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Abstract 

The finding that human decision-making is systematically biased continues to have an 

immense impact on both research and policymaking. Prevailing views ascribe biases to 

limited computational resources, which require humans to resort to less costly resource-

rational heuristics. Here, we propose that many biases in fact arise due to a computationally 

costly way of coping with uncertainty – namely, hierarchical inference – which by nature 

incorporates information that can seem irrelevant. We thus show how, in uncertain situations, 

Bayesian inference may avail of the environment’s hierarchical structure, so as to reduce 

uncertainty at the cost of introducing bias. We illustrate how this account can explain a range 

of familiar biases, focusing in detail on the halo effect and on the neglect of base rates. In 

each case, we show how a hierarchical-inference account takes the characterization of a bias 

beyond phenomenological description by revealing the computations and assumptions it 

might reflect. Furthermore, we highlight new predictions entailed by our account concerning 

factors that could mitigate or exacerbate bias, some of which have already garnered empirical 

support. We conclude that a hierarchical inference account may inform scientists and policy 

makers with a richer understanding of the adaptive and maladaptive aspects of human 

decision-making.  
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Introduction 

One of the most influential ideas in the study of human decision-making is that many 

of our intuitive decisions are based on simplifying heuristics that lead to systematic biases 

(Gilovich, Griffin, and Kahneman, 2002; Box 1). Instead of fully and properly considering 

relevant information, it is thought that we resort to heuristics due to the limited nature of our 

cognitive resources and a consequent need to minimize computational demands (Gilovich et 

al., 2002; Kahneman, 2011; Lieder, Griffiths, and Hsu, 2018; Lieder, Griffiths, M Huys, and 

Goodman, 2018). The far-reaching impact of this idea is highlighted by two Nobel Prizes in 

Economics awarded in 2002 and 2017 to researchers who developed it (Grüne-Yanoff, 2017; 

Guomei and Qicheng, 2003), and by its widespread influence on current social and economic 

policies (John, 2018; Schmidt, 2017; Schwartz, 2015; Thaler, 2018b, 2018a). Here, we 

propose that some of the most fundamental human biases do not reflect a computational 

limitation, but rather the faithful operation of an advanced form of inference, namely, 

hierarchical inference.  

 

Contemporary cognitive science has given rise to a view of the human brain as a 

Bayesian inference machine (Friston, 2012; Griffiths,et al., 2010; Knill and Pouget, 2004; 

Piray and Daw, 2020; Summerfield and Tsetsos, 2012; Tenenbaum, Kemp, Griffiths, and 

Goodman, 2011). Examining this research reveals a key feature that distinguishes more 

recent models of rational inference from those that have been prevalent in the heuristics and 

biases literature: hierarchical structure (Benrimoh et al., 2018; Diaconescu et al., 2020; 

Box 1. What is a bias? 

 Biases are commonly thought of as inherently irrational influences of irrelevant information on people’s 

judgments. For example, expecting good looking people to be more intelligent. In statistics, however, bias is 

defined slightly differently – it refers to a systematic deviation of inferred values from true values. Such 

statistical bias is in some cases rational since biased estimates can be more accurate than unbiased ones. For 

example, the way our perceptions are biased by our prior expectations can make our perceptions more 

accurate, provided that our prior expectations are well calibrated to the true probabilities of different 

percepts. In this paper, we show that some of the biases that have typically been thought of as irrational may 

in fact constitute rational statistical biases. 

https://sciwheel.com/work/citation?ids=5882609,10951338,10457279,4964943&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=5882609,10951338,10457279,4964943&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=5882609,10951338,10457279,4964943&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=10906452,10906453&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10906452,10906453&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=31041,280754,23366,377108,24313,9682463&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=31041,280754,23366,377108,24313,9682463&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=31041,280754,23366,377108,24313,9682463&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
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Fradkin et al., 2020; Fradkin, Ludwig, Eldar, and Huppert, 2020; Glaze et al., 2018; Hesp et 

al., 2021; Lawson, Mathys, and Rees, 2017; Lee and Newell, 2011; Powers, Mathys, and 

Corlett, 2017; Qiu, Luu, and Stocker, 2020; Reed et al., 2020; Schustek, Hyafil, and Moreno-

Bote, 2019; Siegel, Mathys, Rutledge, and Crockett, 2018; Smith, Thayer, Khalsa, and Lane, 

2017; van Ravenzwaaij, Moore, Lee, and Newell, 2014). The appeal of hierarchical models is 

that they use the temporal and structural dependencies existing in the world around us to 

mitigate uncertainty (Box 2). This is achieved by informing inferences about variables of 

interest (e.g., the expected harvest of fruit from a specific tree) not only with observations 

that directly reflect the variables (e.g., fruit previously harvested from the tree), as simple 

inference would, but also with observations reflecting indirectly related variables (e.g., fruit 

harvested from other trees in the same valley). The result is more informed, and thus more 

precise (i.e., less uncertain), inferences. Ample evidence supports humans’ pervasive use of 

such hierarchical inference in a range of cognitive functions, including perception (de Lange, 

Heilbron and Kok, 2018), social cognition (Gweon, 2021), and reinforcement learning 

(Behrens et al., 2008).  

In this paper, we re-analyze past findings from the heuristics and biases literature to 

illustrate how the use of hierarchical inference can produce multiple classical decision biases. 

This form of inference, however, is costly to implement. How then can we reconcile evidence 

that people intuitively perform hierarchical inference with observations that people fail to do 

even simple Bayesian inference properly (Tversky and Kahneman, 1981a)? We propose that 

this apparent contradiction can be resolved by realizing that the use of indirectly relevant 

information to reduce uncertainty produces behaviors that only appear erroneous if we 

assume that people are attempting simple inference. Finally, we highlight unique predictions 

regarding how diminished neurocognitive resources and effort can be expected to mitigate, 

https://sciwheel.com/work/citation?ids=12178865&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3226856&pre=&suf=&sa=0&dbf=0
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rather than augment, biases, which sharply distinguishes our account of decision biases from 

previous accounts. 

 

Hierarchical inference is intuitive for humans 

Ample empirical evidence supports our use of hierarchical inference across a range of 

domains. Perceptual neuroscience, for example, has shown how higher-level inference about 

the general context portrayed by a visual stimulus (e.g., "I believe I'm looking at a picture of 

a typical day in a city") shapes lower-level inferences about individual objects within this 

context (e.g., "this blurry image must be a car parked next to a sidewalk”; de Lange, Heilbron 

and Kok, 2018). How we learn and make decisions has similarly been shown to involve 

higher-level inferences that guide lower-level inferences. For instance, inferences of rates of 

Box 2. What is hierarchical inference? 

Statistical inference is deemed hierarchical when inferred variables occupy multiple levels in the inference 

model. Though hierarchical inference has many forms and uses (e.g., frequentist multilevel modelling), here 

we focus on hierarchical Bayesian inference as a model of cognitive function. 

Consider an animal that wants to estimate which trees bear the most fruit. To do so, the animal chooses a tree 

based on a prior expectation concerning how fecund the tree may be, p(𝑓tree1). It then observes how much 

fruit there currently is on this tree, 𝑟tree1, and finally updates its expectation concerning the tree’s fecundity 

in light of the amount of fruit it just observed, p(𝑓tree1|𝑟tree1). This updated expectation is referred to as a 

posterior probability, and is derived using simple Bayesian inference:  

p(𝑓tree1|𝑟tree1) ∝ p(𝑟tree1|𝑓tree1)p(𝑓tree1). 

This type of Bayesian inference, although itself complex, ignores how nearby trees from the same valley may 

be similarly fecund. Hierarchical inference uses such nested relationships to make more informed, and thus 

less uncertain, inferences: food from a tree depends on the qualities of that specific tree, p(𝑟tree1|𝑓tree1), 

which themselves depend on qualities of the larger valley in which the tree grows, p(𝑓tree1|𝑓valley), about 

which the animal may have some prior expectation, p(𝑓valley). After sampling a tree, the animal can use 

hierarchical inference to simultaneously update its interdependent expectations concerning the tree and the 

valley:  

         p(𝑓tree1, 𝑓valley|𝑟tree1) ∝ p(𝑟tree1|𝑓tree1)p(𝑓tree1|𝑓valley)p(𝑓valley).  

The expected valley fecundity will thus come to reflect all trees that have been  

sampled in that valley. Critically, since expectations from trees are now influenced  

by expectations from the valley in which they reside, the animal’s expectations  

from each tree will be biased by how much fruit it obtained from neighboring  

trees. 

As depicted on the right, we can represent the nested relations involved in 

hierarchical inference using a graphical model. In the hierarchical models 

presented in this paper, variables of the model (gold circles) are estimated 

based on observations that lie at the bottom of the hierarchy (gray circles) and 

prior expectations concerning the top-level variables (not shown; often referred 

to as hyper-priors). 



RUNNING HEAD: HIERARCHICAL INFERENCE AS A SOURCE OF HUMAN BIASES      

6 
 

6 

change in reward or punishment guide inferences concerning the reward and punishment 

associated with specific choices (Behrens et al., 2008; de Berker et al., 2015; Eldar et al., 

2016). Hierarchical inference is also prevalent in language. Even when we are very young, 

we routinely infer latent causes from the speech we hear, including goals and emotions that 

are not directly observable from others’ speech, and these higher-level inferences guide our 

interpretation of subsequent speech (Gweon, 2021). Without this ability to infer hierarchical 

causes, we would misinterpret sarcasm for offense, humor for stupidity, and so on. Indeed, 

our behavioral flexibility is often predicated on employing hierarchical inference. It is thus 

unsurprising that hierarchical inference is implemented in leading frameworks of brain 

function, including predictive coding (Friston, 2012) and reinforcement learning (Bartolo and 

Averbeck, 2021).  

In what follows, we illustrate how the operation of hierarchical inference could 

explain several well-established decision biases. In each case, we explore the novel insights 

that a hierarchical inference account affords. Importantly, our account does not seek to 

overturn all biases as non-biases, but rather pinpoint the computations that underly them and 

thus help determine whether, or in what circumstances, we can construe a bias as rational 

and desired.  

 

The halo effect: a paradigmatic example of intuitive hierarchical inference 

Consider, for instance, the well-known bias that goes by the name of ‘halo effect’ 

(Thorndike, 1920). A classic example of a halo effect manifests in grading an exam 

consisting of two open-ended questions: the evaluation of the question graded first can bias 

the evaluation of the second question. Thus, an exceptional first question makes it likely that 

the second question will be evaluated more highly than it otherwise would have been. This 

https://sciwheel.com/work/citation?ids=10951338&pre=&suf=&sa=0
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behavior seems unacceptable because it leads to a different overall grade depending on the 

arbitrary factor of which question is graded first.  

Such behavior, however, is natural under a hierarchical model, wherein the student's 

knowledge on individual questions is assumed to reflect their typical level of knowledge on 

the topic (Figure 1a, right). Under this assumption, given that the information a grader 

garners from a student’s answer is a noisy representation of the student's true level of 

knowledge on the question, the grader’s grade will more accurately reflect the student’s 

knowledge if it forms a compromise between the information garnered from the answer and 

what is known about the student's typical level of knowledge. This typical level of knowledge 

(and the consistency of knowledge across questions) can be sequentially estimated from the 

student's answers to previous questions.   

To illustrate how sequential hierarchical inference has the consequence that the order 

in which answers are graded impacts the overall grade, imagine that a student's answer to the 

first open-ended question (Q1) seems highly accurate (Figure 1b, green vertical line). Based 

on this impression and no specific prior expectation, the grader infers both the student 

knowledge for Q1 (Figure 1b, middle) and her general knowledge on the exam topic (Figure 

1b, left). The latter estimate now provides a more precise prior expectation with regards to 

the student’s knowledge on Q2 (Figure 1b, right plot, green). Consequently, the grading of 

Q2 is both more certain and pulled upwards relative to how it would have been had it also 

been graded without an informative prior expectation (Figure 1b, right plot, compare solid 

and dashed brown lines). Conversely, had the grader begun grading with Q2, her estimate of 

student knowledge would have been lower at the time she graded Q1. In this alternative 

scenario, Q2’s grade would be unbiased whereas Q1’s grade would be biased downwards. 

Sequential hierarchical inference thus explains how order effects may emerge in grading as 

an outcome of a rational process.  
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Figure 1. Hierarchical inference produces a halo effect in grading questions. (a) A non-hierarchical model 

(blue) assumes that knowledge on different questions is unrelated. In contrast, a hierarchical model (gold) 

assumes knowledge on different questions is linked via the student’s typical level of knowledge in the subject 

matter (black arrows). It is thus sensible that the evaluation of one answer will inform the evaluation of a 

subsequent answer. This flow of information is illustrated by added green and brown arrows. Because the grader 

does not re-grade earlier answers after additional information about the student is garnered from later answers, 

earlier grades do not benefit from (i.e., are not biased by) this latter information. Such sequential inference is 

encountered in many real-world situations where choices must be enacted as evidence accrues. (b) Hierarchical 

inference concerning a student’s typical knowledge (top row, gold), and specific knowledge on two questions, 

the first of which received a fairly accurate answer (Q1, green) whereas the second received a mediocre answer 

(Q2, brown). The grader begins with an assumption that the student’s typical level of knowledge could equally 

be any level between 0% and 100% (illustrated in the top left plot by a uniform distribution). Inferred Q1 

knowledge is thus unbiased, but it informs the grader’s inference concerning the student’s typical knowledge, 

which serves as a prior expectation for inferring Q2 knowledge. As a result, Q2 knowledge is inferred with 

higher certainty and an upwards bias compared to how it would have been inferred without hierarchical 

inference (dashed line). (c) Grading of individual questions by non-hierarchical (blue clouds) and hierarchical 

(gold clouds) inference as a function of the student’s knowledge on the question, for five levels of seeming 

answer accuracy (20%, 40%, 60%, 80%, 100%) from a student whose typical level of knowledge lies in the 

range of 50% to 90%. Both types of grades aim to estimate the student’s knowledge on each question. In 

grading a question, non-hierarchical inference only relies on the answer to that question. Thus, its grades 

precisely equal the answer’s seeming accuracy. By contrast, hierarchical inference is informed by the levels of 

accuracy the student demonstrated in previous questions. Consequently, its grades smooth out the noise 

embedded in raw answers, and thus more faithfully reflect the student’s knowledge on each question (i.e., the 

gold clouds are closer to the diagonal).  

 

 

This analysis of the halo effect illustrates how, by accounting for dependencies 

between different sets of observations, hierarchical inference offers more accurate estimates 

and greater certainty about them. Though certainty has not been empirically investigated in 

this context, it is interesting to note, anecdotally, what happened when Daniel Kahneman 

shuffled students’ exams to stop himself from being influenced by inferences about each 
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student’s typical level of knowledge. “I was now less happy with and less confident in my 

grades”, he wrote (Kahneman, 2011). 

 

Hierarchical inference in other heuristics and biases 

The relevance of hierarchical inference extends to a variety of established heuristics 

and biases that characterize human decision-making (Figure 2). For example, the impact of 

an incidental affective state on the evaluation of outcomes is typically regarded as an 

affective bias (Slovic, Finucane, Peters, and MacGregor, 2007). A hint that this bias may 

serve some form of inference is provided by the finding that the bias is mitigated if the 

affective state can be attributed to an unrelated cause (Schwarz and Clore, 1983). However, 

until recently, it remained unclear why by default people’s judgments are influenced by non-

specific affective states. More recent analysis has offered an answer to this conundrum, by 

showing that affective states may reflect hierarchical inference about general environmental 

changes that simultaneously increase (or decrease) the value of multiple related actions (e.g.,  

 
Figure 2. Biases that violate simple Bayesian inference but are consistent with hierarchical inference. 

Each bias constitutes a well-established property of human decision-making. From the point of view of non-

hierarchical Bayesian inference (blue models) the biases are unjustified, but hierarchical models (gold) show 

how, given certain assumptions, the biases can reflect rational inference. Note that the gold ‘hot-hand illusion’ 

model is not strictly hierarchical, but it involves ‘hierarchical-like’ inference wherein inferred variables are 

constrained by other inferred variables. Bidirectional arrows are used to indicate that known facts may either 

depend on the quantity of interest or the quantity of interest may depend on them. See Box 3 for equations 

describing each model. 
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a seasonal change that makes it easier to obtain food, water, and shelter). Affective biases 

may thus serve to properly correct learning concerning individual actions to account for 

general environmental changes (Eldar, Rutledge, Dolan, and Niv, 2016). 

The effects of ‘anchors’ (Tversky and Kahneman, 1974) and ‘frames’ (Tversky and 

Kahneman, 1981b) on people’s estimations and evaluations have similarly been regarded as 

irrational biases. Such biases manifest, for instance, when people give different answers to 

two logically equivalent but differently framed questions. Endeavoring to understand the root 

of this irrational behavior, substantial research has investigated the processes through which 

these biases are produced. Such research has found, for instance, that an anchoring bias may 

arise either because the anchor serves as an initial estimate that is gradually adjusted until 

reaching a plausible value (Tversky and Kahneman, 1974), or because the anchor primes 

relevant knowledge with which it is consistent (Strack and Mussweiler, 1997).  

Elucidating the algorithm that produces a bias, however, does not necessarily reveal 

why a bias exists. Indeed, dissenting voices have suggested that anchors and frames should 

not be construed as exerting irrational influences since they may reflect relevant knowledge 

on the part of the individual who designed the decision problem. For instance, it has been 

suggested that “a speaker is likely making an unspoken recommendation when using a 

positive frame.” (Gigerenzer, 2018; Sher and McKenzie, 2007). Such an inference may give 

rise to multiple different types of framing effects (Levin, Schneider, and Gaeth, 1998), since a 

speaker’s recommendation could shed light on the value of an item (attribute framing) or 

indicate what type of outcomes (risky-choice framing) or features (goal framing) should be 

given priority. In agreement with this suggestion, more recent research has found that 

framing effects are eliminated when the frame is made uninformative by disambiguating 

provided information (Mandel, 2014), and anchoring biases are decreased or eliminated when 

anchors are made irrelevant (Fudenberg, Levine, and Maniadis, 2012; Ioannidis, Offerman, 
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and Sloof, 2020) or unnecessary (Jacowitz and Kahneman, 1995; Wilson et al., 1996). 

Accordingly, we propose that framing and anchoring biases constitute additional 

manifestations of hierarchical inference, wherein the frame or the anchor are used to infer 

relevant knowledge on the part of the experimenter, which is in turn used to infer the target 

quantity (Figure 2). Such hierarchical inference could be implemented by means of any of 

the algorithms previously suggested to produce these biases.  

Finally, it is noteworthy that a previously established bias, the hot-hand fallacy in 

basketball (Gilovich, Vallone, and Tversky, 1985), has recently been shown to not be a 

fallacy (Miller and Sanjurjo, 2018; Ritzwoller and Romano, 2022), indicating that basketball 

viewers and players may be making well-founded ‘hierarchical-like’ inferences (Figure 2) 

when they identify a hot streak. 

These biases offer an illustrative set of examples for how hierarchical inference may 

give rise to judgments that are biased yet rational. This is not to say that all biases can be 

explained in this way, nor that other biases that we have not discussed cannot. Thus, for 

instance, hierarchical inference might also give rise to the availability heuristic (Tversky and 

Kahneman, 1983), which may possibly be conceptualized as an inference of the frequency of 

an event based on how frequently we have previously encountered it, which is in turn inferred 

from how quickly information about it comes to mind (since repetition improves recall; 

Hintzman, 1976). To facilitate further investigation and quantitative testing of a hierarchical 

inference account of these and other biases, in Box 3 we provide equations for generative 

hierarchical models that may explain the computations that produce each bias. 

 

A hierarchical Bayesian interpretation of base rate neglect 

The biases discussed so far demonstrate how rational hierarchical inference can lead 

to decisions that seem biased. However, these biases were never specifically perceived as 
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incompatible with the view of humans as Bayesian. In the next example, we use a 

hierarchical model to re-interpret a well-established bias that cast doubt on the ability of 

humans to perform Bayesian inference – base rate neglect (Tversky and Kahneman, 1981a). 

In a classic example illustrating base rate neglect, participants are asked to judge the 

probability that a car involved in an accident belonged to the blue cab company vs. the green 

cab company, given that only 15% of cabs are blue and that a moderately-reliable (i.e., 80% 

accurate) eyewitness said they saw a blue cab. The classic finding is that participants tend to 

underweight the 15% base rate, and thus overestimate the probability that the cab in the 

accident was blue. Interestingly, however, if participants are told instead that 15% of cabs 

involved in accidents are blue, base rate neglect is substantially diminished or even entirely 

absent (Bar-Hillel, 1980; Tversky and Kahneman, 1980). This difference has led the former 

type of base rate to be termed an incidental base rate, and the latter a causal base rate.  

The hierarchical inference perspective offers a way to explain why people weight 

causal base rates more strongly than incidental base rates. Given a causal base rate, the 

probability that the cab in the accident was blue should be computed using a straightforward 

application of Bayes rule (Figure 3a, blue). This precise computation was previously used to 

derive the same optimal answer for causal and incidental base rates (Tversky and Kahneman, 

1981a). However, a closer examination of the incidental base rate case suggests that it 

requires a more complex computation. This is because the proportion of blue cabs out of all 

cabs involved in accidents is determined not only by the proportion of blue cabs out of all 

cabs, but also by the relative proneness to accidents of cabs from the green and blue cab 

companies (Figure 3a, gold). Differences in accident proneness are likely, for instance, if the 

two cab companies operate in different areas, or if their driver hiring practices differ.  

Though we are given no information about the relative proneness to accidents of the 

two cab companies, simply by accounting for our uncertainty about accident proneness, 

https://sciwheel.com/work/citation?ids=10906461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10906461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10906461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10969877,8764898&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10906461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10906461&pre=&suf=&sa=0
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hierarchical inference produces a different answer concerning the cab involved in the 

accident. To see this, consider that the proportion of blue cabs involved in accidents (i.e., 

causal base rate 𝐶) can be computed by multiplying the proportion of blue cabs (i.e., 

incidental base rate 𝐼) by their accident proneness (𝑃): 

𝐶blue =
𝐼blue𝑃blue

𝐼blue𝑃blue + 𝐼green𝑃green
 

The precise result of this computation depends on our prior assumption about accident 

proneness. If we assume that the accident proneness of the two companies is equal, then the 

causal and incidental base rates are identical, and therefore hierarchical and non-hierarchical 

inferences produce the same result (Figure 3b, left panel). By contrast, if we assume that 

accident proneness differs to an extreme extent such that one or the other company is 

responsible for 100% of the accidents, then the causal base rate (𝐶blue) is either 1 or 0 with 

equal probability, and thus, the posterior probability that the cab was blue matches the 

reliability of the witness (Figure 3b, right panel). That is, in this case the incidental base rate 

should be deemed completely irrelevant. Of course, a more reasonable assumption is that  

 

 

Figure 3. Hierarchical inference neglects incidental but not causal base rates. (a) If a causal base rate is 

given, the non-hierarchical model shown in blue is appropriate. However, given an incidental base rate, 

accounting for possible differences between the cab companies in proneness to accidents requires the 

hierarchical model shown in gold. (b) Prior assumptions about accident proneness (top row) affect the 

probability inferred by the hierarchical model that a blue cab was involved in the accident (p(blue); bottom 

row). ‘Accident proneness’ denotes the odds that an accident would involve a blue, as opposed to a green cab, 

had there been equal numbers of blue and green cabs.  
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accident proneness may or may not differ. Implementing this assumption in the model 

(Figure 3b, middle panel) demonstrates that the probability that the cab was blue should be 

influenced by the incidental base rate, but not as much as in the case of a causal base rate. In 

other words, hierarchical inference entails here that the incidental base rate should be 

partially neglected.  

This account of base rate neglect is distinct in key ways from a compelling, 

alternative account founded on signal detection theory (Birnbaum, 1983). The basic idea of 

the latter account is that if participants assume the witness is aware of the incidental base rate, 

then they can already count on the witness taking the base rate into account, and therefore do 

not need to account for it further. Support for this account comes from a demonstration that 

base rate neglect indeed decreases once the scenario is modified such that the witness no 

longer performs a probabilistic judgment (Krynski and Tenenbaum, 2007). In this modified 

scenario, cab colors fade such that 20% of green cabs appear blue and 20% of blue cabs 

appear green, whereas the witness reports precisely what they saw and thus has no reason to 

account for the base rate. However, although this is a compelling explanation for the 

incidental base rate data, it fails to explain why individuals perform differently when given 

causal base rates. Our hierarchical-inference explanation predicts this difference because 

causal base rates account for possible differences in accident proneness between the two cab 

companies whereas incidental base rates do not.   

 

When are hierarchical inferences rational? 

 Hierarchical inference is warranted by the assumption of hierarchically organized 

dependencies between different sets of observations. It is thus irrational whenever a 

dependency assumed to exist between observations is inconsistent with available evidence. 

For example, in the case of the halo effect described above, hierarchical inference makes the 
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assumption that a student’s knowledge on different questions is linked together via the 

student’s general level of knowledge on the exam topic. Whereas this particular assumption 

may be justified, in other cases, a halo effect may result from erroneous assumptions. For 

instance, a person's physical appearance influences judgment of their personality 

characteristics (Moore, Filippou, and Perrett, 2011; Wade and DiMaria, 2003), which implies 

the assumption of a common cause underlying attractiveness and personality. In both cases, 

hierarchical inferences biases evaluations but only in the latter case the assumption is likely 

incorrect and the bias irrational.  

 The suggestion that some biases arise from hierarchical inference that is based on 

erroneous assumptions raises the question of why people would hold these erroneous 

assumptions in the first place. Indeed, establishing that people employ a certain inference 

model requires showing not only that the model produces people’s observed behavior, but 

also explaining why people would hold the assumptions embedded in the model (Geisler et 

al., 2001; Kemp et al., 2007; Devaine et al., 2014). One way to justify a range of erroneous 

assumptions is proposed by the theory of ecological rationality (Todd and Gigerenzer, 2012, 

Hertwig et al., 2021), which posits that organisms rationally develop decision strategies that 

are suitable to many frequently encountered problems, and by consequence produce behavior 

that is not suited to infrequently encountered (e.g., experimentally contrived) contexts 

(Gigerenzer and Brighton, 2009; Gigerenzer, Hertwig and Pachur, 2011). This idea is best 

exemplified by considering our model of the ‘outcome bias’. 

An outcome bias is encountered, for instance, when people are asked to evaluate 

whether a surgeon made the right decision in choosing to perform a surgical procedure 

(Baron and Hershey, 1988). In this experiment, people are told the expected success rate of 

the surgery, and so it is irrelevant whether the surgery eventually succeeded or not. 

Nevertheless, they tend to evaluate the surgeon's decision to operate more highly if the 

https://sciwheel.com/work/citation?ids=10906494,10906497&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1077526&pre=&suf=&sa=0
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surgery succeeded. This outcome bias can be interpreted as the product of hierarchical 

inference assuming that the expected success rate for specific patients deviates from average 

due to random individual characteristics (e.g., differences in symptoms or in genes; Figure 

2). Given this assumption, a successful surgery despite a low expected success rate would 

indicate that for the specific patient the expected success rate was in fact higher than average, 

and thus, the surgeon's decision to operate was more justified.  

The traditional view holds people’s evaluations in this experiment to be irrational 

since people are told that the surgeon did not have access to any additional information 

beyond the average expected rates of success (Baron and Hershey, 1988). However, in more 

naturalistic settings, we do not typically have complete knowledge of what information the 

decision maker has, nor do we know for certain what information can reliably predict a better 

or worse outcome. Thus, in evaluating real-world medical decisions, we should take into 

account both known (i.e., expected success rate) and unknown (i.e., variance in success rate 

between patients) factors. Using outcomes to hierarchically infer the correctness of ours and 

others’ decisions is thus rational and, in fact, essential to how we learn from experience in 

real life (Hertwig et al., 2021).  

 

Do biases reflect limited or enhanced cognition? 

A hierarchical inference account of decision biases sharply diverges from prior 

accounts in suggesting that biases often result from a more complex, not simpler, form of 

computation. Almost all literature on this subject has thus far assumed the opposite, namely, 

that biases arise due to limited cognitive capacity and a need to minimize cognitive costs. 

This assumption is at the very heart of the idea of bounded rationality (Simon, 1979) and has 

been a key principle of the heuristics and biases literature (Kahneman, Slovic, and Tversky, 

1982). More recently, this idea has been formalized and rationalized as the resource 

https://sciwheel.com/work/citation?ids=1077526&pre=&suf=&sa=0
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rationality framework (Dasgupta, Schulz, Goodman, and Gershman, 2018; Dasgupta, Schulz, 

Tenenbaum, and Gershman, 2020; Gul, Krueger, Callaway, and Griffiths, 2018; Lieder, 

Griffiths, and Hsu, 2018; Lieder, Griffiths, M Huys, et al., 2018; Polanía, Woodford, and 

Ruff, 2019). Put simply, this framework views biased decisions as a consequence of the 

rational deployment of limited cognitive resources to solve decision problems. For instance, 

to reduce cognitive load and computation time, people may estimate a probability distribution 

by drawing only a few samples from it (Sanborn and Chater, 2016), or plan only a limited 

number of steps into the future and beyond this rely on error-prone habits (Keramati, 

Smittenaar, Dolan, and Dayan, 2016). On this, the resource-rationality framework agrees with 

the ecological rationality literature, as both view biases as consequences of computationally 

cheap decision rules (Gigerenzer, Hell and Blank, 1988; Hertwig et al., 2021). By contrast, 

the hierarchical inference perspective suggests that reaching unbiased decisions can be less 

costly since a biased decision maker processes contextual variables that an unbiased decision 

maker can ignore (e.g., a student’s typical level of knowledge in the halo effect, and accident 

proneness in base rate neglect). 

If biases indeed arise from a complex and costly form of inference, and not from an 

attempt to minimize the use of limited resources, then we may expect biases to be diminished 

in people who invest less effort in solving a decision problem or whose inference capabilities 

are otherwise compromised. Indeed, recent findings suggest that, rather than being 

exacerbated, in some cases biases are diminished as a result of reduced neurocognitive 

function. First, preliminary work indicates that pupillary indices of cognitive load and effort 

are associated with a greater degree of bias in a range of decision-making tasks (both within 

and between subjects; Eldar, Felso, Cohen and Niv, 2020). Additionally, anecdotal evidence 

suggests that lesions to ventromedial prefrontal cortex (vmPFC) are associated with 

diminished hot-hand illusions and context-dependent biases in value learning (Manohar et al., 

https://sciwheel.com/work/citation?ids=10457279,4964943,10906464,6203465,10899829,10906471&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=10457279,4964943,10906464,6203465,10899829,10906471&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=10457279,4964943,10906464,6203465,10899829,10906471&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=10457279,4964943,10906464,6203465,10899829,10906471&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=6425873&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6425873&pre=&suf=&sa=0
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2021). Similarly, a recent study has shown that individuals on the autism spectrum are less 

susceptible to decision biases because they tend to discount prior context and seemingly 

irrelevant information when making decisions (Rosenkrantz, D’Mello and Gabrieli, 2021). In 

all of these cases, the reduction in cognitive biases accompanies changes in behavior that 

suggest impaired hierarchical inference (e.g., impaired theory of mind in autism; Fields and 

Glazebrook, 2020; Pezzulo, Rigoli, and Friston, 2018). These findings, along with previous 

work showing that monetary incentives to act without bias often do not decrease bias 

(Tversky and Kahneman, 1981b), are consistent with a hierarchical-inference account, and 

not with the prevailing accounts of biases as means to minimize computational cost.  

Of course, the involvement of hierarchical inference in producing a bias would not 

always predict the bias will intensify with effort, as this prediction depends on algorithmic 

details that may vary from case to case. Indeed, more broadly, the evidence on the 

relationship of biases with effort and intact cognitive function is best summarized as mixed 

(e.g., Alós-Ferrer et al., 2016; Raoelison and De Neys, 2019; Nestler et al., 2008; Igou and 

Bless, 2007; Diederich et al., 2018; Keramati et al., 2016; Lieder et al., 2018; Epley and 

Gilovich, 2006; Simmons et al., 2010). This mixed picture coheres with the goal of the 

present paper, to demonstrate the viability and generativity of a hierarchical inference 

account to produce explanations of many, but not all, cognitive biases. Ultimately, we believe 

a complementary set of ideas is needed to comprehensively address the diverse set of 

cognitive biases, including not only hierarchical inference and resource rationality, but also 

evolutionary suboptimality and motivated cognition (Williams, 2020). Determining what 

explanation, or combination of explanations, best suits each instance of a bias requires careful 

case-by-case study, which we hope the present paper will motivate and inspire. For this 

purpose, future work could utilize the explicit models outlined here to devise experimental 

manipulations that would uniquely influence hierarchical inferences. 

https://sciwheel.com/work/citation?ids=11934384&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4923111,10951126,4714266,1281773&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4923111,10951126,4714266,1281773&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=300612&pre=&suf=&sa=0
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Concluding remarks 

In sum, despite being better informed and more challenging to implement than simple 

Bayesian inference, hierarchical inference may be responsible for a range of decision-making 

biases that are often used to highlight the limitations of human reasoning. We propose that 

the employment of hierarchical inference in these cases is best understood as a way to 

mitigate uncertainty at the cost of introducing bias. Understanding decision biases through 

this lens takes the characterization of a bias beyond phenomenological description and 

reveals the computations and assumptions it reflects. In so doing, the hierarchical inference 

lens shows how common human biases could arise from fundamental computations that a 

hierarchically structured brain has evolved to perform (e.g., Friston, 2012; Knill and Pouget, 

2004). Studying how these computations are neurally implemented and encoded may thus 

foster a mechanistic understanding of how biases emerge. Furthermore, the hierarchical 

inference lens generates novel behavioral predictions concerning people’s decisions and their 

adaptive and maladaptive consequences. It may thus inform both scientists and policy makers 

with a richer understanding of human decision-making. 
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Box 3. Generative hierarchical models of decision biases.  

We provide here generative hierarchical models justifying each of the biases discussed in the paper. For each 

model, we describe an example decision query, and probabilistic relationships between variables the 

decision maker observes (capitalized) and those she needs to infer (marked in bold). Further specified are 

additional quantities, the estimates of which influence the resulting biases. Priors are left unspecified.  

Halo effect 

Example: Inferring a student’s knowledge on open-ended exam questions from their answers. 

Target inference: 

𝜽𝑖 ∈ [0,1] – student’s knowledge on question i  

Observed variables: 

𝐴𝑖 ∈ {0,1,2, … , 𝑛𝑖} – number of correct features (out of 𝑛𝑖) identified in student’s answer to question i 

Other inferred variables: 

𝝎 ∈ [0,1] – student’s typical knowledge  

𝜿 ∈ ℝ+ – consistency of student’s knowledge across questions  

Relationships between variables: 

p(𝐴𝑖|𝜽𝑖) = Binomial(𝐴𝑖|𝑛𝑖 , 𝑝 = 𝜽𝑖) 

p(𝜽𝑖|𝝎, 𝜿) = Beta(𝜽𝒊|𝝎, 𝜿) 

Affective evaluation 

Example: An animal learns the expected value of harvesting fruit from different trees (specific actions) in its 

valley (general environmental factor) by harvesting them and observing how much fruit was obtained from 

each (observed reward).  

Target inferences: 

𝒗𝑖,𝑡 ∈ ℝ – value of action i at time t  

Observed variables: 

𝑅𝑖,𝑡 ∈ ℝ – observed reward for action i at time t  

Other inferred variables: 

𝒈𝑡 ∈ ℝ – value of a general environmental factor at time t  

Relationships between variables: 

p(𝑅𝑖,𝑡|𝒗𝑖,𝑡) = Normal(𝑅𝑖,𝑡|𝒗𝑖,𝑡 , 𝜎𝑅)  

p(𝒗𝑖,𝑡|𝒗𝑖,𝑡−1, 𝒈𝑡 , 𝒈𝑡−1) =  Normal(𝒗𝑖,𝑡|𝒗𝑖,𝑡−1 + (𝒈𝑡 − 𝒈𝑡−1), 𝜎𝑣) 

p(𝒈𝑡|𝒈𝑡−1) =  Normal(𝒈𝑡|𝒈𝑡−1, 𝜎𝑔) 

Additional estimated quantities: 

𝜎𝑅 ∈ ℝ+ – deviation of individual rewards from expected value  

𝜎𝑣 ∈ ℝ+ – independent volatility, of specific action values 

𝜎𝑔 ∈ ℝ+ – common volatility, of general environmental factor 

Attribute framing 

Example: Estimating the quality of a computer (product value) after a friend (experimenter) tells you from 

her experience the proportion of times the computer did (positively framed attribute) or did not (negatively 

framed attribute) handled tasks efficiently. 

Target inference: 

𝒗 ∈ ℝ – a product’s value 

Observed variables: 

𝐴 ∈ ℝ – an attribute of the product 

𝐹 ∈ {0 = negative, 1 = positive} – frame 
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Other inferred variables: 

𝒌 ∈ ℝ – experimenter’s evaluation of the product 

Relationships between variables: 

p(𝐹 = 1|𝒌) =  logistic(𝛽𝒌) 

p(𝒌|𝒗) =  Normal(𝒌|𝒗, 𝜎𝑘) 

p(𝐴|𝒗) =  Normal(𝐴|𝒗, 𝜎𝐴) 

Additional estimated quantities: 

𝛽 ∈ ℝ+ – influence of experimenter’s evaluation on frame 

𝜎𝑘 ∈ ℝ+ – reliability of experimenter’s evaluation 

𝜎𝐴 ∈ ℝ+ – relation between value and attribute  

Anchoring bias 

Example: Estimating the GDP (quantity of interest) of the US using both common knowledge (known facts) 

and a related value (anchor) provided by an experimenter.   

Target inference: 

𝒒 ∈ ℝ – a quantity of interest  

Observed variables: 

𝐴 ∈ ℝ – anchor 

𝐹⃗ ∈ ℝ𝑛 –  known facts of size n 

Other inferred variables: 

𝒌 ∈ ℝ – experimenter’s estimate of the quantity 

Relationships between variables: 

p(𝐴|𝒌) = Normal(𝐴|𝒌, 𝜎𝐴) 

p(𝒌|𝒒) = Normal(𝒌|𝒒, 𝜎𝑘) 

p(𝐹⃗|𝒒) = Normal(𝐹⃗|𝒒, Σ𝐹) 

Additional estimated quantities: 

𝜎𝑘 ∈ ℝ+ – reliability of experimenter’s estimate 

𝜎𝐴 ∈ ℝ+ – deviation of anchor from experimenter’s knowledge 

Σ𝐹 ∈ ℝ𝑛×𝑛 – similarity between known facts 

Hot hand illusion 

Example: Inferring a basketball player’s changing ability to make baskets based on their recent history of 

made and missed baskets. 

Target inference: 

𝒂𝑖,𝑡 ∈ ℝ – ability of basketball player i at time t  

Observed variables: 

𝑀𝑖,𝑡 ∈ {0 = miss, 1 = make} – make or miss by basketball player i at time t  

Relationships between variables: 

p(𝑀𝑖,𝑡 = 1|𝒂𝑖,𝑡) =  logistic(𝒂𝑖,𝑡) 

p(𝒂𝑖,𝑡|𝒂𝑖,𝑡−1) =  Normal(𝒂𝑖,𝑡|𝒂𝑖,𝑡−1, 𝜎𝑎) 

Additional estimated quantities: 

𝜎𝑎 ∈ ℝ+ – volatility of basketball players’ ability 

Base-rate Neglect 

Example: Judging the probability that a car involved in an accident belonged to the blue cab company, as 

opposed to the green cab company, given that only 15% of cabs are blue (incidental base rate) and that a 

moderately-reliable (i.e., 80% accurate) eyewitness said they saw a blue cab. 
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Target inference: 

𝒄 ∈ {0 = green, 1 = blue} – cab involved in accident 

Observed variables: 

𝑅 ∈ {0 = green, 1 = blue} – cab reported by eyewitness 

𝐼blue ∈ [0,1] – incidental base rate of blue cab 

𝐼green  =  1 − 𝐼blue  – incidental base rate of green cab 

Other inferred variables: 

𝑷blue ∈ [0,1] – relative accident proneness of blue cab 

𝑷green =  1 − 𝑷blu𝑒   – relative accident proneness of green cab 

Relationships between variables: 

p(𝒄 = 1|𝐼blue, 𝐼green) =  
𝐼blue𝑷blue

𝐼blue𝑷blue+𝐼green𝑷green
  

p(𝑅 = 1|𝒄) =  0.8𝒄 + 0.2 (1 − 𝒄)  

Outcome bias 

Example: Determining whether a surgeon made the correct decision to perform surgery (decision 

correctness) based on the known success rate of the surgery (fixed expected outcome), what might be known 

about the individual patient’s characteristics (random effects), and the outcome of the surgery.  

Target inference: 

𝒅 ∈ {0 = incorrect, 1 = correct} – decision correctness 

Observed variables: 

𝑂 ∈ {0 = unsuccessful, 1 = successful} – outcome 

𝐹 ∈ [0,1] – fixed expected outcome 

Other inferred variables: 

𝒓 ∈ ℝ – random effects 

Relationships between variables: 

p(𝑂 = 1|𝐹, 𝒓) =  logistic(logit(𝐹) + 𝒓) 

𝒅 = {
1 if p(𝑂 = 1|𝐹, 𝒓) > 𝜃
0 else

 

Additional estimated quantities: 

𝜃 ∈ [0,1] – threshold for evaluating a decision as correct 

Availability heuristic 

Example: Guessing the chance a massive flood will occur somewhere in North America, or conversely, a 

massive flood will occur due to an earthquake in California. 

Target inference: 

𝒇𝑖 ∈ ℝ+ – frequency of flood of type i  

Observed variables: 

𝑅𝑖 ∈ ℝ+ – rate of information coming to mind about flood of type i 

Other inferred variables: 

𝒏𝑖 ∈ ℤ+ – number of previous encounters with flood of type i  

Relationships between variables: 

p(𝑅𝑖|𝒏𝑖) = Gamma(𝑅𝑖|𝜇 = 𝛽𝒏𝑖 , 𝜎) 

p(𝒏𝑖|𝒇𝑖) = Poisson(𝒏𝑖|𝒇𝑖 + 𝑑) 

Additional estimated quantities: 

𝛽 ∈ ℝ+ – effect of number of encounters on average rate of information coming to mind 

𝜎 ∈ ℝ+ – variability in rate of information due to factors other than number of encounters 

𝑑 ∈ ℝ+ – variability in rate of encounters due to factors other than the flood’s frequency 
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