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Abstract 

Purpose: Early accurate diagnosis of infection ± organ dysfunction (sepsis) remain major challenges 

in clinical practice. Utilizing effective biomarkers to identify infection and impending organ 

dysfunction before the onset of clinical signs and symptoms would enable earlier investigation and 

intervention. To our knowledge, no prior study has specifically examined the possibility of pre-

symptomatic detection of sepsis.  

Methods: Blood samples and clinical/laboratory data were collected daily from 4,385 patients 

undergoing elective surgery. An adjudication panel identified 154 patients with definite 

postoperative infection, of whom 98 developed sepsis. Transcriptomic profiling and subsequent RT-

qPCR was undertaken on sequential blood samples taken postoperatively from these patients in the 

three days prior to the onset of symptoms. Comparison was made against postoperative day-, age-, 

sex- and procedure- matched patients who had an uncomplicated recovery (n=151) or postoperative 

inflammation without infection (n=148). 

Results: Specific gene signatures optimized to predict infection or sepsis in the three days prior to 

clinical presentation were identified in initial discovery cohorts. Subsequent classification using 

machine learning with cross-validation with separate patient cohorts and their matched controls 

gave high Area Under the Receiver Operator Curve (AUC) values. These allowed discrimination of 

infection from uncomplicated recovery (AUC 0.871), infectious from non-infectious systemic 

inflammation (0.897), sepsis from other postoperative presentations (0.843), and sepsis from 

uncomplicated infection (0.703). 

Conclusion: Host biomarker signatures may be able to identify postoperative infection or sepsis up 

to three days in advance of clinical recognition. If validated in future studies, these signatures offer 

potential diagnostic utility for postoperative management of deteriorating or high-risk surgical 

patients and, potentially, other patient populations. 

Trial Reg Number: ISRCTN17375399.   Keywords: Sepsis, diagnosis, host, biomarker, signatures  



4 

 

Take-Home Message 

Early transcriptomic changes offer potential diagnostic utility for the management of patients at risk 

of developing subsequent postoperative infection ± sepsis. The limited number of genes identified 

facilitates development of a point-of-care rapid diagnostic. 

 

140 character tweet 

Large multicentre study predicting development of postoperative infection and sepsis up to 3 days 

before symptom onset 
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Introduction 

Sepsis, the dysregulated host response to infection leading to life-threatening organ dysfunction [1], 

is a substantial global cause of mortality and morbidity [2]. Early, accurate diagnosis of infection and 

organ dysfunction remains problematic, as reflected by multiple interventional trials over three 

decades failing to yield outcome improvements [3]. These failures relate in part to uncertainty that 

infection was actually present [4, 5], but also to belated intervention once the patient is in 

established multi-organ failure with the therapeutic window of opportunity having closed [3, 6]. 

Success with immunomodulatory and other therapeutic strategies is likely predicated on use early in 

the sepsis course or even pre-emptively, as frequently achieved in preclinical models [6]. On the 

other hand, inappropriate use of antibiotics contributes to antimicrobial resistance [7] and may 

distract clinicians from diagnosing a non-infective condition [4, 5].  

Considerable efforts are being expended to develop rapid, even point-of-care, biomarkers for 

infection and sepsis with high sensitivity and specificity [8]. Pathogen-focused techniques include 

molecular identification of the pathogen or unique components such as prokaryotic DNA. The 

dysregulated host response is being interrogated using -omic approaches, single- or multiplex 

protein assays or flow cytometry [8, 9]. However, host response studies to date often lack 

comparator cohorts of patients with non-infective causes of critical illness, or microbiological 

confirmation that infection is indeed present. Furthermore, sampling is usually begun after the 

patient presents with suspected infection or sepsis. An ideal patient cohort would allow accurate 

pre-symptomatic identification of patients who proceed to develop infection, in particular those 

progressing to sepsis.  

Our primary study aim was to develop a tool to facilitate presymptomatic identification of patients 

developing infection, and we hypothesised this could be achieved using transcriptional changes in 

small gene sets. As a secondary objective, we sought to determine whether we could pre-identify 

those infected patients who would develop new-onset organ dysfunction (sepsis). To this end, we 
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conducted a large prospective, multi-centre study in patients undergoing elective major surgery, 

with daily blood sampling and data recording commencing preoperatively and continuing up to a 

week after. A clinical adjudication panel independently examined clinical and laboratory data to 

identify patients with definite infection ± sepsis. Samples from these patients enabled comparison of 

microarray and RT-qPCR data against cohorts of postoperative day-, age-, sex- and procedure-

matched patients with either non-infective systemic inflammation or an uncomplicated 

postoperative course.  
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MATERIALS AND METHODS 

Study design 

Elective surgery patients were prospectively recruited at eight hospitals (seven UK, one German) 

between November 2007 and February 2017. Ethical approval was granted through the 

Southampton and South-West Hampshire Multicentre Research Ethics Committee (Reference 

06/Q1702/152). The protocol achieved US Federal Wide Assurance Independent Review Board 

status (IRB00001756). Patients were enrolled if they gave informed consent, were aged between 18-

80 years, and due to undergo elective major surgery that would likely enhance the development of 

postoperative infection (Supplement S1).  

Data and blood sampling collection 

Demographic data were collected at enrolment with baseline blood sample collection taken at 1-7 

days pre-operatively. After surgery, relevant clinical, laboratory and imaging data and blood samples 

were collected daily on all patients until seven days, hospital discharge (if sooner), or a diagnosis of 

infection or sepsis by the treating clinician. Two 4 ml aliquots of blood were collected daily into 

sterile EDTA vacutainers and then immediately transferred into RNAse-free vials containing 10.5 ml 

RNAlater® (ThermoFisher, Waltham, MA, USA) to preserve the transcriptome.  

Patient selection process 

A detailed description is provided in Supplement S2. Briefly, initial diagnosis of sepsis was based on 

the treating clinician’s interpretation of clinical and laboratory markers using the then-extant ‘Sepsis-

2’ definition of sepsis [10]. This described ‘sepsis’ as suspected or confirmed infection with two or 

more systemic inflammatory response syndrome (SIRS) criteria, and ‘severe sepsis’ as sepsis plus 

poorly-characterized new-onset organ dysfunction. The new sepsis definition (Sepsis-3), published in 

February 2016 redefined ‘sepsis’ as infection plus new organ dysfunction identified by a ≥2 point rise 

in the Sequential Organ Dysfunction Assessment (SOFA) score [1]. To align with modern 

nomenclature, subsequent analyses and descriptors apply the new definition.  
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Since clinical opinion can vary when diagnosing infection or sepsis [11], a Clinical Advisory Panel 

adjudicated cases and enabled confident identification of patients with postoperative infection 

(Supplement S2). Patients with definite infection were allocated to either an uncomplicated infection 

subgroup, or to a sepsis subgroup if new organ dysfunction developed following surgery with a rise 

in Sequential Organ Failure Assessment (SOFA) score ≥2 points above baseline [1]. Postoperative 

day-, age-, sex- and procedure-matched cohorts of non-infected patients making an uncomplicated 

postoperative recovery (SIRS-), or developing a systemic inflammatory response (SIRS+), were 

selected from the remaining pool of patients recruited into the study. Blood samples from these 

three groups, totalling 453 patients, were taken forward for transcriptomic and subsequent reverse 

transcription quantitative polymerase chain reaction (RT-qPCR) analyses. 

 

Microarray and RT-qPCR analysis 

Infected patients were split into Discovery (Gene Feature Selection) (n= 63) and Training and 

Validation (Classification) (n=91) cohorts (Figure 1).  

• Discovery (Gene Feature Selection) Cohort 

Biomarker discovery studies were undertaken exclusively in this 63-patient cohort at a pre-

determined interim analysis of the study. A detailed transcriptomic analysis was initially undertaken 

using globin-reduced RNA (GlobinClear Human, ThermoFisher) from the blood samples of 58 

patients collected during the three days prior to presentation of definite infection, and from 55 

matched non-infected (SIRS-) control patients (Figure 1). Further details of the microarray analysis 

using Human HT-12v4 beadarrays (Illumina, San Diego, CA, USA) are shown in Supplement S3. 

Differentially expressed genes (DEGs) based on microarray data were identified by applying a linear 

model fit for each gene [12], a p-value cut-off of 0.05 and a fold change of at least 1.2. Data obtained 

from non-infected study patients were used as reference. Gene expression of the top 80 identified 

DEGs was verified using multiplex RT-qPCR (Fluidigm, San Francisco, CA, USA) and TaqMan Gene 

Expression Assays (Applied Biosystems, Carlsbad, CA, USA).  
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The RT-qPCR data were then further used for downselecting the 25 most promising biomarkers. In 

these experiments, analysis was possible for 63 infection and 62 SIRS- patients. In addition, RT-qPCR 

data were obtained from 58 SIRS+ matched patients (Figure 1, Table 1). Within the 63 infected 

patients, 37 developing sepsis were compared to 26 with uncomplicated infection (Figure 1, Table 1). 

Gene ontology enrichment was performed using the R package clusterProfiler (v3.18.0) and 

visualized using the R package GoPlot (v1.0.2).  

Down-selection of genes based on RT-qPCR data was made using a two-step feature selection 

process to improve the performance of the predictive classification models used to discern patient 

groups (described fully in Supplement S4). Briefly, the Boruta algorithm [13], a wrapper method 

based on random forest [14] was used for selection of relevant features in the dataset. This step was 

followed by backward elimination to determine features with the most discriminatory power for a 

particular classification. Training of these models relevant for feature selection was done by a 5-fold 

cross-validation repeated 25 times. Mean performances were tracked for AUC, PPV and NPV over 

the 25 repetitions. This procedure was repeated to assess the ability of the identified biomarkers to 

discriminate between infected patients and either controls (SIRS-) or non-infected but inflamed 

(SIRS+) patients and, as a secondary objective, to discriminate between infected patients either 

developing organ dysfunction (sepsis) or not (Figure 1). 

 

• Training and validation of final classification models  

Of all 80 DEG biomarker candidates, 25 were identified as part of at least one classification model 

based on an orthogonal RT-qPCR approach that could discriminate between the patient classes. 

These 25 RT-qPCR transcripts were taken forward to an independent patient cohort (Classification 

Cohort) to both learn a predictive classifier model and to assess performance.  
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RT-qPCR analysis of gene expression was undertaken on samples from 91 patients with infection, 89 

matched SIRS- comparator patients, and 90 similarly matched non-infected SIRS+ patients, 

respectively (Figure 1). Further comparison was made within the infection cohort, comparing 

patients who did (sepsis, n=61) or did not develop organ dysfunction (n=30). A final comparison was 

made between patients with sepsis (n=61) and all other matched patients with non-sepsis outcomes 

(n=209) within our validation cohorts (Figure 1).  

For assessment of signature performance, a similar random forest-based approach was used. 

Models were created (‘training phase’) and and then validated (‘validation phase’). We divided our 

data in a random 80:20 split for training and validation, respectively. In the training phase models 

were trained and cross-validated on the 80% subset using 5-fold cross-validation. This process was 

repeated 25 times using R package caret (v6.0-90, ‘train’ function) to prevent lucky or unlucky 5-fold 

cross-validation.  In the validation phase the trained models were tested on the remaining 20% of 

the data that were not used for cross-validation in the training phase. This process was repeated 10 

times with 10 different randomly selected subsets, again to counteract any lucky or unlucky data 

splits. For each comparison, 10 models (including 10 different test sets) were created and the mean 

AUC, sensitivity and specificity reported.  

 

Statistical analysis 

Prediction of a robust sample size followed the method described by Figueroa et al [15] and is 

dsecribed in detail in Supplement S4. Briefly, random forest-based classifier performance was 

assessed with an increasing number of simulated patients in each cohort to identify when a 

performance plateau occurred. 

All qRT-PCR data was analyzed with nonparametric Wilcoxon tests, unless otherwise stated. All data 

and statistical analyses were done using R (v.3.6.3).   
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RESULTS  

Patient recruitment and subgroup identification 

Clinical data and blood samples were collected from 4,385 high-risk elective surgery patients. An 

overall flow chart is shown in Supplement S5. The clinical panel adjudication identified a total of 154 

patients with high certainty of infection, of whom 98 developed sepsis (Figure 1). These were 

compared against samples taken from postoperative day-, age-, sex- and operation-matched 

patients without infection, of whom 148 developed a systemic inflammatory response (SIRS+) and 

151 (SIRS-) did not. Each patient group was split into Discovery (Gene Feature selection) and 

Training/Validation (Classification) cohorts. Demographic and clinical data are shown in Table 1. 

Microbiological confirmation of infection was achieved in 81 septic and 45 uncomplicated infection 

patients (Supplement S6). A broad range of Gram negative, Gram positive and fungal organisms 

were isolated. Strong clinical evidence of infection was used for the remaining 15 and 11 patients, 

respectively. Of the 98 septic patients, 80 patients required at least one organ support (60 

mechanical ventilation, 55 vasopressors, 8 renal replacement therapy) Nine patients ultimately died 

of sepsis while two died for unrelated reasons. Approximately half of the patients who were 

subsequently diagnosed with infection and 60% of the non-infected patients received no 

postoperative antibiotic (Supplement S7). The remaining patients received one or more doses of 

antibiotic, 79% commencing on Postoperative Day 1 and likely to represent ongoing prophylactic 

medication.  

Discovery (Gene Feature selection) cohort 

• Microarray-based biomarker discovery  

Initial biomarker discovery was performed on blood samples taken from 58 infected patients over 

the three days preceding clinical presentation of postoperative infection underwent transcriptomic 

profiling. Comparison was made against 55 postoperative day-, age-, sex- and procedure-matched 

patients with an uncomplicated, non-infected, non-inflamed (SIRS-) course (Figure 1, Table 1).  
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Overall, 2,594 differentially expressed genes (DEGs) between infection and control were identified in 

the three days pre-infection diagnosis. Of the top 1500 DEGs with the highest fold change (Figure 2A, 

Supplement S8), 863 (57.5%) DEGs were upregulated and 637 (42.5%) downregulated. Functional 

enrichment analysis yielded immune relevant pathways involving primarily neutrophils and T cells 

(Figure 2B, Supplement S8).  

A random forest-based algorithm identified the best-performing DEGs derived for all three days prior 

to infection/sepsis diagnosis and their respective non-infected controls. Initial analysis indicated that 

different sets of eight genes could identify postoperative infection with high AUCs. 

• RT-qPCR verification and down-selection of microarray-based biomarkers 

Collectively, differential expression analysis and concurrent random forest-based classifiers with 

equally high performance metrics proposed 80 best performing genes from the microarray data. 

These were down-selected for confirmation by RT-qPCR analysis using the same 58 infected patient 

cohort samples analysed for biomarker discovery plus samples from an additional five patients, with 

comparisons being made against 62 non-infected SIRS- patients. A representative 8-gene-set showed 

highly significant differential expression between the two patient groups, exemplifying the 

compatibility between microarray- and RT-qPCR-based gene expression (FDR-corrected Wilcoxon 

test, p<0.001, Fig. 2C). To utilise all patient sub-groups with different postoperative outcomes 

identified in our study, we subsequently explored whether subsets of our 80-gene set would suffice 

to differentiate the 63 infected patients from 58 SIRS+ patients, as well as to differentiate within the 

infection cohort, i.e. with (n=37) or without (n=26) organ dysfunction (Figure 1, Table 1). Again using 

a random forest-based classification approach in conjunction with Boruta to select the most 

important gene transcripts (cf Methods) yielded convincing model performances throughout all 

classification attempts. Specifically, a 7 gene set (B4GALT5, AFF1, LDLR, ATXN7L3, LARP4B, SLC36A1, 

TRPM2, AUC >0.85, PPV >0.8) for infection versus SIRS- models, a 12 gene set (ATXN1, SLC41A3, 

MED13L, STOM, B4GALT5, MIDN, HVCN1, LDLR, CFLAR, SPATA13, EIF4G3, METTL7B, AUC >0.9, PPV 

>0.8) for infection versus SIRS+ models, and an eight gene set (DOK3, ICAM2, IL1R1, LGALS2, LSG1, 



14 

 

RPL13A, RPS13, SGSH, AUC >0.75 (PPV >0.7) for sepsis vs. uncomplicated infection were sufficient to 

classify postoperative outcomes. These 25 genes were further selected for building predictive 

models in an independent and substantially larger patient cohort. 

Training/Validation (Classification ) Cohort:  

• Building machine learning predictive models in independent patient cohorts 

In separate cohorts of patients we evaluated the classification performances of the 7, 12 and 8 gene 

signatures whose performance had been verified to discern: (i) infection (n=91) from non-infected 

SIRS- (n=89) patients, (ii) infection from non-infected SIRS+ (n=90) patients, and (iii) 61 sepsis and 30 

uncomplicated infection patients, respectively, (Figure 1, Table 1).  

To prevent models from overfitting, classification training including nested cross-validation was 

performed 10 times on a randomly selected 80% of the data. In each iteration the models were 

validated on 20% of randomly selected sample subsets that were never used for training (kept 

outside of cross-validation, cf. Methods). The mean performance of the gene signatures across these 

10 runs remained high following a random forest-based classification. For postoperative infection 

versus SIRS- controls, the 7 gene signature achieved an AUC value of 0.871 (Figure 3). The 12 gene 

signature for differentiation of infection from non-infected SIRS+ patients achieved an AUC value of 

0.897. Differentiation of sepsis from uncomplicated infection patients resulted in an AUC value of 

0.703. Finally, differentiation of sepsis from all other clinical presentations using all 25 transcripts 

achieved an AUC of 0.843. Sensitivity was high across all comparisons (0.785-0.942) whereas 

specificity was high for infected compared to non-infected SIRS+ (0.838) and SIRS- (0.776) patients, 

but poor for sepsis vs uncomplicated infection (0.217). Supplement S9 shows the Classification 

performance for different thresholds optimized for sensitivity or specificity, and various assumed 

prevalence of outcomes. This indicates, for example, how current practice specificity for correct 

antibiotic selection (Supplement 7) can be enhanced by use of a specificity-optimized gene panel. 
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DISCUSSION  

This study demonstrates that patients undergoing elective major surgery who develop postoperative 

infection with or without organ dysfunction (sepsis), can be reliably identified and differentiated 

from non-infected patients up to three days before clinical diagnosis using host transcriptomics.  

Accurate, early diagnosis of infection and sepsis represents a holy grail for improving patient care 

and outcomes and avoiding unnecessary antimicrobial use. Transcriptomic studies of patients with 

uncomplicated infection and/or sepsis have focused on patients with established clinical features 

requiring hospitalization or admission to critical care [17-21]. Such studies have added to our 

understanding of sepsis pathogenesis, demonstrating some prognostic capability [18, 22-24], and 

offering reasonable discrimination between infectious and non-infectious causes of systemic 

inflammation [18-20, 25]. Presymptomatic diagnosis would facilitate early investigation and 

treatment, and can be reasonably surmised to improve patient outcomes. 

To our knowledge, no study has specifically studied patient samples taken before the clinical onset of 

infection. An elective surgical population represents an ideal patient group, albeit somewhat 

inefficient, as most have a postoperative course uncomplicated by infection. Apart from the 

underlying need for surgery, patients enrolled in our study were infection-free and stable. To have as 

clean a dataset as possible, samples were only used from the 3.5% of patients where a clinical 

adjudication panel identified postoperative infection with high confidence. Intermediate cases with 

more uncertainty surrounding diagnosis were excluded. We also drew from a large patient cohort 

from which postoperative day-, age-, sex- and operation-matched patients could be selected having 

either an uncomplicated course or developing a postoperative systemic inflammation where 

infection was confidently excluded and not treated.  

Many studies examining sepsis biomarkers have relied on selection through knowledge-based 

approaches predicated on known biological functions and pathways [25] rather than targets whose 
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functions have not been fully described [26]. We adopted a target selection strategy that relied on 

statistical rather than biological features [27]. A machine learning approach was used to select 

appropriate targets and classify patients based on host gene expression with comparison against a 

clear-cut clinical diagnosis to determine predictive accuracy. The initial phase of biomarker discovery 

identified 80 genes for which differences from other patient cohorts could be confirmed using an 

orthogonal approach (RT-qPCR). Re-classification based on RT-qPCR aimed at feature reduction for 

best gene selection in the same group of patients enabled further down-selection to 25 key 

biomarkers. Subsequent classification analysis revealed the potential for clinical application with an 

even more reduced set of biomarkers, allowing a rapid and affordable point-of-care test.. 

A machine learning algorithm approach was also used to select appropriate targets and classify 

patients based on host gene expression (uncorrected for baseline values) with comparison made 

against a clear-cut clinical diagnosis to determine predictive accuracy. The success of this approach is 

evidenced by high values of AUC, sensitivity and specificity comparing patients developing infection 

versus uncomplicated (SIRS-) controls, and the more diagnostically challenging group who develop 

postoperative (SIRS+) inflammation that is not driven by infection yet which shares many clinical 

features such as pyrexia, tachycardia, neutrophilia and elevated C-reactive protein levels. There was 

also reasonable discrimination (high sensitivity but poor specificity) in pre-emptively identifying 

infected patients who would proceed to organ dysfunction compared to those with uncomplicated 

infection. 

The difference in our study approach is also exemplified by only six out of 80 genes identified in our 

classification models overlapping with genes of prior published gene signatures for sepsis and 

community-acquired pneumonia [16, 18, 20]. The data reported within our study indicate that 

changes in expression of host biomarkers are predictive of later complications related to infection. 

Any shortcomings in model performance is likely due to the complex relationship between individual 

genes, their transcripts, post-translational modifications and protein interactions, and complicated 
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further by both therapeutic interventions and the dynamic nature of signaling within the host 

response that flux during the dysregulation process [27, 28]. 

In trying to answer the more challenging question of when an individual will develop infection or 

sepsis, we sampled at multiple timepoints. While a common gene set could detect changes over a 3-

day period prior to clinical presentation, separate gene transcripts gave even stronger signals on a 

day-by-day basis (data not shown). This reflects observations made in trauma patients [29], in 

human volunteers given endotoxin [30], and in children with meningococcal disease [31]. However, 

using separate gene sets would require prior knowledge of precisely when a patient will develop 

features of uncomplicated infection or sepsis, and this would clearly be non-feasible in clinical 

practice. 

Several limitations should be highlighted. Cost issues precluded even broader testing, in particular 

within the indeterminate subgroup in whom there was less certainty about the presence of 

postoperative infection but where antibiotics were commenced. We selected 20% patient subsets 

for internal model validation, which we repeated randomly 10 times to avoid a single selected 

advantageous or disadvantageous sample subset. Prospective external validation is needed to 

confirm predictive utility in both surgical and non-surgical populations, in specific patient subsets 

(e.g. children, haemoncology), in a broader racially diverse mix, and in patients with specific non-

bacterial infections such as malaria and SARS-CoV-2. A validation study in patients with acute lower 

respiratory tract infection is currently in progress.  

How such gene panels, if validated as reliable tools, could be used in clinical practice will depend on 

both cost and the rapidity with which results can be obtained. The ability already exists to deliver 

point-of-care information from small gene set PCR-based devices within 1-2 hours, or from multiplex 

protein analyses within minutes. This can currently be achieved at relatively low cost and the price 

per unit test is likely to drop further with advances in technology and manufacturing. If cost is 

comparable to routinely monitored biomarkers of inflammation such as C-reactive protein and 
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procalcitonin, such a test could potentially offer (near-) daily ‘rule-out’ screening. The target product 

profile could also be altered using different cut-off values (as shown in Supplement S9) to enhance 

either specificity. Especially if the cost-economic analysis mitigates against its use as a daily monitor, 

it could still be used as a diagnostic with rule-in capability focussing on patients in whom infection is 

clinically suspected but where diagnosis remains uncertain. A further potential use is a a ‘rule out’ 

test in patients presenting with non-specific features where infection is among a list of differential 

diagnoses. And, finally, the high sensitivity achieved from the complementary gene set in 

discriminating future uncomplicated infection from sepsis offers potential for early, safe discharge 

for low-risk patients from a higher dependency ward setting. Modelled examples comparing 

optimized sensitivities and specificities are shown in Supplement 10.  

In conclusion, we demonstrate that postoperative infection can be identified by a panel of gene 

transcripts up to three days pre-onset of clinical presentation. This can be delineated from both 

uncomplicated postoperative controls and, more crucially, patients with postoperative systemic 

inflammation unrelated to infection. Infected patients developing organ dysfunction (sepsis) could 

also be identified in advance. Subject to prospective confirmation, the identified gene sets offer the 

ability to reliably diagnose infection and sepsis presymptomatically, which may impact upon patient 

outcomes and inappropriate antibiotic use.   
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Figure Legends 

Figure 1: Study schema with Discovery (Gene Feature Selection) and Training/Validation 

(Classification) phases indicated.  

RT-qPCR = Reverse Transcription quantitative polymerase chain reaction; SIRS = systemic inflammatory 

response syndrome; Inf+ = infected patients; Inf- = non-infected patients; Inf+ OD- =uncomplicated 

infection patients. 

 

Figure 2: Gene expression analysis for infection versus healthy postoperative controls.  

A) Expression profile of 1500 differentially expressed genes with highest absolute fold change. The 

top ten up- and downregulated genes are indicated separately. B) Top enriched Gene Ontology 

categories based on 1500 differentially expressed genes with highest fold change as shown in figure 

2A). Node sizes indicate number of genes per shown category. Fold change is indicated for each 

displayed gene node. C) RT-qPCR values for 8 genes originating from classifying infection versus no 

infection based on microarray based expression data. 

ΔCq value indicates PCR cycle quantifications according to ΔCq = Cq(reference) - Cq(target gene). 

Wilcoxon test derived significance level is indicated (***: p≤0.001, ns: not significant). Error bars show 

standard error of the mean. N(samples of infected patients ) = 139, N(samples of control patients) = 144. 

 

Figure 3: RT-qPCR based classification performance based on random forest using all available 

patient samples and across all days prior to infection diagnosis. ROC curve and statistical metrics 

for (i) infection versus non-inflamed postoperative controls (SIRS-) [blue], infection versus non-

infected and inflamed (SIRS+) [red], sepsis versus infection without organ dysfunction (OD-) [mauve] 

and sepsis versus all others [green]. The table reports mean statistics for classification models based 

on different numbers of transcripts. 

N = number; AUC = area under the curve; PPV = positive predictive value; NPV = negative predictive 

value; Sens = sensitivity; Spec = specficity 
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Table Legend 

Table 1 Patient demographics and clinical metadata. Three main cohorts were used for analysis 

(infected, non-infected SIRS+ and non-infected SIRS- patients. The infection cohort is further sub-

divided into patients who developed organ dysfunction (sepsis) and those that did not. Data are 

given for cohorts used for initial biomarker discovery and subsequent biomarker validation.  

IQR interquartile range; SOFA Sequential (Sepsis-related) Organ Failure Assessment Score. 

 


