99) 0.361

LF/HF ratiob 1.51 (0.47–4.89) 0.488

TINN (ms)b 0.70 (0.19–2.58) 0.595

MSE Complexity Indexa 0.84 (0.38–1.84) 0.661

MSE short-scale slopea 0.35 (0.13–0.98) 0.045

Suspected foetal distress in
labour (yes)

0.30 (0.04–2.20) 0.237

Gestational age (weeks) 0.76 (0.48–1.22) 0.251

Mode of delivery
(emergency)

0.63 (0.12–3.29) 0.583

Apgar scores at 5 min 0.94 (0.72–1.23) 0.654

Assisted ventilation at
10 min of age (yes)

8.94 (1.86–43.00) 0.006

aHRV variable was standardised prior to conducting the logistic regression.
bHRV variable was log transformed (log base 10) and then standardised prior to

conducting the logistic regression.

The multivariable model is: log[p/(1-p)] = 11.49 + 0.85 (standardised Mean NN)

+ 0.66 (standardised log 10 HF power) + 0.42 (standardised log 10 LF/HF ratio)

– 0.35 (standardised log 10 TINN)-0.18 (standardised MSE c index) −1.04
(standardised MSE slope short) −1.20 (suspected foetal distress in labour)-

0.28 (GA at delivery) −0.46 (emergency delivery) – 0.06 (Apgar score at

5 min) + 2.19 (assisted ventilation) p=0.548 for Hosmer-Lemeshow

goodness of fit.

HRV, Heart Rate Variability; NN interval, normalised RR interval; HF power, high

frequency power (0.15–0.4 Hz), LF/HF ratio, low frequency/high frequency

ratio; TINN, triangular interpolation of the NN interval histogram; MSE,

multiscale entropy.

FIGURE 1

The AUROC of the multivariable analysis for HRV and clinical
prediction model.

TABLE 7 Subgroup analysis of infants undergoing therapeutic
hypothermia - HRV and clinical prediction model, n = 52 infants.

OR (95% CI) p
value

AUROC
(95% CI)

Mean NN (ms)a 1.72 (0.50–5.86) 0.386 0.864
(0.766–0.963)

LF/HF rateb 1.70 (0.49–5.90) 0.401

TINN (ms)b 1.16 (0.43–3.12) 0.769

MSE short-scale slopea 0.27 (0.06–1.30) 0.102

MSE maximuma 1.88 (0.44–8.01) 0.395

Suspected foetal distress
in labour (yes)

0.11 (0.00–2.77) 0.178

Gestational age (weeks) 0.80 (0.38–1.69) 0.562

Mode of delivery
(emergency)

3.19 (0.17–58.73) 0.434

Gender (male) 1.54 (0.29–8.06) 0.608

Apgar scores at 5 min 0.79 (0.51–1.22) 0.289

Assisted ventilation at
10 min of age (yes)

4.03 (0.28–58.46) 0.307

Cord pH 0.01 (0.00–2.37) 0.103

Base deficit 0.97 (0.79–1.19) 0.741

aHRV variable was standardised prior to conducting the logistic regression.
bHRV variable was log transformed (log base 10) and then standardised prior to

conducting the logistic regression.

HRV, Heart Rate Variability; NN interval, normalised RR interval; LF/HF ratio, low

frequency/high frequency ratio; TINN, triangular interpolation of the NN

interval histogram; MSE, multiscale entropy.
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the best prediction for EEG background severity was the

combined HRV and clinical model, with a AUROC 0.895 (95%

CI:0.832–0.958). Although therapeutic hypothermia and anti-

seizure medication have been demonstrated to impact EEG

background and HRV, when the analysis was adjusted for these

confounders, the model performance did not change (28–31).

It is well known that EEG background is an excellent

predictor of brain injury and long-term outcomes in neonatal

HIE (32–34). Neonatal EEG monitoring was also used as

screening tool for initiation of therapeutic hypothermia in

neonatal encephalopathy (35). Although EEG monitoring can

be a relatively accessible neuromonitoring tool in developed

countries, due to the high costs associated with specialised

equipment and neurophysiological expertise, it is not as

readily available in low-income countries (10, 12, 13, 36). On

the other hand, ECG monitoring is less expensive, widely

used and can be performed with good accuracy antepartum,

during labour and very early in the delivery room. Therefore,

HRV analysis might be very useful as an early tool to assess

severity in neonatal HIE (37, 38).

Since the 1980′s, HRV has been investigated in different

conditions as a non-invasive assessment tool for autonomic
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Table 8 Subgroup analysis of infants without anti-seizure medication
prior to EEG epoch analysed - HRV and clinical prediction model, n= 56
infants.

OR (95% CI) p AUROC (95% CI)

Mean NN (ms)a 2.23 (0.58–8.58) 0.242 0.892 (0.793-0.990)

HF power (ms2)b 1.75 (0.18–16.98) 0.629

LF/HF ratiob 1.40 (0.18–10.89) 0.751

TINN (ms)b 1.18 (0.19–7.42) 0.858

MSE Complexity Indexa 1.97 (0.41–9.56) 0.400

MSE short-scale slopea 0.31 (0.05–1.89) 0.202

MSE long-scale slopea 1.07 (0.26–4.41) 0.922

Gestational age (weeks) 0.76 (0.34–1.69) 0.499

Birth weight (g)c 1.09 (0.91–1.29) 0.346

Apgar scores at 5 minutes 0.72 (0.44–1.17) 0.185

Cord pH 0.01 (0.00–6.60) 0.165

Lactate 1.36 (0.98–1.89) 0.062

Base deficit 0.89 (0.69–1.14) 0.351

Mode of delivery
(emergency)

0.79 (0.03-23.89) 0.894

Suspected foetal distress
in labour (yes)

0.16 (0.00–5.54) 0.314

Assisted ventilation at 10
minutes of age (yes)

12.38 (1.02–149.88) 0.048

aHRV variable was standardised prior to conducting the logistic regression.
bHRV variable was log transformed (log base 10) and then standardised prior to

conducting the logistic regression.
cThe odds ratio represents the change in odds for a 100g increase in

birthweight.

HRV, Heart Rate Variability; EEG, electroencephalography; NN interval,

normalised RR interval; HF power, high frequency power (0.15-0.4 Hz), LF/

HF ratio, low frequency/high frequency ratio; MSE, multiscale entropy.
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function (39, 40). Specifically for neonatal HIE, individual HRV

features have been shown to be good predictors of

encephalopathy severity, abnormal EEG background and

outcome (14–16, 19). The current study has shown that a

high mean NN (lower heart rate) was associated with

moderate-severe EEG grade (OR 1.97 (95% CI:1.30–2.97),

p = 0.001). However, when the analysis was adjusted for

cooling status the difference did not reach statistical

significance (data not presented). TINN was significantly

lower in the moderate-severe group compared to the normal-

mild EEG group (OR 0.66 (95% CI:0.45–0.97), p = 0.035),

regardless of cooling status. A lower LF/HF ratio was

associated with a more severe EEG grade (OR 0.40 (95%

CI:0.25–0.64), p < 0.001). These findings, also confirmed

previously by Goulding et al.0 (19, 28) in infants from a

single centre, demonstrated a reduction in autonomic nervous

system activity with an increase in HIE severity.

Furthermore, MSE complexity index, MSE short-scale slope

and MSE maximum were significantly lower in the moderate-

severe group compared with normal-mild EEG group,

suggesting a decrease in HRV complexity with an increase in

HIE severity, likely due to suppression in autonomic control.
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Consistent with the literature (41, 42), this study showed

that some clinical parameters were associated with worse EEG

grade (low Apgar scores, need for assisted ventilation at

birth), but the combination of clinical parameters increased

the predictive value (clinical model AUROC 0.836 (95%

CI:0.759–0.914)). The HRV prediction model performance

was similar to the clinical model (AUROC 0.837 (95%

CI:0.759–0.914)) in predicting severity of encephalopathy.

However, the model combining early HRV features and

readily available clinical information within 6 h of age had the

best performance, with AUROC 0.895 (95% CI:0.832–0.958).

Performance was similar when the analysis was performed

using exclusively infants undergoing therapeutic hypothermia

and infants without anti-seizure medication given prior to

EEG epoch. The presented models could be very useful for

settings where EEG is not readily available. These could have

a greater impact especially in community hospitals and in

low-income countries where neonatal EEG monitoring and

expertise is scarce.

Several limitations must be considered. This was a

secondary analysis of data collected for studies focused on

neonatal seizures. To ensure only good quality recording

was used for this analysis, all epochs were visually

inspected and artefacts were removed before performing

the HRV analysis. However, artefacts could be problematic

if ECG recordings are used in real-time, at the bedside.

Real-time monitoring of HRV would require the

integration of an artefact detection algorithm. At the time

of the selected epoch, some infants were already under

hypothermia treatment (n = 97 infants) and some had

already received anti-seizure treatment for clinically

suspected seizures (n = 19 infants). To account for the

confounding effect of hypothermia and anti-seizure

medication, we also performed the analysis including only

those infants that were cooled and which did not receive

anti-seizure medication prior to selected epoch. These

subgroup analyses showed no change in the model

performance. However, we did not collect data on inotropic

treatment. Due to missing data for pH, lactate and base

deficit we did not include these parameters in the main

analysis. However, we did develop the same models in

infants which had this information (71 infants) and the

prediction did not improve.

Despite these limitations, this study included early EEG

and ECG data from a large neonatal population with all

grades of HIE. Continuous EEG monitoring which is the

gold standard recommended by current guidelines was

used in this study for background EEG assessment (10).

We are aware that most Neonatal Units do not have the

resources to perform conventional EEG monitoring and

are using aEEG monitoring for infants with HIE

undertaking therapeutic hypothermia. Although this study

analysed conventional EEG monitoring, current aEEG
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monitors can display two or three raw EEG channels from

which the background analysis can be extracted.

We have shown that HRV and clinical data combined in a

model using logistic regression analysis is an excellent predictor

of EEG grade in the early newborn period and may be a very

useful additional tool for neonatologists who are often faced

with challenging decisions about therapeutic hypothermia,

where EEG monitoring is not available or feasible.

In summary, our results are promising and suggest that an

early combined HRV and clinical model could be useful to

assess the severity of newborn encephalopathy in the early

postnatal period. This might be helpful as a proxy marker for

injury severity in settings where EEG monitoring is not

available or not easily accessible; on the other hand, clinical

information is readily available and ECG monitoring is non-

invasive, easily available and unexpensive. Future work will

require for this model to be validated in real time at the cot

side and in all settings.
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